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Abstract
We study subsampling-based ridge ensembles in
the proportional asymptotics regime, where the
feature size grows proportionally with the sample
size such that their ratio converges to a constant.
By analyzing the squared prediction risk of ridge
ensembles as a function of the explicit penalty λ
and the limiting subsample aspect ratio ϕs (the
ratio of the feature size to the subsample size),
we characterize contours in the (λ, ϕs)-plane at
any achievable risk. As a consequence, we prove
that the risk of the optimal full ridgeless ensemble
(fitted on all possible subsamples) matches that of
the optimal ridge predictor. In addition, we prove
strong uniform consistency of generalized cross-
validation (GCV) over the subsample sizes for
estimating the prediction risk of ridge ensembles.
This allows for GCV-based tuning of full ridgeless
ensembles without sample splitting and yields a
predictor whose risk matches optimal ridge risk.

1. Introduction
Ensemble methods (Breiman, 1996) are widely used in
various real-world applications in statistics and machine
learning. They combine a collection of weak predictors
to produce more stable and accurate predictions. One no-
table example of an ensemble method is bagging (bootstrap
aggregating) (Breiman, 1996; Bühlmann & Yu, 2002). Bag-
ging involves averaging base predictors that are fitted on dif-
ferent subsampled datasets and has been shown to stabilize
the prediction and reduce the predictive variance (Bühlmann
& Yu, 2002). In this paper, we study such a class of ensem-
ble methods that fit each base predictor independently using
a different subsampled dataset of the full training data. As
a prototypical base predictor, we focus on ridge regression
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Figure 1. Heat map of the asymptotic prediction risk landscape of
full ridge ensembles as the number of observation n, the subsample
size k, and the feature dimension p tend to infinity, for varying
regularization parameters λ and limiting subsample aspect ratio
ϕs = lim p/k. The data (x, y) ∈ Rp×R is generated from a non-
isotropic linear model y = x⊤β0 + ϵ with ϕ = lim p/n = 0.1,
where the features, the coefficients, and the residuals are distributed
as x ∼ N (0,ΣAR1), β0 = 1

5

∑5
j=1 w(j), and ϵ ∼ N (0, 1),

respectively. Here, the covariance matrix (ΣAR1)ij = 0.5|i−j|,
w(j) is the top jth eigenvector of ΣAR1. The green and blue stars
denote the risk of the optimal full-ensemble ridgeless predictor
and the optimal ridge predictor without subsampling, respectively.
The black dashed line denotes the set of (λ, ϕs) pairs that yield
the same risk as (λ∗, ϕ) and (0, ϕ∗

s), while the gray dashed lines
indicate the set of pairs that all result in the same sub-optimal risk.

(Hoerl & Kennard, 1970a;b), one of the most popular statis-
tical methods. We refer readers to the “ridgefest” by Hastie
(2020) for the history and review of ridge regression.

Ridge regression has recently attracted great interest, par-
ticularly the limiting case of zero regularization (where the
regularization parameter tends to zero), termed “ridgeless”
regression. In the underparameterized regime, the ridge-
less predictor is ordinary least squares. However, in the
overparameterized regime, it interpolates the training data
and exhibits a peculiar risk behavior (Belkin et al., 2020;
Bartlett et al., 2020; Hastie et al., 2022; Muthukumar et al.,
2020). LeJeune et al. (2020); Patil et al. (2022a) have re-
cently analyzed the statistical properties of the ensemble
ridge and ridgeless predictors under proportional asymp-
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totics. Under a linear model with the isotropic Gaussian
covariate distribution, LeJeune et al. (2020) prove that the
full ensemble (ensemble fitted on all possible subsampled
datasets) of least squares predictors with optimal subsample
size has the same risk as that of ridge predictor with opti-
mal regularization. Under a more general but still isotropic
covariate distribution, Patil et al. (2022a) prove similar risk
equivalence of the optimized full ridgeless ensemble and
the optimized ridge predictor.

These findings inspire two natural avenues to investigate.

(1) Understanding the extent of risk equivalences. As a
curious experiment, one can empirically observe that a simi-
lar phenomenon to the one just mentioned appears to hold
under quite general non-isotopic data models, as illustrated
in Figure 1. We observe that the optimal ridgeless in the full
ensemble (the green star) has the same prediction risk as the
optimal ridge on the full data (the blue star). Furthermore,
any pair of (λ, ϕs) on the black line achieves the same op-
timal risk. Such a relationship also extends to any other
attainable risk value. For example, see the grey lines for
(λ, ϕs) pairs that all achieve the same sub-optimal risk. This
inspires our first investigation to establish risk equivalences
between subsampling and ridge regression under general
settings.

(2) Overcoming limitations of split cross-validation. Apart
from its theoretical interest, the risk equivalences also sug-
gest an alternative practical way to tune the ridge regular-
ization parameter by tuning the subsample size. In terms
of practical tuning of the ridge and ridgeless ensembles,
Patil et al. (2022a) provide a split cross-validation method
to estimate the prediction risk of ensembles with a fixed
(finite) number of ensemble sizes and further prove that
the split cross-validation consistently selects the best sub-
sample size. The split cross-validation procedure has two
disadvantages: (a) sample splitting introduces additional
external randomness in the predictor; and (b) the reduced
sample size, although asymptotically negligible, has signifi-
cant finite sample effects, especially near the interpolation
thresholds. This inspires our second investigation to address
these limitations by considering generalized cross-validation
(GCV) that does not require any sample splitting. The con-
sideration of GCV as a viable estimator of the prediction
risk for ridge ensembles stems from the observation that the
ridge ensembles are also in fact linear smoothers.

1.1. Summary of Contributions

Below we provide a brief overview of our main results.

• General risk equivalences. We establish general equiva-
lences between the subsample-optimized ridgeless ensem-
ble, the optimal ridge predictor, and the optimal subsam-
ple ridge ensemble (see Theorem 2.3). In addition, for any

τ ≥ 0, we provide an exact characterization of the sets Cτ
of pairs (λ, ϕs) (the regularization parameter and the lim-
iting subsample aspect ratio) such that the risk of the full
ridge ensemble with ridge regularization λ and subsample
aspect ratio ϕs is equal to the risk of the ridge predictor
with ridge regularization τ . In essence, this amounts to
showing that the implicit regularization of subsampling is
the same as additional explicit ridge regularization.

• Uniform consistency of GCV. We establish the uniform
consistency of GCV across all possible subsample sizes
for full ridge ensembles with fixed regularization parame-
ters (see Theorem 3.1). Notably, this result is also appli-
cable to zero explicit regularization and covers the case
of ridgeless regression. This finding enables tuning over
the subsample size in a data-dependent manner, and in
conjunction with Theorem 2.3, it implies that GCV tuning
leads to a predictor with the same risk as the optimal ridge
predictor (see Corollary 3.2).

• Finite-ensemble surprises. Even though GCV is consis-
tent for the non-ensemble ridge and full-ensemble ridge
predictors, interestingly, this is the first paper that proves
GCV can be inconsistent even for ridge ensembles when
the ensemble size is two (see Proposition 3.3). This find-
ing is in contrast to other known results of GCV for ridge
(see Section 1.2 for more details). Nevertheless, experi-
ments on synthetic data and real-world single-cell multi-
omic datasets demonstrate the applicability of GCV for
tuning subsample sizes, even with moderate ensemble
sizes (roughly of order 10).

1.2. Related Work

Ensembles and risk analysis. Ensemble methods are effec-
tive in combining weak predictors to build strong predictors
in both regression and classification settings (Hastie et al.,
2009). Early work on ensemble methods includes classical
papers by Breiman (1996); Bühlmann & Yu (2002). There
has been further work on the ensembles of smooth weak
predictors (Buja & Stuetzle, 2006; Friedman & Hall, 2007),
non-parametric estimators (Bühlmann & Yu, 2002; Loureiro
et al., 2022), and classifiers (Hall & Samworth, 2005; Sam-
worth, 2012). Under proportional asymptotics, d’Ascoli
et al. (2020); Adlam & Pennington (2020a); Loureiro et al.
(2022) study ensemble learning under random feature mod-
els. For ridge ensembles, Sollich & Krogh (1995); Krogh
& Sollich (1997) derive risk asymptotics under Gaussian
features. LeJeune et al. (2020) consider least squares ensem-
bles obtained by subsampling such that the final subsampled
dataset has more observations than the number of features.
The asymptotic risk characterization for general data models
has been derived by Patil et al. (2022a). Both of these works
show the equivalence between the subsample optimized full
ridgeless ensemble and the optimal ridge under isotropic
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models. Our work significantly extends the scope of these
results by characterizing risk equivalences for both optimal
and suboptimal risks and for arbitrary feature covariance
and signal structures. See the remarks after Theorem 2.3 for
a detailed comparison,

Cross-validation and consistency. Cross-validation (CV)
is arguably the most popular class of methods for model
assessment and selection. Classical work on CV include:
Allen (1974); Stone (1974; 1977); Geisser (1975), among
others. We refer the reader to Arlot & Celisse (2010); Zhang
& Yang (2015) for comprehensive surveys of different CV
variants. In practice, k-fold CV is widely used with typical
k being 5 or 10 (Hastie et al., 2009; Györfi et al., 2006), but
such small values of k suffer from bias in high dimensions
(Rad & Maleki, 2020). The extreme case of leave-one-out
cross-validation (LOOCV) (when k = n) alleviates the
bias issues in risk estimation, and various statistical consis-
tency properties of LOOCV have been analyzed in recent
years; see, e.g., Kale et al. (2011); Kumar et al. (2013);
Obuchi & Kabashima (2016); Rad et al. (2020). Except for
special cases, LOOCV is computationally expensive, and
consequently, various approximations and their theoretical
properties have been studied; see, e.g, Wang et al. (2018);
Rad & Maleki (2020); Rad et al. (2020); Xu et al. (2019).
Generalized cross-validation (GCV) is a sort of approxima-
tion for the “shortcut” leave-one-out formula (Hastie et al.,
2009), originally studied for the fixed-X design setting for
linear smoothers by Golub et al. (1979); Craven & Wahba
(1979). The consistency of GCV in such a setting has been
investigated in Li (1985; 1986; 1987). More recently, in the
random-X setting, GCV has received considerable attention.
In particular, consistency of GCV for ridge regression has
been established in Adlam & Pennington (2020b); Hastie
(2020); Patil et al. (2021; 2022c); Wei et al. (2022) under
various data settings. Our work contributes to this body of
work by analyzing GCV for subsampled ensemble ridge
regression.

2. Subsample and Ridge Equivalences
We consider the standard supervised regression setting. Let
Dn = {(xj , yj) : j ∈ [n]} denote a dataset containing i.i.d.
random vectors in Rp × R, X ∈ Rn×p denote the feature
matrix whose j-th row contains x⊤

j , and y ∈ Rn denote
the response vector whose j-th entry contains yj . For an
index set I ⊆ [n] of size k, let DI = {(xj , yj) : j ∈ I} be
a subsampled dataset and let LI ∈ Rn×n denote a diagonal
matrix such that its jth diagonal entry is 1 if j ∈ I and 0
otherwise. Noting that the feature matrix and response vec-
tor associated with DI are LIX and LIy, respectively, the
ridge estimator β̂λ

k (DI) fitted on DI (containing k samples)

with regularization parameter λ > 0 can be expressed as:

β̂λ
k (DI) = argmin

β∈Rp

∑
j∈I

(yj − x⊤
j β)

2/k + λ∥β∥22

= (X⊤LIX/k + λIp)
−1X⊤LIy/k. (1)

Letting λ → 0+, β̂0
k(DI) := (X⊤LIX/k)+X⊤LIy/k

becomes the so-called ridgeless estimator, where A+ de-
notes the Moore-Penrose inverse of matrix A.

Ensemble estimator. To introduce the ensemble estimator,
it helps to define the set of all k distinct elements from [n] to
be Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . < ik ≤ n}.
Note that the cardinality of Ik is

(
n
k

)
. For λ ≥ 0, the

ensemble estimator is then defined as:

β̃λ
k,M (Dn; {Iℓ}Mℓ=1) :=

1

M

∑
ℓ∈[M ]

β̂λ
k (DIℓ), (2)

where I1, . . . , IM are simple random samples from Ik. The
full-ensemble ridge estimator is the average of predictors
fitted on all possible subsampled datasets:

β̃λ
k,∞(Dn) :=

1

|Ik|
∑
I∈Ik

β̂λ
k (DI) = E[β̂λ

k (DI) | Dn], (3)

where the conditional expectation is taken with respect to
the randomness of sampling from Ik. Lemma A.1 shows
that β̃λ

k,∞(Dn) is also almost surely equivalent to letting
the ensemble size M tend to infinity in (2) conditioning on
the full dataset Dn, thus justifying the notation in (3). For
simplicity, we drop the dependency on Dn, {Iℓ}Mℓ=1 and
only write β̃λ

k,M , β̃λ
k,∞, when it is clear from the context.

Prediction risk. We assess the performance of an M -
ensemble predictor via conditional squared prediction risk:

Rλ
k,M := E(x,y)[(y − x⊤β̃λ

k,M )2 | Dn, {Iℓ}Mℓ=1], (4)

where (x, y) is an independent test point sampled from the
distribution as Dn. Note that the conditional risk Rλ

k,M is a
random variable that depends on both the dataset Dn and the
random samples Iℓ, ℓ = 1, . . . ,M . For the full ensemble
estimator β̃λ

k,∞, the conditional prediction risk is defined
analogously, except the risk now only depends on Dn:

Rλ
k,∞ := E(x,y)[(y − x⊤β̃λ

k,∞)2 | Dn]. (5)

2.1. Data Assumptions

For our theoretical results, we work under a proportional
asymptotics regime, in which the original data aspect ra-
tio (p/n) converges to ϕ ∈ (0,∞) as n, p → ∞, and the
subsample aspect ratio (p/k) converges to ϕs as k, p → ∞.
Note that because k ≤ n, ϕs always lie in [ϕ,∞]. In ad-
dition, we impose two structural assumptions on the fea-
ture matrix and response vector as summarized in Assump-
tions 2.1 to 2.2, respectively.
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Assumption 2.1 (Feature model). The feature matrix de-
composes as X = ZΣ1/2, where Z ∈ Rn×p contains i.i.d.
entries with mean 0, variance 1, bounded moments of order
4 + δ for some δ > 0, and Σ ∈ Rp×p is deterministic and
symmetric with eigenvalues uniformly bounded between
rmin > 0 and rmax < ∞. Let Σ =

∑p
j=1 rjwjw

⊤
j de-

note the eigenvalue decomposition, where (rj ,wj), j ∈ [p],
are pairs of associated eigenvalue and normalized eigen-
vector. We assume there exists a deterministic distribu-
tion H such that the empirical spectral distribution of Σ,
Hp(r) := p−1

∑p
i=1 1{ri≤r}, weakly converges to H , al-

most surely (with respect to X).

Assumption 2.2 (Response model). The response vector
decomposes as y = Xβ0 + ϵ, where β0 ∈ Rp is an un-
known signal vector with ℓ2-norm uniformly bounded and
limp→∞ ∥β0∥22 = ρ2, and ϵ is an unobserved error vector
independent of X with mean 0, variance σ2, and bounded
moment of order 4+ δ for some δ > 0. We assume there ex-
ists a deterministic distribution G such that the empirical dis-
tribution of β0’s (squared) projection onto Σ’s eigenspace,
Gp(r) := ∥β0∥−2

2

∑p
i=1(β

⊤
0 wi)

2 1{ri≤r}, weakly con-
verges to G, almost surely (with respect to X).

Assumptions 2.1 and 2.2 are standard in the study of the
ridge and ridgeless regression under proportional asymp-
totics; see, e.g., Hastie et al. (2022); Patil et al. (2022b;a).
It is possible to further relax both of these assumptions.
Specifically, one can incorporate other feature models, e.g.,
random features (Mei & Montanari, 2022), and can allow for
certain non-linearities in the regression function (Bartlett
et al., 2021) for the response model. We leave these for
future work.

2.2. Risk Equivalences

Under the above assumptions, Lemma A.2 from Patil et al.
(2022a) implies that for every M ≥ 1, the prediction risk
Rλ

k,M of the ridge and ridgeless predictors in the full en-
semble converges to some deterministic limit Rλ

M (ϕ, ϕs) as
k, n, p → ∞, p/n → ϕ and p/k → ϕs. When ϕs = ϕ (e.g.,
k = n), the asymptotic risk Rλ

M (ϕ, ϕ) is equal to Rλ
1 (ϕ, ϕ)

of the ridge predictor on the full dataset Dn for all M ≥ 1,
and we denote this risk simply by Rλ

∞(ϕ, ϕ). To facilitate
our discussion and for simplicity, Table 1 provides pointers
to definitions of all important quantities used in the paper.

From a practical point of view, it is important to understand
the least attainable risk that could be attained in the full
ensemble. For the full ridge ensembles, we found that the
explicit ridge regularization is unnecessary when consid-
ering optimal bagging and that the implicit regularization
of ridgeless and subsampling suffices. The result below
formalizes this empirical observation.

Theorem 2.3 (Optimal ridgeless ensemble vs optimal ridge).

Under Assumptions 2.1 and 2.2, for all ϕ ∈ (0,∞), we have

min
ϕs≥ϕ

R0
∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ensemble
and no ridge

(a)
= min

λ≥0
Rλ

∞(ϕ, ϕ)

︸ ︷︷ ︸
no ensemble

and opt. ridge

(b)
= min

ϕs≥ϕ,
λ≥0

Rλ
∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ensemble
and opt. ridge

.

Further, if ϕ∗
s is the optimal subsample aspect ratio for

ridgeless, and λ∗ is the optimal ridge regularization with no
subsampling, then for any θ ∈ [0, λ∗], full ridge ensemble
with penalty parameter λ = λ∗ − θ and subsample aspect
ratio of ϕs = ϕ + θ(ϕ∗

s − ϕ)/λ∗ also attains the optimal
prediction risk.

In words, Theorem 2.3 says that optimizing subsample size
(i.e. k) with the full ridgeless ensemble attains the same
prediction risk as just optimizing the explicit regularization
parameter (i.e., λ) of the ridge predictor. Further, both of
them are the same as optimizing both k and λ. If one uses a
lesser ridge penalty than needed for optimal prediction (i.e.,
uses λ < λ∗), then a full ensemble at a specific subsample
aspect ratio ϕs = ϕ+(1−λ/λ∗)(ϕ∗

s −ϕ) > ϕ can recover
the remaining ridge regularization. In this sense, the implicit
regularization provided by the ensemble amounts to adding
more explicit ridge regularization. Similarly, one can supple-
ment a sub-optimal implicit regularization of subsampling
by adding explicit ridge regularization.

A special case of equivalence of (a) in Theorem 2.3 was
previously formalized in LeJeune et al. (2020); Patil et al.
(2022a) for isotropic covariates. Working with isotropic
design helps their proof significantly, as the spectral dis-
tributions are the same for all p, n, and the closed-form
expression of the asymptotic prediction risk can be derived
analytically. However, in the general non-isotropic design,
the asymptotic risk does not admit a closed-form expression,
and one needs to account for this carefully.

General risk equivalences. Theorem 2.3 proves the risk
equivalence of the ridge and full ensemble ridgeless when
they attain minimum risk. Appendix A.3 shows a further risk
equivalence in the full range, i.e., for any ϕ̄s ∈ [ϕ,+∞],
there exists a λ̄ ≥ 0 such that R0

∞(ϕ, ϕ̄s) = Rλ̄
∞(ϕ, ϕ).

Further, Rλ
∞(ϕ, ϕs) remains constant as (λ, ϕs) varies on

the line segment (1−θ)·(λ̄, ϕ)+θ ·(0, ϕ̄s), for all θ ∈ [0, 1].

A remarkable implication of Theorem 2.3 is that for a fixed
dataset Dn, one does not need to tune both the subsample
size (i.e., k) and the ridge regularization parameter (i.e., λ),
but it suffices to fix for example λ = 0 and only tune ϕs.
Alternatively, one can also fix k = n and just tune λ ≥ 0,
which was considered in Patil et al. (2021). Performing
tuning over λ ≥ 0 requires one to discretize an infinite
interval, while tuning the subsample size for a fixed λ only
requires searching over a finite grid varying from k = 1 to
k = n. For this reason, we fix λ and focus on tuning over k
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Variable M -ensemble Full ensemble

Finite-sample Asymptotic Finite-sample Asymptotic

Prediction risk Rλ
k,M (4) Rλ

M (ϕ, ϕs) (21) Rλ
k,∞ (5) Rλ

∞(ϕ, ϕs) (21)

Test error R
λ

k,M (7) Rλ
M (ϕ, ϕs) (21)

Training error Tλ
k,M (6) T λ

M (ϕ, ϕs) (32) Tλ
k,∞ (8) T λ

∞(ϕ, ϕs) (15)
GCV denominator Dλ

k,M (12) Dλ
k,∞ (13) Dλ

∞(ϕ, ϕs) (26)
GCV estimator gcvλ

k,M (11) gcvλ
k,∞ (11) G λ

∞(ϕ, ϕs) (16)

Table 1. Summary of notations and pointers to definitions of important empirical quantities used in this paper and their asymptotic limits.

in this paper. In the next section, we investigate the problem
of tuning the subsample size in the full ensemble to achieve
the minimum oracle risk via generalized cross-validation.

