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ABSTRACT

Multimodal foundation models, such as Gemini and GPT-4, have revolutionized
human-machine interactions by seamlessly integrating various forms of data. De-
veloping a universal spoken language model that comprehends a wide range of
natural language instructions is critical for bridging communication gaps and facil-
itating more intuitive interactions. However, the absence of a comprehensive eval-
uation benchmark poses a significant challenge. We present Dynamic-SUPERB
Phase-2, an open and evolving benchmark for the comprehensive evaluation of
instruction-based universal speech models. Building upon the first generation,
this second version incorporates 125 new tasks contributed collaboratively by the
global research community, expanding the benchmark to a total of 180 tasks, mak-
ing it the largest benchmark for speech and audio evaluation. While the first
generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-
SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array
of novel and diverse tasks, including regression and sequence generation, across
speech, music, and environmental audio. Evaluation results indicate that none
of the models performed well universally. SALMONN-13B excelled in English
ASR, while WavLLM demonstrated high accuracy in emotion recognition, but
current models still require further innovations to handle a broader range of tasks.
We open-source all task data and the evaluation pipeline, which will be available
after the paper is published.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have accelerated the development of natural
language processing (NLP) (Touvron et al., 2023a; Achiam et al., 2023; Li et al., 2023b; Anthropic,
2023; Bai et al., 2023). These models can follow natural language instructions, making users quickly
adopt them for a variety of applications. They have been integrated into commercial products, such
as ChatGPT (Achiam et al., 2023) and Claude (Anthropic, 2023), as well as in the open-source
research community, including the LLaMA series (Touvron et al., 2023a;b; Dubey et al., 2024).
Yet, they are primarily text-based models, meaning they cannot process speech or audio, which are
essential for more natural ways of communication and interaction with the real world.

Compared to written text, spoken language has always been a more natural and convenient way for
humans to communicate. Spoken language conveys a wealth of information, including semantics,
prosody, emotion, and speaker characteristics, while text is limited to representing semantic infor-
mation, which can sometimes even depend on the prosodic cues present in spoken language (Lin
et al., 2024). This highlights the need for universal speech models and explains why automatic
speech recognition (ASR) systems using text-based language models are not optimal. Several at-
tempts have been made to develop instruction-based universal speech or audio models capable of
performing various tasks, such as LTU-AS (Gong et al., 2023), SALMONN (Tang et al., 2024a),
Qwen-Audio (Chu et al., 2023; 2024), and WavLLM (Hu et al., 2024).

Despite significant research in universal speech models, evaluating them effectively and compre-
hensively remains a major challenge. In NLP, to evaluate text LLMs, some benchmarks consist of a
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larger number of tasks. CrossFit (Ye et al., 2021) includes 160 tasks, BIG-bench (Srivastava et al.,
2022) comprises 204 tasks, and Natural-Instructions (Mishra et al., 2022; Wang et al., 2022) pro-
vides 1,616 tasks. For universal speech models, several benchmarks have been proposed but with a
fixed and limited set of tasks (typically around a dozen) to evaluate specific capabilities of models
(Yang et al., 2021; Dunbar et al., 2022; Maimon et al., 2024). This is insufficient for evaluating a
universal model, as we aim to investigate whether such models can perform a broad range of tasks
beyond the limited set of tasks included in these benchmarks. There is a strong demand for a bench-
mark that can evaluate these models across various aspects with a wide range of speech tasks, which
led to the creation of Dynamic-SUPERB (Huang et al., 2024a).

Dynamic-SUPERB is the first benchmark designed to evaluate universal instruction-based speech
and audio models. As universal models advance, we dynamically expand the benchmark by adding
new tasks to provide better guidance for researchers in developing their models. We have designed
a well-structured pipeline that harnesses the collective efforts of the entire community to gather a
diverse array of challenging, novel, and creative tasks. The first generation of Dynamic-SUPERB
consists of 55 tasks, covering various aspects of speech (e.g., content, semantics, speakers, etc.),
making it the speech benchmark with the most tasks. However, this is not sufficient to pave the
way for developing universal speech models, especially given the complexity and richness of the
information conveyed by spoken language.

This paper presents the Dynamic-SUPERB Phase-2. We collected 91 new tasks with contributions
from the global research community, allowing the benchmark to grow more than twice as large
as its first iteration. They cover a broad range of types, and some of these tasks present novel
challenges that have not been explored in any previous research. Besides, previous speech research
has typically treated music and environmental audio as background noise to be ignored. However,
these sounds contain rich information and share overlapping elements that complement each other.
Thus, in Dynamic-SUPERB, we also introduced preliminary music and audio tasks from established
music and audio benchmarks (Yuan et al., 2023; Turian et al., 2022). We also define the core tasks by
reformulating the SUPERB (Yang et al., 2021) (speech), MARBLE (Yuan et al., 2023) (music), and
HEAR (Turian et al., 2022) (audio) benchmarks to enable quick-round research experiments. One
challenge of evaluating with such a large-scale benchmark is deriving concrete and useful insights
from hundreds of evaluation results. We provide a taxonomy for every task in Dynamic-SUPERB,
where tasks are clustered by the specific model capabilities they probe. Researchers can follow this
taxonomy to develop or reinforce specific capabilities of the models they build. To our knowledge,
Dynamic-SUPERB is the largest benchmark and the first to provide such a detailed task taxonomy
in speech processing.

We conducted a comprehensive evaluation of several models using Dynamic-SUPERB Phase-2. To
evaluate the diverse output formats of these models, we propose an automated pipeline that uses
LLMs to assess and process model outputs for general evaluation across various tasks. The evalua-
tion results show that these models perform well only on a very limited range of tasks. For example,
SALMONN-13B performed well on English ASR, while WavLLM achieved high accuracy in emo-
tion recognition. However, they do not generalize well to a much broader range of tasks in speech
recognition and paralinguistics. On the other hand, the results reveal that training on diverse data,
even with significant differences in signal-level characteristics, can enhance performance across do-
mains. We observed that spoken language models outperformed music language models in certain
music tasks. This highlights the potential for developing unified models for speech, music, and
general audio processing. Importantly, we have open-sourced all materials, including task data and
the evaluation pipeline, to facilitate reproduction and further development by researchers. We also
invite researchers to join us in continuing to enhance Dynamic-SUPERB, making it more diverse
and comprehensive to advance the development of universal spoken language models.

2 RELATED WORKS

2.1 INSTRUCTION-FOLLOWING UNIVERSAL SPEECH MODELS

LLMs have shown strong natural language processing abilities and are used in speech, audio, and
music applications. Recent frameworks integrate a pre-trained speech encoder with an LLM through
fine-tuning techniques such as LoRA (Hu et al., 2021). LTU-AS (Gong et al., 2023) combines
Whisper (Radford et al., 2023), an ASR system, with LLaMA (Touvron et al., 2023a), and it is
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fine-tuned on an open-ended speech and audio question-answering dataset. SALMONN adopts a
window-level Q-former (Li et al., 2023a) to generate soft prompts that fuse representations from the
speech and audio encoders. Qwen-Audio (Chu et al., 2023) introduces task-specific tags into Qwen
to encourage knowledge sharing and prevent interference across diverse tasks, and it supports multi-
turn dialogues for both audio and text inputs. WavLLM (Hu et al., 2024) uses curriculum learning
to prevent overfitting on specific tasks while maintaining the LLM’s original capabilities. All these
models accept speech, audio, and text as input but output only text, focusing on understanding
rather than generation in speech and audio. There are also several attempts to use prompts for
speech, music, and audio generation (Guo et al., 2023; Agostinelli et al., 2023; Liu et al., 2023a).
However, to our knowledge, there is no universal model that is capable of handling both generation
and understanding tasks. Moreover, these models have not been comprehensively evaluated on a
benchmark, which hinders fair comparisons between them.

2.2 EVALUATION BENCHMARKS

Several benchmarks have been developed to evaluate the performance of speech models. SUPERB
(Yang et al., 2021) is the most widely used benchmark for assessing the performance of speech
foundation models across various tasks that cover different aspects of speech. On the other hand,
SLUE (Shon et al., 2022; 2023) focuses more specifically on spoken language understanding. Yet,
they are primarily limited to English. LeBenchmark (Evain et al., 2021; Parcollet et al., 2023)
evaluates speech foundation models specifically for French, while IndicSUPERB (Javed et al., 2023)
is dedicated to languages spoken in India. ML-SUPERB (Shi et al., 2023; 2024) offers ASR and
language identification tasks in 100+ languages. Aside from speech, MARBLE (Yuan et al., 2023)
and HEAR (Turian et al., 2022) offer platforms for evaluating various music and a wide range of
audio tasks. Using these benchmarks, researchers build a specialized model for each task. Thus, the
number of tasks is limited due to the growing costs associated with adding more tasks. Conversely,
universal models are expected to do various tasks without fine-tuning for each one, allowing users to
engage in far more diverse applications and enabling benchmark developers to include more tasks for
comprehensive evaluation. In NLP and CV, benchmarks have been developed to evaluate models
across a much broader range of tasks (Bitton et al., 2023; Srivastava et al., 2022; Mishra et al.,
2022). However, in speech, we lack a benchmark of comparable scale. Dynamic-SUPERB (Huang
et al., 2024a) is the first benchmark for instruction-based universal speech models. While its first
version includes far more tasks than all other speech benchmarks, they are all classification tasks.
AIR-bench (Yang et al., 2024b), on the other hand, includes tasks from speech, music, and audio,
and expands beyond classification, although the number of tasks available for evaluating universal
models remains limited (19 tasks in foundation track). Thus, there remains a critical need for a
comprehensive benchmark that evaluates universal models across a broader range of tasks to fully
assess their capabilities. Consequently, we developed Dynamic-SUPERB Phase-2, substantially
upgrading the first generation with a detailed taxonomy and establishing community contribution
protocols to facilitate continual task integration.

3 DYNAMIC-SUPERB PHASE-2

3.1 OVERVIEW

Figure 1 depicts the framework of Dynamic-SUPERB Phase-2. Our goal is to evaluate universal
models that meet the following criteria: (1) The model can accept speech, music, or other audio as
input. (2) The model can perform specific tasks without requiring fine-tuning. (3) The model follows
natural language instructions to execute the corresponding tasks. To comprehensively evaluate these
universal models, we have collected hundreds of tasks and developed a task taxonomy to better
guide benchmark users (Figure 1a). All tasks in Dynamic-SUPERB Phase-2 are intended solely for
testing purposes; we do not provide training data for two main reasons. First, current models are
trained on large-scale, open-source, or proprietary datasets, making it challenging to ensure that all
models are trained under consistent conditions. Second, we aim to evaluate universal models that
do not require fine-tuning for downstream tasks.

The Dynamic-SUPERB project is designed to evolve dynamically with research advancements by
incorporating novel tasks from the research community (Figure 1b). With the first call for tasks,
Dynamic-SUPERB Phase-2 has grown from its first generation, expanding from 55 to 180 tasks.
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Figure 1: An overview of Dynamic-SUPERB.

Table 1 compares several benchmarks used in speech, music, and audio research, demonstrating that
Dynamic-SUPERB Phase-2 is the largest benchmark covering all three areas. It provides a more
fine-grained evaluation than any other benchmark.

Table 1: Comparison of popular benchmarks with Dynamic-SUPERB.

Benchmark SUPERB SLUE HEAR MARBLE AIR-Bench Dynamic- Dynamic-
SUPERB Phase-1 SUPERB Phase-2

# of tasks 13 7 19 13 19∗ 55 180

Speech ✓ ✓ ✓ ✓ ✓
Music ✓ ✓ ✓ ✓
Audio ✓ ✓ ✓ ✓

∗ foundation track

3.2 TASK FORMULATION

As Figure 1c depicts, in Dynamic-SUPERB Phasse-2, each task is structured to include: (1) Text
instruction: A natural language instruction that guides the model on the task to perform. Each
task has multiple different instructions to evaluate the model’s ability to understand instructions.
(2) Audio component: At least one audio element, which can be in the input, the output, or both.
(3) (Optional) Text component: Text elements (other than instruction) that may serve as inputs or
outputs. The number of audio elements in the inputs or outputs may vary depending on the task. For
example, in speaker verification, two utterances are used to determine whether they were produced
by the same speaker (green blocks in Figure 1c). Besides, text inputs are not always required; for
instance, ASR does not involve any text inputs. We use text format for instructions instead of spoken
format. Spoken instructions involve varying content, speaker characteristics, and prosody, making
them more complex. Text instructions act as an intermediary, bridging text and spoken universal
models. These designs ensure consistency and simplify the model’s understanding and processing
of diverse tasks while maintaining the benchmark’s extendibility with minimal constraints.

Another problem in evaluating universal models is the format of classification and regression tasks.
Generally, a task-specialized model generates predicted labels (soft distributions or hard labels)
within a pre-defined set of labels for classification or numeric values for regression within a pre-
defined range. However, a universal model does not necessarily have access to this information, and
thus it is hard to evaluate them in the same way, especially using it to perform several different tasks.
To address this, we believe that a universal speech model should produce outputs in natural language
for all tasks (model outputs in Figure 1c). Therefore, in Dynamic-SUPERB, all classification labels
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are represented as text. For regression tasks with specific formats (e.g., scalars, JSON, or Python-
style lists), we can parse the natural language outputs using a post-processing pipeline (Section 4.2).