3. Generalized Cross-Validation
Suppose f̂(·;Dn) : Rp → R is a predictor trained on Dn.
We call f̂(·;Dn) a linear smoother if f̂(x;Dn) = a⊤

xy
for some vector ax that only depends on the design X
(and x). Define the smoothing matrix S ∈ Rn×n with
rows a⊤

x1
, . . . ,a⊤

xn
, which in turn is only a function of X .

For any linear smoother, the generalized cross-validation
(GCV) estimator of the prediction risk is defined to be
n−1∥y − Sy∥22/(1 − n−1 tr(S))2; see, e.g., Wasserman
(2006, Section 5.3). The numerator of GCV is the train-
ing error, which typically is biased downwards, and the
denominator attempts to account for such optimism of the
predictor.

Ensemble GCV. Before we analyze GCV for the ridge
ensemble, we first introduce some notations. Let I1:M :=
∪M
ℓ=1Iℓ and Ic1:M := [n] \ I1:M . We define the in-sample

training error and the out-of-sample test error of β̃λ
k,M as:

Tλ
k,M :=

1

|I1:M |
∑

i∈I1:M

(yi − x⊤
i β̃

λ
k,M )2, (6)

R
λ

k,M :=
1

|Ic1:M |
∑

i∈Ic
1:M

(yi − x⊤
i β̃

λ
k,M )2. (7)

Since the full ensemble estimator β̃λ
k,∞ uses all the data Dn,

its training error, denoted by Tλ
k,∞, is simply:

Tλ
k,∞ :=

1

n

∑
i∈[n]

(yi − x⊤
i β̃

λ
k,∞)2. (8)

Since I1:M
a.s.−−→ [n] for any n ∈ N as M → ∞, the

notation Tλ
k,∞ in (8) is justified as a limiting case of (6)

(see Appendix A.1 for more details). Now, observe that a
ridge ensemble is a linear smoother because XI1:M β̃λ

k,M =

Sλ
k,MyI1:M , where the smoothing matrix Sλ

k,M is given by:

Sλ
k,M =

1

M

M∑
ℓ=1

XIℓ(X
⊤
IℓXIℓ/k + λIp)

+X⊤
Iℓ/k. (9)

Analogously, the smoothing matrix for β̃λ
k,∞ is given by:

Sλ
k,∞ =

1

|Ik|
∑
I∈Ik

X(X⊤LIX/k + λIp)
+X⊤LI/k. (10)

Thus, the GCV estimates for ridge predictors in the finite
and full ensemble case are respectively given by:

gcvλ
k,M =

Tλ
k,M

Dλ
k,M

, gcvλ
k,∞ =

Tλ
k,∞

Dλ
k,∞

, (11)

where the denominators Dλ
k,M and Dλ

k,∞ are as follows:

Dλ
k,M := (1− |I1:M |−1 tr(Sλ

k,M ))2, (12)

Dλ
k,∞ := (1− n−1 tr(Sλ

k,∞))2. (13)

3.1. Full-Ensemble Uniform Consistency

Let Kn ⊂ {0, 1, . . . , n} be a grid of subsample sizes that
covers the full range of [0, n] asymptotically in the sense that
{k/n : k ∈ Kn} “converges” to the set [0, 1] as n → ∞.
One simple choice is to set

Kn = {0, k0, 2k0, . . . .⌊n/k0⌋k0},

where the increment is k0 = ⌊nν⌋ for some ν ∈ (0, 1).
Here, we adopt the convention that when k = 0, the pre-
dictor reduces to a null predictor that always returns zero.
Based on the definition above, we now present the uniform
consistency results of the GCV estimator (11) for full en-
sembles when the ridge regularization parameter λ is fixed.

Theorem 3.1 (Uniform consistency of GCV). Suppose As-
sumptions 2.1 and 2.2 hold. Then, for all λ ≥ 0, we have

max
k∈Kn

|gcvλ
k,∞ −Rλ

k,∞| a.s.−−→ 0,

as n, p → ∞ such that p/n → ϕ ∈ (0,∞).
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Figure 2. Asymptotic risk and GCV curves for full ridge ensembles, under model (M-AR1) when ρAR1 = 0.5 and σ2 = 1 with varying
regularization parameters λ ∈ {0, 0.1, 1} and subsample sizes k = ⌊p/ϕs⌋. The points denote finite-sample risks averaged over 50
dataset repetitions with an ensemble size of M = 500, with n = ⌊p/ϕ⌋ and p = 500. The left and the right panels illustrate the
underparameterized and overparameterized cases with the limiting data aspect ratio ϕ = 0.1 and ϕ = 1.1, respectively.
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Figure 3. Asymptotic prediction risk curves with optimal tuned
parameters λ∗ and ϕ∗

s , under model (M-AR1) when ρAR1 = 0.5,
σ2 = 1, for varying data aspect ratio ϕ. The curves represent
the theoretical asymptotic GCV estimate in the full ensemble and
the asymptotic risk of the optimal ridge predictors. The points
represent the finite-sample risks of the best 500-ensemble ridgeless
and the best ridge predictor averaged over 50 dataset repetitions,
with n = ⌊p/ϕ⌋ and p = 500.

Theorem 3.1 shows the uniform consistency of GCV in the
full ensemble for fixed subsample size k and ridge regu-
larization parameter λ. The almost sure qualification in
Theorem 3.1 is with respect the entire training data (X,y).
An implication of Theorem 3.1 is that one can select the
optimal subsample size in a data-dependent manner, i.e.,
selecting k̂λ ∈ argmink∈Kn

gcvλ
k,∞ guarantees to track the

minimum prediction risk mink∈[n] R
λ
k,∞ asymptotically.

We first provide numerical illustrations for Theorem 3.1
under the non-isotropic AR(1) data model, which is the
same as the one used for Figure 1; see Appendix I for model
details. Figure 2 shows both the GCV estimate and the
asymptotic risk for the full ridge ensemble. We observe a
close match of the theoretical curves and the GCV estimates.

Combining Theorem 2.3 and Theorem 3.1, we can obtain
the following corollary regarding GCV subsample tuning.

Corollary 3.2 (Ridge tuning by GCV subsample tuning).
Suppose Assumptions 2.1 and 2.2 hold. Then, we have

gcv0
k̂0,∞

a.s.−−→ min
ϕs≥ϕ,λ≥0

Rλ
∞(ϕ, ϕs),

as k, n, p → ∞ such that p/n → ϕ ∈ (0,∞).

Corollary 3.2 certifies the validity of GCV tuning for achiev-
ing the optimal risk over all possible regularization parame-
ters and subsample sizes. In practice, tuning for the ridge
parameter λ requires one to determine a grid of λ’s for
cross-validation. However, the maximum value for the grid
is generally chosen by some ad hoc criteria. For exam-
ple, there is no default maximum value for ridge tuning in
the widely-used package glmnet (Friedman et al., 2010).
From Theorem 2.3, when the signal-noise ratio ρ2/σ2 is
small, the subsample size should be small enough (so that
ϕs is large), and the range of λ’s grid should be large enough
to cover its optimal value. On the contrary, the GCV-based
method does not need such an upper bound for the grid
Kn of subsample sizes because the sample size provides a
natural grid in finite samples, informed by the dataset.

In Corollary 3.2, we fix the ridge regularization parameter
λ to be zero. But, one can also use other value of λ < λ∗

and the similar statement still holds with gcv0
k̂0,∞

replaced

by gcvλ
k̂λ,∞

based on Theorem 2.3. Furthermore, one can

construct the estimator of λ∗ as λ̂ = λ(n−k̂0)/(k̂λ−k̂0) by
extrapolating the line segment between (0, k̂0) and (λ, k̂λ).

In Figure 3, we numerically compare the optimal subsam-
pled ridgeless ensemble with the optimal ridge predictor to
verify Corollary 3.2. As we can see, their theoretical curves
exactly match, and the empirical estimates in finite samples
are also close to their asymptotic limits.
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Figure 4. Asymptotic prediction risk curves of ridgeless ensembles,
under model (M-AR1) when ρAR1 = 0.5, σ2 = 1, and ϕ = 0.1.
The points denote the finite-sample GCV estimates of ridgeless
ensembles for varying ensemble sizes M ∈ {1, 10, 20} averaged
over 50 dataset repetitions, with n = ⌊p/ϕ⌋ and p = 500.

3.2. A Finite-Ensemble Inconsistency Result

While deriving GCV asymptotics in the proof of Theo-
rem 3.1 for the full ensemble, we also obtain as a byproduct
the asymptotic limit of the GCV estimate for finite ensem-
bles. From related work (Patil et al., 2021) and Theorem 3.1,
we already know that gcvλ

k,1 and gcvλ
k,∞ are consistent es-

timators of the non-ensemble risk (Rλ
k,1) and the full en-

semble risk (Rλ
k,∞), respectively. However, gcvλ

k,M for
1 < M < ∞ may not be consistent, which is somewhat
surprising. As an example, GCV for M = 2 is not a consis-
tent estimator for the prediction risk Rλ

k,2, as shown in the
following proposition.

Proposition 3.3 (GCV inconsistency for ridgeless, M = 2).
Suppose Assumptions 2.1 and 2.2 hold with ρ2, σ2 ∈ (0,∞).
Then, for any ϕ ∈ (0,∞), we have

|gcv0
k,2 −R0

k,2| ̸
p−→ 0,

as k, n, p → ∞, p/n → ϕ, p/k → ϕs ∈ (1,∞) ∩ (ϕ,∞).

Intuitively, the inconsistency for a finite in large part hap-
pens because, for a finite M , the residuals computed using
the bagged predictor contain non-negligible fractions of out-
of-sample and in-sample, and all of them are treated equally.
As a result, the GCV estimate for finite ensembles indi-
rectly relates to the original data through the aspect ratios
(ϕ, ϕs), even though the GCV estimate is computed only
using the training observations. See Section 5 about possi-
ble approaches for the corrected GCV estimate for arbitrary
ensemble sizes. Though in practice, the correction may not
be crucial for a moderate M , because the GCV estimate is
close to the underlying target as shown in Figure 4.

3.3. Proof Outline of Theorem 3.1

There are three key steps are involved to prove Theorem 3.1.
(1) Deriving the asymptotic limit of the prediction risk Rλ

k,M .
(2) Deriving the asymptotic limit of GCV estimate gcvλ

k,∞.
(3) Showing pointwise consistency in k by matching the
two limits and then lifting to uniform convergence in k. We
briefly explain key ideas for showing the three steps below.

(1) Asymptotic limit of risk. We build upon prior results on
the risk analysis of ridge ensembles. Under Assumptions 2.1
and 2.2, Lemma A.2 adapted from Patil et al. (2022a) im-
plies that the conditional prediction risks under proportional
asymptotics converge to certain deterministic limits:

Rλ
k,M

a.s.−−→ Rλ
M (ϕ, ϕs), Rλ

k,∞
a.s.−−→ Rλ

∞(ϕ, ϕs), (14)

where Rλ
M (ϕ, ϕs), Rλ

∞(ϕ, ϕs) are as defined in (21).

(2) Asymptotic limit of GCV. To analyze the asymptotic
behavior of the GCV estimates, we obtain the asymptotics
of the denominator and the numerator of GCV separately.
We first show the regular cases when ϕs < ∞ and λ > 0,
and then incorporate boundary cases of ϕs = ∞ and λ = 0.
Our analysis begins with the following lemma that provides
asymptotics for the denominator Dλ

k,∞ (as in (13)) of GCV:

Lemma 3.4 (Asymptotics of the GCV denominator). Sup-
pose Assumption 2.1 holds. Then, for all λ > 0,

Dλ
k,∞

a.s.−−→ Dλ
∞(ϕ, ϕs),

as k, n, p → ∞, p/n → ϕ ∈ (0,∞), p/k → ϕs ∈ [ϕ,∞).

It is worth noting that Lemma 3.4 does not require Assump-
tion 2.2 because the smoothing matrix only concerns the
design matrix X and does not depend on the response y.

Towards obtaining asymptotics for the numerator Tλ
k,∞ (as

in (8)) of GCV, we first decompose Tλ
k,∞ into simpler com-

ponents via Lemma D.1. Specifically, the full mean squared
training error admits the following decomposition:

Tλ
k,∞ −

2∑
m=1

(cmTλ
k,m + (1− cm)R

λ

k,m)
a.s.−−→ 0,

where c1 = ϕ/ϕs and c2 = 2ϕ(2ϕs − ϕ)/ϕ2
s. Here, Tλ

k,m

and R
λ

k,m are the in-sample training and out-of-sample test
errors of the m-ensemble for m = 1 and 2, as defined in
(6) and (7). This decomposition implies that the full train-
ing error is asymptotically simply a linear combination of
training and test errors. Therefore, it suffices to obtain the
asymptotics of each of these components. As analyzed in
Lemma D.2, it is easy to show that the test errors converge
to Rλ

m for m = 1, 2. On the other hand, it is more challeng-
ing to derive the asymptotic limits for the training errors
Tλ
k,m. We first split the Tλ

k,m into finer components via a
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bias-variance decomposition of Tλ
k,m. By developing novel

deterministic equivalents of resolvents arising from the de-
composition of in-sample errors in Lemma F.8, we are able
to show the convergence of the bias and variance compo-
nents (see Lemma D.3). Combining Lemmas D.1 to D.3
yields the convergence of Tλ

k,m to a deterministic limit T λ
m

as summarized in the following lemma:

Lemma 3.5 (Asymptotics of the GCV numerator). Suppose
Assumptions 2.1 and 2.2 hold. Then, for all λ > 0,

Tλ
k,∞

a.s.−−→ T λ
∞ =

2∑
m=1

(cmT λ
m + (1− cm)Rλ

m), (15)

as k, n, p → ∞, p/n → ϕ ∈ (0,∞), p/k → ϕs ∈ [ϕ,∞),
where c1 = ϕ/ϕs and c2 = 2ϕ(2ϕs − ϕ)/ϕ2

s.

Finally, the boundary cases when ϕs = +∞ and λ = 0 are
taken care of in succession by Proposition E.1 and Proposi-
tion E.2, respectively. Combining the above results provides
the asymptotics for the GCV estimate in the full ensemble:

Proposition 3.6 (Asymptotics of GCV for full ensemble).
Suppose Assumptions 2.1 and 2.2 hold. Then, for all λ ≥ 0,

gcvλ
k,∞

a.s.−−→ G λ
∞(ϕ, ϕs) :=

T λ
∞(ϕ, ϕs)

Dλ
∞(ϕ, ϕs)

, (16)

as k, n, p → ∞, p/n → ϕ ∈ (0,∞), p/k → ϕs ∈ [ϕ,∞].

(3) Asymptotics matching and uniform convergence. The
asymptotic limits obtained in the first steps can be shown
to match with each other by algebraic manipulations. This
shows the pointwise consistency in Theorem 3.1. The uni-
form convergence then follows by applying a certain Ces̀aro-
type mean convergence lemma (see Lemma G.5).

4. Real Data Example: Single-Cell Multiomics
We compare tuning subsample size in the full ridgeless
ensemble with tuning the ridge parameter on the full data
in a real-world data example from multiomics. This single-
cell CITE-seq dataset from Hao et al. (2021) consists of
50,781 human peripheral blood mononuclear cells (PBMCs)
originating from eight volunteers post-vaccination (day 3)
of an HIV vaccine, which simultaneously measures 20,729
genes and 228 proteins in individual cells.

We follow the standard preprocessing procedure in single-
cell data analysis (Hao et al., 2021; Du et al., 2022) to
select the top 5,000 highly variable genes and the top 50
highly abundant surface proteins, which exhibit high cell-
to-cell variations in the dataset. The gene expression and
protein abundance counts for each cell are then divided by
the total counts for that cell and multiplied by 104 and log-
normalized. We randomly hold out half of the cells in each
cell type as a test set. The top 500 principal components
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Figure 5. Violin plots of mean squared errors on the randomly
held out test sets of different tuning methods for predicting the
abundances of 50 proteins in the single-cell CITE-seq dataset. The
sizes of the test sets are the same as the sizes of the training sets.

of the standardized gene expressions are used as features to
predict protein abundances. The results of using ensembles
with subsample size (k) tuning and ridge tuning (λ) without
subsampling based on the GCV estimates are compared in
Figure 5. For the former, we search over the grid of 25 k’s
from nν to n spaced evenly on the log scale, with ν = 0.5
and sample size n ranges from 516 to 7864 for different cell
types. For the latter, we search over the grid of 100 λ’s from
10−2 to 102 spaced evenly on log scale. Since different cell
types have different sample sizes, this results in different
data aspect ratios, presented in increasing order in Figure 5.

From Figure 5, we see that using a moderate ensemble size
(M = 5 or 10) and tuning the subsample size have a very
similar performance to only tuning the ridge regularization
parameter in the full dataset. This suggests that the results
of Corollary 3.2 also hold even on real data for different data
aspect ratios. As discussed after Corollary 3.2, subsample
tuning is easier to implement because the dataset provides a
natural lower and upper bound of the subsample size. On
the other hand, ridge tuning requires one to heuristically
pick the upper regularization threshold for the search grid.

5. Discussion and Future Directions
In this work, we provide the risk characterization for the full
ridge ensemble and establish the oracle risk equivalences
between the full ridgeless ensemble and ridge regression. At
a high level, these equivalences show that implicit regular-
ization induced by subsampling matches explicit ridge reg-
ularization, i.e., a subsampled ridge predictor with penalty
λ1 has the same risk as another ridge predictor with penalty
λ2 ≥ λ1. Additionally, we prove the uniform consistency of
generalized cross-validation for full ridge ensembles, which
implies the validity of GCV tuning (that does not require
sample splitting) for optimal predictive performance. We
describe next some avenues for future work moving forward.
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Bias correction for finite ensembles. In Proposition 3.3,
we show that the GCV estimate can be inconsistent in the
finite ridge and ridgeless ensembles. The inconsistency for
M = 2 occurs because sampling from the whole dataset
induces extra randomness beyond those of the training ob-
servations used to compute the GCV estimates. Our analysis
of GCV for the full ensemble suggests a way to correct the
bias of the GCV estimate. In Appendix H, we outline a
possible correction strategy for finite ensembles based on
out-of-bag estimates. An intriguing next research direction
is to investigate the implementation and uniform consistency
of the corrected GCV for finite ensembles in detail.

Extensions to other error metrics. In this paper, we focus
on the in-distribution squared prediction risk. It is of interest
to extend the equivalences for other error metrics, such as
squared estimation risk, general prediction risks, and other
functionals of the out-of-sample error distribution, like the
quantiles of the error distribution. Additionally, for the pur-
poses of tuning, it is also of interest to extend the GCV
analysis to estimate such functionals of the out-of-sample
error distribution. Such functional estimation could be valu-
able in constructing prediction intervals for the unknown re-
sponse. The technical tools introduced in Patil et al. (2022c)
involving leave-one-out perturbation techniques could prove
useful for such an extension. Furthermore, this extension
would also allow for extending the results presented in this
paper to hold under a general non-linear response model.

Extensions to other base predictors. Finally, the focus of
this paper is the base ridge predictor. A natural extension
of the current work is to consider kernel ridge regression.
Going further, it is of much interest to consider other regular-
ized predictors, such as lasso. Whether optimal subsampled
lassoless regression still matches with the optimal lasso is
an interesting question. There is already empirical evidence
along the lines of Figure 1 for such a connection. The results
proved in the current paper make us believe that there is a
general story quantifying the effect of implicit regularization
by subsampling and that provided by explicit regularization.
Whether the general story unfolds as neatly as presented
here for ridge regression remains an exciting next question!
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Appendix

This serves as an appendix to the paper “Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation.”
Below we provide an outline for the appendix along with a summary of the notation used in the main paper and the appendix.

Organization
The content of the appendix is organized as follows.

• Appendix A presents proofs of results in Section 2.

– Appendix A.1 relates the ridge estimator in the full ensemble to the M -ensemble ridge estimator as the ensemble
size M tends to infinity. Specifically, we provide proof of the fact [mentioned in Section 2] that the estimator
β̃λ
k,∞ as defined in (3) is almost surely equivalent to letting the ensemble size M → ∞ for the estimator β̃λ

k,M as
defined in (2). The main ingredients are results in Appendix G.

– Appendix A.2 gathers known results from Patil et al. (2022a) in the form of Lemma A.2 that characterize the
asymptotic prediction risks of ridge ensembles used in the remaining sections.

– Appendix A.3 proves Theorem 2.3. The main ingredients are Lemma A.2 and results in Appendix F. See Figure 6.

Lemma A.2 Appendix F

Theorem 2.3

Figure 6. Schematic for the proof of Theorem 2.3.

• Appendix B presents proofs of results in Section 3.

– Appendix B.1 proves Theorem 3.1. The main ingredients are Lemma B.1 (proved in Appendix B) and results
in Appendix G. The main ingredients that prove Lemma B.1 are Proposition 3.6 (proved in Appendix E) and
Lemma A.2. See Figure 7.

Theorem 3.1

Lemma B.1 Appendix G

Proposition 3.6 Lemma A.2

Figure 7. Schematic for the proof of Theorem 3.1.
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– Appendix B.2 proves Corollary 3.2. The main ingredient in Theorem 3.1.
– Appendix B.3 proves Proposition 3.3. The main ingredients are Lemma 3.4 and results in Appendix G. See

Figure 8.

Proposition 3.3

Lemma 3.4 Appendix G

Figure 8. Schematic for the proof of Proposition 3.3.

• Appendix C proves Lemma 3.4. The main ingredient is Lemma C.1 (proved in Appendix C). See Figure 9.

Lemma 3.4

Lemma C.1

Figure 9. Schematic for the proof of Lemma 3.4.

• Appendix D proves Lemma 3.5. The main ingredients are a series of lemmas, Lemmas D.1 to D.3 (proved in
Appendices D.1 to D.3). These lemmas provide structural decompositions for the ensemble train error and obtain the
limiting behaviors of the terms in the decompositions. See Figure 10.

– Appendix D.1 proves Lemma D.1 that shows a certain decomposition of the ensemble train error into in-sample
train and out-of-sample test error components.

– Appendix D.2 proves Lemma D.2 on the convergence of out-of-sample test error components. The main ingredient
is Lemma A.2.

– Appendix D.3 proves Lemma D.3 on the convergence of in-sample train error components. The main ingredients
are Lemmas D.4 and D.5 (proved in Appendix D.4) and Lemmas D.6 and D.7 (proved in Appendix D.5).

– Appendix D.4 proves Lemmas D.4 and D.5 on component concentrations of certain cross and variance terms
arising in the aforementioned decompositions. The main ingredients are results in Appendix G.

– Appendix D.5 proves Lemmas D.6 and D.7 on component deterministic approximations for the concentrated bias
and variance functionals in the steps above. The main ingredients are results in Appendix F.

• Appendix E proves Proposition 3.6. The main ingredients are components proved in Lemma 3.4 and Lemma 3.5,
Propositions E.1 and E.2 that handle certain boundary cases not covered by Lemma 3.4 and Lemma 3.5 (proved in
Appendices E.1 and E.2), and results in Appendix G. See Figure 11.

– Appendix E.1 proves Proposition E.1 that considers the boundary case as the subsampling ratio ϕs → ∞ for ridge
regression (λ > 0).

– Proposition E.2 proves Proposition E.2 that handles the limiting case of ridgeless regression (λ = 0), by justifying
and taking a suitable limit as λ → 0+ of the corresponding results for ridge regression.

• Appendix F summarizes auxiliary asymptotic equivalency results used in the proofs throughout.
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Lemma 3.5

Lemma D.1 Lemma D.2 Lemma D.3

Lemma A.2 Lemmas D.4 and D.5 Lemmas D.6 and D.7

Appendix G Appendix F

Figure 10. Schematic for the proof of Lemma 3.5.

Proposition 3.6

Lemma 3.4 Lemma 3.5 Propositions E.1 and E.2 Appendix G

Figure 11. Schematic for the proof of Proposition 3.6.

– Appendix F.1 provides background on the notion of asymptotic matrix equivalents and various calculus rules that
such notion of equivalency obeys.

– Appendix F.2 gathers some known asymptotic matrix equivalents and derives some novel asymptotic matrix
equivalents that arise in our analysis.

– Appendix F.3 gathers various known analytic properties of certain fixed-point equations and proves some additional
properties that arise in our analysis.

• Appendix G collects several helper concentration results used in the proofs throughout.

– Appendix G.1 provides lemmas deriving the asymptotic proportion of shared observations when subsampling.

– Appendix G.2 provides lemmas establishing concentrations for linear and quadratic forms of random vectors.

– Appendix G.3 provides lemmas for lifting original convergences to converges of Ces̀aro-type mean and max for
triangular arrays.

• Appendix H discusses the bias correction of GCV for finite ensembles [mentioned in Section 5].

• Appendix I describes additional numerical details for experiments [mentioned in Section 3].
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Notation
An overview of some general notation used in the main paper and the appendix is as follows.

1. General notation: We denote scalars in non-bold lower or upper case (e.g., n, λ, C), vectors in bold lower case (e.g., x,
β), and matrices in bold upper case (e.g., X). For a real number x, (x)+ denotes its positive part, ⌊x⌋ its floor, and ⌈x⌉
its ceiling. For a vector β, ∥β∥2 denotes its ℓ2 norm. For a pair of vectors v and w, ⟨v,w⟩ denotes their inner product.
For an event A, 1A denotes the associated indicator random variable. We denote convergence in probability by “

p−→”,
almost sure convergence by “ a.s.−−→”, and convergence in distribution by “ d−→”.

2. Set notation: We denote sets using calligraphic letters (e.g., D), and use blackboard letters to denote some special sets:
N denotes the set of positive integers, R denotes the set of real numbers, R≥0 denotes the set of non-negative real
numbers, R>0 denotes the set of positive real numbers, C denotes the set of complex numbers, C+ denotes the set of
complex numbers with positive imaginary part, and C− denotes the set of complex numbers with negative imaginary
part. For a natural number n, we use [n] to denote the set {1, . . . , n}.

3. Matrix notation: For a matrix X ∈ Rn×p, X⊤ ∈ Rp×n denotes its transpose, and X+ ∈ Rp×n denote its Moore-
Penrose inverse. For a square matrix A ∈ Rp×p, tr[A] denotes its trace, and A−1 ∈ Rp×p denotes its inverse, provided
it is invertible. For a positive semidefinite matrix Σ, Σ1/2 denotes its principal square root. A p× p identity matrix is
denoted Ip, or simply by I , when it is clear from the context.

For a real matrix X , its operator norm (or spectral norm) with respect to ℓ2 vector norm is denoted by ∥X∥op, and its
trace norm (or nuclear norm) is denoted by ∥X∥tr (recall that ∥X∥tr = tr[(X⊤X)1/2]). For a positive semidefinite
matrix A ∈ Rp×p with eigenvalue decomposition A = V RV −1 for an orthonormal matrix V ∈ Rp×p and a diagonal
matrix R ∈ Rp×p with non-negative entries, and a function f : R≥0 → R≥0, we denote by f(A) the p× p positive
semidefinite matrix V f(R)V −1. Here, f(R) is a p× p diagonal matrix obtained by applying the function f to each
diagonal entry of R.

For symmetric matrices A and B, A ⪯ B denotes the Loewner ordering. For sequences of matrices An and Bn,
An ≃ Bn denotes a certain notion of asymptotic equivalence (see Appendix F).

Finally, in what follows, we will prove the results for n, k, p being a sequence of integers {nm}∞m=1, {km}∞m=1, {pm}∞m=1.
One can also view k and p as sequences kn and pn that are indexed by n. For simplicity, we drop the subscript when it is
clear from the context.

A. Proofs of results in Section 2
A.1. Full-ensemble versus limiting M -ensemble

Lemma A.1 (Almost sure equivalence of full-ensemble and limiting M -ensemble). For k, n fixed, for the ensemble
estimator defined in (2), it holds that

β̃λ
k,M (Dn; {Iℓ}Mℓ=1)

a.s.−−→ E[β̂λ
k (DI) | Dn] =

1

|Ik|
∑
I∈Ik

β̂λ
k (DI),

as M → ∞.

Proof of Lemma A.1. Note that for k, n fixed, the cardinality of Ik is
(
n
k

)
. Thus, we have

β̃λ
k,M (Dn; {Iℓ}Mℓ=1) =

∑
I∈Ik

nM,I

M
β̂λ
k (DI)

for random variables nM,i’s. Since when sampling with replacement nM,I ∼ Binomial(M, 1/
(
n
k

)
) with mean M/

(
n
k

)
, from

the strong law of large numbers, we have that as M → ∞,

nM,I

M

a.s.−−→ 1(
n
k

) , ∀ I ∈ Ik. (17)
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For sampling without replacement, nM,I ∼ Hypergeometric(M, 1,
(
n
k

)
) for M ≤

(
n
k

)
(see Definition G.1) with mean

M/
(
n
k

)
. When M =

(
n
k

)
, nM,I/M = 1/

(
n
k

)
. In both cases, we have

β̃λ
k,M (Dn; {Iℓ}∞ℓ=1) := lim

M→∞
β̃λ
k,M (Dn; {Iℓ}Mℓ=1)

a.s.
=

1(
n
k

) ∑
I∈Ik

β̂λ
k (DI),

which concludes the proof.

A.2. Risk characterization of ridge ensembles

In the study of ridge ensembles under proportional asymptotics, a key quantity that appears is the solution of a fixed-point
equation. For any λ > 0 and θ > 0, define v(−λ; θ) as the unique nonnegative solution to the fixed-point equation

v(−λ; θ)−1 = λ+ θ

∫
r(1 + v(−λ; θ)r)−1 dH(r). (18)

For λ = 0, define v(0; θ) := limλ→0+ v(−λ; θ) for θ > 1 and +∞ otherwise. Such a fixed-point equation has appeared
in the literature before. See, e.g., Dobriban & Wager (2018); Hastie et al. (2022); Mei & Montanari (2022) in the context
of ridge regression; and more generally, for other M -estimators, see, e.g., El Karoui (2013; 2018); Thrampoulidis et al.
(2015; 2018); Sur et al. (2019); Miolane & Montanari (2021), among others. The fact that the fixed-point equation (18) has
a unique nonnegative solution follows from Patil et al. (2022b, Lemma S.6.14).

We then define the nonnegative constants ṽ(−λ;ϑ, θ), and c̃(−λ; θ) via the following equations:

ṽ(−λ;ϑ, θ) =
ϑ

∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ; θ)−2 − ϑ

∫
r2(1 + v(−λ; θ)r)−2 dH(r)

, c̃(−λ; θ) =

∫
r(1 + v(−λ; θ))r)−2 dG(r). (19)

Lemma A.2 (Risk characterization of ridge ensembles, adapted from Patil et al. (2022a)). Suppose Assumptions 2.1-2.2
hold for the dataset Dn. Then, as k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,∞] (and ϕs ̸= 1 if
λ = 0), there exist deterministic functions Rλ

M (ϕ, ϕs) for M ∈ N, such that for I1, . . . , IM
SRS∼ Ik,

sup
M∈N

|R(f̃M,Ik
;Dn, {Iℓ}Mℓ=1)− Rλ

M (ϕ, ϕs)|
p−→ 0. (20)

Furthermore, the function Rλ
M (ϕ, ϕs) decomposes as

Rλ
M (ϕ, ϕs) = σ2 + Bλ

M (ϕ, ϕs) + V λ
M (ϕ, ϕs), (21)

where the bias and variance terms are given by

Bλ
M (ϕ, ϕs) = M−1Bλ(ϕs, ϕs) + (1−M−1)Bλ(ϕ, ϕs), (22)

V λ
M (ϕ, ϕs) = M−1Vλ(ϕs, ϕs) + (1−M−1)Vλ(ϕ, ϕs), (23)

and the functions Bλ(·, ·) and Vλ(·, ·) are defined as

Bλ(ϑ, θ) = ρ2(1 + ṽ(−λ;ϑ, θ))c̃(−λ; θ), Vλ(ϑ, θ) = σ2ṽ(−λ;ϑ, θ), θ ∈ (0,∞], ϑ ≤ θ. (24)

A.3. Proof of Theorem 2.3

Proof of Theorem 2.3. Define ϕ∗
s(ϕ) := argminϕs≥ϕ Rλ,∞(ϕ, ϕs) and λ∗(ϕ) := argminλ≥0 Rλ

1 (ϕ, ϕ). We will write ϕ∗
s

and λ∗ for simplicity and split the proof into different cases.

Part (1) Case of SNR > 0 (ρ2 > 0, σ2 > 0):

From Patil et al. (2022a, Proposition 5.7) we have that ϕ∗
s ∈ (ϕ ∨ 1,∞). From Lemma F.11 (1), the function ϕs 7→ v(0;ϕs)

is strictly decreasing over ϕs ∈ [1,∞] with range

v(0;ϕs ∨ 1) =

{
v(0;ϕs), ϕ ∈ (1,∞)

limϕs→1+ v(0;ϕs) = +∞, ϕ ∈ (0, 1]
, v(0;+∞) := lim

ϕs→+∞
v(0;ϕs) = 0.
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From Lemma F.12 (1), the function λ 7→ v(−λ;ϕ) is strictly decreasing over λ ∈ [0,∞] with range

v(0;ϕ ∨ 1) =

{
v(0;ϕ), ϕ ∈ (1,∞)

limλ→0+ v(−λ;ϕ) = +∞, ϕ ∈ (0, 1]
, v(−∞;ϕ) := lim

λ→+∞
v(−λ;ϕ) = 0.

By the intermediate value theorem, there exists unique λ0 ∈ (0,∞) such that v(−λ0;ϕ) = v(0;ϕ∗
s). Then we also have

c̃(−λ0;ϕ) = c̃(0;ϕ∗
s) and ṽ(−λ0;ϕ, ϕ) = ṽ(0;ϕ∗

s). Substituting this into the optimal ensemble risk, we have

min
ϕs≥ϕ

R0
∞(ϕ, ϕs) = R0

∞(ϕ, ϕ∗
s)

= (σ2 + ρ2c̃(0;ϕ∗
s))(1 + ṽ(0;ϕ, ϕ∗

s))

= (σ2 + ρ2c̃(−λ0;ϕ))(1 + ṽ(−λ0;ϕ, ϕ))

= Rλ0
1 (ϕ, ϕ)

≤ min
λ≥0

Rλ
1 (ϕ, ϕ).

On the other hand, there exists unique ϕ0 ∈ [1,∞) such that v(−λ∗;ϕ) = v(0;ϕ0), and thus, we have

min
λ≥0

Rλ
1 (ϕ, ϕ) = Rλ∗

1 (ϕ, ϕ)

= (σ2 + ρ2c̃(−λ∗;ϕ))(1 + ṽ(−λ∗;ϕ, ϕ))

= (σ2 + ρ2c̃(0;ϕ0))(1 + ṽ(0;ϕ, ϕ0))

= R0
∞(ϕ, ϕ0)

≤ min
ϕs≥ϕ

R0
∞(ϕ, ϕs).

Combining the above two inequalities, we have that minϕs≥ϕ R0
∞(ϕ, ϕs) = minλ≥0 Rλ

1 (ϕ, ϕ).

Part (2) Case of SNR = 0 (ρ2 = 0, σ2 > 0):

From Patil et al. (2022a, Proposition 5.7) we have that ϕ∗
s = +∞, which implies that v(0;ϕ∗

s) = 0. Then, from
Lemma F.11 (1) we have v(0;+∞) := limϕs→+∞ v(0;ϕs) = 0,

lim
ϕs→+∞

ṽ(0;ϕ,+∞) = lim
ϕs→+∞

ϕ

∫
r2(1 + v(0;ϕs)r)

−2 dH(r)

v(0;ϕs)
−2 − ϕ

∫
r2(1 + v(0;ϕs)r)

−2 dH(r)

= lim
ϕs→+∞

ϕ

∫
(v(0;ϕs)r)

2(1 + v(0;ϕs)r)
−2 dH(r)

1− ϕ

∫
(v(0;ϕs)r)

2(1 + v(0;ϕs)r)
−2 dH(r)

=
ϕ

∫
(v(0;+∞)r)2(1 + v(0;+∞)r)−2 dH(r)

1− ϕ

∫
(v(0;+∞)r)2(1 + v(0;+∞)r)−2 dH(r)

= 0,

and thus,

min
ϕs≥ϕ

R0
∞(ϕ, ϕs) = R0

∞(ϕ,∞) = σ2(1 + ṽ(0;ϕ,+∞)) = σ2.

On the other hand,

min
λ≥0

Rλ
1 (ϕ, ϕ) = Rλ∗

1 (ϕ, ϕ) = σ2ṽ(−λ∗;ϕ, ϕ) ≥ σ2

where the equality holds when λ∗ = +∞ because ṽ(−λ∗;ϕ, ϕ) ≥ 0 from Lemma F.10 (4). Thus, the optimal parameters to
the two optimization problems are given by ϕ∗

s = λ∗ = +∞, with v(0;ϕ∗
s) = v(−λ∗;ϕ) = 0.
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Part (3) Case of SNR = ∞ (ρ2 > 0, σ2 = 0):

When ϕ ≤ 1, from Patil et al. (2022a, Proposition 5.7) we have that any ϕ∗
s ∈ [ϕ, 1] minimizes minϕs≥ϕ R0

∞(ϕ, ϕs) and the
minimum is 0, which is also the smallest possible prediction risk. As Rλ

1 (ϕ, ϕ) = 0 for λ = 0, the conclusion still holds.

When ϕ ∈ (1,∞), we know that ϕ∗
s ∈ (1,∞) from Patil et al. (2022a, Proposition 5.7). Analogous to Part (1), we have that

minϕs≥ϕ R0
∞(ϕ, ϕs) = minλ≥0 Rλ

1 (ϕ, ϕ).

Part (4) Relationship between ϕ∗ and λ∗:

Each pair of the optimal solution (ϕ∗, λ∗) satisfies that v(0;ϕ∗
s) = v(−λ∗;ϕ) =: v∗, where v(0;ϕ∗

s) and v(−λ∗;ϕ) are
non-negative solutions to the following fixed-point equations:

1

v(0;ϕ∗
s)

= ϕ∗
s

∫
r

1 + v(0;ϕ∗
s)r

dH(r),
1

v(−λ∗;ϕ)
= λ∗ + ϕ

∫
r

1 + v(−λ∗;ϕ)r
dH(r)

From the previous parts, if SNR = 0, then λ∗ = ϕ∗
s = +∞ and v∗ = 0. Otherwise, we have

1

v∗
= ϕ∗

s

∫
r

1 + v∗r
dH(r) = λ∗ + ϕ

∫
r

1 + v∗r
dH(r),

which yields that

λ∗ = (ϕ∗
s − ϕ)

∫
r

1 + v∗r
dH(r).

Part (5) Individual and joint optimization:

Note that from Lemma F.10 (2) and Lemma F.11 (1), the function ϕs 7→ v(−λ;ϕs) is decreasing with the range [0, λ−1] for
λ ∈ [0,∞]. Then the function (λ, ϕs) 7→ v(−λ;ϕs) has the range [0,+∞], which is the same as v(0;ϕs). It follows that
minϕs≥ϕ R0

∞(ϕ, ϕs) = minϕs≥ϕ,λ≥0 Rλ
1 (ϕ, ϕ) by the analogous argument in Part (1)-(3).

When λ∗ = 0, the curve reduces to a singleton, which is a trivial case. When λ∗ > 0, for any t ∈ [0, λ∗], let λ = λ∗ − t and
ϕs = ϕ+ t(ϕ∗

s − ϕ)/λ∗. Note that

1

v(λ;ϕs)
= λ+ ϕs

∫
r

1 + v∗r
dH(r)

= λ∗ − t+ (ϕ+ t(ϕ∗
s − ϕ)/λ∗)

∫
r

1 + v(0;ϕ∗
s)r

dH(r)

= λ∗ + ϕ

∫
r

1 + v(0;ϕ∗
s)r

dH(r) +
t

λ∗ (ϕ
∗
s − ϕ− λ)

∫
r

1 + v(0;ϕ∗
s)r

dH(r)

=
1

v∗
+

t

λ∗

(
1

v∗
− 1

v∗

)
=

1

v∗
,

which implies that v(λ;ϕs) = v∗. Then, we have

c̃(−λ;ϕs) =

∫
r

(1 + v(−λ;ϕs))r)2
dG(r) = c̃(−λ∗;ϕ) = c̃(0;ϕ∗

s).

and

ṽ(−λ;ϕ, ϕs) =
ϕ

∫
r2(1 + v(−λ;ϕs)r)

−2 dH(r)

v(−λ;ϕs)
−2 − ϕ

∫
r2(1 + v(−λ;ϕs)r)

−2 dH(r)
= ṽ(−λ∗;ϕ, ϕ) = ṽ(0;ϕ, ϕ∗

s).