3.3 CALL FOR TASKS

Dynamic-SUPERB fosters community collaboration, encouraging the addition of innovative tasks to
remain relevant in this rapidly changing field. In Phase-2, we initiated a call for tasks in March 2024
to invite contributions from the research community. We established an organized and transparent
submission process on our GitHub portal, where we organize members who serve as editors to
guide contributors. Contributors propose tasks by providing relevant information on GitHub. Each
proposal is assigned to an editor who checks for major issues and prevents duplicated efforts. Then,
task proposers upload their data to our Huggingface space in specified formats, using only datasets
with proper licenses. They complete submissions by opening a pull request on GitHub with the
necessary files. Afterward, editors review submissions on a rolling basis, offering suggestions for
refinement rather than immediate acceptance or rejection. After iterative improvements, accepted
tasks are merged into the repository. Between March and July 2024, we received about 145 task
proposals and accepted 91 tasks. Tasks still under review are not included here but will be featured
in the next phase. For details, please refer to Appendix F.

3.4 TASK TAXONOMY

(a) Task Taxonomy for speech tasks. (b) Task Taxonomy for audio and music tasks.

Figure 2: Task taxonomy in Dynamic-SUPERB.

One primary challenge in building a large-scale benchmark is offering valuable insights to its users.
To address this, we developed a task taxonomy1 that helps researchers interpret performance results
across various tasks. Researchers can leverage this taxonomy to select specific tasks for model
development instead of evaluating every task in the benchmark.

Figures 2 illustrates the high-level task taxonomy in Dynamic-SUPERB Phase-2. Due to the space
limitation, we only show some representative tasks. Each leaf node includes at least one task and
may be further categorized into more fine-grained sub-domains, which are not shown here due to
space constraints. For example, within ‘Speaker & Language/Speaker’, we have two categories:
‘Speaker Characteristics’ and ‘Speaker Identification’, each containing several tasks. Please refer
to Appendix B for the complete list of tasks. We first categorize tasks into two primary fields: (I)
speech and (II) music & audio, which are generally distinguished by the source of the sound. For
instance, speech is produced by humans, music is created using instruments, and audio includes

1We developed the taxonomy by referencing sessions from the INTERSPEECH conference and EDICS of
IEEE SPS. Though not identical, they have a very similar structure (please refer to Appendix A for comparison).
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sounds generated by other creatures, materials, or natural phenomena. We then split each field into
several domains based on the key attributes and challenges that the tasks within them present.

3.4.1 SPEECH

As Figure 2a shows, there are 8 domains within the speech field. Speech Recognition focuses on
converting spoken language into text. This includes tackling various challenges like multilingual
and code-switching ASR, as well as spontaneous ASR which is very different from audiobook-
style ones. It also contains specialized tasks such as command recognition and keyword spotting.
Speaker and Language addresses the analysis of speaker characteristics and languages, covering
tasks such as speaker verification, diarization, and language identification. Spoken Language Un-
derstanding deals with understanding and analysis of the content and semantics of spoken language.
It covers tasks like sentiment analysis and speech translation. Phonetics, Phonology, and Prosody
focuses on the sound structure of speech, including phoneme recognition, pronunciation evaluation,
and prosodic features like stress and accent classification. Paralinguistics explores non-verbal as-
pects of speech, such as emotion recognition and vocal event detection, which can capture nuances
like screaming or coughing. Speech Enhancement aims to improve speech quality by detecting and
mitigating noise, reverberation, and other degradations. Speech, Voice, and Hearing Disorders is
dedicated to identifying and classifying disorders such as stuttering and so on. Safety and Secu-
rity focuses on detecting synthetic or manipulated speech, addressing tasks like spoof detection and
recognizing deepfake voices.

3.4.2 AUDIO & MUSIC

The audio and music field includes a wide range of tasks that focus on various attributes of sound
beyond speech, such as musical elements, environmental sounds, and advanced sound analysis.
This field is divided into 9 domains, each addressing a specific aspect of audio or music process-
ing. Music Classification tasks focus on categorizing musical elements such as instruments, genres,
and emotions, providing a foundation for recognizing and analyzing different types of musical con-
tent. Pitch Analysis delves into identifying the pitch and harmony within music, including tasks
like pitch extraction, chord classification, and key detection. Rhythm Analysis involves tasks such
as beat tracking, which is critical for understanding the temporal structure of music. In Singing
Analysis, tasks address both lyric recognition and translation, as well as the classification of vocal
techniques used in singing. Quality Assessment evaluates the perceived quality of singing, includ-
ing automated predictions of Mean Opinion Scores (MOS). The Sound Event domain is broader,
covering various sound sources such as animals, the environment, and human activities. Tasks range
from animal sound classification to emergency traffic detection and even advanced tasks like multi-
channel sound event understanding. Safety domain includes detecting deepfakes in singing voices
and identifying manipulated audio files, ensuring sound authenticity and integrity. Spatial Audio
covers all tasks related to understanding spatial information, such as estimating the distance or posi-
tion of sounds in the real world. Finally, Signal Characteristics Analysis domain addresses general
signal-level characteristics of audio, including sound effect detection, and duration prediction.

3.4.3 CORE TASKS

While our task taxonomy provides a comprehensive, hierarchical, and systematic approach for
benchmark users to easily get started with Dynamic-SUPERB Phase-2, evaluating all tasks with
limited resources remains a significant challenge. To address this, alongside the task taxonomy,
we have selected core tasks for speech, music, and audio. These core tasks are reduced subsets
of essential tasks that have been widely used or studied within the research community. Specifi-
cally, we include tasks from three popular benchmarks: SUPERB (speech), MARBLE (music), and
HEAR (audio). The three benchmarks were originally designed for evaluating encoders, not for an
instruction-following universal model, so some modifications are required. We manually crafted
instructions for each task, reduced the data size, and reformulated them into the Dynamic-SUPERB
format. Since the core task set is much smaller than the full benchmark, researchers can more
efficiently evaluate their models across a reasonable range of domains.
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4 EXPERIMENTAL SETTINGS

4.1 MODELS

We evaluated several publicly-available models on Dynamic-SUPERB Phase-2: SALMONN, LTU-
AS, Qwen-Audio, Qwen2-Audio, WavLLM, MU-LLaMA (Liu et al., 2024), GAMA (Deshmukh
et al., 2024). SALMONN is further categorized into 7B and 13B versions based on the size of its
LLM component. All of these models are publicly available, and we utilized their official imple-
mentations for inference without any modifications.

The first five models are instruction-based speech models, each also trained with audio understand-
ing capabilities. However, as they were not trained on music data, we do not expect them to perform
well on music-related tasks. Hence, we further included MU-LLaMA and GAMA. MU-LLaMA is
specifically designed for various music-understanding tasks, and GAMA is trained with both general
audio data and a music corpus. Similar to the speech models, MU-LLaMA and GAMA adopt an
LLM-based framework. They use a music or audio encoder, such as MERT (LI et al., 2024) or Q-
former, to convert music or audio into features, which the LLM then uses as prompts for subsequent
reasoning. The sampling strategies used for generating outputs from the LLMs were retained as de-
fined in their official implementations. Finally, we implemented a cascaded system baseline called
Whisper-LLaMA. The system first transcribes audio using Whisper-v3-large, and then LLaMA3.1-
8B processes the transcriptions to perform various tasks based on the provided instructions.

When evaluating models on these diverse tasks, several challenges inevitably arise. One challenge
was testing the baseline models on tasks that involve multiple audio inputs. For example, in speaker
verification, a model determines whether two utterances are produced by the same speaker. Among
the evaluated models, only Qwen-Audio and Qwen2-Audio provide interfaces that allow inputting
multiple audio files. For the remaining models, we concatenated all audio files, separated by 0.5
seconds of silence, and used the concatenated file as input.

Last, different models have their own maximum supported audio durations. Models using Whisper
to encode speech face an inherent limitation: Whisper can process audio files of up to 30 seconds,
and some models are restricted to handling even shorter durations. Consequently, we retained the
original model settings and did not modify the model architecture to accommodate longer audio
clips. A preliminary analysis of all audio (Appendix G) in Dynamic-SUPERB Phase-2 shows that
only a small proportion (around 7%) exceeds 30 seconds in length. Hence, we believe our settings
do not largely impact the evaluation results and ensure reasonable inference efficiency.

4.2 EVALUATION METRICS

The outputs of universal speech models are natural language sentences, which makes it difficult to
directly assess their correctness using conventional metrics. For classification tasks, such as emotion
classification, a conventional task-specific model outputs a label from predefined emotions in the
dataset, while a universal model generates sentences like “The speaker sounds happy.” In this case,
we can easily assess the correctness of the former by comparing labels, but this approach is not
applicable to the latter. Similarly, in regression tasks, a natural language response like “Using MOS
scoring criteria, I give this audio a score of 3 out of 5” makes it difficult to directly use previous
evaluation metrics such as mean square error.

In evaluation, we categorize tasks into three types: (1) classification, (2) regression, and (3) sequence
generation. For each type, we use different pipelines to evaluate the models’ outputs. For classifi-
cation tasks, we employ external LLMs (GPT-4o) as referees, with the temperature set to be zero
for evaluation consistency, to evaluate whether the outputs from speech or music models2 match the
ground truth. This approach has been widely adopted in the NLP community (Wang et al., 2023; Liu
et al., 2023b; Chiang & Lee, 2023), and we extend its application to speech research. We design a
prompt that includes the task instructions, the model’s output to be evaluated, and the corresponding
ground truth. The LLM judge gets this prompt and determines if the output aligns with the ground
truth using a chain-of-thought reasoning process. By leveraging the strong instruction-following ca-
pabilities of these LLMs, we constrain them to provide the final decision in a fixed format, allowing

2To avoid ambiguity, unless specified otherwise, the terms ‘output” or model output” in this section refer to
the results generated by the models in Sec. 4.1.
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us to extract the answer using simple methods such as regular expressions3. We then define accuracy
as the percentage of outputs that the LLM judge considers aligned with the ground truth. Please refer
to Appendix E for details on the prompts and the alignment between LLMs and humans.

For regression tasks, the aforementioned method cannot be directly applied because performance is
not assessed using hard labels. Instead, we employ LLMs (GPT-4o) as a post-processor to transform
natural language responses into a format compatible with the original metrics used in these tasks.
Specifically, we developed an additional prompt that directs the LLMs to extract essential informa-
tion from the output and convert it into the same format as the ground truth. If the output lacks any
correct or relevant information that can be converted to match the ground truth format, the LLM
returns “N/A” to mark it as invalid. Since conventional metrics cannot accommodate “N/A” and
setting a default value is unreasonable due to the variability of different metrics, we also calculate
the N/A rate for each regression task, defined as the percentage of invalid outputs within a task. A
higher N/A rate indicates that the model struggles with following instructions, which may indirectly
affect its performance on the task.

For sequence generation tasks such as ASR and captioning, we apply their original metrics directly
to the raw outputs from baseline models. This is because identifying redundant prefixes or sections
unrelated to the task objectives is highly challenging in sequence generation, even with human in-
volvement. Besides, our review of the original evaluation results reported by these baseline models
revealed no explicit mention of post-processing procedures. Therefore, we base our evaluations
solely on the unprocessed outputs, ensuring consistency and objectivity across all models.

5 RESULTS

5.1 DOMAIN-LEVEL PERFORMANCE COMPARISON IN TAXONOMY

Here, we analyze the results based on the taxonomy. Due to space limitations, we can only report and
compare the results of different models at the domain level in this subsection. Since different metrics
are used across tasks, we adopted a relative-score-based method to summarize task performance.
For each task, we calculated the relative improvement of each model compared to the cascaded
system baseline (Whisper + LLaMA) and then obtained the domain-level scores by averaging all
its improvements across the tasks within each domain. For regression tasks, we introduced the N/A
rate to measure how well a model meets the task requirements. The original task metric was only
computed on instances that followed the task format (after post-processing by the LLM). To account
for whether a model can follow instructions, we incorporated the N/A rate into the reported scores.
Accordingly, we calculated the improvement based on scaled values. For metrics where a higher
value indicates better performance (such as the F1 score), we multiplied the metric value by (1 –
N/A rate). Conversely, for metrics where a lower value indicates better performance (such as word
error rate), we divided the metric value by (1 – N/A rate).

Figure 3 presents a domain-level comparison of relative scores across different models. Whisper-
LLaMA consistently has zero scores throughout all domains, serving as the reference baseline for
evaluating other models. Starting with speech domains, no model outperforms Whisper-LLaMA
in speech recognition and spoken language understanding. This highlights that using ASR such as
Whisper remains a strong baseline for language understanding, as text more explicitly represents
semantic information than speech.