It then follows that Rλ
∞(ϕ, ϕs) = Rλ∗

∞ (ϕ, ϕ) = R0
∞(ϕ, ϕ∗

s), which completes the proof for Theorem 2.3.
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Part (6)∗ Extension of risk equivalence:

Here we extend the results in Theorem 2.3 to a more general equivalence of (λ, ϕs), as indicated following Theorem 2.3
towards the end of Section 2.2.

For any ϕ̄s ∈ [ϕ,+∞], let λ̄ = (ϕ̄s − ϕ)
∫
r(1 + v(0;ϕs)r)

−1 dH(r) ≥ 0. Then, we have

1

v(0; ϕ̄s)
= ϕ̄s

∫
r

1 + v(0; ϕ̄s)r
dH(r) = λ̄+ ϕ

∫
r

1 + v(0; ϕ̄s)r
dH(r),

It follows that v(−λ̄;ϕ) = v(0; ϕ̄s), and consequently, R0
∞(ϕ, ϕ̄s) = Rλ̄

∞(ϕ, ϕ).

B. Proofs of results in Section 3
B.1. Proof of Theorem 3.1

To prove Theorem 3.1, we first prove pointwise convergence (over k and λ) as stated in Lemma B.1, which is based on
Proposition 3.6 proved in Appendix E.

Lemma B.1 (Consistency of GCV in full ensemble). Under Assumptions 2.1-2.2, as k, n, p → ∞, p/n → ϕ ∈ (0,∞) and
p/k → ϕs ∈ [ϕ,+∞], for λ ≥ 0, it holds that

|gcvλ
k −Rλ

k,∞| a.s.−−→ 0. (25)

Proof of Lemma B.1. We will first show that proof for λ > 0 and ϕs < ∞, and then extend the results to these boundary
cases.

Recall that from Proposition 3.6, we have

G λ
∞(ϕ, ϕs) =

2ϕ(2ϕs − ϕ)

ϕ2
s

T λ
2 (ϕ, ϕs) +

2(ϕs − ϕ)2

ϕ2
s

Rλ
2 (ϕ, ϕs)−

ϕ

ϕs
T λ

1 (ϕ, ϕs)−
ϕs − ϕ

ϕs
Rλ

1 (ϕ, ϕs)

Dλ
∞(ϕ, ϕs)

.

We next simplify the expression of the numerator:

2ϕ(2ϕs − ϕ)

ϕ2
s

T λ
2 (ϕ, ϕs) +

2(ϕs − ϕ)2

ϕ2
s

Rλ
2 (ϕ, ϕs)−

ϕ

ϕs
T λ

1 (ϕ, ϕs)−
ϕs − ϕ

ϕs
Rλ

1 (ϕ, ϕs)

=
ϕ(ϕs − ϕ)

ϕ2
s

Rλ
1 (ϕ, ϕs) + Dλ(ϕs, ϕs)

(
ϕ

ϕs
Rλ

1 (ϕ, ϕs) +

(
2ϕ(ϕs − ϕ)

ϕ2
s

1

λv(−λ;ϕs)
+

ϕ2

ϕ2
s

)
Rλ

∞(ϕ, ϕs)

)
+

2(ϕs − ϕ)2

ϕ2
s

Rλ
2 (ϕ, ϕs)−

ϕ

ϕs
Dλ(ϕs, ϕs)R

λ
1 (ϕ, ϕs)−

ϕs − ϕ

ϕs
Rλ

1 (ϕ, ϕs)

=

(
2ϕ(ϕs − ϕ)

ϕ2
s

λv(−λ;ϕs) +
ϕ2

ϕ2
s

λ2v(−λ;ϕs)
2

)
Rλ

∞(ϕ, ϕs) +
2(ϕs − ϕ)2

ϕ2
s

(Rλ
2 (ϕ, ϕs)− Rλ

1 (ϕ, ϕs))

=

(
(ϕs − ϕ)2

ϕ2
s

+
2ϕ(ϕs − ϕ)

ϕ2
s

λv(−λ;ϕs) +
ϕ2

ϕ2
s

λ2v(−λ;ϕs)
2

)
Rλ

∞(ϕ, ϕs)

= Dλ
∞(ϕ, ϕs)R

λ
∞(ϕ, ϕs).

Then, it follows that G λ
∞(ϕ, ϕs) = Rλ

∞(ϕ, ϕs). From Lemma A.2 and Proposition 3.6, we have that gcvλ
k

a.s.−−→ G λ
∞(ϕ, ϕs)

and Rλ
k,∞

a.s.−−→ Rλ
∞(ϕ, ϕs), which finishes the proof.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let Rn,k = gcvλ
k,∞ −Rλ

k,∞ for n ∈ N and k ∈ Kn. From Lemma B.1 we have that Rn,k
a.s.−−→ 0 as

k, n, p → ∞, p/n → ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,∞]. Here we view k and p as kn and pn that are indexed by n. Then
from Lemma G.5 (1) the conclusion follows.
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B.2. Proof of Corollary 3.2

Proof of Corollary 3.2. From Theorem 3.1, we have

max
k∈Kn

|gcvλ
k,∞ −Rλ

k,∞| a.s.−−→ 0.

This implies that

min
k∈Kn

gcv0
k = min

k∈Kn

R0
∞(p/n, p/k)

(
1 +

gcv0
k − R0

∞(p/n, p/k)

R0
∞(p/n, p/k)

)
≶ min

k∈Kn

R0
∞(p/n, p/k)

(
1± max

k∈Kn

∣∣∣∣gcv0
k − R0

∞(p/n, p/k)

R0
∞(p/n, p/k)

∣∣∣∣)
≶ min

k∈Kn

R0
∞(p/n, p/k)

(
1± 1

σ2
max
k∈Kn

|gcv0
k − R0

∞(p/n, p/k)|
)

a.s.−−→ inf
ϕs≥ϕ

R0
∞(ϕ, ϕs)

= inf
ϕs≥ϕ,λ≥0

Rλ
∞(ϕ, ϕs),

where the last equality is from Theorem 2.3. This finishes the proof.

B.3. Proof of Proposition 3.3

Proof of Proposition 3.3. From the proof of Lemma 3.4, we have

1

k
tr (MmΣm)

a.s.−−→ (1− λv(−λ;ϕs)).

Then, as k, n, p → ∞, p/n → ϕ and p/k → ϕs, we have

Dλ
k,2 =

(
1− 1

|I1 ∪ I2|
1

2

2∑
m=1

tr (MmΣm)

)2

=

(
1− k

|I1 ∪ I2|
1

k

1

2

2∑
m=1

tr (MmΣm)

)2

a.s.−−→
(
1− ϕs

2ϕs − ϕ
(1− λv(−λ;ϕs))

)2

=: Dλ
2 (ϕ, ϕs).

where the convergence of k/|I1 ∪ I2| is from Lemma G.2. It then follows that

gcvλ
k,2 =

Tλ
k,2

Dλ
k,2

a.s.−−→ G λ
2 (ϕ, ϕs) :=

T λ
2

Dλ
2

,

where T λ
2 defined in (32) has the following expression:

T λ
2 (ϕ, ϕs) =

1

2

ϕs − ϕ

2ϕs − ϕ
Rλ

1 (ϕ, ϕs) +
1

2
Dλ(ϕs, ϕs)(

ϕs

2ϕs − ϕ
Rλ

1 (ϕ, ϕs) +

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
Rλ

∞(ϕ, ϕs)

)
.

On the other hand, we have

Rλ
2 (ϕ, ϕs) =

1

2
Rλ

1 (ϕ, ϕs) +
1

2
Rλ

∞(ϕ, ϕs).
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Note that Rλ
1 (ϕ, ϕs) > Rλ

∞(ϕ, ϕs) > σ2 when ϕ < ϕs < ∞ because ρ2 > 0. When λ = 0 and ϕs > 1, we have
λv(−λ;ϕs) = 0 and

G 0
2 (ϕ, ϕs) =

ϕs − ϕ

2ϕs − ϕ
Rλ

1 (ϕ, ϕs) +
2(ϕs − ϕ)

2ϕs − ϕ
Rλ

∞(ϕ, ϕs)

2

(
1− ϕs

2ϕs − ϕ

)2 =
1

2
· 2ϕs − ϕ

ϕs − ϕ

(
Rλ

1 (ϕ, ϕs) + 2Rλ
∞(ϕ, ϕs)

)
.

It follows that

G 0
2 (ϕ, ϕs)− Rλ

2 (ϕ, ϕs) =
1

2(ϕs − ϕ)

(
ϕsR

λ
1 (ϕ, ϕs) + (3ϕs − ϕ)Rλ

∞(ϕ, ϕs)
)
=: c,

and gcvλ
k,2 − Rλ

2 (ϕ, ϕs)
p−→ c > 0, which completes the proof.

C. Proof of Lemma 3.4 (convergence of the GCV denominator functional)
Proof of Lemma 3.4. By the definition, the smooth matrix for M = ∞ is given by

Sλ,∞({DIℓ}Mℓ=1) := lim
M→∞

1

M

M∑
ℓ=1

Sλ(DIℓ).

For the denominator, note that for any fixed n ∈ N, as M → ∞, I1:M
a.s.−−→ [n]. Then from Lemma C.1 (stated and proved

below),

1

|I1:M |
tr(Sλ(DIℓ))

a.s.−−→ 1

n
tr

(
XMℓ

X⊤Lℓ

k

)
=

1

n
tr (MℓΣℓ)

a.s.−−→ ϕ

ϕs
(1− λv(−λ;ϕs)).

By continuous mapping theorem, we have(
1− 1

n
tr(Sλ,∞)

)2
a.s.−−→ Dλ

∞(ϕ, ϕs) :=

(
ϕs − ϕ

ϕs
+

ϕ

ϕs
λv(−λ;ϕs)

)2

. (26)

Lemma C.1 (Deterministic approximation of the denominator functional). Under Assumption 2.1, for all m ∈ [M ] and
Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if l ∈ Im and 0 otherwise, and
Mm = (X⊤LmX/k + λIp)

−1. Then, it holds that for all m ∈ [M ] and Im ∈ Ik,

1

n
tr
(
MmΣ̂m

)
a.s.−−→ ϕ

ϕs
(1− λv(−λ;ϕs)),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where the nonnegative constant ṽ(λ;ϕ, ϕs) is as defined in
(19).

Proof of Lemma C.1. Note that MmΣ̂m = Ip − λMm. From Corollary F.5, we have that λMm ≃ (v(−λ;ϕs)Σ+ Ip)
−1.

Then by Lemma F.3 (4), it follows that

1

n
tr (MmΣm)

a.s.−−→ ϕ lim
p→∞

1

p
tr
(
Ip − (v(−λ;ϕs)Σ+ Ip)

−1
)

= ϕ lim
p→∞

(
1−

∫
1

1 + v(−λ;ϕs)r
dHp(r)

)
= ϕ

∫
v(−λ;ϕs)r

1 + v(−λ;ϕs)r
dH(r)

=
ϕ

ϕs
(1− λv(−λ;ϕs))

where in the second last line, we used the fact that Hp and H have compact supports and Assumption 2.2 and the last
equality is due to the definition of v(−λ;ϕs) in (18).
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D. Proof of Lemma 3.5 (convergence of the GCV numerator functional)
Proof of Lemma 3.5. For any m ∈ [M ], let Im be a sample from Ik, and LIm ∈ Rn×n be a diagonal matrix with
(LIm)ll = 1 if l ∈ Im and 0 otherwise. The ingredient estimator takes the form:

β̃λ
k,M ({DIℓ}Mℓ=1) =

1

M

M∑
m=1

β̂λ(DIm)

=
1

M

M∑
m=1

(X⊤LImX/k + λIp)
−1(X⊤LImy/k)

=
1

M

M∑
m=1

[(
X⊤LImX

k
+ λIp

)−1
X⊤LIm

k
β0 +

(
X⊤LImX

k
+ λIp

)−1
X⊤LIm

k
ϵ

]
.

We will write β̃λ,M = β̃λ
k,M and Lm = LIm for simplicity when they are clear from the context. The set operation

will be propagated to such notations, e.g., Lm∪l = LIm∪Il , Lm∩l = LIm∩Il , Lm\l = LIm\Il , etc. Let Mm =

(X⊤LImX/k + λIp)
−1 for m ∈ [M ], we have

β̃λ,M =
1

M

M∑
m=1

(Ip − λMm)β0 +
1

M

M∑
m=1

Mm(X⊤Lm/k)ϵ. (27)

The proof follows by combing the squared error decomposition in Lemma D.1, with the component convergence of
test errors in Lemma D.2 and of train errors in Lemma D.3. To prove Lemma D.3, we further make of the component
concentration results presented in Appendices D.4 and D.5, and component deterministic approximation results presented in
Appendix D.5.

D.1. Decomposition of the mean squared error (Lemma D.1)

Lemma D.1 (Decomposition of the mean squared error for the M -ensemble estimator). For a dataset Dn, let X ∈ Rn×p

and y ∈ Rn be the design matrix and response vector. Let LI ∈ Rn×n be a diagonal matrix with (LI)ll = 1 if l ∈ I and 0
otherwise. Then the mean squared error evaluated on Dn decomposes as

∥y −Xβ̃λ
k∥22 = −E

[
Errtrain(β̂

λ
k (DI)) + Errtest(β̂

λ
k ({DI))}) | Dn

]
+ 2E

[
Errtrain(β̃

λ
k,2({DI ,DJ})) + Errtest(β̃

λ
k,2({DI ,DJ})) | Dn

]
(28)

where the training and test errors are defined by

Errtrain(β̂
λ
k (DIℓ)) = ∥LIℓ(y −Xβ̂λ

k (DIℓ))∥22
Errtest(β̂

λ
k (DIℓ)) = ∥LIc

ℓ
(y −Xβ̂λ

k (DIℓ))∥22
Errtrain(β̃

λ
k,2({DIm ,DIℓ})) = ∥LIm∪Lℓ

(y −Xβ̃λ
k,2({DIm ,DIℓ}))∥22

Errtest(β̃
λ
k,2({DIm ,DIℓ})) = ∥LIc

m∩Lc
ℓ
(y −Xβ̃λ

k,2({DIm ,DIℓ}))∥22.

(29)

From Lemma D.1, the numerator of the GCV estimate for a M -ensemble estimator decomposes into a linear combination of
the training and test error of all possible 1-ensemble and 2-ensemble estimators. Then the asymptotics of the numerator can
be obtained, if we can show that the limits of all components exist and their linear combination remains invariable when M
goes off to infinity.

Proof of Lemma D.1. We first decompose the training error into the linear combination of the mean squared errors (evaluated
on Dn) for 1-ensemble and 2-ensemble estimators:

1

n
∥y −Xβ̃λ

k,M∥22
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=
1

n

n∑
i=1

(
1

M

M∑
ℓ=1

(yi − xiβ̂
λ
k (DIℓ)

)2

=
1

n

n∑
i=1

1

M2

M∑
ℓ=1

(yi − xiβ̂
λ
k (DIℓ))

2 +
1

n

n∑
i=1

1

M2

∑
m,ℓ∈[M ]

i̸=j

(yi − xiβ̂
λ
k (DIm))(yi − xiβ̂

λ
k (DIℓ))

=
1

n

1

M2

M∑
ℓ=1

∥y −Xβ̂λ
k (DIℓ)∥22

+
1

n

n∑
i=1

1

M2

∑
m,ℓ∈[M ]

i ̸=j

1

2
[4(yi − xiβ̃λ,2({DIm , DIℓ}))2 − (yi − xiβ̂

λ
k (DIm))2 − (yi − xiβ̂

λ
k (DIℓ))

2]

= −
(

1

M
− 2

M2

) M∑
ℓ=1

1

n
∥y −Xβ̂λ

k (DIℓ)∥22 +
2

M2

∑
m,ℓ∈[M ]

i ̸=j

1

n
∥y −Xβ̃λ,2({DIm ,DIℓ})∥22.

Next, we further decompose the MSE into training and test errors for 1-ensemble and 2-ensemble estimators:

1

n
∥y −Xβ̂λ

k (DIℓ)∥22 =
1

n
∥LIℓ(y −Xβ̂λ

k (DIℓ))∥22 +
1

n
∥LIc

ℓ
(y −Xβ̂λ

k (DIℓ))∥22,

1

n
∥y −Xβ̃λ,2({DIm ,DIℓ})∥22 =

1

n
∥LIm∪Lℓ

(y −Xβ̃λ,2({DIm ,DIℓ}))∥22 +
1

n
∥LIc

m∩Lc
ℓ
(y −Xβ̃λ,2({DIm ,DIℓ}))∥22

The conclusion then readily follows.

D.2. Convergence of test errors (Lemma D.2)

Lemma D.2 (Convergence of test errors). Under Assumptions 2.1-2.2, for the test error defined in (29) with I1, I2
SRS∼ Ik,

we have that as k, n, p → ∞, p/n → ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,+∞],

Errtest(β̂
λ
k (DIℓ))

n− k

a.s.−−→ Rλ
1 (ϕ, ϕs) (30)

Errtest(β̃
λ
k,2({DIm ,DIℓ}))
|Icm ∩ Icℓ |

a.s.−−→ Rλ
2 (ϕ, ϕs), (31)

where the deterministic functions RM is defined in Lemma A.2.

Proof of Lemma D.2. From the strong law of large numbers, we have

1

k
Errtest(β̂

λ
k (DIℓ))

a.s.−−→ E
[
(y0 − x⊤

0 β̂
λ
k (DI1))

2
∣∣∣Dn

]
1

|Icm ∩ Icℓ |
Errtest(β̂

λ
k ({DIm ,DIℓ}))

a.s.−−→ E
[
(y0 − x⊤

0 β̂
λ
k ({DIm ,DIℓ}))2

∣∣∣Dn

]
.

From Lemma A.2 (Patil et al., 2022a, Theorem 4.1), the condition prediction risks converge in the sense that

E
[
(y0 − x⊤

0 β̂
λ
k (DI1))

2
∣∣∣Dn

]
a.s.−−→ R1(ϕ, ϕs)

E
[
(y0 − x⊤

0 β̃
λ
k,2({DIm ,DIℓ}))2

∣∣∣Dn

]
a.s.−−→ R2(ϕ, ϕs),

and the conclusions follow.
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D.3. Convergence of train errors (Lemma D.3)

Lemma D.3 (Convergence of train errors). Under Assumptions 2.1-2.2, for the train error defined in (29) with I1, I2
SRS∼ Ik,

we have that as k, n, p → ∞, p/n → ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,+∞),

1

k
Errtrain(β̂

λ
k (DIℓ))

a.s.−−→ T λ
1 (ϕ, ϕs) := Dλ(ϕs, ϕs)R

λ
1 (ϕ, ϕs)

1

|Im ∪ Iℓ|
Errtrain(β̃

λ
k,1({DIm ,DIℓ}))

a.s.−−→ T λ
2 (ϕ, ϕs) :=

1

2

ϕs − ϕ

2ϕs − ϕ
Rλ

1 (ϕ, ϕs) +
1

2
Dλ(ϕs, ϕs)(

ϕs

2ϕs − ϕ
Rλ

1 (ϕ, ϕs) +

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
(2Rλ

2 (ϕ, ϕs)− Rλ
1 (ϕ, ϕs)

)
,

(32)

where the deterministic function RM is defined in Lemma A.2.

Proof of Lemma D.3. From (27), we have

β0 − β̃λ,M =
1

M

M∑
m=1

λMmβ0 −
1

M

M∑
m=1

Mm(X⊤Lm/k)ϵ. (33)

Part (1) Case of M = 1:

From (33), the train error can be decomposed as follows:

1

k
Errtrain(β̂

λ
k (DIℓ)) = ∥Lℓϵ+LℓX(β0 − β̂λ

k (DIℓ))∥22/k

= ∥(Lℓ −LℓXMℓX
⊤Lℓ/k)ϵ+ λLℓXMℓβ0∥22/k

= TC + TB + TV ,

where the constant term TC , bias term TB , and the variance term TV are given by

TC =
2λ

k
ϵ⊤Lℓ

(
In −XMℓ

X⊤Lℓ

k

)⊤

LℓXMℓβ0, (34)

TB = λ2β⊤
0 MℓΣ̂ℓMℓβ0, (35)

TV =
1

k
ϵ⊤Lℓ

(
In −XMℓ

X⊤Lℓ

k

)⊤

Lℓ

(
In −XMℓ

X⊤Lℓ

k

)
Lℓϵ. (36)

Next, we analyze the three terms separately. From Lemmas D.4 and D.5 with n = k, we have that TC
a.s.−−→ 0, and

TV
a.s.−−→ σ2

(
1− 2

k
tr(MmΣ̂m) +

1

k
tr(MmΣ̂mMmΣ̂m)

)
:= TV T .