Conversely, in the speaker and paralinguistics domains, all models surpass the baseline. This im-
provement occurs because the ASR process in the cascaded system tends to discard critical informa-
tion from the speech signal, such as speaker characteristics, pitch, and emotion. In contrast, other
models utilize soft representations that retain more speech information, giving them the potential
to learn beyond ASR, and some of these models were also trained to perform specific tasks within
certain domains 4. Additionally, music-specific large language models like GAMA and Mu-LLaMA
perform poorly on speech recognition and understanding tasks, which is expected since they were

3We have tried to ask the speech universal models to directly output their decisions in a fixed format, but
they do not always follow the instructions. Therefore, the evaluation pipeline described here is necessary.

4Although the models have been trained on some tasks in the same domains, the training tasks of these
models generally do not use the same instructions as Dynamic-SUPERB and do not offer as broad coverage.
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Figure 3: Domain-level relative-score-based performance comparison across different models. We
exclude tasks where models have a 100% NA rate, as this makes it impossible to average their scores
with other tasks.

primarily designed for music understanding. Nevertheless, they surprisingly achieved scores com-
parable to the speech models in speaker and paralinguistics.

Turning to audio and music domains, where ASR models cannot transcribe non-speech information
into text, most models outperform the baseline in several areas, including harmony and pitch, music
classification, and sound event detection. Surprisingly, spoken language models primarily trained
on speech data (Qwen, SALMONN, WavLLM)5 outperform the two music models (GAMA and
Mu-LLaMA) in various music-related domains such as harmony and pitch, music classification, and
rhythm analysis. We speculate that training on diverse data, even with significant differences in
signal-level characteristics, enhances performance across domains, emphasizing the importance of
developing unified models for speech, music, and general audio processing.

Lastly, we observe some outliers with significantly higher or lower values in the figure, typically
resulting from unbounded evaluation metrics. For instance, in the phonetics and prosody domain,
WavLLM and LTU-AS exhibit poor scores due to their erroneous outputs in phone/phoneme seg-
ment counting tasks, predicting thousands of segments in utterances lasting only seconds and result-
ing in an excessively high mean square error. While the relative score-based approach effectively
summarizes model performance, domain-level scores can be distorted by specific tasks within a do-
main. Thus, we encourage researchers aiming to develop model performance in specific domains to
comprehensively report task-level scores to more accurately reflect their models’ capabilities.

5.2 CORE TASKS RESULTS

We tested the performance of the models on core tasks that are widely studied and commonly used.
Table 2 presents the detailed results of the models on SUPERB tasks (please refer to Appendix D
for results on HEAR and MARBLE), displaying each task’s performance in its own metric rather
than relative scores. Due to space limitations, please refer to Appendix D for results on HEAR
and MARBLE. It is worth noting that these tasks have been adapted to the Dynamic-SUPERB

5Qwen and SALMONN are trained on a mixture of speech, music, and audio data, with speech data being
the dominant component.
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Table 2: Evaluation on SUPERB tasks. A “*” indicates that the metric is scaled with NA rate, and a
“-” means a model has a 100% NA rate.

PR KS IC ER ASR QbE SF SV SD
PER ↓ Acc ↑ Acc ↑ Acc ↑ WER ↓ Acc ↑ F1∗ ↑ CER∗ ↓ Acc ↑ DER∗ ↓

Whisper-LLaMA 100.1 36.5 55.5 28.7 34.0 46.5 53.6 51.3 53.0 1068.7
SALMONN-7B 25.4 30.5 25.5 39.8 15.1 49.0 61.6 61.5 65.5 -
SALMONN-13B 24.6 2.0 9.0 30.9 2.8 51.5 29.6 106.3 93.5 -

Qwen-Audio 100.6 60.5 15.5 33.7 69.4 48.0 42.2 90.1 47.5 8852.2
Qwen2-Audio 101.0 47.0 11.5 68.1 36.7 53.5 42.4 55.7 55.5 4914.4

WavLLM 100.0 43.0 4.5 79.1 6.9 49.5 50.8 84.9 66.5 3621.2
LTU-AS 102.8 1.0 0.0 37.2 96.3 45.0 10.2 559.3 40.0 14923.3
GAMA 100.4 2.0 0.0 17.7 116.7 2.5 2.7 4750.0 33.5 187.6

Mu-LLaMA 110.3 4.0 0.0 25.0 103.7 51.0 1.0 15869.6 49.0 -

PR: Phoneme Recognition, KS: Keyword Spotting, IC: Intent Classification, ER: Emotion Recognition, QbE:
Query-by-Example, SF: Slot Filling, SV: Speaker Verification, SD: Speaker Diarization

framework. Therefore, the results are not directly comparable to previous studies that tested on the
original SUPERB. However, they indicate current performance levels on these tasks.

No single model excels across all tasks. In phoneme recognition (PR), the SALMONN models were
the only ones to achieve a relatively lower phoneme error rate (PER) compared to the others. For
keyword spotting (KS), Qwen-Audio was the only model to perform slightly better than a random
guess (50%). Whisper-LLaMA surpassed all other models in intent classification (IC). Regarding
emotion recognition (ER), Qwen2-Audio and WavLLM stood out, with the former even achiev-
ing almost 80% accuracy. In ASR, SALMONN-13B and WavLLM are the only two models that
achieved a word error rate (WER) lower than 10%. Query-by-example (QbE) appears to be very
challenging for all models, as none performed better than a random guess (50%). Slot-filling (SF)
is evaluated using two metrics: F1 for slot type and CER for slot value. While Whisper-LLaMA
and SALMONN-7B are the top two in this task, their results are still far from ideal. In speaker
verification, SALMONN-13B was the only model to significantly outperform the others, achieving
over 90% accuracy. In speaker diarization, all models performed poorly, with some even reaching
a 100% N/A rate. Comparing Figure 3 and Table 2, we observed that performance on core tasks
sometimes deviates from trends observed at the domain level. For example, although WavLLM ex-
cels in ER, it performs poorly in paralinguistics, revealing limited capabilities and highlighting the
need to enhance its generalizability. In summary, among tested models, some excel in specific tasks,
while others perform poorly across the board, and none dominate across all tasks. We believe these
findings provide valuable insights for researchers aiming to improve models, starting from core tasks
and progressively tackling each domain in the benchmark for broader applicability.

6 CONCLUSIONS

This paper presents Dynamic-SUPERB Phase-2, the largest benchmark for evaluating instruction-
based universal spoken language models, building upon collaborative efforts across the research
community. Dynamic-SUPERB covers a wide range of diverse tasks and offers a fine-grained task
taxonomy. The recent models show good performance on specific tasks but poor generalization
across common tasks like those in SUPERB, highlighting the need for further research on universal
models. All materials will be made openly available to facilitate reproduction and benchmarking.
We sincerely invite researchers to join our vibrant community and collaborate to advance the field.

Limitations: Although Dynamic-SUPERB Phase-2 is the largest and most comprehensive bench-
mark, we acknowledge its limitations. It lacks comprehensive speech-generation tasks, as Phase-2
focused on understanding tasks due to the few universal generation models. Despite our efforts to
develop the task taxonomy scientifically, new domains may emerge as the benchmark grows, and
tasks can be categorized in various ways. While our automatic evaluation pipeline using LLMs
correlates well with human evaluations (Appendix E) for current tasks, it may not generalize to all
future tasks. Upholding the core spirit of the Dynamic-SUPERB project, we are striving to address
these issues and enhance the benchmark for the next phase.
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7 ETHICS STATEMENT

Dynamic-SUPERB Phase-2 includes several datasets, and we asked contributors to describe how
they utilized these datasets. Most contributors derived task data by uniformly sampling from the
original datasets without applying any special processing. As a result, Dynamic-SUPERB Phase-2
inevitably inherits biases present in these datasets across the tasks.

8 REPRODUCIBILITY STATEMENT

As mentioned in the main text, we will open-source all task data and the evaluation pipeline to ensure
reproducibility. Additionally, we set the GPT-4o temperature to 0 to stabilize the evaluation process.
In Appendix E, we also present a preliminary study on using open-source LLMs for evaluation,
showing promising correlations with human annotators.
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A TASK TAXONOMY

Figures 4 and 5 show the complete task taxonomy in Dynamic-SUPERB Phase-2. Additionally, Ta-
ble 3 compares our task taxonomy with the INTERSPEECH conference and EDICS from IEEE SPS.
While not identical, our taxonomy is well-aligned with those organized by professional conferences
and institutions.

Figure 4: Task taxonomy of speech.
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Figure 5: Task taxonomy of audio and music.
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Table 3: Comparison of task taxonomy in Dynamic-SUPERB Phase-2 with INTERSPEECH and
EDICS. A “v” indicates that a conference session, area, or EDICS category matches or closely
aligns with the taxonomy.

Taxonomy INTERSPEECH EDICS
Music/Harmony & Pitch ✓
Music/Music Classification
Music/Rhythm Analysis ✓
Audio/Quality Assessment ✓
Audio/Safety ✓
Audio/Signal-Characteristics Analysis
Audio/Singing Analysis ✓
Audio/Sound Event ✓ ✓
Audio/Spatial Audio Analysis ✓ ✓
Speech/Paralinguistics ✓
Speech/Phonetics, Phonology, Prosody ✓
Speech/Safety and Security ✓
Speech/Speaker & Language ✓
Speech/Speech Enhancement ✓ ✓
Speech/Speech Recognition ✓ ✓
Speech/Speech, Voice, Hearing Disorder ✓
Speech/Spoken Language Understanding ✓ ✓

B DYNAMIC-SUPERB TASKS

Table 4: The list of all tasks in the speech domain in Dynamic-SUPERB. Tasks are ordered by the
taxonomy.

Domain Task Dataset
Audio / Singing
Analysis / Vocal
Techniques

Vocal Technique
Classification

VocalSet (Wilkins et al., 2018)

Audio / Singing
Analysis / Vocal
Techniques

MARBLE Vocal
Technique Detection

VocalSet (Wilkins et al., 2018)

Audio / Singing
Analysis / Lyrics

Lyric Translation SingSet (recorded by the task
contributor)

Audio / Singing
Analysis / Lyrics

Song Lyric
Recognition

SingSet (recorded by the task
contributor)

Audio / Singing
Analysis / Lyrics

Children Song
Transcript
Verification

CSD (Choi et al., 2020)

Audio / Spatial Audio
Analysis

Sound Position
Prediction

BinauralSoundPerception (Vasudevan
et al., 2020)

Audio / Spatial Audio
Analysis

Audio Spatial
Distance Prediction

Spatial LibriSpeech (Sarabia et al.,
2023)

Audio / Spatial Audio
Analysis

HowFarAreYou 3DSpeaker (Zheng et al., 2023)

Continued on next page
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Domain Task Dataset

Audio / Sound Event /
Human

HEAR Vocal
Imitation
Classification

Vocal Imitations

Audio / Safety / Audio
Integrity

Scene Fake
Detection

SceneFake (Yi et al., 2024)

Audio / Safety / Audio
Integrity

Audio Editing
Identification

Peoples Speech (Galvez et al., 2021)

Audio / Harmony &
Pitch/Harmony

MARBLE Key
Detection

Giantsteps Key (Knees et al., 2015)

Audio / Harmony &
Pitch/Harmony

Chord Classification Acoustic Guitar and Piano
(DeepContractor, 2024)

Audio / Safety /
Deepfake

Singing Voice
Deepfake Detection

CtrSVDD ACEKiSing
M4Singer (Zang et al., 2024)

Audio / Safety /
Deepfake

Audio Deep Fake
Detection

LJSpeech WaveFake
MUSDB18HQ (Frank & Schönherr)

Audio / Sound Event /
Advanced
Understanding

Multichannel Sound
Event Understanding

STARSS23 (Shimada et al., 2024)

Audio / Sound Event /
Advanced
Understanding

Audio Segment
Retrieval

Clotho (Drossos et al., 2020)

Audio / Sound Event /
Advanced
Understanding

HEAR Sound Event
Detection

DCASE2016 Task2 (Dohi et al., 2022)

Audio / Quality
Assessment / Singing

Singing Automatic
MOS Prediction

SingMOS (Tang et al., 2024b)

Audio / Music
Classification / Emotion

Emotion
Classification in
Songs

EMOTIFY (Aljanaki et al., 2016)

Audio / Music
Classification / Emotion

MARBLE Emotion
Detection

MTG MoodTheme (Bogdanov et al.,
2019)

Audio / Rhythm
Analysis

Music Beat Tracking ASAP (Foscarin et al., 2020)

Audio / Rhythm
Analysis

MARBLE Beat
Tracking

GTZAN-Rhythm (Tzanetakis & Cook,
2002)

Audio / Harmony &
Pitch / Pitch

Pitch Extraction by
Lyrics

Children’s Song Dataset (CSD) (Choi
et al., 2020)

Audio / Harmony &
Pitch / Pitch

Instrument Pitch
Classification

Nsynth (Engel et al., 2017)

Audio / Harmony &
Pitch / Pitch

HEAR Music
Transcription

MAESTRO Hawthorne et al. (2019)

Audio / Harmony &
Pitch / Pitch

HEAR Percussion
Instruments Tonic
Classification

Mridangam Tonic
(Anantapadmanabhan et al., 2013)

Audio / Sound Event /
Environment

Environment
Recognition

ESC50 (Piczak, 2015)

Continued on next page
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Domain Task Dataset

Audio / Sound Event /
Environment

Emergency Traffic
Detection

ETD (tabarka rajab, 2021)

Audio / Sound Event /
Environment

Domestic
Environment Sound
Event Detection

DESED-PublicEval (Turpault et al.,
2019)

Audio / Sound Event /
Environment

Environmental
Sound Classification

UrbanSound8K-
UrbanNoises (Salamon et al., 2014)

Audio / Sound Event /
Environment

HEAR
Environmental
Sound Classification

ESC50 (Piczak, 2015)

Audio / Sound Event /
Environment

Environmental
Sound Classification

ESC50 Natural Soundscapes And
Water Sounds (Piczak, 2015)

Audio / Sound Event /
Environment

Environmental
Sound Classification

ESC50-
ExteriorAndUrbanNoises (Piczak,
2015)

Audio / Sound Event /
Environment

Environmental
Sound Classification

ESC50-
InteriorAndDomesticSounds (Piczak,
2015)

Audio / Music
Classification /
Instrument

Instrument Source
Classification

Nsynth (Engel et al., 2017)

Audio / Music
Classification /
Instrument

Instrument
Classification

Beijing Opera Instrument (Tian et al.,
2014)

Audio / Music
Classification /
Instrument

Instrument
Combination
Recognition

OpenMIC-2018 (Humphrey et al.,
2018)

Audio / Music
Classification /
Instrument

Instrument
Classification

Nsynth (Engel et al., 2017)

Audio / Music
Classification /
Instrument

HEAR Percussion
Instruments
Classification

Beijing Opera Percussion (Tian et al.,
2014)

Audio / Music
Classification /
Instrument

HEAR Percussion
Instruments Stroke
Classification

Mridangam
Stroke (Anantapadmanabhan et al.,
2013)

Audio / Music
Classification /
Instrument

MARBLE
Instrument
Classification

MTG Instrument (Bogdanov et al.,
2019)

Audio / Sound Event /
Animal

Animal
Classification

Wave Source Test (WavSource, n.d.)

Audio / Sound Event /
Animal

Cornell Birdcall
Identification

Cornell Birdcall
Identification (Howard et al., 2020)

Audio / Sound Event /
Animal

Cat Emotion
Classification

Cat Sound Classification Dataset
V2 (Pandeya et al., 2018; Pandeya &
Lee, 2018)

Continued on next page
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Domain Task Dataset

Audio / Sound Event /
Animal

HEAR Beehive
States Classification

Beehive States (Nolasco et al., 2019)

Audio / Sound Event /
Animal

Environmental
Sound Classification

ESC50 Animals (Piczak, 2015)

Audio / Sound Event /
Animal

Bird Sound
Detection

Warblrb10k (Stowell et al., 2019)

Audio / Music
Classification / Genre

Music Genre
Classification

FMA (Defferrard et al., 2017)

Audio / Music
Classification / Genre

HEAR Music Genre
Classification

GTZAN Genre (Tzanetakis & Cook,
2002)

Audio / Music
Classification / Genre

MARBLE Music
Tagging

MTG Top50 (Bogdanov et al., 2019),
MagnaTagATune (Law et al., 2009)

Audio / Music
Classification / Genre

MARBLE Genre
Classification

MTG-Genre (Bogdanov et al., 2019),
GTZAN (Tzanetakis & Cook, 2002)

Audio /
Signal-Characteristics
Analysis

Sound Effect
Detection

IDMT-SMT-Audio-Effects (Stein,
2010)

Audio /
Signal-Characteristics
Analysis

Audio Duration
Prediction

NTUML2021 (Yang et al., 2024a)

Audio /
Signal-Characteristics
Analysis

HEAR Music
Speech
Classification

GTZAN Music Speech (Tzanetakis,
1999)

Audio /
Signal-Characteristics
Analysis

Speech Detection LJSpeech (Ito & Johnson, 2017)

Audio /
Signal-Characteristics
Analysis

Speech Detection LibriSpeech (Panayotov et al., 2015)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-
ConsonantPlaceOfArticulation
(Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-MannerOfArticulation
(Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-Phone (Chodroff et al.,
2024)

Continued on next page
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Domain Task Dataset

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-VowelFrontness
(Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-VowelHeight (Chodroff
et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-VowelRoundedness
(Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Prosodic speechocean762-Ranking (Zhang
et al., 2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Fluency speechocean762-Ranking (Zhang
et al., 2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Fluency speechocean762-Scoring (Zhang et al.,
2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Prosodic speechocean762-Scoring (Zhang et al.,
2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

Prosody Naturalness ProsAudit-Lexical (de Seyssel et al.,
2023)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

Prosody Naturalness ProsAudit-Protosyntax (de Seyssel
et al., 2023)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

SuperbSD Libri2Mix Test (Cosentino et al., 2020)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

SuperbSV VoxCeleb1 Test (Nagrani et al., 2020)

Continued on next page
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Domain Task Dataset

Speech / Speaker &
Language / Speaker /
Speaker Recognition

HEAR Speaker
Count Identification

LibriCount (Stöter et al., 2018)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

Speaker Counting LibriTTS-TestClean (Zen et al., 2019)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

MultiSpeaker
Detection

VCTK (Yamagishi et al., 2019)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

Speaker Verification LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

Speaker Verification VCTK (Yamagishi et al., 2019)

Speech / Spoken
Language
Understanding / Speech
Translation

SuperbST CoVoST2 Test (Wang et al., 2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody/Prosodic
Feature Classification

Third Tone Sandhi
Recognition

NCCU Corpus of Spoken Taiwan
Mandarin (National Chengchi
University, n.d.)

Speech / Phonetics,
Phonology, Prosody /
Prosody/Prosodic
Feature Classification

Accent Classification Accentdb Extended (Ahamad et al.,
2020)

Speech / Phonetics,
Phonology, Prosody /
Prosody/Prosodic
Feature Classification

Stress Detection MIRSD (CHEN & JANG, 2012)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing / Phoneme
Recognition Tasks

Phone Segment
Counting

VoxAngeles (Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing / Phoneme
Recognition Tasks

Phoneme Segment
Counting

Librispeech-words (lib)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing / Phoneme
Recognition Tasks

Superb PR LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Safety and
Security / Spoofing and
Anti-Spoofing

Spoof Detection ASVspoof2015 (Wu et al., 2015)

Continued on next page
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Domain Task Dataset

Speech / Safety and
Security / Spoofing and
Anti-Spoofing

Spoof Detection ASVspoof2017 (Delgado et al., 2018)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

Sentence Grammar
Acceptability

sBLIMP (Dunbar et al.)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

Nonce Word
Detection

sWUGGY (Dunbar et al.)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

PoS Estimation LibriTTS PoS (Zen et al., 2019)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

PoS Estimation LibriTTS PoS with transcription (Zen
et al., 2019)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

Code Switching
Semantic Grammar
Acceptability
Comparison

CSZS-zh-en (Huang et al., 2024b)

Speech / Speech
Recognition / Language

Multi-lingual Speech
Recognition

MLS-de (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-lingual Speech
Recognition

MLS-en (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-lingual Speech
Recognition

MLS-es (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-lingual Speech
Recognition

MLS-fr (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-lingual Speech
Recognition

MLS-it (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-lingual Speech
Recognition

MLS-nl (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-lingual Speech
Recognition

MLS-pl (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-lingual Speech
Recognition

MLS-pt (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Code-switching
Speech Recognition

ASCEND (Lovenia et al., 2022)

Speech / Speech
Recognition / Language

Code-switching
Speech Recognition

NTUML2021 (Yang et al., 2024a)

Continued on next page
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Domain Task Dataset

Speech / Speech
Recognition / Language

PTBR Speech
Recognition

CORAA (Candido Junior et al., 2022)

Speech / Speech
Recognition / Language

AAVE Speech
Recognition

CORAAL (Kendall & Farrington,
2023)

Speech / Speech
Recognition / Language

Superb ASR LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Speech
Recognition / Language

Superb OODAsr Ar CommonVoice7-Test (Ardila et al.,
2020)

Speech / Speech
Recognition / Language

Superb OODAsr Es CommonVoice7-Test (Ardila et al.,
2020)

Speech / Speech
Recognition / Language

Superb OODAsr Zh CommonVoice7-Test (Ardila et al.,
2020)

Speech / Speech
Recognition / Speaker

Target Speaker ASR AMI-test (Carletta et al., 2005)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

LJSpeech (Ito & Johnson, 2017),
RirsNoises-SmallRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

LJSpeech (Ito & Johnson, 2017),
RirsNoises-MediumRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

LJSpeech (Ito & Johnson, 2017),
RirsNoises-LargeRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

VCTK (Yamagishi et al., 2019),
RirsNoises-SmallRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

VCTK (Yamagishi et al., 2019),
RirsNoises-MediumRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

VCTK (Yamagishi et al., 2019),
RirsNoises-LargeRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Noise SNR Level
Prediction

VCTK (Yamagishi et al., 2019),
MUSAN-Music (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise SNR Level
Prediction

VCTK (Yamagishi et al., 2019),
MUSAN-Speech (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise SNR Level
Prediction

VCTK (Yamagishi et al., 2019),
MUSAN-Gaussian (Snyder et al.,
2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise SNR Level
Prediction

VCTK (Yamagishi et al., 2019),
MUSAN-Noise (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection VCTK (Yamagishi et al., 2019),
MUSAN-Music (Snyder et al., 2015)
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Domain Task Dataset

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection VCTK (Yamagishi et al., 2019),
MUSAN-Speech (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection VCTK (Yamagishi et al., 2019),
MUSAN-Gaussian (Snyder et al.,
2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection VCTK (Yamagishi et al., 2019),
MUSAN-Noise (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection LJSpeech (Ito & Johnson, 2017),
MUSAN-Music (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection LJSpeech (Ito & Johnson, 2017),
MUSAN-Speech (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection LJSpeech (Ito & Johnson, 2017),
MUSAN-Gaussian (Snyder et al.,
2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection LJSpeech (Ito & Johnson, 2017),
MUSAN-Noise (Snyder et al., 2015)

Speech / Speaker &
Language / Language /
Language Identification

HEAR Language
Identification

VoxLingua107 Top10 (Valk &
Alumäe, 2021)

Speech / Speaker &
Language / Language /
Language Identification

Language
Identification

VoxForge (MacLean, 2018)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Named Entity
Localization

SLUE-VoxPopuli (Shon et al., 2022)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Named Entity
Recognition

SLUE-VoxPopuli (Shon et al., 2022)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Sentiment Analysis SLUE-VoxCeleb (Shon et al., 2022)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Semantic Textual
Similarity

SpokenSTS (Agirre et al., 2012)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Conversation
Matching

EnShortConversation
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Domain Task Dataset

Speech / Spoken
Language
Understanding / Intent
& Meaning

Spoken Digit
Arithmetic

AudioMNIST (Becker et al., 2024)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Superb IC FluentSpeechCommands-Test
(Lugosch et al., 2019)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Superb SF AudioSnips-Test (Yang et al., 2021)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Dialogue Act Pairing DailyTalk (Lee et al., 2023)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Dialogue Act
Classification

DailyTalk (Lee et al., 2023)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Dialogue Act
Classification

SLUE-HVB (Shon et al., 2022)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Intent Classification FluentSpeechCommands-Action
(Lugosch et al., 2019)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Intent Classification FluentSpeechCommands-Location
(Lugosch et al., 2019)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Intent Classification FluentSpeechCommands-Object
(Lugosch et al., 2019)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Sarcasm Detection Mustard (Castro et al., 2019)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Sentence Grammar
Acceptability

sBLIMP (Nguyen et al., 2020)

Speech / Speech, Voice,
Hearing Disorder /
Disorder Detection and
Classification

Stuttering Detection SEP-28k (Lea et al., 2021)

Continued on next page
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Domain Task Dataset

Speech / Speech, Voice,
Hearing Disorder /
Disorder Detection and
Classification

Voice Disorder
Classification

VOICED (Goldberger et al., 2000)

Speech / Paralinguistics
/ Emotion Analysis

Emoji Grounded
Speech Emotion
Recognition

RAVDESS (Livingstone & Russo,
2018)

Speech / Paralinguistics
/ Emotion Analysis

Emotion Change
Detection

RAVDESS (Livingstone & Russo,
2018)

Speech / Paralinguistics
/ Emotion Analysis

Superb ER Iemocap (Busso et al., 2008)

Speech / Paralinguistics
/ Emotion Analysis

HEAR Emotion
Recognition

CREMAD (Cao et al., 2014)

Speech / Paralinguistics
/ Emotion Analysis

Emotion
Recognition

Multimodal EmotionLines Dataset
(Poria et al., 2019)

Speech / Paralinguistics
/ Emotion Analysis

Dialogue Emotion
Classification

DailyTalk (Lee et al., 2023)

Speech / Speech
Recognition / ASR
Post-Processing

N-Best Correction Librispeech-TestOther (Panayotov
et al., 2015)