Thus, it remains to obtain the deterministic equivalent for the bias term TB and the trace term TV T .

From Lemma D.6 and Lemma D.7, we have that for all I1 ∈ Ik,

TB
a.s.−−→ ρ2Dλ(ϕs, ϕs)(1 + ṽ(−λ;ϕs, ϕs))c̃(−λ;ϕs)

TV T
a.s.−−→ σ2Dλ(ϕs, ϕs)(1 + ṽ(−λ;ϕs, ϕs)).

Then, we have

1

k
Errtrain(β̂

λ
k (DIℓ))

a.s.−−→ Rλ,1(ϕ, ϕs)D
λ(ϕs, ϕs)

where Rλ,1 and Dλ are defined in (21) and (26), respectively.
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Part (2) Case of M = 2:

From (33), the train error can be analogously decomposed as follows:

1

|Im ∪ Il|
Errtrain(β̃

λ
k,2({DI1 ,DI2)}) =

1

|Im ∪ Il|
∥Lm∪l(ϵ+X(β0 − β̂λ,2))∥22 = T ′

C + T ′
B + T ′

V ,

where the constant term TC , bias term TB , and the variance term TV are given by

T ′
C =

λ

2|Im ∪ Il|
∑

i,j∈{m,l}

ϵ⊤
(
In −XMi

X⊤Li

k

)⊤

Lm∪lXMjβ0, (37)

T ′
B =

λ2

4|Im ∪ Il|
∑

i,j∈{m,l}

β⊤
0 MiΣ̂m∪lMjβ0

=
λ2k

4|Im ∪ Il|
∑

i∈{m,l}

β⊤
0 MiΣ̂iMiβ0 +

λ2

4|Im ∪ Il|
∑

i∈{m,l}

|Im+l−i \ Ii|β⊤
0 MiΣ̂(m+l−i)\iMiβ0

+
λ2

4

∑
i∈{m,l}

β⊤
0 MiΣ̂m∪lMm+l−iβ0, (38)

T ′
V =

1

4|Im ∪ Il|
∑

i,j∈{m,l}

ϵ⊤
(
In −XMi

X⊤Li

k

)⊤

Lm∪l

(
In −XMj

X⊤Lj

k

)
ϵ. (39)

Next, we analyze the three terms separately. From Lemmas D.4 and D.5, we have that TC
a.s.−−→ 0, and

T ′
V

a.s.−−→ σ2

4

∑
i∈{m,l}

(
1− 2

|Im ∪ Il|
tr(MiΣ̂i) +

1

k
tr(MiΣ̂iMiΣ̂m∪l)

)

+
σ2

2

1− 1

|Im ∪ Il|
∑

j∈{m,l}

tr(MjΣ̂j) +
1

n
tr(MlΣ̂m∩lMlΣ̂m∪l)


=

ϕs

2ϕs − ϕ

TV T

2
+

σ2

4

ϕs − ϕ

2ϕs − ϕ

2 +
1

k

∑
i∈{m,l}

tr(MiΣ̂iMiΣ̂(m+l−i)\i)


+

σ2

2

1− 1

|Im ∪ Il|
∑

j∈{m,l}

tr(MjΣ̂j) +
1

n
tr(MlΣ̂m∩lMmΣ̂m∪l)

 := T ′
V T .

Thus, it remains to obtain the deterministic equivalent for the bias term T ′
B and the trace term T ′

V T .

From Lemma D.6 and Lemma D.7, and the convergence of the cardinality from Lemma G.2, we have that for all
Im, Il

SRS∼ Ik,

T ′
B

a.s.−−→ ρ2

2
t̃(ϕ, ϕs)c̃(−λ;ϕs), and T ′

V
a.s.−−→ σ2

2
t̃(ϕ, ϕs),

where

t̃(ϕ, ϕs) =
ϕs

2ϕs − ϕ
Dλ(ϕs, ϕs)(1 + ṽ(−λ;ϕs, ϕs)) +

ϕs − ϕ

2ϕs − ϕ
(1 + ṽ(−λ;ϕs, ϕs))

+ Dλ(ϕs, ϕs)

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
(1 + ṽ(−λ;ϕ, ϕs)).

Then, we have

1

|Im ∪ Il|
Errtrain(β̃

λ
k,2({DI1 ,DI2)})
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a.s.−−→ ρ2

2
t̃(ϕ, ϕs)c̃(−λ;ϕs) +

σ2

2
t̃(ϕ, ϕs)

=
1

2
Dλ(ϕs, ϕs)

(
ϕs

2ϕs − ϕ
Rλ,1(ϕ, ϕs) +

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
(2Rλ,2(ϕ, ϕs)− Rλ,2(ϕ, ϕs))

)
+

1

2

ϕs − ϕ

2ϕs − ϕ
R1(ϕ, ϕs),

which finishes the proof.

D.4. Component concentrations

In this subsection, we will show that the cross-term TC converges to zero and the variance term TV converges to its
corresponding trace expectation.

D.4.1. CONVERGENCE OF THE CROSS TERM

Lemma D.4 (Convergence of the cross term). Under Assumptions 2.1-2.2, for TC and T ′
C as defined in (34) and (37)), we

have TC
a.s.−−→ 0 and T ′

C
a.s.−−→ 0 as k, p → ∞ and p/k → ϕs.

Proof of Lemma D.4. We first prove the result for T ′
C . Note that

T ′
C = − λ

M2
· 1

|I1 ∪ I2|

〈
2∑

m=1

(
In −X

MmX⊤Lm

k

)⊤

Lm∪lX

2∑
m=1

Mmβ0, ϵ

〉
.

We next bound the squared norm:

1

|Im ∪ Il|

∥∥∥∥∥12
2∑

m=1

(
In − XMmX⊤Lm

k

)⊤

Lm∪lX

2∑
m=1

Mmβ0

∥∥∥∥∥
2

2

≤
2∑

j=1

2∑
l=1

[
|Im ∪ Il|

4k2

∥∥∥(MjX
⊤Lj)

⊤Σ̂m∪lMlβ0

∥∥∥2
2
+

1

4|I1 ∪ I2|
∥LjXMlβ0∥22

]

≤
∥β0∥22

4
·

2∑
j=1

2∑
l=1

[
|Im ∪ Il|

k2

∥∥∥MlΣ̂m∪lMjX
⊤LjXMjΣ̂m∪lMl

∥∥∥
op

+
k

|I1 ∪ I2|

∥∥∥Σ̂j

∥∥∥
op

∥Ml∥op

]

≤
∥β0∥22

4
·

2∑
j=1

2∑
l=1

[
|Im ∪ Il|

k
∥Ml∥2op

∥∥∥Σ̂l

∥∥∥2
op

∥∥Mj(X
⊤LjX/k)Mj

∥∥
op

+
k

|I1 ∪ I2|
∥Ml∥op

∥∥∥Σ̂l

∥∥∥
op

]

=
∥β0∥22

4
·

2∑
j=1

2∑
l=1

[
|Im ∪ Il|

k
∥Ml∥2op

∥∥∥Σ̂l

∥∥∥2
op

∥Mj∥op ∥Ip − λMj∥op +
k

|I1 ∪ I2|
∥Ml∥op

∥∥∥Σ̂l

∥∥∥
op

]

≤
∥β0∥22
λ

(
|Im ∪ Il|

kλ2
+

k

|I1 ∪ I2|

)∥∥∥Σ̂l

∥∥∥2
op

,

where the last inequality is due to the fact that ∥Mj∥op ≤ 1/λ and ∥Ip − λMj∥op ≤ 1. By Assumption 2.2, ∥β0∥22 is

uniformly bounded in p. From Bai & Silverstein (2010), we have lim sup
∥∥∥Σ̂∥∥∥

op
≤ lim supmax1≤i≤p s

2
i ≤ rmax(1 +

√
ϕs)

2 almost surely as k, p → ∞ and p/k → ϕs ∈ (0,∞). From Lemma G.2, we have that k/|I1∪I2|
a.s.−−→ k/(2k−k2/n),

which is ϕs/(2ϕs − ϕ) almost surely. Then we have that the square norm is almost surely upper bounded by some constant.
Applying Lemma G.3, we thus have that T ′

C
a.s.−−→ 0.

Note that when I1 = I2, T ′
C reduces to TC , and thus the conclusion for TC also holds.

D.4.2. CONVERGENCE OF THE VARIANCE TERM

Lemma D.5 (Convergence of the variance term). Under Assumptions 2.1-2.2, let M ∈ N and Σ̂ = X⊤X/n. For all
m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if l ∈ Im and 0
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otherwise, and Mm = (X⊤LmX/k + λIp)
−1. Then, for all m, l ∈ [M ] and m ̸= l, it holds that

1

k
ϵ⊤
(
In −XMm

X⊤Lm

k

)⊤

Lm

(
In −XMm

X⊤Lm

k

)
ϵ

− σ2

(
1− 2

k
tr(MmΣ̂m) +

1

k
tr(MmΣ̂mMmΣ̂m)

)
a.s.−−→ 0, (40)

1

|Im ∪ Il|
ϵ⊤
(
In −XMi

X⊤Li

k

)⊤

Lm∪l

(
In −XMi

X⊤Li

k

)
ϵ

− σ2

(
1− 2

|Im ∪ Il|
tr(MiΣ̂i) +

1

k
tr(MiΣ̂iMiΣ̂m∪l)

)
a.s.−−→ 0, (41)

1

|Im ∪ Il|
ϵ⊤
(
In −XMm

X⊤Lm

k

)⊤

Lm∪l

(
In −XMl

X⊤Ll

k

)
ϵ

− σ2

1− 1

|Im ∪ Il|
∑

ℓ∈{i,j}

tr(MℓΣ̂ℓ) +
1

n
tr(MiΣ̂i∩jMjΣ̂m∪l)

 a.s.−−→ 0, (42)

where i, j ∈ {m, l}, i ̸= j, and Σ̂m∪l = X⊤Lm∪lX/|Im ∪ Il|, as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈
[ϕ,∞).

Proof of Lemma D.5. We first prove the last convergence result. Note that∥∥∥∥∥
(
In −XMm

X⊤Lm

k

)⊤

Lm∪l

(
In −XMl

X⊤Ll

k

)∥∥∥∥∥
op

=

∥∥∥∥Lm∪l −
1

k
LmXMmX⊤Lm∪l −

1

k
Lm∪lXMlX

⊤Ll +
1

k2
LmXMmX⊤Lm∪lXMlX

⊤Ll

∥∥∥∥
op

≤ 1 +

√
|Im ∪ Il|

k

∑
j∈{m,l}

∥∥∥Σ̂j

∥∥∥ 1
2

op
∥Mj∥op

∥∥∥Σ̂m∪l

∥∥∥ 1
2

op
+

|Im ∪ Il|
k

∥∥∥Σ̂m

∥∥∥ 1
2

op
∥Mm∥op

∥∥∥Σ̂m∪l

∥∥∥
op

∥Ml∥op
∥∥∥Σ̂l

∥∥∥ 1
2

op

≤ 1 +
2

λ

√
|Im ∪ Il|

k

∥∥∥Σ̂m

∥∥∥ 1
2

op

∥∥∥Σ̂l

∥∥∥ 1
2

op
+

1

λ2

|Im ∪ Il|
k

∥∥∥Σ̂m

∥∥∥ 1
2

op

∥∥∥Σ̂m∪l

∥∥∥
op

∥∥∥Σ̂l

∥∥∥ 1
2

op
.

Now, we have lim sup ∥Σ̂∥op ≤ lim supmax1≤i≤p s
2
i ≤ rmax(1 +

√
ϕ)2 almost surely as n, p → ∞ and p/n → ϕ ∈

(0,∞) from Bai & Silverstein (2010). Similarly, lim sup ∥Σ̂m∥op ≤ rmax(1 +
√
ϕs)

2 almost surely. From Lemma G.2,
|Im ∪ Il|/k

a.s.−−→ (2ϕs −ϕ)/ϕs. Then the above quantity is asymptotically upper bounded by some constant as n, k, p → ∞,
p/n → ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,∞). From Lemma G.4, it follows that

1

|Im ∪ Il|
ϵ⊤
(
In −XMi

X⊤Li

k

)⊤

Lm∪l

(
In −XMj

X⊤Lj

k

)
ϵ

− σ2

|Im ∪ Il|
tr

((
In −XMi

X⊤Li

k

)⊤

Lm∪l

(
In −XMj

X⊤Lj

k

))
a.s.−−→ 0.

Expanding the trace term above, we have

σ2

|Im ∪ Il|
tr

((
In −XMi

X⊤Li

k

)⊤

Lm∪l

(
In −XMj

X⊤Lj

k

))

= σ2

1− 1

|Im ∪ Il|
∑

ℓ∈{i,j}

tr(MℓΣ̂ℓ) +
|Ii ∩ Ij |

k2
tr(MiΣ̂i∪jMjΣ̂m∩l)

 . (43)
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Since Im, Il
SRS∼ Ik, from Lemma G.2 we have that |Im ∩ Il|/k

a.s.−−→ k/n. Then, we have

1

|Im ∪ Il|
ϵ⊤
(
In −XMi

X⊤Li

k

)⊤

Lm∪l

(
In −XMj

X⊤Lj

k

)
ϵ

− σ2

1− 1

|Im ∪ Il|
∑

ℓ∈{i,j}

tr(MℓΣ̂ℓ) +
1

n
tr(MiΣ̂i∩jMjΣ̂m∪l)

 a.s.−−→ 0,

and thus (42) follows.

Setting i = j in (43) yields (41).

Finally, setting i = j = l = m in (43) finishes the proof for (40).

D.5. Component deterministic approximations

D.5.1. DETERMINISTIC APPROXIMATION OF THE BIAS FUNCTIONAL

Lemma D.6 (Deterministic approximation of the bias functional). Under Assumptions 2.1-2.2, for all m ∈ [M ] and
Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if l ∈ Im and 0 otherwise, and
Mm = (X⊤LmX/k + λIp)

−1. Then, it holds that

1. For all m ∈ [M ],

λ2β⊤
0 MmΣ̂mMmβ0

a.s.−−→ ρ2λ2v(−λ;ϕs)
2(1 + ṽ(−λ;ϕs, ϕs))c̃(−λ;ϕs).

2. For all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

λ2β⊤
0 MlΣ̂m\lMlβ0

a.s.−−→ ρ2(1 + ṽ(−λ;ϕs, ϕs))c̃(−λ;ϕs). (44)

3. For all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

λ2β⊤
0 MmΣ̂m∪lMlβ0

a.s.−−→ ρ2λ2

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
v(−λ;ϕs)

2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs),

(45)

where Σ̂m∪l = |Im ∪ Il|−1X⊤Lm∪lX , as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where ϕ0 = ϕ2
s/ϕ,

TB is as defined in (35), and the nonnegative constants ṽ(−λ;ϕ, ϕs) and c̃(−λ;ϕs) are as defined in (19).

Proof of Lemma D.6. We split the proof into different parts.

Part (1) From Lemma F.6 (2) (with A = Ip), we have that

λ2MmΣ̂mMm ≃ v(−λ;ϕs)
2(1 + ṽ(−λ;ϕs, ϕs)) · (v(−λ;ϕs)Σ+ Ip)

−1Σ(v(−λ;ϕs)Σ+ Ip)
−1. (46)

By the definition of deterministic equivalent, we have

λ2β⊤
0 MmΣ̂mMmβ0

a.s.−−→ lim
p→∞

v(−λ;ϕs)
2(1 + ṽ(−λ;ϕs, ϕs))

p∑
i=1

ri
(1 + riv(−λ;ϕs))2

(β⊤
0 wi)

2

= lim
p→∞

∥β0∥22v(−λ;ϕs)
2(1 + ṽ(−λ;ϕs, ϕs))

∫
r

(1 + v(−λ;ϕs)r)2
dGp(r)

= ρ2v(−λ;ϕs)
2(1 + ṽ(−λ;ϕs, ϕs))

∫
r

(1 + v(−λ;ϕs)r)2
dG(r), (47)

where the last equality holds since Gp and G have compact supports and invoking Assumption 2.2.
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Part (2) From Lemma F.8 (1), we have

MlΣ̂m\lMl ≃ MlΣMl.

Then, from Patil et al. (2022a, Lemma S.2.4), the conclusion follows.

Part (3) For the cross term, it suffices to derive the deterministic equivalent of β⊤
0 M1Σ̂1∪2M2β0. We begin with

analyzing the deterministic equivalent of M1Σ̂1∪2M2. Let i0 = tr(L1L2) be the number of shared samples between DI1

and DI2 , we use the decomposition

M−1
j =

i0
k
(Σ̂0 + λIp) +

k − i0
k

(Σ̂ind
j + λIp), j = 1, 2,

where Σ̂0 = X⊤L1L2X/i0 and Σ̂ind
j = X⊤(Lj − L1L2)X/(k − i0) are the common and individual covariance

estimators of the two datasets. Let N0 = (Σ̂0 + λIp)
−1 and Nj = (Σ̂ind

j + λIp)
−1 for j = 1, 2. Then

Mj =

(
i0
k
N−1

0 +
k − i0

k
N−1

j

)−1

, j = 1, 2, (48)

where the equalities hold because N0 is invertible when λ > 0. Note that

Σ̂1∪2 =
k

2k − i0
Σ̂1 +

k

2k − i0
Σ̂2 −

i0
2k − i0

Σ̂0,

=
k

2k − i0

2∑
j=1

(M−1
j − λIp)−

i0
2k − i0

Σ̂0.

We have that

λ2M1Σ̂1∪2M2 =
k

2k − i0
λ2

2∑
j=1

Mj −
2k

2k − i0
λ3M1M2 −

i0
2k − i0

λ2M1Σ̂0M2. (49)

Next, we derive the deterministic equivalents for the three terms in (49). From Corollary F.5, the first term admits

λMj ≃ (v(−λ;ϕs)Σ+ Ip)
−1. (50)

Note that

λ2M1M2 ≃ (v(−λ;ϕs)Σ+ Ip)
−1

(ṽ(−λ;ϕ, ϕs, Ip)Σ+ Ip) (v(−λ;ϕs)Σ+ Ip)
−1 (51)

≃ (v(−λ;ϕs)Σ+ Ip)
−2

(ṽ(−λ;ϕ, ϕs, Ip)Σ+ Ip), (52)

where

ṽ(−λ;ϕ, ϕs, Ip) =
ϕ

∫
r

(1 + v(−λ;ϕs)r)2
dH(r)

v(−λ;ϕs)
−2 − ϕ

∫
r2

(1 + v(−λ;ϕs)r)2
dH(r)

.

For the third term,

M1Σ̂0M2 ≃ ṽv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ, (53)

where

ṽv(−λ;ϕ, ϕs) :=
1

v(−λ;ϕs)
−2 − ϕ

∫
r2

(1 + v(−λ;ϕs)r)2
dH(r)

.
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Combining (50)-(53), we get

λ2M1Σ̂1∪2M2 ≃
(

2ϕs

2ϕs − ϕ
(v(−λ;ϕs)− ṽ(−λ;ϕ, ϕs, Ip))−

ϕ

2ϕs − ϕ
λṽv(−λ;ϕ, ϕs)

)
λ(v(−λ;ϕs)Σ+ Ip)

−2Σ

= λ2v(−λ;ϕs)
2(1 + ṽ(−λ;ϕ, ϕs))

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
(v(−λ;ϕs)Σ+ Ip)

−2Σ.

(54)

The last conclusion then follows analogously as in (47).

D.5.2. DETERMINISTIC APPROXIMATION OF THE VARIANCE FUNCTIONAL

Lemma D.7 (Deterministic approximation of the variance functional). Under Assumptions 2.1-2.2, for all m ∈ [M ] and
Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix with (Lm)ll = 1 if l ∈ Im and 0 otherwise, and
Mm = (X⊤LmX/k + λIp)

−1. Then, it holds that

1. For all m ∈ [M ] and Im ∈ Ik,

1− 2

k
tr(MmΣ̂m) +

1

k
tr(MmΣ̂mMmΣ̂m)

a.s.−−→ λ2v(−λ;ϕs)
2(1 + ṽ(−λ;ϕs, ϕs)). (55)

2. For all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1

k
tr(MmΣ̂mMmΣ̂l\m)

a.s.−−→ ṽ(−λ;ϕs, ϕs). (56)

3. For all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1− 1

|Im ∪ Il|
∑

j∈{m,l}

tr(MjΣ̂j) +
1

n
tr(MlΣ̂m∩lMmΣ̂m∪l)

a.s.−−→

Dλ(ϕs, ϕs)

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
(1 + ṽ(−λ;ϕ, ϕs)), (57)

where Σ̂l\m = |Il \ Im|−1X⊤Ll\mX and Σ̂m∪l = |Im ∪ Il|−1X⊤Lm∪lX , as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and
p/k → ϕs ∈ [ϕ,∞), where the nonnegative constant ṽ(λ;ϕ, ϕs) is as defined in (19).