Speech / Paralinguistics
/ Vocal Event Detection

Human Screaming
Detection

Environmentdb (whats2000, 2023)

Speech / Paralinguistics
/ Vocal Event Detection

Human Non-Speech
Sound Recognition

Nonspeech7k-test (Rashid et al.,
2023),
CommonVoice-DeltaSegment-15
(Ardila et al., 2020)

Speech / Paralinguistics
/ Vocal Event Detection

Covid19 Cough
Audio Classification

CoughVid (Orlandic et al., 2021)

Speech / Paralinguistics
/ Vocal Event Detection

Vocal Sound
Recognition

VocalSound (Gong et al., 2022)

Speech / Paralinguistics
/ Vocal Event Detection

Environmental
Sound Classification

ESC50-HumanAndNonSpeechSounds
(Piczak, 2015)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Accuracy speechocean762-Ranking (Zhang
et al., 2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Accuracy speechocean762-scoring (Zhang et al.,
2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

Heteronym
Differentiation

HeteronymEn

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

Multilingual
Pronunciation
Similarity

VoxAngeles (Chodroff et al., 2024)

Continued on next page
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Domain Task Dataset

Speech / Safety and
Security / Synthetic
Speech Detection

DeepFake Voice
Recognition

DEEP-VOICE (Bird & Lotfi, 2023)

Speech / Safety and
Security / Synthetic
Speech Detection

Fraud Robocall
Recognition

CallHome (Katerenchuk et al., 2018)

Speech / Safety and
Security / Synthetic
Speech Detection

Fraud Robocall
Recognition

Promo

Speech / Safety and
Security / Synthetic
Speech Detection

Fraud Robocall
Recognition

Robocall (Prasad & Reaves)

Speech / Safety and
Security / Synthetic
Speech Detection

Enhancement
Detection

LibriTTS-TestClean (Zen et al., 2019),
WHAM (Wichern et al., 2019)

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Command
Recognition

AudioMNIST (Becker et al., 2024)

Speech / Speech
Recognition / Specific
Recognition Tasks

Superb KS SpeechCommandsV1 Test (Warden,
2018)

Speech / Speech
Recognition / Specific
Recognition Tasks

Superb QbE Quesst14 Eval (Anguera et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

HEAR Spoken
Commands
Classification

SpeechCommands-5hr (Warden, 2018)

Speech / Speech
Recognition / Specific
Recognition Tasks

Spoken Term
Detection

LJSpeech (Ito & Johnson, 2017)

Speech / Speech
Recognition / Specific
Recognition Tasks

Spoken Term
Detection

LibriSpeech TestOther (Panayotov
et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

Spoken Term
Detection

LibriSpeech TestClean (Panayotov
et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

Multi Speaker
Detection

LibriSpeech TestClean (Panayotov
et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Text
Matching

LJSpeech (Ito & Johnson, 2017)

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Text
Matching

LibriSpeech TestClean (Panayotov
et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Text
Matching

LibriSpeech TestOther (Panayotov
et al., 2015)
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Domain Task Dataset

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Command
Recognition

GoogleSpeechCommandsV1 (Warden,
2018)

Speech / Speech
Recognition /
Spontaneous Speech

Superb OOD Asr
Spon

SBCSAE Test (Du Bois et al., 2000 –
2005)

Speech / Speaker &
Language / Speaker /
Speaker Characteristics

Age Classification CommonVoiceCorpus Test (Ardila
et al., 2020)

Speech / Speaker &
Language / Speaker /
Speaker Characteristics

Gender Recognition
by Voice

CommonVoice-DeltaSegment-15
(Ardila et al., 2020)

C TASK-LEVEL EVALUATION RESULTS

Table 5: Task-level Evaluation Results: Part 1

Task Metric Whisper- LTU-AS SALMONN SALMONN Qwen- Qwen2- WavLLM MU- GAMALLaMA 7B 13B Audio Audio LLaMA

Vocal Technique Classification LLM-C↑ 7.50% 0.50% 3.50% 5.50% 5.00% 13.00% 7.00% 2.50% 2.00%

MARBLE Vocal Technique Detection LLM-C ↑ 8.00% 1.00% 11.00% 6.50% 6.50% 15.50% 8.00% 8.50% 2.50%

Lyric Translation Sacre Bleu ↑ 2.1093 1.0357 2.8126 0.9941 3.3975 3.9155 1.8969 0.1593 0.0739

Children Song Transcript WER ↓ 0.5868 1.0268 1.0402 1.0099 1.2867 0.9493 1.5548 1 1.0012

Song Lyric Recognition MER ↓ 1.0193 1.6453 3.5636 2.6600 1.1841 1.1562 4.8113 1.1753 1.6852

Sound Position Prediction NAR ↓ 81.25% 100.00% 100.00% 100.00% 100.00% 25.00% 93.75% 100.00% 100.00%
Angle diff ↓ 1.4006 - - - - 1.1063 0.8681 - -

Audio Spatial Distance Prediction NAR ↓ 50.50% 59.00% 62.50% 100.00% 85.50% 58.00% 44.00% 97.00% 71.00%
medae ↓ 0.6651 0.9330 0.4490 - 1.5011 0.6915 0.9011 0.9212 0.5000

How Far Are You LLM-C ↑ 26.00% 13.00% 4.50% 8.00% 30.00% 26.00% 32.00% 18.00% 2.50%

HEAR Vocal Imitation Classification LLM-C ↑ 15.17% 5.50% 1.17% 1.83% 18.67% 11.17% 17.50% 3.83% 5.83%

Scene Fake Detection LLM-C ↑ 1.98% 9.41% 38.12% 45.54% 33.17% 47.03% 26.73% 54.46% 48.51%

Audio Editing Identification NAR ↓ 84.38% 87.50% 62.50% 75.00% 75.00% 68.75% 96.88% 65.62% 37.50%
Acc ↑ 204.3094 53.6938 165.0617 43.1693 184.695 154.6202 100 164.0558 154.8122

Pitch Extraction by Lyrics NAR ↓ 37.50% 94.00% 47.50% 73.50% 65.50% 84.50% 76.00% 98.00% 68.50%
Token Error Rate ↓ 1.4628% 1.1667% 2.2621% 6.3924% 1.0645% 1.6596% 1.3611% 1% 1.9518%

Instrument Pitch Classification LLM-C ↑ 0.56% 0.56% 0.11% 0.22% 0.67% 18.11% 0.78% 0.33% 0.78%

HEAR Music Transcription NAR ↓ 92.43% 100.00% 99.46% 100.00% 96.76% 96.76% 96.76% 100.00% 100.00%
Token Error Rate ↓ 13.0% - 36.0% - 16.3% 8.4% 24.2% - -

HEAR Percussion Instruments Tonic Classification LLM-C ↑ 2.00% 2.50% 12.70% 13.40% 11.30% 11.80% 12.80% 12.50% 5.70%

Audio Deep Fake Detection LLM-C ↑ 5.56% 22.06% 22.06% 26.19% 24.44% 21.43% 9.21% 20.95% 9.84%

Singing Voice Deepfake Detection LLM-C ↑ 8.25% 24.56% 22.79% 38.31% 31.43% 27.90% 30.84% 39.10% 25.54%

Multichannel Sound Event Understanding LLM-C ↑ 38.73% 4.23% 37.32% 26.06% 38.03% 41.55% 21.83% 4.93% 11.27%

Audio Segment Retrieval NAR ↓ 96.88% 100.00% 87.50% 90.62% 100.00% 100.00% 100.00% 100.00% 100.00%
IoU ↑ 0.0000 0.0000 0.1238 0.0691 0.0000 0.0000 0.0000 0.0000 0.0000

HEAR Sound Event Detection LLM-C ↑ 0.00% 0.00% 21.43% 35.71% 7.14% 14.29% 21.43% 21.43% 7.14%

Singing Automatic MOS Prediction

NAR ↓ 96.88% 100.00% 87.50% 90.62% 100.00% 100.00% 100.00% 100.00% 100.00%
MSE ↓ 12.1700 2.3872 10.0777 11.2308 14.8895 1.4485 11.4210 4.5300 2.0800

KTAU ↑ -0.3333 0.0126 -0.1105 0.0166 0.0712 0.0099 0.0103 0.1705 0.3539
LCC ↑ -0.6747 -0.0706 -0.1354 0.0360 0.0824 0.0255 -0.0216 0.1866 0.3846

SRCC ↑ -0.5000 0.0183 -0.1325 0.0231 0.0872 0.0124 0.0118 0.2281 0.4247

Emotion Classificaiton in Songs LLM-C ↑ 10.00% 0.00% 1.67% 3.33% 13.33% 8.33% 8.33% 1.67% 0.00%

MARBLE Emotion Detection LLM-C ↑ 0.10% 1.50% 0.00% 0.00% 1.30% 0.50% 0.10% 0.00% 0.10%

Music Beat Tracking
(ASAP)

NAR ↓ 54.55% 74.55% 51.82% 63.64% 62.73% 40.91% 47.27% 80.00% 84.55%
Miss Time ↓ 135.6077 183.6786 118.4047 77.9687 157.5917 76.0904 111.7759 240.0000 93.8751

Music Beat Tracking
(GTZAN-Rhythm)

NAR ↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
MSE ↓ - - - - - - - - -

Pitch Extraction by Lyrics NAR ↓ 37.50% 94.00% 47.50% 73.50% 65.50% 84.50% 76.00% 98.00% 68.50%
Token Error Rate ↓ 146.28% 116.67% 226.21% 639.24% 106.45% 165.96% 136.11% 100% 195.18%

Instrument Pitch Classification LLM-C ↑ 0.56% 0.56% 0.11% 0.22% 0.67% 18.11% 0.78% 0.33% 0.78%

HEAR Music Transcription NAR ↓ 92.43% 100.00% 99.46% 100.00% 96.76% 96.76% 96.76% 100.00% 100.00%

HEAR Music Transcription Token Error Rate ↓ 13.0% - 36.0% - 16.3% 8.4% 24.2% - -

HEAR Percussion Instruments Tonic Classification LLM-C ↑ 2.00% 2.50% 12.70% 13.40% 11.30% 11.80% 12.80% 12.50% 5.70%
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Table 6: Task-level Evaluation Results: Part 2

Task Metric Whisper- LTU-AS SALMONN SALMONN Qwen- Qwen2- WavLLM MU- GAMALLaMA 7B 13B Audio Audio LLaMA

Environment Recognition LLM-C ↑ 7.02% 38.60% 42.11% 19.30% 56.14% 63.16% 40.35% 10.53% 31.58%

Emergency Traffic Detection LLM-C ↑ 9.67% 25.33% 23.33% 27.00% 28.33% 27.33% 25.96% 7.67% 27.33%

Domestic Environment Sound Event Detection NAR ↓ 91.39% 99.44% 99.72% 99.72% 99.17% 99.72% 99.72% 100.00% 99.72%
Event Based F1 ↑ 0.0000 0.6000 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000 0.0000

Environmental Sound Classification
(UrbanSound8K UrbanNoises) LLM-C ↑ 10.00% 3.26% 1.40% 0.00% 39.53% 4.88% 10.47% 0.00% 0.70%

HEAR Environmental Sound Classification
(ESC-50) LLM-C ↑ 4.80% 25.30% 61.00% 73.40% 68.80% 43.90% 9.80% 0.40% 35.30%

Environmental Sound Classification
(ESC50 Natural Soundscapes And Water Sound) LLM-C ↑ 3.00% 7.50% 6.50% 1.00% 78.00% 5.00% 7.00% 0.00% 7.00%

Environmental Sound Classification
(ESC50 Exterior And UrbanNoises) LLM-C ↑ 4.50% 14.50% 0.50% 0.50% 77.00% 25.00% 6.50% 0.00% 6.50%

Environmental Sound Classification
(ESC50 Interior And Domestic Sounds) LLM-C ↑ 4.50% 3.50% 0.50% 0.00% 59.00% 2.50% 4.00% 0.00% 0.00%

Instrument Source Classification LLM-C ↑ 7.22% 28.33% 37.33% 43.56% 32.67% 35.22% 30.89% 38.00% 35.89%

Instrument Classification
(Beijing Opera Instrument) LLM-C ↑ 3.39% 10.59% 6.36% 23.73% 30.93% 28.39% 22.03% 25.85% 10.17%

Instrument Combination Recognition LLM-C ↑ 4.20% 13.51% 17.72% 24.02% 25.83% 24.92% 20.42% 19.52% 8.11%

Instrument Classification
(Nsynth) LLM-C ↑ 1.23% 9.56% 13.97% 14.58% 17.89% 54.41% 11.89% 6.99% 10.17%

HEAR Percussion Instruments Classification LLM-C ↑ 3.41% 4.24% 10.17% 20.76% 16.09% 27.14% 24.14% 22.04% 11.43%

HEAR Percussion Instruments Stroke Classification LLM-C ↑ 0.10% 3.80% 7.60% 4.90% 11.50% 10.80% 13.70% 10.30% 0.10%

MARBLE Instrument Classification LLM-C ↑ 1.00% 1.00% 0.90% 0.00% 9.70% 3.30% 1.10% 1.00% 0.60%

Animal Classification LLM-C ↑ 9.25% 40.50% 58.25% 67.00% 75.75% 34.00% 12.00% 4.25% 15.25%

Cornell Birdcall Identification LLM-C ↑ 0.00% 0.00% 0.00% 3.33% 10.00% 10.00% 13.33% 3.33% 0.00%

Cat Emotion Classification LLM-C ↑ 6.00% 0.00% 2.00% 4.00% 6.00% 14.00% 8.00% 2.00% 14.00%

HEAR Beehive States Classification LLM-C ↑ 43.00% 35.00% 54.00% 42.50% 19.00% 42.50% 37.00% 37.50% 19.00%

Environmental Sound Classification LLM-C ↑ 14.50% 8.00% 14.00% 3.00% 82.00% 36.00% 5.00% 0.00% 2.00%

Bird Sound Detection LLM-C ↑ 28.50% 43.00% 74.50% 75.00% 78.50% 79.00% 75.00% 40.50% 33.00%

Music Genre Classification LLM-C ↑ 10.71% 1.79% 9.82% 16.07% 8.04% 15.18% 9.82% 9.82% 4.46%

HEAR Music Genre Classification LLM-C ↑ 7.30% 9.70% 37.50% 42.50% 29.00 % 29.40 % 9.50% 26.90% 7.00%

MARBLE Music Tagging
(MTGTop50) LLM-C ↑ 0.00% 0.10% 0.00% 0.00% 1.40% 0.20% 0.00% 0.60% 0.10%

MARBLE Music Tagging
(MagnaTagATune) LLM-C ↑ 5.50% 1.00% 3.50% 9.00% 4.50% 1.50% 1.00% 3.50% 7.50%

MARBLE Genre Classification
(MTG-Genre) LLM-C ↑ 0.60% 2.10% 0.00% 0.00% 3.70% 0.80% 0.80% 0.80% 0.30%

MARBLE Genre Classification
(GTZAN) LLM-C ↑ 28.50% 8.00% 32.00% 61.50% 63.50% 68.50% 22.50% 17.00% 5.00%

Sound Effect Detection LLM-C ↑ 0.81% 3.00% 4.56% 10.06% 7.81% 13.69% 7.38% 7.31% 3.31%

Audio Duration Prediction NAR ↓ 33.00% 37.00% 10.50% 55.00% 0.00% 0.00% 0.50% 46.50% 14.00%
MSE ↓ 13.3657 39.1111 31652.7877 2216.7111 28.985 62.515 3581.0352 1527.785 62.7674

HEAR Music Speech Classification LLM-C ↑ 63.52% 34.23% 74.17% 75.96% 96.86% 75.13% 61.22% 53.14% 82.69%

Speech Detection
(LJSpeech) LLM-C ↑ 54.00% 44.50% 60.50% 74.00% 57.00% 45.00% 53.00% 49.00% 55.50%

Speech Detection
(LibriSpeech-TestOther) LLM-C ↑ 52.00% 31.50% 46.00% 66.50% 44.50% 55.50% 37.00% 45.50% 36.00%

Speech Detection
(LibriSpeech-TestClean) LLM-C ↑ 48.00% 29.00% 46.00% 66.00% 45.50% 56.50% 35.00% 46.50% 38.50%

Phonological Feature Classification
(VoxAngeles-ConsonantPlaceOfArticulation) LLM-C ↑ 25.77% 1.37% 1.88% 1.37% 1.54% 3.24% 1.88% 1.54% 0.51%

Phonological Feature Classification
(VoxAngeles-MannerOfArticulation) LLM-C ↑ 17.42% 9.36% 2.06% 1.50% 5.62% 6.74% 6.84% 7.96% 8.99%

Phonological Feature Classification
(VoxAngeles-Phone) LLM-C ↑ 5.73% 0.09% 1.76% - 3.60% 3.97% 0.00% 0.00% 0.09%

Phonological Feature Classification
(VoxAngeles-VowelFrontnes) LLM-C ↑ 50.71% 17.52% 41.14% 38.09% 48.47% 57.23% 36.46% 42.97% 10.39%

Phonological Feature Classification
(VoxAngeles-VowelHeight) LLM-C ↑ 24.44% 17.11% 31.77% 35.23% 29.53% 36.86% 37.88% 39.10% 24.44%

Phonological Feature Classification
(VoxAngeles-VowelRoundedness) LLM-C ↑ 43.38% 21.18% 27.29% 61.30% 46.44% 69.65% 38.90% 21.79% 18.94%

L2 English Prosodic
(speechocean762-Ranking)

LLM-C ↑ 26.39% 35.00% 46.67% 52.50% 34.44% 51.11% 34.44% 49.72% 42.22%
NAR ↓ 39.43% 94.75% 0.27% 1.21% 71.47% 3.10% 11.98% 94.62% 82.91%
PCC ↑ 0.0435 -0.1747 0.0427 0.0775 0.1446 0.0201 0.0461 -0.1535 0.0973

L2 English Fluency
(speechocean762-Ranking)

LLM-C ↑ 31.39% 21.94% 50.00% 50.00% 40.28% 50.56% 27.78% 49.44% 45.00%
NAR ↓ 14.67% 88.16% 0.00% 0.67% 8.75% 0.81% 41.86% 63.53% 55.72%
PCC ↑ 0.0055 0.0332 0.0292 0.0183 -0.0422 -0.0858 0.0222 0.0505 0.0532

Prosody Naturalness
(ProsAudit-Lexical) LLM-C ↑ 49.81% 32.82% 48.26% 47.10% 21.62% 51.74% 54.83% 47.10% 5.41%

Prosody Naturalness
(ProsAudit-Protosyntax) LLM-C ↑ 53.44% 31.68% 46.56% 46.18% 25.95% 50.76% 43.51% 49.24% 4.20%

SuperbSD NAR ↓ 93.00% 99.50% 100.00% 100.00% 99.50% 98.00% 97.50% 100.00% 60.50%
diarization error rate ↓ 74.81% 74.62% - - 44.26% 93.29% 90.53% - 74.12%

SuperbSV LLM-C ↑ 53.00% 40.00% 65.50% 93.50% 47.50% 55.50% 66.50% 49.00% 33.50%

HEAR Speaker Count Identification NAR ↓ 30.40% 42.10% 35.90% 42.50% 3.50% 0.40% 22.00% 23.20% 26.20%
Acc ↓ 17.47% 16.97% 13.29% 17.25% 10.26% 13.76% 5.49% 13.81% 17.52%

Speaker Counting LLM-C ↑ 18.50% 6.00% 14.50% 13.50% 17.50% 26.50% 14.00% 4.00% 12.00%

Multi Speaker Detection LLM-C ↑ 46.50% 23.50% 36.00% 30.50% 57.00% 51.00% 32.50% 39.00% 48.50%

Speaker Verification
(LibriSpeech-TestClean) LLM-C ↑ 48.00% 37.50% 45.00% 54.50% 43.50% 52.00% 19.00% 24.00% 13.00%

Speaker Verification
(VCTK) LLM-C ↑ 48.00% 38.50% 54.00% 58.50% 32.50% 51.00% 24.00% 19.50% 7.00%
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Table 7: Task-level Evaluation Results: Part 3

Task Metric Whisper- LTU-AS SALMONN SALMONN Qwen- Qwen2- WavLLM MU- GAMALLaMA 7B 13B Audio Audio LLaMA

SuperbST sacreBLEU ↑ 17.3720 0.1070 18.7884 16.7835 6.9846 23.3458 21.7423 0.0566 0.0219

Third Tone Sandhi Recognition NAR ↓ 59.38% 93.75% 100.00% 87.50% 84.38% 84.38% 28.12% 96.88% 100.00%
IoU ↑ 0.2179 0.5 0 0.75 0 0 0.1304 0 0

Accent Classification LLM-C ↑ 17.50% 5.50% 3.00% 4.50% 26.50% 14.00% 7.00% 27.00% 4.00%

Stress Detection LLM-C ↑ 15.50% 3.00% 2.00% 13.00% 16.50% 23.50% 25.50% 0.00% 1.00%

Phoneme Segmentation Counting
NAR ↓ 19.19% 57.24% 41.88% 12.56% 0.41% 16.11% 15.04% 41.47% 18.79%
Acc ↑ 13.20% 1.69% 15.81% 20.04% 1.77% 6.60% 10.11% 9.14% 3.80%

Abs Diff ↓ 41.236 3759.3878 5.4857 4.9331 3.1286 2.8706 45754.9952 5.4242 2.8694

Phoneme Segmentation Counting
NAR ↓ 16.29% 48.64% 39.09% 11.62% 5.99% 1.73% 0.50% 2.67% 72.22%
Acc ↑ 13.56% 11.77% 11.84% 8.25% 5.42% 13.46% 9.55% 0.47% 2.29%

Abs Diff ↓ 2.5378 1012.8103 6.5285 50.7724 7.1857 3.0622 7.9109 15.6777 5.0491

SUPERB PR Phoneme Error Rate ↓ 100.12% 102.75% 25.36% 24.60% 100.58% 100.96% 99.99% 110.27% 100.37%

Spoof Detection
(ASVSpoof2015) LLM-C ↑ 41.00% 19.00% 55.00% 14.00% 13.00% 23.00% 19.50% 69.50% 0.50%

Spoof Detection
(ASVSpoof2017) LLM-C ↑ 49.00% 4.50% 63.00% 38.00% 27.00% 32.50% 21.00% 64.00% 0.00%

Sentence Grammar Acceptability LLM-C ↑ 52.78% 6.75% 27.38% 42.06% 28.97% 49.40% 49.80% 50.79% 3.57%

Nonce Word Detection LLM-C ↑ 48.43% 30.20% 48.43% 48.43% 21.08% 50.14% 48.15% 35.04% 19.37%

PoS Estimation
(LibriTTS PoS) POS ↓ 2.5722 1.2792 2.9675 1.1990 3.0620 2.3091 3.1126 1.5327 1.9635

PoS Estimation
(LibriTTS PoS with transcription) POS ↓ 0.9081 1.3507 1.7583 1.0601 2.1580 1.7514 2.0463 1.2394 1.3911

Code Switching Semantic Grammar Acceptability Comparison LLM-C ↑ 51.50% 45.00% 50.00% 49.50% 27.50% 49.50% 27.50% 28.00% 19.00%

MultiLingual Speech Recognition
(MLS-de) WER ↓ 73.80% 132.35% 34.46% 25.21% 79.60% 24.96% 49.56% 99.37% 105.81%

MultiLingual Speech Recognition
(MLS-en) WER ↓ 65.03% 100.29% 9.37% 9.47% 27.97% 17.47% 17.23% 96.03% 97.09%

MultiLingual Speech Recognition
(MLS-es) WER ↓ 72.49% 123.26% 23.45% 16.10% 58.82% 18.19% 44.90% 103.19% 101.75%

MultiLingual Speech Recognition
(MLS-fr) WER ↓ 71.09% 133.86% 26.52% 21.27% 46.27% 19.01% 42.35% 102.25% 102.01%

MultiLingual Speech Recognition
(MLS-it) WER ↓ 85.38% 125.39% 39.11% 31.54% 56.55% 33.16% 46.14% 102.72% 108.84%

MultiLingual Speech Recognition
(MLS-nl) WER ↓ 74.96% 120.29% 32.11% 29.37% 140.01% 42.94% 55.56% 102.05% 101.22%

MultiLingual Speech Recognition
(MLS-pl) WER ↓ 76.79% 139.04% 73.83% 51.53% 278.19% 101.41% 90.11% 100.23% 105.43%

MultiLingual Speech Recognition
(MLS-pt) WER ↓ 73.63% 136.66% 31.88% 25.07% 117.33% 24.72% 46.26% 99.71% 103.48%

Code Switching Speech Recognition NAR ↓ 68.20% 12.20% 5.40% 88.80% 1.60% 0.00% 30.40% 69.40% 14.60%
Acc ↑ 28.30% 50.57% 58.14% 14.29% 44.31% 60.80% 10.92% 13.73% 9.84%

PTBR Speech Recognition WER ↓ 37.09% 153.78% 132.86% 161.05% 318.36% 72.44% 137.81% 495.31% 192.45%

AAVE Speech Recognition WER ↓ 21.73% 97.34% 23.99% 31.56% 96.81% 38.55% 34.91% 136.50% 102.92%

Code-switch Speech Recognition MER ↓ 424.58% 215.51% 293.50% 185.27% 165.54% 116.88% 172.03% 130.18% 193.47%

SUPERB ASR WER ↓ 33.96% 96.28% 15.11% 2.79% 69.35% 36.70% 6.87% 103.67% 116.66%

SUPERB OOD Asr Ar WER ↓ 51.04% 245.85% 216.51% 178.02% 289.25% 178.21% 149.15% 225.28% 504.53%

SUPERB OOD Asr Es WER ↓ 10.93% 150.00% 98.96% 99.22% 100.83% 75.08% 99.38% 141.68% 303.28%

SUPERB OOD Asr Zh CER ↓ 29.67% 508.02% 609.28% 310.33% 449.32% 270.63% 445.36% 435.33% 1097.41%

TargetSpeaker WER ↓ 143.02% 133.86% 273.90% 187.15% 207.01% 132.13% 266.26% 108.32% 140.37%