Proof of Lemma D.7. We split the proof into different parts.

Part (1) Note that

tr(MmΣ̂mMmΣ̂m) = tr(MmΣ̂m)− λ tr(M2
nΣ̂m).

We now have

1− 2

k
tr(MmΣ̂m) +

1

k
tr(MmΣ̂mMmΣ̂m) = 1− 1

k
tr(MmΣ̂m)− λ

k
tr(M2

mΣ̂m)

= 1− p

k
+

λ

k
tr(Mm)− λ

k
tr(M2

mΣ̂m).

From Corollary F.5 we have that λMm ≃ (v(−λ;ϕs)Σ + Ip)
−1. From Lemma F.6 (2) (with A = I), we have that for

j ∈ [M ],

MmΣ̂mMm ≃ ṽv(−λ;ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ. (58)
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By the trace rule Lemma F.3 (4) , we have

λ

k
tr(Mm)− λ

k
tr(M2

mΣ̂m)
a.s.−−→ lim

p→∞

p

k
· 1
p

(
tr((v(−λ;ϕs)Σ+ Ip)

−1)− tr(λṽv(−λ;ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ)

)
= ϕs lim

p→∞

1

p

p∑
i=1

1 + v(−λ;ϕs)ri − λṽv(−λ;ϕs)ri
(v(−λ;ϕs)ri + 1)2

= ϕs lim
p→∞

∫
1 + v(−λ;ϕs)r − λṽv(−λ;ϕs)r

(1 + v(−λ;ϕs)r)2
dHp(r)

= ϕs

∫
1 + v(−λ;ϕs)r − λṽv(−λ;ϕs)r

(1 + v(−λ;ϕs)r)2
dH(r), j = 1, 2, (59)

where in the last line we used the fact that Hp and H have compact supports and Assumption 2.2. Then, we have

1− 2

k
tr(MmΣ̂m) +

1

k
tr(MmΣ̂mMmΣ̂m)

a.s.−−→ 1− ϕs + ϕs

∫
1 + v(−λ;ϕs)r − λṽv(−λ;ϕs)r

(1 + v(−λ;ϕs)r)2
dH(r)

= 1− ϕs

∫
v(−λ;ϕs)r

1 + v(−λ;ϕs)r
dH(r)− ϕs

∫
λṽv(−λ;ϕs)r

(1 + v(−λ;ϕs)r)2
dH(r)

= λv(−λ;ϕs)− ϕs

∫
λṽv(−λ;ϕs)r

(1 + v(−λ;ϕs)r)2
dH(r)

= λṽv(−λ;ϕs)

(
v(−λ;ϕs)

−1 − ϕs

∫
v(−λ;ϕs)r

2

(1 + v(−λ;ϕs)r)2
dH(r)− ϕs

∫
r

(1 + v(−λ;ϕs)r)2
dH(r)

)
= λṽv(−λ;ϕs)

(
v(−λ;ϕs)

−1 − ϕs

∫
r

1 + v(−λ;ϕs)r
dH(r)

)
= λ2ṽv(−λ;ϕs)

= λ2v(−λ;ϕs)
2(1 + ṽ(−λ;ϕs, ϕs)),

and thus, (55) follows.

Part (2) Since MmΣ̂mMm and Σ̂l\m are independent, from Lemma F.8 (1), we have

MmΣ̂mMmΣ̂l\m ≃ MmΣ̂mMmΣ.

Then, by the definition of deterministic equivalents, it follows that

1

k
tr(MmΣ̂mMmΣ̂l\m) =

1

k
tr(MmΣ̂mMmΣ)

a.s.−−→ ṽ(−λ;ϕs, ϕs),

where the convergence is due to Patil et al. (2022a, Lemma S.2.5).

Part (3) Let i0 = |Im ∩ Il|. The first two terms in (59) satisfy that

1− 1

|Im ∪ Il|
∑

j∈{m,l}

tr(MjΣ̂j) = 1− p

2k − i0

∑
j∈{m,l}

1

p
tr(MjΣ̂j)

a.s.−−→ 1− 2ϕ2
s

2ϕs − ϕ

∫
v(−λ;ϕs)r

1 + v(−λ;ϕs)r
dH(r),

where the convergence is from Part 1. The last term can be further decomposed because

tr(MlΣ̂m∩lMmΣ̂m∪l) =
k

2k − i0

∑
j∈{m,l}

tr(MlΣ̂m∩lMmΣ̂j)−
i0

2k − i0
tr(MlΣ̂m∩lMmΣ̂m∩l)

=
k

2k − i0

∑
j∈{m,l}

[tr(MjΣ̂m∩l)− λ tr(MmΣ̂m∩lMl)]−
i0

2k − i0
tr(MlΣ̂m∩lMmΣ̂m∩l).
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From Lemma F.8 (4), (3), and (5), we have

MjΣ̂m∩l ≃ Ip − (v(−λ;ϕs)Σ+ Ip)
−1

MmΣ̂m∩lMl ≃ ṽv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ

MlΣ̂m∩lMmΣ̂m∩l ≃
(
ϕs

ϕ
v(−λ;ϕs)−

ϕs − ϕ

ϕ
λṽv(−λ;ϕ, ϕs)

)
(v(−λ;ϕs)Σ+ Ip)

−1Σ

− λṽv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ.

Combining the above terms and by Assumption 2.2, we have

1− 1

|Im ∪ Il|
∑

j∈{m,l}

tr(MjΣ̂j) +
1

n
tr(MlΣ̂m∩lMmΣ̂m∪l)

a.s.−−→ 1− 2ϕ2
s

2ϕs − ϕ

∫
v(−λ;ϕs)r

1 + v(−λ;ϕs)r
dH(r)

+ ϕ
2ϕs

2ϕs − ϕ

(∫
v(−λ;ϕs)r

1 + v(−λ;ϕs)r
dH(r)− λṽv(−λ;ϕ, ϕs)

∫
r

(1 + v(−λ;ϕs)r)2
dH(r)

)
− ϕ

ϕ

2ϕs − ϕ

(
ϕs

ϕ

∫
r

1 + v(−λ;ϕs)r
dH(r)− ϕs − ϕ

ϕ
λṽv(−λ;ϕ, ϕs)

∫
r

1 + v(−λ;ϕs)r
dH(r)

−λṽv(−λ;ϕ, ϕs)

∫
r

(1 + v(−λ;ϕs)r)2
dH(r)

)
= 1− ϕs

∫
v(−λ;ϕs)r

1 + v(−λ;ϕs)r
dH(r) +

ϕ(ϕs − ϕ)

2ϕs − ϕ
λṽv(−λ;ϕ, ϕs)

∫
r

1 + v(−λ;ϕs)r
dH(r)

− ϕλṽv(−λ;ϕ, ϕs)

∫
r

(1 + v(−λ;ϕs)r)2
dH(r)

= λv(−λ;ϕs) +
ϕ(ϕs − ϕ)

2ϕs − ϕ

∫
λṽv(−λ;ϕ, ϕs)r

1 + v(−λ;ϕs)r
dH(r)− ϕ

∫
λṽv(−λ;ϕ, ϕs)r

(1 + v(−λ;ϕs)r)2
dH(r)

=
λ2ṽv(−λ;ϕ, ϕs)

2ϕs − ϕ

(
2ϕs − ϕ

λv(−λ;ϕs)
− ϕ(2ϕs − ϕ)

λ

∫
v(−λ;ϕs)r

2

(1 + v(−λ;ϕs)r)2
dH(r)

+
ϕ(ϕs − ϕ)

λ

∫
r

1 + v(−λ;ϕs)r
dH(r)− ϕ

λ

∫
r

(1 + v(−λ;ϕs)r)2
dH(r)

)
=

λ2ṽv(−λ;ϕ, ϕs)

2ϕs − ϕ

(
2ϕs − ϕ

λv(−λ;ϕs)
− ϕ(2ϕs − ϕ)

λ

∫
r

1 + v(−λ;ϕs)r
dH(r)

+
ϕ(ϕs − ϕ)

λ

∫
r

1 + v(−λ;ϕs)r
dH(r)

)
= λ2ṽv(−λ;ϕ, ϕs)

2

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
= Dλ(ϕs, ϕs)

(
2(ϕs − ϕ)

2ϕs − ϕ

1

λv(−λ;ϕs)
+

ϕ

2ϕs − ϕ

)
(1 + ṽ(−λ;ϕ, ϕs)).

E. Proof of Proposition 3.6
Proof of Proposition 3.6. From Lemma D.1, we have

1

n
∥y −Xβ̃λ

k∥22 = − 1

n
E
I
SRS∼Ik

[
Errtrain(β̂

λ
k (DI)) + Errtest(β̂

λ
k ({DI}))

]
+

2

n
E
(Im,Iℓ)

SRS∼Ik

[
Errtrain(β̃

λ
k ({DIm ,DIℓ})) + Errtest(β̃

λ
k ({DIm ,DIℓ}))

]
.
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Since by Lemma D.2, Lemma D.3 and Lemma G.6, each expectation converges, we have that

1

n
∥y −Xβ̃λ

k∥22
a.s.−−→ 2ϕ(2ϕs − ϕ)

ϕ2
s

T λ
2 (ϕ, ϕs) +

2(ϕs − ϕ)2

ϕ2
s

Rλ
2 (ϕ, ϕs)−

ϕ

ϕs
T λ

1 (ϕ, ϕs)−
ϕs − ϕ

ϕs
Rλ

1 (ϕ, ϕs),

where the convergence of the averages is from Lemma G.5 and the convergence of coefficients is from Lemma G.2. Since
the denominator converges from Lemma 3.4, we further have

gcvλ
k,∞

a.s.−−→ G λ
∞(ϕ, ϕs) =

2ϕ(2ϕs − ϕ)

ϕ2
s

T λ
2 (ϕ, ϕs) +

2(ϕs − ϕ)2

ϕ2
s

Rλ
2 (ϕ, ϕs)−

ϕ

ϕs
T λ

1 (ϕ, ϕs)−
ϕs − ϕ

ϕs
Rλ

1 (ϕ, ϕs)

Dλ
∞(ϕ, ϕs)

,

for λ > 0 and ϕs ∈ [ϕ,+∞).

For the boundary case when λ > 0 but ϕs = +∞, we require Proposition E.1; for the boundary case when λ = 0, we
require Proposition E.2. Applying Proposition E.1 and Proposition E.2 finishes the proof.

E.1. Boundary case: diverging subsample aspect ratio for the ridge predictor

Proposition E.1 (Risk approximation when ϕs → +∞). Under Assumptions 2.1-2.2, it holds for all λ > 0,

gcvλ
k

a.s.−−→ G λ
∞(ϕ,∞),

as k, n, p → ∞, p/n → ϕ ∈ (0,∞) and p/k → ∞, where G λ
∞(·, ·) is defined in Proposition 3.6.

Proof of Proposition E.1. Recall that

1

n
∥y −Xβ̃λ

k∥22 = lim
M→∞

1

n
∥y −Xβ̃λ

k,M∥22 = (β0 − β̃λ
k )

⊤Σ̂(β0 − β̃λ
k ) +

1

n
ϵ⊤ϵ+

2

n
(β0 − β̃λ

k )
⊤Σ̂ϵ

From Lemma G.3 and Lemma G.4, we have that β⊤
0 X

⊤ϵ/n
a.s.−−→ 0 and ϵ⊤ϵ/n

a.s.−−→ σ2 as n → ∞. For the other term, note
that for any (I1, . . . , IM )

SRS∼ Ik,

∥β̃λ
k∥2 ≤ lim

M→∞
E
(I1,...,IM )

SRS∼Ik

[
1

M

M∑
m=1

∥(X⊤LmX/k + λIp)
−1(X⊤Lmy/k)∥2

]

≤ lim
M→∞

E
(I1,...,IM )

SRS∼Ik

[
1

M

M∑
m=1

∥(X⊤LmX/k + λIp)
−1X⊤Lm/

√
k∥ · ∥Lmy/

√
k∥2

]
≤ C

√
ρ2 + σ2 · max

Im∈Ik

∥(X⊤LmX/k + λIp)
−1X⊤Lm/

√
k∥op,

where the last inequality holds eventually almost surely since Assumptions 2.1-2.2 imply that the entries of y have bounded
4-th moment, and thus from the strong law of large numbers, ∥Lmy/

√
k∥2 is eventually almost surely bounded above by

C
√

E[y21 ] = C
√
ρ2 + σ2 for some constant C. Observe that operator norm of the matrix (X⊤LmX/k+λIp)

−1XLm/
√
k

is upper bounded maxi si/(s
2
i + λ) ≤ 1/smin where si’s are the singular values of X and smin is the smallest nonzero

singular value. As k, p → ∞ such that p/k → ∞, smin → ∞ almost surely (e.g., from results of Bloemendal et al. (2016))
and therefore, ∥β̃λ

k∥2 → 0 almost surely. Because ∥Σ̂∥op is upper bounded almost surely, we further have β̃⊤
k X

⊤ϵ/n
a.s.−−→ 0.

Consequently we have (β0 − β̃k)
⊤X⊤ϵ/n

a.s.−−→ 0 and

1

n
∥y −Xβ̃λ

k∥22
a.s.−−→ β⊤

0 Σ̂β0 + σ2.

Finally, from Lemma F.8 (1) β⊤
0 Σ̂β0

a.s.−−→ β⊤
0 Σβ0 and from Assumption 2.2, we have

1

n
∥y −Xβ̃λ

k∥22
a.s.−−→ σ2 + ρ2

∫
r dG(r).

Since Sλ
k = Xβ̃λ

k , we have that tr(Sλ
k )/n

a.s.−−→ 0. So the denominator converges to 1 almost surely.

From Lemma F.10, we have G λ
∞(ϕ,∞) := limϕs→+∞ G λ

∞(ϕ, ϕs) = σ2 + ρ2
∫
r dG(r), which is also the limit of the GCV

estimate. Thus, G λ
∞(ϕ,∞) is well defined and G λ

∞(ϕ, ϕs) is right continuous at ϕs = +∞.

33



Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation

E.2. Boundary case: the ridgeless predictor

Proposition E.2 (Risk approximation when λ = 0). Under Assumptions 2.1-2.2, suppose that the conclusion of Proposi-
tion 3.6 holds for λ > 0. Then it holds that,

gcv0
k

a.s.−−→ G 0
∞(ϕ, ϕs) := lim

λ→0+
G λ
∞(ϕ, ϕs),

as k, n, p → ∞, p/n → ϕ ∈ (0,∞) and p/k → [ϕ,+∞], where G λ
∞(·, ·) is defined in Proposition 3.6.

Proof of Proposition E.2. We analyze the numerator and the denominator separately.

Part (1) For the denominator, note that

Pn,λ := (1− tr(Sλ
k )/n)

2 = lim
M→∞

(1− tr(Sλ
k,M )/n)2,

where Sλ
k = limM→∞ Sλ

k,M is the smoothing matrix. Since Sλ
k ⪰ 0n×n and

∥Sλ
k ∥op ≤ max

Im∈Ik

∥X(X⊤LmX/k + λIp)
−1X⊤Lm/

√
k∥op, (60)

which is also upper bounded almost surely from the proof in Proposition E.1 (when λ = 0, the inverse in the above display is
replaced by pseudo-inverse). Thus, we have Pn,λ is almost surely upper bounded λ ∈ Λ := [0, λmax] for any λmax ∈ (0,∞)
fixed.

Next we inspect the boundedness of the derivative of Pn,λ:

∂

∂λ
Pn,λ =

∂

∂λ
lim

M→∞
lim

M→∞
(1− tr(Sλ

k,M )/n)2 =:
∂

∂λ
lim

M→∞
QM,λ.

We claim that
∂

∂λ
lim

M→∞
QM,λ = lim

M→∞

∂

∂λ
QM,λ.

To see this, we need to show that QM,λ is equicontinuous in λ over Λ. First we know that QM,λ is differentiable in λ. From
(60), we have that QM,λ is uniformly upper bounded over λ ∈ Λ almost surely. Note that

∂

∂λ
QM,λ = 2(1− tr(Sλ

k,M )) tr

(
∂

∂λ
Sλ
k,M

)
,

where
∂

∂λ
Sλ
k,M =

1

M

M∑
m=1

X

(
X⊤LmX

k
+ λI

)−2
X⊤Lm

k
.

By the similar arguments as in Proposition E.1, we have that
∥∥∥∂Sλ

k,M/∂λ
∥∥∥
op

, and ∥Sλ
k,M∥22 are uniformly upper bounded

almost surely over Λ, the equicontinuity conclusion follows. Then by Moore-Osgood theorem, we have

∂

∂λ
Pn,λ = lim

M→∞
2(1− tr(Sλ

k,M )) tr

(
∂

∂λ
Sλ
k,M

)
is uniformly upper bounded almost surely over [0,+∞] independent of λ and M . Therefore, we conclude that |∂Pn,λ/∂λ|
is upper bounded almost surely over λ ∈ Λ.

On the other hand, we know that Pn,λ
a.s.−−→ Dλ

∞(ϕ, ϕs) for λ > 0. Define D0(ϕ, ϕs) := limλ→0+ Dλ
∞(ϕ, ϕs). When λ = 0

and ϕs > 1, we know that D0(ϕ, ϕs) is well-defined because v(−λ;ϕs) is finite and continuous from Lemma F.12. When
λ = 0 and ϕs ∈ (0, 1], from the definition of fixed-point solution (18), we have

1 = v(−λ;ϕs)λ+ ϕs

∫
v(−λ;ϕs)r

1 + v(−λ;ϕs)r
dH(r).
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In this case, v(0;ϕs) = +∞ from Lemma F.12. Let λ → 0+, we have

1 = lim
λ→0+

v(−λ;ϕs)λ+ ϕs lim
λ→0+

∫
v(−λ;ϕs)r

1 + v(−λ;ϕs)r
dH(r) = lim

λ→0+
v(−λ;ϕs)λ+ ϕs.

Then we have limλ→0+ v(−λ;ϕs)λ = 1− ϕs and Dλ
∞(ϕ, ϕs) = (1− ϕs)

2. Thus, D0(ϕ, ϕs) is always well-defined.

From Lemma F.12, there exists M ′ > 0 such that the magnitudes of v(−λ;ϕs) and its derivative with respect to λ are
continuous and bounded by M ′ for all λ ∈ [0,+∞]. It follows that |Dλ

∞(ϕ, ϕs)| and |∂Dλ
∞(ϕ, ϕs)/∂λ| are uniformly upper

bounded almost surely. From Moore-Osgood theorem and the continuity property from Lemma F.12, we have

lim
n→∞

lim
λ→0+

Pn,λ = lim
λ→0+

lim
n→∞

Pn,λ = lim
λ→0+

Dλ
∞(ϕ, ϕs) = D0(ϕ, ϕs).

Part (2) For the numerator, note that

P ′
n,λ :=

1

n
∥y −Xβ̃λ

k∥22 =
1

n
∥(In − Sλ

k )y∥22.

Assumptions 2.1-2.2 imply that the entries of y have bounded 4-th moment, and thus from the strong law of large numbers,
∥y/

√
n∥2 is eventually almost surely bounded above by C

√
E[y21 ] = C

√
ρ2 + σ2 for some constant C. On the other hand,

Sλ
k ⪰ 0n×n and ∥Sλ

k ∥op is also upper bounded almost surely from Part (1). Thus, we have P ′
n,λ is almost surely upper

bounded λ ∈ Λ.

Next we inspect the boundedness of the derivative of P ′
n,λ:

∂

∂λ
P ′
n,λ =

2

n
(y −Xβ̃λ

k )
⊤ ∂

∂λ
Sλ
ky

=
∂

∂λ
lim

M→∞

2

n
(y −Xβ̃λ

k,M )⊤Sλ
k,My

=
∂

∂λ
lim

M→∞

2

n
y⊤(In − Sλ

k,M )Sλ
k,My =:

∂

∂λ
lim

M→∞
Q′

M,λ.

We claim that
∂

∂λ
lim

M→∞
Q′

M,λ = lim
M→∞

∂

∂λ
Q′

M,λ.

To see this, we need to show that Q′
M,λ is equicontinuous in λ over Λ. First we know that Q′

M,λ is differentiable in λ. From
(60), we have that Q′

M,λ is uniformly upper bounded over λ ∈ Λ almost surely. Similarly, we have

∂

∂λ
Q′

M,λ =
2

n
y⊤(In − 2Sλ

k,M )
∂

∂λ
Sλ
k,My,

and ∣∣∣∣ ∂∂λQ′
M,λ

∣∣∣∣ ≤ ∥∥In − 2Sλ
k,M

∥∥
op

∥∥∥∥ ∂

∂λ
Sλ
k,M

∥∥∥∥
op

1

n
∥y∥22.

and the equicontinuity conclusion follows analogously as in Part (1). Therefore, we conclude that |∂P ′
n,λ/∂λ| is upper

bounded almost surely over λ ∈ [0,+∞].

On the other hand, we know that P ′
n,λ

a.s.−−→ G λ
∞(ϕ, ϕs) for λ > 0. Define D0(ϕ, ϕs)G 0

∞(ϕ, ϕs) :=

limλ→0+(D
λ
∞(ϕ, ϕs)G λ

∞(ϕ, ϕs)) = D0(ϕ, ϕs)R0
M (ϕ, ϕs), which is well defined from Part (1) and Lemma A.2. From

Lemma F.12, there exists M ′ > 0 such that the magnitudes of v(−λ;ϕs), ṽ(λ;ϕs, ϕ) and c̃(λ;ϕs), and their derivatives
with respect to λ are continuous and bounded by M ′ for all λ ∈ [0,+∞]. It follows that |G λ

∞(ϕ, ϕs)| is upper bounded
almost surely. Analogously, we have that |∂(Dλ

∞(ϕ, ϕs)G λ
∞(ϕ, ϕs))/∂λ| is also upper bounded almost surely on λ ∈ Λ.

From Moore-Osgood theorem and the continuity property from Lemma F.12, we have

lim
n→∞

lim
λ→0+

P ′
n,λ = lim

λ→0+
lim
n→∞

P ′
n,λ = lim

λ→0+
G λ
∞(ϕ, ϕs) = G 0

∞(ϕ, ϕs).
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F. Auxiliary results on asymptotic equivalents
F.1. Preliminary background

We use the notion of asymptotic equivalence of sequences of random matrices in various proofs. In this section, we provide
a basic review of the related definitions and corresponding calculus rules. See Dobriban & Wager (2018); Dobriban & Sheng
(2021); Patil et al. (2022b;a) for more details.

Definition F.1 (Asymptotic equivalence). Consider sequences {Ap}p≥1 and {Bp}p≥1 of (random or deterministic) matrices
of growing dimensions. We say that Ap and Bp are equivalent and write Ap ≃ Bp if limp→∞ | tr[Cp(Ap −Bp)]| = 0
almost surely for any sequence of random matrices Cp independent to Ap and Bp, with bounded trace norm such that
lim supp→∞ ∥Cp∥tr < ∞ almost surely.

The notion of asymptotic equivalence of two sequences of random matrices from Definition F.1 can be further extended to
incorporate conditioning on another sequence of random matrices.

Definition F.2 (Conditional asymptotic equivalence). Consider sequences {Ap}p≥1, {Bp}p≥1 and {Dp}p≥1 of (random or
deterministic) matrices of growing dimensions. We say that Ap and Bp are equivalent given Dp and write Ap ≃ Bp | Dp

if limp→∞ | tr[Cp(Ap −Bp)]| = 0 almost surely conditional on {Dp}p≥1, i.e.,

P
(

lim
p→∞

| tr[Cp(Ap −Bp)]| = 0

∣∣∣∣ {Dp}p≥1

)
= 1,

for any sequence of random matrices Cp independent to Ap and Bp conditional on Dp, with bounded trace norm such that
lim sup ∥Cp∥tr < ∞ as p → ∞.

Below we summarize the calculus rules for conditional asymptotic equivalence Definition F.2 adapted from Patil et al.
(2022a, Lemma S.7.4 and S.7.6).

Lemma F.3 (Calculus of deterministic equivalents). Let Ap, Bp, Cp and Dp be sequences of random matrices. The
calculus of deterministic equivalents (≃D and ≃R) satisfies the following properties:

(1) Equivalence: The relation ≃ is an equivalence relation.

(2) Sum: If Ap ≃ Bp | Ep and Cp ≃ Dp | Ep, then Ap +Cp ≃ Bp +Dp | Ep.

(3) Product: If Ap has bounded operator norms such that lim supp→∞ ∥Ap∥op < ∞, Ap is conditional independent to
Bp and Cp given Ep for p ≥ 1, and Bp ≃ Cp | Ep, then ApBp ≃ ApCp | Ep.

(4) Trace: If Ap ≃ Bp | Ep, then tr[Ap]/p− tr[Bp]/p → 0 almost surely when conditioning on Ep.

(5) Differentiation: Suppose f(z,Ap) ≃ g(z,Bp) | Ep where the entries of f and g are analytic functions in z ∈ S and
S is an open connected subset of C. Suppose for any sequence Cp of deterministic matrices with bounded trace norm
we have | tr[Cp(f(z,Ap)− g(z,Bp))]| ≤ M for every p and z ∈ S. Then we have f ′(z,Ap) ≃ g′(z,Bp) | Ep for
every z ∈ S, where the derivatives are taken entrywise with respect to z.

(6) Unconditioning: If Ap ≃ Bp | Ep, then Ap ≃ Bp.

(7) Substitution: Let v : Rp×p → R and f(v(C),C) : Rp×p → Rp×p be a matrix function for matrix C ∈ Rp×p

and p ∈ N, that is continuous in the first augment with respect to operator norm. If v(C)
a.s.
= v(D) such that C is

independent to D, then f(v(C),C) ≃ f(v(D),C) | C.

F.2. Standard ridge resolvents and various extensions

In this section, we collect various asymptotic equivalents. Appendix F.2.1 introduces the basic concepts and definitions.
The extended equivalents developed in the work of Patil et al. (2022a) are summarized in Appendix F.2.2. Based on
results in Appendices F.2.1 and F.2.2, we prove some useful deterministic equivalent relations in Appendix F.2.3, which are
subsequently used in the proof of Lemma D.3 (Lemmas D.6 and D.7).
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F.2.1. STANDARD RIDGE RESOLVENTS

The following lemma provides a deterministic equivalent for the standard ridge resolvent and implies Corollary F.5. It is
adapted from Theorem 1 of Rubio & Mestre (2011). See also Theorem 3 of Dobriban & Sheng (2021).
Lemma F.4 (Deterministic equivalent for standard ridge resolvent). Suppose xi ∈ Rp, 1 ≤ i ≤ n, are i.i.d. random vectors
such that each xi = ziΣ

1/2, where zi is a random vector consisting of i.i.d. entries zij , 1 ≤ j ≤ p, satisfying E[zij ] = 0,
E[z2ij ] = 1, and E[|zij |8+α] ≤ Mα for some constants α > 0 and Mα < ∞, and Σ ∈ Rp×p is a positive semidefinite
matrix satisfying 0 ⪯ Σ ⪯ rmaxIp for some constant rmax < ∞ (independent of p). Let X ∈ Rn×p the concatenated
matrix with x⊤

i , 1 ≤ i ≤ n, as rows, and let Σ̂ ∈ Rp×p denote the random matrix X⊤X/n. Let γ := p/n. Then, for
z ∈ C+, as n, p → ∞ such that 0 < lim inf γ ≤ lim sup γ < ∞, we have

(Σ̂− zIp)
−1 ≃ (c(e(z; γ))Σ− zIp)

−1, (61)

where the scalar c(e(z; γ)) is defined in terms of another scalar e(z; γ) by the equation

c(e(z; γ)) =
1

1 + γe(z; γ)
, (62)

and e(z; γ) is the unique solution in C+ to the fixed-point equation

e(z; γ) = tr[Σ(c(e(z; γ))Σ− zIp)
−1]/p. (63)

Note that both the scalars c(e(z; γ)) and e(z; γ) also implicitly depend on Σ. For notation brevity, we do not always
explicitly indicate this dependence. However, we will be explicit in such dependence for certain extensions to follow.
Additionally, observe that one can eliminate e(z; γ) in the statement of Lemma F.4 by combining (62) and (63) so that for
z ∈ C+, one has

(Σ̂− zIp)
−1 ≃ (c(z; γ)Σ− zIp)

−1,

where c(z) is the unique solution in C− to the fixed-point equation

1

c(z; γ)
= 1 + γ tr[Σ(c(z; γ)Σ− zIp)

−1]/p.

The following corollary is a simple consequence of Lemma F.4, which supplies a deterministic equivalent for the (regular-
ization) scaled ridge resolvent. We will work with a real regularization parameter λ from here on.
Corollary F.5 (Deterministic equivalent for scaled ridge resolvent). Assume the setting of Lemma F.4. For λ > 0, we have

λ(Σ̂+ λIp)
−1 ≃ (v(−λ; γ)Σ+ Ip)

−1,

where v(−λ; γ) > 0 is the unique solution to the fixed-point equation

1

v(−λ; γ)
= λ+ γ

∫
r

1 + v(−λ; γ)r
dHn(r). (64)

Here Hn is the empirical distribution (supported on R≥0) of the eigenvalues of Σ.

As a side note, the parameter v(−λ; γ) in Corollary F.5 is also the companion Stieltjes transform of the spectral distribution
of the sample covariance matrix Σ̂, which is also the Stieltjes transform of the spectral distribution of the gram matrix
XX⊤/n.

The following lemma uses Corollary F.5 along with calculus of deterministic equivalents (from Lemma F.3), and provides
deterministic equivalents for resolvents needed to obtain asymptotic bias and variance of standard ridge regression. It is
adapted from Lemma S.6.10 of Patil et al. (2022b).
Lemma F.6 (Deterministic equivalents for ridge resolvents associated with generalized bias and variance). Suppose xi ∈ Rp,
1 ≤ i ≤ n, are i.i.d. random vectors with each xi = ziΣ

1/2, where zi ∈ Rp is a random vector that contains i.i.d. random
variables zij , 1 ≤ j ≤ p, each with E[zij ] = 0, E[z2ij ] = 1, and E[|zij |8+α] ≤ Mα for some constants α > 0 and Mα < ∞,
and Σ ∈ Rp×p is a positive semidefinite matrix with rminIp ⪯ Σ ⪯ rmaxIp for some constants rmin > 0 and rmax < ∞
(independent of p). Let X ∈ Rn×p be the concatenated random matrix with xi, 1 ≤ i ≤ n, as its rows, and define
Σ̂ := X⊤X/n ∈ Rp×p. Let γ := p/n. Then, for λ > 0, as n, p → ∞ with 0 < lim inf γ ≤ lim sup γ < ∞, the following
statements hold:
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(1) Bias of ridge regression:

λ2(Σ̂+ λIp)
−1A(Σ̂+ λIp)

−1 ≃ (v(−λ; γ,Σ)Σ+ Ip)
−1(ṽb(−λ; γ,Σ,A)Σ+A)(v(−λ; γ,Σ)Σ+ Ip)

−1. (65)

(2) Variance of ridge regression:

(Σ̂+ λIp)
−2Σ̂A ≃ ṽv(−λ; γ,Σ)(v(−λ; γ,Σ)Σ+ Ip)

−2ΣA. (66)

Here v(−λ; γ,Σ) > 0 is the unique solution to the fixed-point equation

1

v(−λ; γ,Σ)
= λ+

∫
γr

1 + v(−λ; γ,Σ)r
dHn(r;Σ), (67)

and ṽb(−λ; γ,Σ) and ṽv(−λ; γ,Σ) are defined through v(−λ; γ,Σ) by the following equations:

ṽb(−λ; γ,Σ,A) =
γ tr[AΣ(v(−λ; γ,Σ)Σ+ Ip)

−2]/p

v(−λ; γ,Σ)−2 −
∫

γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r;Σ)
, (68)

ṽv(−λ; γ,Σ)−1 = v(−λ; γ,Σ)−2 −
∫

γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r;Σ), (69)

where Hn(·;Σ) is the empirical distribution (supported on [rmin, rmax]) of the eigenvalues of Σ.

Though Lemma F.6 states the dependency explicitly, we will simply write Hn(r), v(−λ; γ), ṽb(−λ; γ,A), and ṽv(−λ; γ)
to denote Hn(r;Σ), v(−λ; γ,Σ), ṽb(−λ; γ,Σ,A), and ṽv(−λ; γ,Σ), respectively, for simplifying notations when it is
clear from the context. When A = Σ, we simply write ṽb(−λ; γ) = ṽb(−λ; γ,A). The moment assumption of order 8 + α
for some α > 0 in the above lemma can be relaxed to only requiring the existence of moments of order 4+α by a truncation
argument as in the proof of Theorem 6 of Hastie et al. (2022) (in Appendix A.4 therein). We omit the details and refer the
readers to Hastie et al. (2022).

F.2.2. EXTENDED RIDGE RESOLVENTS

The lemma below extends the deterministic equivalents of the ridge resolvents in Lemma F.6 to provide deterministic
equivalents for Tikhonov resolvents, where the regularization matrix λIp is replaced with λ(Ip +C) and C ∈ Rp×p is an
arbitrary positive semidefinite random matrix.
Lemma F.7 (Tikhonov resolvents, adapted from Patil et al. (2022a)). Suppose the conditions in Lemma F.6 holds. Let
C ∈ Rp×p be any symmetric and positive semidefinite random matrix with uniformly bounded operator norm in p that is
independent to X for all n, p ∈ N, and let N = (Σ̂+ λIp)

−1. Then the following statements hold:

(1) Tikhonov resolvent:

λ(N−1 + λC)−1 ≃ Σ̃−1
C . (70)

(2) Bias of Tikhonov regression:

λ2(N−1 + λC)−1Σ(N−1 + λC)−1 ≃ Σ̃−1
C (ṽb(−λ; γ,ΣC)Σ+Σ)Σ̃−1

C . (71)

(3) Variance of Tikhonov regression:

(N−1 + λC)−1Σ̂(N−1 + λC)−1Σ ≃ ṽv(−λ; γ,ΣC)Σ̃−1
C ΣΣ̃−1

C Σ, (72)

where ΣC = (Ip +C)−
1
2Σ(Ip +C)−

1
2 , Σ̃C = v(−λ; γ,ΣC)Σ + Ip +C. Here, v(−λ; γ,ΣC), ṽb(−λ; γ,ΣC), and

ṽv(−λ; γ,ΣC) defined by (67)-(69) simplify to

1

v(−λ; γ,ΣC)
= λ+ γ tr[(v(−λ; γ,ΣC)Σ+ Ip +C)−1Σ]/p, (73)

1

ṽv(−λ; γ,ΣC)
=

1

v(−λ; γ,ΣC)2
− γ tr[(v(−λ; γ,ΣC)Σ+ Ip +C)−2Σ2]/p, (74)

ṽb(−λ; γ,ΣC) = γ tr[(v(−λ; γ,ΣC)Σ+ Ip +C)−2Σ2]/p · ṽv(−λ; γ,ΣC). (75)

If γ → ϕ ∈ (0,∞), then γ in (1)-(3) can be replaced by ϕ, with the empirical distribution Hn of eigenvalues replaced by
the limiting distribution H .
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F.2.3. RESOLVENTS FOR TRAINING ERROR

The following lemma concerns the deterministic equivalents of quantities that arise in the proof for Lemma D.3.

Lemma F.8 (Resolvents for in-sample error). Suppose the conditions in Lemma F.6 holds. Let C ∈ Rp×p be any symmetric
and positive semidefinite random matrix with uniformly bounded operator norm in p that is independent to X for all n, p ∈ N.
Let I1, I2

SRS∼ Ik and Σ̂j be the sample covariance matrix computed using k observations of X indexed by Ij (j = 0, 1).
For j = 1, 2, let Mj = (Σ̂j + λIp)

−1 be the resolvent for Σ̂j . Then, as k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and
p/k → ϕs ∈ [ϕ,∞), the following statements hold:

(1) Independent product with sample covariance:

CΣ̂j ≃ CΣ.

(2) Bias term 1:

λ2M1CM2 ≃ (v(−λ;ϕs)Σ+ Ip)
−1

(ṽ(−λ;ϕ, ϕs,C)Σ+C) (v(−λ;ϕs)Σ+ Ip)
−1

. (76)

(3) Bias term 2:

M1Σ̂1∩2M2C ≃ ṽv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)
−2ΣC, (77)

(4) Variance term 1:

M1Σ̂1∩2 ≃ Ip − (v(−λ;ϕs)Σ+ Ip)
−1, (78)

(5) Variance term 2:

M1Σ̂1∩2M2Σ̂1∩2 ≃ ϕs

ϕ

(
v(−λ;ϕs)−

ϕs − ϕ

ϕs
λṽv(−λ;ϕ, ϕs)

)
(v(−λ;ϕs)Σ+ Ip)

−1Σ

− λṽv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ, (79)

where

ṽ(−λ;ϕ, ϕs,C) =
lim
k,n,p

ϕ tr[CΣ(v(−λ;ϕs)Σ+ Ip)
−2]/p

v(−λ;ϕs)
−2 − ϕ

∫
r2

(1 + v(−λ;ϕs)r)2
dH(r)

,

ṽv(−λ;ϕ, ϕs) :=
1

v(−λ;ϕs)
−2 − ϕ

∫
r2

(1 + v(−λ;ϕs)r)2
dH(r)

.

Proof of Lemma F.8. We split the proof into different parts.

Part (1) Note that tr(Σ̂j) =
∑

i∈Ij
∥xi∥22/k and xi = z⊤

i Σzi. By Lemma G.4, we have that tr(Σ̂j)/p− tr(Σ)/p
a.s.−−→ 0.

Since ∥C∥op is uniformly upper bounded and∣∣∣∣1p tr(CΣ̂j)−
1

p
tr(CΣ)

∣∣∣∣ ≤ 1

p
| tr(C(Σ̂j −Σ))| ≤ 1

p
∥C∥op | tr(Σ̂j −Σ)|,

it follows that 1
p tr(CΣ̂j)− 1

p tr(CΣ)
a.s.−−→ 0, which implies that CΣ̂j ≃ CΣ

Part (2) This is a direct consequence of Patil et al. (2022a, Part (c) of the proof for Lemma S.24).
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Part (3) This is a direct consequence of Patil et al. (2022a, Part (c) of the proof for Lemma S.25).

Part (4) Let i0 = |I1 ∩ I2|. Conditioning on Σ̂1∩2 and i0, from Definition F.2 and Lemma F.7 (1) we have

λM1 ≃ Mdet
M1∩2,i0 :=

k

k − i0
(v1Σ+ Ip +C1)

−1
∣∣∣ i0,

where v1 = v(−λ; γ1,ΣC1
), ΣC1

= (Ip +C1)
− 1

2Σ(Ip +C1)
− 1

2 , C1 = i0(λ(k − i0))
−1M−1

1∩2, and γ1 = p/(k − i0).
Here the subscripts of v1 and C1 are related to the aspect ratio γ1. Because

lim sup
∥∥∥Σ̂1∩2

∥∥∥
op

≤ rmax(1 +
√

ϕ2
s/ϕ)

2,

almost surely as k, n, p → ∞ such that p/n → ϕ and p/k → ϕs, by Lemma F.3 (3), we have

M1Σ̂1∩2 ≃ λ−1Mdet
M1∩2,i0Σ̂1∩2 | i0.

That is,

M1Σ̂1∩2 ≃ k

i0
(M−1

1∩2 + λC0)
−1Σ̂1∩2 | i0,

where C0 = (k − i0)/i0 · (v1Σ+ Ip). Define ΣC0
= (I +C0)

− 1
2Σ(I +C0)

− 1
2 . Conditioning on i0, by Lemma F.7 (1),

we have

tr[ΣC1
(v1ΣC1

+ Ip)
−1] = tr[Σ(v1Σ+ Ip +C1)

−1]

=
λ(k − i0)

i0
tr

[
Σ

(
M−1

1∩2 +
λ(k − i0)

i0
(v1Σ+ Ip)

)−1
]

a.s.
=

k − i0
i0

tr

[
Σ

(
v0Σ+ Ip +

k − i0
i0

(v1Σ+ Ip)

)−1
]

= tr

[
Σ

((
i0

k − i0
v0 + v1

)
Σ+

k

k − i0
Ip

)−1
]
,

where v0 = v(−λ; γ0,ΣC0)and γ0 = p/i0. Note that the fixed-point solution v0 depends on v1. The fixed-point equations
reduce to

1

v0
= λ+ γ0 tr[ΣC0

(v0ΣC0
+ Ip)

−1]/p = λ+
p

k
tr

[
Σ

((
i0
k
v0 +

k − i0
k

v1

)
Σ+ Ip

)−1
]
/p

1

v1
= λ+ γ1 tr[ΣC1(v1ΣC1 + Ip)

−1]/p = λ+
p

k
tr

[
Σ

((
i0
k
v0 +

k − i0
k

v1

)
Σ+ Ip

)−1
]
/p

almost surely. Note that the solution (v0, v1) to the above equations is a pair of positive numbers and does not depend
on samples. If (v0, v1) is a solution to the above system, then (v1, v0) is also a solution. Thus, any solution to the above
equations must be unique. On the other hand, since v0 = v1 = v(−λ; p/k) satisfies the above equations, it is the unique
solution. By Lemma F.3 (7), we can replace v(−λ; γ1,ΣC1) by the solution v0 = v1 = v(−λ; p/k) of the above system,
which does not depend on samples. Thus,

M1Σ̂1∩2 ≃=
k

i0
(M−1

1∩2 + λC∗)−1Σ̂1∩2 | i0, (80)

where C∗ = (k − i0)/i0 · (v(−λ; p/k)Σ+ Ip). Again from Lemma F.7 (1) we have

(M−1
1∩2 + λC∗)−1Σ̂1∩2 = Ip − λ(M−1

1∩2 + λC∗)−1(Ip +C∗)

≃ Ip − (v(−λ; p/k)Σ+ Ip +C∗)−1(Ip +C∗) | i0

=
i0
k
(Ip − (v(−λ; p/k)Σ+ Ip)

−1).