Reverberation Detection
(LJSpeech RirsNoises SmallRoom) LLM-C ↑ 45.00% 4.50% 9.00% 19.50% 24.00% 48.00% 42.50% 14.00% 6.50%

Reverberation Detection
(LJSpeech RirsNoises MediumRoom) LLM-C ↑ 40.00% 4.50% 14.50% 25.00% 31.00% 48.00% 41.00% 10.50% 5.00%

Reverberation Detection
(LJSpeech RirsNoises LargeRoom) LLM-C ↑ 44.50% 11.00% 19.00% 34.00% 28.00% 48.00% 42.50% 17.50% 6.00%

Reverberation Detection
(VCTK RirsNoises SmallRoom) LLM-C ↑ 47.00% 18.50% 8.00% 13.00% 17.50% 46.00% 36.00% 10.50% 11.00%

Reverberation Detection
(VCTK RirsNoises MediumRoom) LLM-C ↑ 46.50% 22.50% 8.50% 19.50% 20.00% 46.00% 38.50% 14.00% 6.50%

Reverberation Detection
(VCTK RirsNoises LargeRoom) LLM-C ↑ 43.00% 24.50% 18.50% 25.00% 18.00% 46.00% 37.00% 14.50% 7.50%

Noise SNR Level Prediction
(VCTK MUSAN Music) LLM-C ↑ 23.00% 9.00% 10.00% 8.50% 10.00% 14.00% 15.50% 9.00% 1.50%

Noise SNR Level Prediction
(VCTK MUSAN Speech) LLM-C ↑ 23.50% 11.50% 13.00% 1.50% 14.00% 20.50% 15.00% 10.50% 0.50%

Noise SNR Level Prediction
(VCTK MUSAN Gaussian) LLM-C ↑ 24.00% 8.00% 13.50% 15.50% 13.00% 17.50% 17.50% 15.00% 1.50%

Noise SNR Level Prediction
(VCTK MUSAN Noise) LLM-C ↑ 23.00% 12.50% 9.50% 16.00% 7.50% 19.00% 14.00% 11.00% 0.50%

Noise Detection
(LJSpeech MUSAN Music) LLM-C ↑ 52.00% 8.50% 52.00% 47.00% 50.50% 47.00% 44.50% 33.00% 6.00%

Noise Detection
(LJSpeech MUSAN Speech) LLM-C ↑ 48.00% 13.50% 53.00% 36.00% 50.50% 47.00% 45.00% 50.50% 51.00%

Noise Detection
(LJSpeech MUSAN Gaussian) LLM-C ↑ 45.50% 18.50% 50.00% 47.50% 42.00% 49.00% 39.00% 41.00% 21.50%

Noise Detection
(LJSpeech MUSAN Noise) LLM-C ↑ 47.00% 13.50% 50.50% 49.00% 50.50% 49.50% 44.50% 48.00% 9.00%

Noise Detection
(VCTK MUSAN Music) LLM-C ↑ 46.00% 32.50% 45.50% 57.50% 42.00% 54.50% 52.00% 37.50% 3.50%

Noise Detection
(VCTK MUSAN Speech) LLM-C ↑ 45.00% 51.50% 43.50% 52.50% 46.50% 57.00% 44.50% 48.50% 56.50%

Noise Detection
(VCTK MUSAN Gaussian) LLM-C ↑ 53.00% 15.50% 49.00% 56.50% 45.50% 54.50% 46.00% 38.50% 11.50%

Noise Detection
(VCTK MUSAN Noise) LLM-C ↑ 44.50% 26.50% 45.50% 55.00% 44.50% 61.00% 47.00% 54.00% 4.50%

HEAR Language Identification LLM-C ↑ 92.18% 1.96% 6.28% 11.01% 18.00% 36.11% 1.85% 0.00% 0.10%

Language Identification
(VoxForge) LLM-C ↑ 95.50% 13.50% 22.00% 8.50% 84.50% 93.00% 18.00% 6.00% 0.00%
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Table 8: Task-level Evaluation Results: Part 4

Task Metric Whisper- LTU-AS SALMONN SALMONN Qwen- Qwen2- WavLLM MU- GAMALLaMA 7B 13B Audio Audio LLaMA

Named Entity Localization
(SLUE-VoxPopuli)

NAR ↓ 81.25% 100.00% 100.00% 100.00% 100.00% 25.00% 93.75% 100.00% 100.00%
F1 (SpeechBERT) ↑ 1.4006 - - - - 1.1063 0.8681 - -

Named Entity Recognition
SLUE-VoxPopuli)

NAR ↓ 90.76% 98.37% 95.65% 98.37% 95.11% 91.30% 91.85% 97.83% 96.74%
IoU ↑ 0.0000 0.3333 0.0000 0.0000 0.0000 0.0625 0.0222 0.0000 0.0000

Sentiment Analysis
(SLUE-VoxCeleb) LLM-C ↑ 67.80% 37.01% 36.72% 36.44% 45.48% 62.71% 55.37% 28.25% 26.55%

Semantic Textual Similarity
(SpokenSTS) LLM-C ↑ 48.80% 47.20% 47.20% 50.40% 42.80% 46.80% 50.40% 51.20% 38.80%

Conversation Matching
(EnShortConversation) LLM-C ↑ 77.78% 5.56% 57.41% 37.04% 51.85% 66.67% 62.96% 3.70% 24.07%

Spoken Digit Arithmetic
(AudioMNIST) LLM-C ↑ 43.50% 13.00% 31.00% 33.00% 15.00% 43.50% 40.50% 4.50% 13.00%

Superb IC
(FluentSpeechCommands-Test) LLM-C ↑ 55.50% 0.00% 25.50% 9.00% 15.50% 11.50% 4.50% 0.00% 0.00%

Superb SF
(AudioSnips-Test)

NAR ↓ 38.00% 88.50% 34.00% 68.50% 51.00% 45.00% 44.00% 99.00% 97.00%
slot type f1 ↑ 0.8637 0.8864 0.9325 0.9396 0.8616 0.7704 0.9070 1.0000 0.8939

slot value cer ↓ 0.3178 0.6432 0.4059 0.3349 0.4417 0.3065 0.4752 1.5870 1.4250

Dialogue Act Pairing
(DailyTalk) LLM-C ↑ 50.00% 3.50% 51.00% 48.00% 43.50% 46.00% 37.00% 40.00% 25.00%

Intent Classification
(FluentSpeechCommands-Action) LLM-C ↑ 71.00% 43.00% 75.50% 54.50% 62.50% 76.00% 66.50% 6.50% 2.50%

Intent Classification
(FluentSpeechCommands-Location) LLM-C ↑ 64.00% 57.50% 36.00% 40.00% 45.50% 86.00% 57.50% 51.50% 33.50%

Intent Classification
(FluentSpeechCommands-Object) LLM-C ↑ 63.00% 17.00% 73.00% 57.50% 61.00% 69.50% 64.50% 12.00% 4.00%

Sarcasm Detection
(Mustard) LLM-C ↑ 44.50% 15.00% 38.50% 46.00% 42.50% 48.00% 46.50% 43.00% 8.00%

Dialogue Act Classification
(DailyTalk) LLM-C ↑ 29.00% 10.50% 34.00% 40.50% 42.00% 30.00% 36.50% 18.50% 4.00%

Dialogue Act Classification
(SLUE-HVB) LLM-C ↑ 16.25% 18.58% 35.17% 36.00% 8.58% 19.75% - 1.83% 1.33%

Stuttering Detection LLM-C ↑ 49.10% 51.00% 50.50% 50.30% 50.50% 52.40% 55.00% 49.60% 47.40%

Voice Disorder Classification LLM-C ↑ 13.46% 1.92% 13.46% 17.31% 13.46% 16.35% 18.27% 21.15% 6.73%

Emoji Grounded Speech Emotion Recognition LLM-C ↑ 1.10% 0.00% 0.00% 0.10% 1.30% 1.20% 0.10% 1.90% 48.50%

Emotion Change Detection LLM-C ↑ 0.08% 0.42% 0.58% 0.96% 0.04% 2.96% 0.08% 0.58% 0.04%

Superb ER LLM-C ↑ 28.70% 37.20% 39.80% 30.90% 33.70% 68.10% 79.10% 25.00% 17.70%

HEAR Emotion Recognition LLM-C ↑ 6.70% 9.30% 18.80% 18.10% 62.50% 61.10% 25.60% 12.40% 13.20%

Emotion Recognition LLM-C ↑ 22.50% 14.50% 19.00% 9.50% 43.50% 36.50% 40.50% 0.50% 2.50%

Dialogue Emotion Classification LLM-C ↑ 33.50% 16.50% 27.00% 11.50% 33.00% 54.00% 18.50% 19.00% 33.00%

NBest Correction LLM-C ↑ 31.80% 22.80% 23.00% 29.20% 32.80% 29.00% 32.60% 20.80% 30.80%
Human Screaming Detection LLM-C ↑ 52.50% 25.00% 52.50% 65.00% 62.50% 87.50% 47.50% 42.50% 60.00%

Human Non Speech Sound Recognition LLM-C ↑ 2.86% 5.00% 44.29% 30.71% 27.14% 23.57% 14.29% 17.14% 32.86%

Covid19 Cough Audio Classification LLM-C ↑ 0.93% 1.03% 0.00% 0.00% 4.12% 0.72% 4.22% 21.91% 0.21%

Vocal Sound Recognition LLM-C ↑ 29.86% 1.53% 11.53% 4.31% 75.56% 30.97% 14.44% 0.28% 2.78%

Environmental Sound Classification LLM-C ↑ 17.50% 11.00% 8.50% 3.00% 82.00% 29.00% 16.50% 0.00% 2.00%

L2 English Accuracy LLM-C ↑ 24.72% 33.89% 50.00% 49.72% 34.44% 50.00% 41.67% 48.06% 45.56%

L2 English Accuracy NAR ↓ 15.44% 95.03% 0.40% 0.27% 37.72% 0.94% 9.53% 90.47% 50.07%
PCC ↑ 0.0185 -0.1830 0.0633 0.0438 0.0293 -0.0159 0.0439 0.0727 0.0151

Heteronym Differentiation LLM-C ↑ 55.00% 26.00% 37.00% 45.00% 52.00% 44.00% 51.00% 30.00% 20.00%

Multilingual Pronunciation Similarity LLM-C ↑ 38.40% 13.50% 47.20% 48.50% 23.70% 44.70% 48.00% 25.10% 40.60%

Deep Fake Voice Recognition LLM-C ↑ 27.25% 7.75% 50.75% 40.00% 48.75% 50.50% 43.50% 45.00% 19.75%

Fraud Robocall Recognition
(CallHome) LLM-C ↑ 73.33% 13.33% 0.00% 100.00% 100.00% 100.00% 90.00% 26.67% 100.00%

Fraud Robocall Recognition
(Promo) LLM-C ↑ 47.37% 10.53% 0.00% 73.68% 57.89% 63.16% 63.16% 5.26% 100.00%

Fraud Robocall Recognition
(Robocall) LLM-C ↑ 94.87% 51.28% 100.00% 20.51% 51.28% 61.54% 30.77% 30.77% 0.00%

Enhancement Detection LLM-C ↑ 50.50% 30.50% 30.00% 46.50% 55.00% 56.50% 30.00% 50.00% 21.00%

Speech Command Recognition NAR ↓ 4.80% 76.40% 3.07% 0.40% 0.67% 0.00% 0.67% 1.60% 76.40%
Acc ↑ 88.80% 77.40% 96.70% 74.43% 96.24% 77.07% 93.42% 9.89% 8.47%

Superb KS LLM-C ↑ 36.50% 1.00% 30.50% 2.00% 60.50% 47.00% 43.00% 4.00% 2.00%

Superb QbE LLM-C ↑ 46.50% 45.00% 49.00% 51.50% 48.00% 53.50% 49.50% 51.00% 2.50%

HEAR Spoken Commands Classification LLM-C ↑ 50.50% 19.00% 50.50% 32.00% 77.50% 67.00% 72.50% 5.00% 3.00%

Spoken Term Detection LLM-C ↑ 83.50% 33.50% 57.00% 53.50% 74.50% 79.50% 51.00% 25.00% 25.00%

Spoken Term Detection
(LibriSpeech-TestOther) LLM-C ↑ 75.50% 23.00% 54.50% 50.50% 72.50% 64.00% 46.50% 25.50% 34.00%

Spoken Term Detection
(LibriSpeech-TestClean) LLM-C ↑ 76.50% 28.00% 60.00% 54.50% 77.00% 61.50% 51.50% 24.00% 37.50%

Multi Speaker Detection LLM-C ↑ 46.00% 29.00% 16.50% 22.00% 58.00% 52.00% 22.00% 42.50% 53.00%

Speech Text Matching LLM-C ↑ 83.50% 44.50% 57.00% 60.00% 67.00% 90.00% 52.00% 37.50% 41.00%

Speech Text Matching
(LibriSpeech-TestClean) LLM-C ↑ 86.50% 43.50% 57.00% 59.50% 64.00% 92.00% 52.00% 44.50% 42.00%

Speech Text Matching
(LibriSpeech-TestOther) LLM-C ↑ 80.50% 42.50% 56.50% 60.00% 66.00% 92.50% 53.00% 47.00% 40.00%

Speech Command Recognition LLM-C ↑ 36.50% 11.50% 36.00% 22.00% 73.50% 77.50% 77.00% 1.00% 1.50%

Superb OOD Asr Spon WER ↓ 0.6314 1.6941 2.1327 2.5971 1.3956 1.2727 0.7654 2.8084 5.9324

Age Classification LLM-C ↑ 0.50% 19.75% 22.75% 21.00% 26.00% 35.50% 21.00% 23.50% 17.75%

Gender Recognition by Voice LLM-C ↑ 1.00% 81.50% 63.00% 57.00% 53.50% 97.50% 35.00% 51.00% 63.00%
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D HEAR & MARBLE EVALUATION RESULTS

Table 9: HEAR (audio) Results. The SpeechCommands-5hr task results are omitted as they du-
plicate the SUPERB Keyword Spotting (KS) task, presented in Table 2. LLM-C stands for LLM
Classification, NAR stands for Not Applicable Rate, and TER stands for Token Error Rate.