Finally, from Lemma F.3 (6), we have

M1Σ̂1∩2 ≃ Ip − (v(−λ; p/k)Σ+ Ip)
−1 ≃ Ip − (v(−λ;ϕs)Σ+ Ip)

−1.
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Part (5) From Patil et al. (2022a, Part (c) of the proof for Lemma S.2.5), we have that

M1Σ̂1∩2M2Σ̂1∩2 ≃ k2

i20
(M−1

1∩2 + λC∗)−1Σ̂1∩2(M
−1
1∩2 + λC∗)−1Σ̂1∩2,

where M1∩2 = (Σ̂1∩2 + λIp)
−1 and C∗ = (k − i0)/i0(v(−λ;ϕs)Σ+ Ip). Since

(M−1
1∩2 + λC∗)−1Σ̂1∩2 = Ip − λ(M−1

1∩2 + λC∗)−1(Ip +C∗),

we have

M1Σ̂1∩2M2Σ̂1∩2

≃ k2

i20
(M−1

1∩2 + λC∗)−1Σ̂1∩2 − λ
k2

i20
(M−1

1∩2 + λC∗)−1Σ̂1∩2(M
−1
1∩2 + λC∗)−1(Ip +C∗)

=
k2

i20
(Ip − λ(M−1

1∩2 + λC∗)−1(Ip +C∗))− λ
k2

i20
(M−1

1∩2 + λC∗)−1Σ̂1∩2(M
−1
1∩2 + λC∗)−1(Ip +C∗) (81)

From Lemma F.7 (1) and (3), we have that

λ(M−1
1∩2 + λC∗)−1 ≃ ϕ

ϕs
(v(−λ;ϕs)Σ+ Ip)

−1

(M−1
1∩2 + λC∗)−1Σ̂1∩2(M

−1
1∩2 + λC∗)−1 ≃ ϕ2

ϕ2
s

ṽv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ.

Combing the above two equivalents, the expression in (81) can be further simplified as:

M1Σ̂1∩2M2Σ̂1∩2 ≃ ϕs

ϕ

(
v(−λ;ϕs)−

ϕs − ϕ

ϕs
λṽv(−λ;ϕ, ϕs)

)
(v(−λ;ϕs)Σ+ Ip)

−1Σ

− λṽv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ.

F.3. Analytic properties of associated fixed-point equations

In this section, we gather results on the properties of the fixed-point solution v(−λ;ϕ) defined in (64).

The following lemma provides the existence and uniqueness of the solution v(−λ;ϕ). The properties of the derivatives in
Lemma F.9 are related to the properties of ṽv(−λ;ϕ) defined in Lemma F.10, which equals −f ′(x), where the function f is
defined in (82).

Lemma F.9 (Properties of the solution to the fixed-point equation, adapted from Patil et al. (2022a)). Let λ, ϕ, a > 0 and
b < ∞ be real numbers. Let P be a probability measure supported on [a, b]. Define the function f such that

f(x) =
1

x
− ϕ

∫
r

1 + rx
dP (r)− λ. (82)

Then, the following properties hold:

(1) For λ = 0 and ϕ ∈ (1,∞), there is a unique x0 ∈ (0,∞) such that f(x0) = 0. The function f is positive and strictly
decreasing over (0, x0) and negative over (x0,∞), with limx→0+ f(x) = ∞ and limx→∞ f(x) = 0.

(2) For λ > 0 and ϕ ∈ (0,∞), there is a unique xλ
0 ∈ (0,∞) such that f(xλ

0 ) = 0. The function f is positive and strictly
decreasing over (0, xλ

0 ) and negative over (xλ
0 ,∞), with limx→0+ f(x) = ∞ and limx→∞ f(x) = −λ.

(3) For λ = 0 and ϕ ∈ (1,∞), f is differentiable on (0,∞) and its derivative f ′ is strictly increasing over (0, x0), with
limx→0+ f ′(x) = −∞ and f ′(x0) < 0.

(4) For λ > 0 and ϕ ∈ (0,∞), f is differentiable on (0,∞) and its derivative f ′ is strictly increasing over (0,∞), with
limx→0+ f ′(x) = −∞ and f ′(xλ

0 ) < 0.
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The continuity and limiting behavior of the function ϕ 7→ v(−λ;ϕ) is given for ridge regression (λ > 0) in Lemma F.10 and
for ridgeless regression (λ = 0) in Lemma F.11.

Lemma F.10 (Continuity in the aspect ratio for ridge regression, adapted from Patil et al. (2022a)). Let λ, a > 0 and b < ∞
be real numbers. Let P be a probability measure supported on [a, b]. Consider the function v(−λ; ·) : ϕ 7→ v(−λ;ϕ), over
(0,∞), where v(−λ;ϕ) > 0 is the unique solution to the fixed-point equation

1

v(−λ;ϕ)
= λ+ ϕ

∫
r

1 + rv(−λ;ϕ)
dP (r) (83)

Then, the following properties hold:

(1) The range of the function v(−λ; ·) is a subset of (0, λ−1).

(2) The function v(−λ; ·) is continuous and strictly decreasing over (0,∞). Furthermore, limϕ→0+ v(−λ;ϕ) = λ−1, and
limϕ→∞ v(−λ;ϕ) = 0.

(3) The function ṽv(−λ; ·) : ϕ 7→ ṽv(−λ;ϕ), where

ṽv(−λ;ϕ) =

(
v(−λ;ϕ)−2 −

∫
ϕr2(1 + rv(−λ;ϕ))−2 dP (r)

)−1

,

is positive and continuous over (0,∞). Furthermore, limϕ→0+ ṽv(−λ;ϕ) = λ−2, and limϕ→∞ ṽv(−λ;ϕ) = 0.

(4) The function ṽb(−λ; ·) : ϕ 7→ ṽb(−λ;ϕ), where

ṽb(−λ;ϕ) = ṽv(−λ;ϕ)

∫
ϕr2(1 + v(−λ;ϕ)r)−2 dP (r),

is positive and continuous over (0,∞). Furthermore, limϕ→0+ ṽb(−λ;ϕ) = limϕ→∞ ṽb(−λ;ϕ) = 0.

Lemma F.11 (Continuity in the aspect ratio for ridgeless regression, adapted from Patil et al. (2022b)). Let a > 0 and
b < ∞ be real numbers. Let P be a probability measure supported on [a, b]. Consider the function v(0; ·) : ϕ 7→ v(0;ϕ),
over (1,∞), where v(0;ϕ) > 0 is the unique solution to the fixed-point equation

1

ϕ
=

∫
v(0;ϕ)r

1 + v(0;ϕ)r
dP (r). (84)

Then, the following properties hold:

(1) The function v(0; ·) is continuous and strictly decreasing over (1,∞). Furthermore, limϕ→1+ v(0;ϕ) = ∞, and
limϕ→∞ v(0;ϕ) = 0.

(2) The function ϕ 7→ (ϕv(0;ϕ))−1 is strictly increasing over (1,∞). Furthermore, limϕ→1+(ϕv(0;ϕ))
−1 = 0 and

limϕ→∞(ϕv(0;ϕ))−1 = 1.

(3) The function ṽv(0; ·) : ϕ 7→ ṽv(0;ϕ), where

ṽv(0;ϕ) =

(
v(0;ϕ)−2 − ϕ

∫
r2(1 + rv(0;ϕ))−2 dP (r)

)−1

,

is positive and continuous over (1,∞). Furthermore, limϕ→1+ ṽv(0;ϕ) = ∞, and limϕ→∞ ṽv(0;ϕ) = 0.

(4) The function ṽb(0; ·) : ϕ 7→ ṽb(0;ϕ), where

ṽb(0;ϕ) = ṽv(0;ϕ)

∫
r2(1 + v(0;ϕ)r)−2 dP (r),

is positive and continuous over (1,∞). Furthermore, limϕ→1+ ṽb(0;ϕ) = ∞, and limϕ→∞ ṽb(0;ϕ) = 0.
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The continuity and differentiabilty of the function λ 7→ v(−λ;ϕ) on a closed interval [0, λmax] for some constant λmax is
given for ϕ ∈ (1,∞) in Lemma F.12 adapted from Patil et al. (2022b). This ensures that v(0;ϕ) = limλ→0+ v(−λ;ϕ) is
well-defined for ϕ > 1 and also implies that related functions are bounded.

Lemma F.12 (Differentiability in the regularization parameter). Let 0 < a ≤ b < ∞ be real numbers. Let P be a probability
measure supported on [a, b]. Let ϕ > 0 be a real number. Let Λ = [0, λmax] for some constant λmax ∈ (0,∞). For λ ∈ Λ,
let v(−λ;ϕ) > 0 denote the solution to the fixed-point equation

1

v(−λ;ϕ)
= λ+ ϕ

∫
r

v(−λ;ϕ)r + 1
dP (r).

When λ = 0 and ϕ ∈ (0, 1], v(−λ;ϕ) := +∞. Then, the following properties hold:

(1) (Monotonicity) For ϕ ∈ (0,∞), the function λ 7→ v(−λ;ϕ) is strictly decreasing in λ ∈ [0,∞).

(2) (Differentiability) For ϕ ∈ (1,∞), the function λ 7→ v(−λ;ϕ) is twice differentiable over Λ.

(3) (Boundedness of the second derivative) For ϕ ∈ (1,∞), v(−λ;ϕ), ∂/∂λ[v(−λ;ϕ)], and ∂2/∂λ2[v(−λ;ϕ)] are
bounded over Λ.

Proof of Lemma F.12. Start by re-writing the fixed-point equation as

λ =
1

v(−λ;ϕ)
− ϕ

∫
r

v(−λ;ϕ)r + 1
dP (r).

Define a function f by

f(x) =
1

x
− ϕ

∫
r

xr + 1
dP (r).

Observe that v(−λ;ϕ) = f−1(λ). We next study various properties of f and prove the different parts in the statment.

Part (1) Properties of f and f−1:

Observe that

f(x) =
1

x
− ϕ

∫
r

xr + 1
dP (r) =

1

x

(
1− ϕ

∫
xr

xr + 1
dP (r)

)
.

The function g : x 7→ 1/x is positive and strictly decreasing over (0,∞) with limx→0+ g(x) = ∞ and limx→∞ g(x) = 0,
while the function

h : x 7→ 1− ϕ

∫
xr

xr + 1
dP (r)

is strictly decreasing over (0,∞) with h(0) = 1 and limx→∞ h(x) = 1− ϕ.

Thus, there is a unique 0 < x0 < ∞ when ϕ > 1 such that h(x0) = 0, and consequently f(x0) = 0; and x0 = +∞ when
ϕ ∈ (0, 1] such that g(x0) = 0, and consequently f(x0) = 0. Because h and g are positive over [0, x0), f , a product of two
positive strictly decreasing functions, is strictly decreasing over (0, x0), with limx→0+ f(x) = ∞ and f(x0) = 0.

Because f is strictly decreasing over (0, x0), f−1 is strictly decreasing (see, e.g., Problem 2, Chapter 5 of Rudin (1976)).
Since f(x0) = 0, f−1(0) = x0, and since limx→0+ f(x) = ∞, limy→∞ f−1(y) = 0. Hence, f−1 is strictly decreasing
over [0,∞) for all ϕ > 0 and bounded above by x0 < ∞ for all ϕ > 1.

Parts (2) and (3) We will prove the remaining two parts together.

Properties of f ′ and (f−1)′:

The derivative f ′ at x is given by

f ′(x) = − 1

x2
+ ϕ

∫
r2

(xr + 1)2
dP (r) = − 1

x2

(
1− ϕ

∫ (
xr

xr + 1

)2

dP (r)

)
.
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The function g : x 7→ 1/x2 is positive and strictly decreasing over (0,∞) with limx→0+ g(x) = ∞ and limx→∞ g(x) = 0.
On the other hand, the function

h : x 7→ 1− ϕ

∫ (
xr

xr + 1

)2

dP (r)

is strictly decreasing over (0,∞) with h(0) = 1 and h(x0) > 0. This follows because for x ∈ [0, x0],

ϕ

∫ (
xr

xr + 1

)2

dP (r) ≤
(

x0b

x0b+ 1

)
ϕ

∫ (
xr

xr + 1

)
dP (r)

< ϕ

∫
xr

xr + 1
dP (r) ≤ ϕ

∫
x0r

x0r + 1
dP (r) = 1,

(85)

where the first inequality in the chain above follows as the support of P is [a, b], and the last inequality follows since
f(x0) = 0 and x0 > 0, which implies that

1

x0
= ϕ

∫
r

x0r + 1
dP (r), or equivalently that 1 = ϕ

∫
x0r

x0r + 1
dP (r).

Thus, −f ′, a product of two positive strictly decreasing functions, is strictly decreasing, and in turn, f ′ is strictly increasing.
Moreover, limx→0+ f ′(x) = −∞; when ϕ > 1, f ′(x0) < 0 and when ϕ ∈ (0, 1], f ′(x) approaches zero from below as
x → +∞.

When ϕ > 1, because f ′(x) ̸= over (0, x0), by the inverse function theorem, (f−1)′, we have∣∣(f−1)′(f(x))
∣∣ = ∣∣∣∣ 1

f ′(x)

∣∣∣∣ < ∣∣∣∣ 1

f ′(x0)

∣∣∣∣ = 1

1

x2
0

(
1− ϕ

∫ (
xr

xr + 1

)2

dP (r)

) < ∞,

where the first inequality uses the fact that |f ′(x0)| < |f ′(x)| for x ∈ (0, x0] from Part 1, and the last inequality uses the
bound from (85).

Properties of f ′′ and (f−1)′′:

The second derivative f ′′ at x is given by

f ′′(x) =
2

x3
− 2ϕ

∫
r3

(xr + 1)3
dP (r) =

2

x3

(
1− ϕ

∫ (
xr

xr + 1

)3

dP (r)

)
.

The rest of the arguments are similar to those in Part 2. The function g : x 7→ 1/x3 is positive and strictly decreasing over
(0,∞) with limx→0+ g(x) = ∞ and limx→∞ g(x) = 0, while the function

h : x 7→ 1− ϕ

∫ (
xr

xr + 1

)3

dP (r)

is strictly decreasing over (0,∞) with h(0) = 1 and h(x0) > 0 as

ϕ

∫ (
xr

xr + 1

)3

dP (r) ≤
(

x0b

x0b+ 1

)2

ϕ

∫ (
xr

xr + 1

)
dP (r)

< ϕ

∫
xr

xr + 1
dP (r) ≤ ϕ

∫
x0r

x0r + 1
dP (r) = 1.

(86)

It then follows that f ′′ is strictly decreasing, with limx→0+ f ′′(x) = ∞; when ϕ > 1, f ′′(x0) > 0 and when ϕ ∈ (0, 1],
f ′′(x) approaches zero from above as x → +∞.

When ϕ > 1, by inverse function theorem, we have

∣∣(f−1)′′(f(x))
∣∣ = ∣∣∣∣ f ′′(x)

f ′(x)3

∣∣∣∣ =
2

x3

(
1− ϕ

∫ (
xr

xr + 1

)3

dP (r)

)
1

x6

(
1− ϕ

∫ (
xr

xr + 1

)2

dP (r)

)3 ≤ 2x3
0(

1− ϕ

∫ (
xr

xr + 1

)2

dP (r)

)3 < ∞,
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where the first inequality uses the bound from (86), and the second inequality uses the bound from (85).

This finishes all the parts and concludes the proof.

G. Helper concentration results
G.1. Size of the intersection of randomly sampled datasets

In this section, we collect various helper results concerned with concentrations and convergences. Below we recall the
definition of a hypergeometric random variable, along with its mean and variance. See, e.g., Greene & Wellner (2017) for
more related details.

Definition G.1 (Hypergeometric random variable). A random variable X follows the hypergeometric distribution X ∼
Hypergeometric(n,K,N) if its probability mass function is given by

P(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , max{0, n+K −N} ≤ k ≤ min{n,K}.

The expectation and variance of X are given by

E[X] =
nK

N
, Var(X) =

nK(N −K)(N − n)

N2(N − 1)
.

The following lemma characterize the limiting proportions of shared observations in two simple random samples under
proportional asymptotics, when both the subsample size and the full data size tend to infinity, which is adapted from Patil
et al. (2022a).

Lemma G.2 (Asymptotic proportions of shared observations). For n ∈ N, define Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 <

i2 < . . . < ik ≤ n}. Let I1, I2
SRSWR∼ Ik, define the random variable iSRSWR0 := |I1 ∩ I2| to be the number of shared

samples, and define iSRSWOR0 accordingly. Let {km}∞m=1 and {nm}∞m=1 be two sequences of positive integers such that
nm is strictly increasing in m, nν

m ≤ km ≤ nm for some constant ν ∈ (0, 1). Then, iSRSWR0 /km − km/nm
a.s.−−→ 0, and

iSRSWOR0 /km − km/nm
a.s.−−→ 0.

G.2. Convergence of random linear and quadratic forms

In this section, we collect helper lemmas on the concentration of linear and quadratic forms of random vectors.

The following lemma provides the concentration of a linear form of a random vector with independent components. It
follows from a moment bound from Lemma 7.8 of Erdős & Yau (2017), along with the Borel-Cantelli lemma, and is adapted
from Lemma S.8.5 of Patil et al. (2022b).

Lemma G.3 (Concentration of linear form with independent components). Let zp ∈ Rp be a sequence of random vector
with i.i.d. entries zpi, i = 1, . . . , p such that for each i, E[zpi] = 0, E[z2pi] = 1, E[|zpi|4+α] ≤ Mα for some α > 0 and
constant Mα < ∞. Let ap ∈ Rp be a sequence of random vectors independent of zp such that lim supp ∥ap∥2/p ≤ M0

almost surely for a constant M0 < ∞. Then, a⊤
p zp/p → 0 almost surely as p → ∞.

The following lemma provides the concentration of a quadratic form of a random vector with independent components. It
follows from a moment bound from Lemma B.26 of Bai & Silverstein (2010), along with the Borel-Cantelli lemma, and is
adapted from Lemma S.8.6 of Patil et al. (2022b).

Lemma G.4 (Concentration of quadratic form with independent components). Let zp ∈ Rp be a sequence of random vector
with i.i.d. entries zpi, i = 1, . . . , p such that for each i, E[zpi] = 0, E[z2pi] = 1, E[|zpi|4+α] ≤ Mα for some α > 0 and
constant Mα < ∞. Let Dp ∈ Rp×p be a sequence of random matrix such that lim sup ∥Dp∥op ≤ M0 almost surely as
p → ∞ for some constant M0 < ∞. Then, z⊤

p Dpzp/p− tr[Dp]/p → 0 almost surely as p → ∞.

G.3. Convergence of Ces̀aro-type mean and max for triangular array

In this section, we collect a helper lemma on deducing almost sure convergence of a Ces̀aro-type mean from almost sure
convergence of the original sequence, which is adapted from Patil et al. (2022a).
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Lemma G.5 (Convergence of conditional expectation). For n ∈ N, suppose {Rn,ℓ}Nn

ℓ=1 is a set of Nn random variables
defined over the probability space (Ω,F ,P), with 1 < Nn < ∞ almost surely. If there exists a constant c such that
Rn,pn

a.s.−−→ c for all deterministic sequences {pn ∈ [Nn]}∞n=1, then the following statements hold:

(1) maxℓ∈[Nn] |Rn,ℓ(ω)− c| a.s.−−→ 0.

(2) N−1
n

∑Nn

ℓ=1 Rn,ℓ
a.s.−−→ c.

Lemma G.6 (Convergence of conditional expectation over simple random sampling). For n ∈ N and k = kn ∈ Kn, let
Mn = |Ik| and suppose {Rn,1(