Task Metric Whisper- LTU-AS SALMONN SALMONN Qwen- Qwen2- WavLLM MU- GAMALLaMA 7B 13B Audio Audio LLaMA

Beehive States LLM-C ↑ 43.00% 35.00% 54.00% 42.50% 19.00% 42.50% 37.00% 37.50% 19.00%

CREMA-D LLM-C ↑ 6.70% 9.30% 18.80% 18.10% 62.50% 61.10% 25.60% 12.40% 13.20%

ESC-50 LLM-C ↑ 4.80% 25.30% 61.00% 73.40% 68.80% 43.90% 9.80% 0.40% 35.30%

VoxLingua107 Top10 LLM-C ↑ 92.18% 1.96% 6.28% 11.01% 18.00% 36.11% 1.85% 0.00% 0.10%

GTZAN Genre LLM-C ↑ 7.30% 9.70% 37.50% 42.50% 29.00% 29.40% 9.50% 26.90% 7.00%

GTZAN Music Speech LLM-C ↑ 63.52% 34.23% 74.17% 75.96% 96.86% 75.13% 61.22% 53.14% 82.69%

MAESTRO NAR ↓ 92.43% 100.00% 99.46% 100.00% 96.76% 96.76% 96.76% 100.00% 100.00%
TER ↓ 13.0000 - 36.0000 - 16.2617 8.3925 24.1667 - -

Beijing Opera Percussion LLM-C ↑ 3.41% 4.24% 10.17% 20.76% 16.09% 27.14% 24.14% 22.04% 11.43%

Mridangam Stroke LLM-C ↑ 0.10% 3.80% 7.60% 4.90% 11.50% 10.80% 13.70% 10.30% 0.10%

Mridangam Tonic LLM-C ↑ 2.00% 2.50% 12.70% 13.40% 11.30% 11.80% 12.80% 12.50% 5.70%

DCASE2016 Task2 LLM-C ↑ 0.00% 0.00% 21.43% 35.71% 7.14% 14.29% 21.43% 21.43% 7.14%

LibriCount NAR ↓ 30.40% 42.10% 35.90% 42.50% 3.50% 0.40% 22.00% 23.20% 26.20%
Acc ↑ 17.47% 16.97% 13.29% 17.25% 10.26% 13.76% 5.49% 13.81% 17.52%

Vocal Imitations LLM-C ↑ 15.17% 5.50% 1.17% 1.83% 18.67% 11.17% 17.50% 3.83% 5.83%

Table 10: MARBLE (music) Results. LLM-C stands for LLM Classification, NAR stands for Not
Applicable Rate, and MSE stands for Mean Squared Error.

Task Metric Whisper- LTU-AS SALMONN SALMONN Qwen- Qwen2- WavLLM MU- GAMALLaMA 7B 13B Audio Audio LLaMA

Giantsteps Key LLM-C ↑ 3.00% 0.50% 1.50% 1.00% 3.00% 17.00% 2.00% 0.50% 0.00%

MTG Top50 LLM-C ↑ 0.00% 0.10% 0.00% 0.00% 1.40% 0.20% 0.00% 0.60% 0.10%

MagnaTagATune LLM-C ↑ 5.50% 1.00% 3.50% 9.00% 4.50% 1.50% 1.00% 3.50% 7.50%

MTG-Genre LLM-C ↑ 0.60% 2.10% 0.00% 0.00% 3.70% 0.80% 0.80% 0.80% 0.30%

GTZAN LLM-C ↑ 28.50% 8.00% 32.00% 61.50% 63.50% 68.50% 22.50% 17.00% 5.00%

MTGMoodTheme LLM-C ↑ 0.10% 1.50% 0.00% 0.00% 1.30% 0.50% 0.10% 0.00% 0.10%

GTZAN-Rhythm NAR ↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
MSE ↑ - - - - - - - - -

VocalSet LLM-C ↑ 8.00% 1.00% 11.00% 6.50% 6.50% 15.50% 8.00% 8.50% 2.50%

MTG Instrument LLM-C ↑ 1.00% 1.00% 0.90% 0.00% 9.70% 3.30% 1.10% 1.00% 0.60%

E LLM-BASED EVALUATION

Here, we list the prompt templates used in the evaluation. Figure 6 illustrates the prompt for classi-
fication task evaluation, while Figure 7 shows the prompt for regression task evaluation. In addition
to GPT-4o, we also employed open-source LLMs to ensure better reproducibility. Tables 11 and
12 present the performance evaluations of the proposed prompts on classification and regression
tasks, respectively, comparing their correlation with a human-labeled evaluation set. We found that
GPT-4o and LLaMA-3.1-70B-Instruct achieved very high accuracy in both classification and regres-
sion tasks. This demonstrates that our evaluation using GPT-4o is reliable and that researchers can
leverage LLaMA-3.1-70B-Instruct to conduct fully reproducible evaluations.
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Classification Post-processing Prompt:
You will be given a question, a corresponding correct answer(s), and a response from a model. The
model’s response is a reply to the question. Your task is to judge if the ”Model’s Response” aligns with
the ”Ground Truth Answer” based on the ”Question.”

Please strictly follow the guidelines below:
- Briefly explain the reasons for your judgment.
- Answer with the format ”Result: <YES or NO>” at the end.
- Output ”YES” if the response aligns with the ground truth answer; output ”NO” if the response does
not match the ground truth answer, selects incorrect or irrelevant options, or provides more answers than
required.
- The questions would be single-choice or multi-choice:
For single-choice questions, the model’s response should contain one and only one answer. If the model’s
response selects more than one answer or does not clearly indicate a single answer, you should mark it
as incorrect and output ”NO.” For multi-choice questions, the model’s response must exactly match all
applicable correct choices. If the model’s response selects too many, too few, or any incorrect answers,
you should mark it as incorrect and output ”NO.”
- Since the question is short answer, the model’s response does not need to mention the content of the
question. You only need to check if the model’s response has the same meaning as the ground truth
answer(s).

Input Format:
Question: {instruction}
Ground Truth Answer: {label}
Model’s Response: {response}

Figure 6: The prompt used for post-processing the classification tasks inference outputs in the study.

Table 11: Performance evaluation of the proposed post-processing prompt on classification tasks
using a human-labeled evaluation set. Accuracy is determined by agreement between the model
output and the corresponding human label.

Model Name Accuracy Correct Count
gpt-4o 98.67% 148/150
gpt-4o-mini 98.00% 147/150

gpt-o1-preview 98.67% 148/150
gpt-o1-mini 99.33% 149/150
llama-3.1-70B-Instruct 96.67% 145/150
llama-3.1-8B-Instruct 92.67% 139/150

llama-3.2-3B-Instruct 86.67 % 130/150
llama-3.2-1B-Instruct 61.33% 92/150

Table 12: Performance evaluation of the proposed post-processing prompt on regression tasks us-
ing a human-labeled evaluation set. Accuracy is determined by exact matches between the post-
processed model output and the corresponding human-generated post-processed output.

Model Name Accuracy Correct Count
gpt-4o 92.00% 138/150
gpt-4o-mini 86.67% 130/150

gpt-o1-preview 86.00% 129/150
gpt-o1-mini 89.33% 134/150

llama-3.1-70B-Instruct 90.00% 135/150
llama-3.1-8B-Instruct 82.00% 123/150

llama-3.2-3B-Instruct 61.33% 92/150
llama-3.2-1B-Instruct 39.33% 59/150
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Regression Post-processing Prompt:
You will be provided with an ”instruction,” a ”ground-truth label,” and a ”model output.” Your job is to
extract the value from the given ”model output” and return the post-processed ”model output”. Provide
your output with just the post-processed output without an explanation.

[Task Description]
- Analyze the ”instruction” and ”ground-truth label” to understand the desired output format.
- Post-process the ”model output” so that it matches the format of the ”ground-truth label” and is
numerically comparable to it.

[Guidelines]
- If the ”model output” can be adjusted to match the format of the ”ground-truth label,” return only the
post-processed result.
- If the ”model output” is already in an appropriate format, return it as is without changing it.
- If it can not be adjusted into the correct format, does not clearly indicate any of the candidates, is
ambiguous, or implies more than one answer, return ”N/A.”
- Do not confuse the ”ground-truth label” with ”model output”; you are only supposed to use the
”ground-truth label” to understand the desired output format.
- Do not tamper with the original content of ”model output”; you are only supposed to post-process
the format of ”model output” so it matches the format of ”ground-truth label” and can be compared or
evaluated against each other directly.
- The post-processed output should only be a number in numeric form.

Below you have three examples. Please consider their patterns to understand your task better:

[Example 1 - Inputs]
- ”instruction”: ”Please identify the total times of code-switching in this wavefile.”
- ”ground-truth label”: 8
- ”model output”: ”There are no instances of code-switching in this wavefile; it is purely Mandarin
speech.”
- Your response: 0

[Example 2 - Inputs]
- ”instruction”: ””Listen to the audio and assess the clarity and accuracy of pronunciation by considering
precise phonology, pronunciation errors, and overall comprehensibility. Use an Arabic numeral from 0 to
10 for your answer.””
- ”ground-truth label”: 3
- ”model output”: ”The audio is of a man speaking, in a Chinese, saying, ”I has to find a different back
door”. The accuracy of the pronunciation is 90%.”
- Your response: 9

[Example 3 - Inputs]
- ”instruction”: ”Please predict the spatial distance(0.5m-4.5m) based on the given audio.”
- ”ground-truth label”: 2.1196093634329904
- ”model output”: ”Based on the given audio, the spatial distance is likely between 0.5m and 4.5m.”
- Your response: N/A

[Inputs]
- ”instruction”: {instruction}
- ”ground-truth label”: {label}
- ”model output”: {model output}
- Your response:

Figure 7: The prompt used for post-processing the regression tasks inference outputs in the study.

F CALL FOR TASKS

Here we provide material from the call for tasks. Figure 8 shows a task proposal that we ask each
contributor to initiate. Task proposers need to provide a high-level description of the task, explain
its importance and challenges, and list the datasets they plan to use along with the dataset licenses.
Figure 9 presents the standard README format for each task. In the README, task proposers
include the task introduction, its challenges, the dataset, and the evaluation metric. Importantly, we
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also ask them to provide a table of state-of-the-art performance on the task, even if not achieved by
universal spoken language models. These results can serve as a reference for researchers to better
understand the task’s difficulty and how it has developed so far. Then, Figure 10 shows the JSON
format we require to record task information. For each task, our evaluation pipeline uses this JSON
file as input to automatically download data from Huggingface, formatting it for subsequent use.

Figure 8: An example of a task proposal from a task contributor.
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Figure 9: An example of the README file required in the task contribution.

Figure 10: An example of the JSON file required in the task contribution.
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G AUDIO DURATION DISTRIBUTION

Figure 11 shows the distribution of all audio files in Dynamic-SUPERB Phase-2. Only about 7%
of the audio files have a duration longer than 30 seconds, which reflects an inherent limitation of
models that incorporate Whisper in their framework.

Figure 11: Duration distribution of all audios in Dynamic-SUPERB Phase-2.

44


	Introduction
	Related works
	Instruction-following universal speech models
	Evaluation benchmarks

	Dynamic-SUPERB Phase-2
	Overview
	Task formulation
	Call for tasks
	Task taxonomy
	Speech
	Audio & Music
	Core tasks


	Experimental settings
	Models
	Evaluation metrics

	Results
	Domain-Level Performance Comparison in Taxonomy
	Core tasks results

	Conclusions
	Ethics Statement
	Reproducibility Statement
	Task taxonomy
	Dynamic-SUPERB tasks
	Task-level evaluation results
	HEAR & MARBLE Evaluation Results
	LLM-based evaluation
	Call for tasks
	Audio duration distribution

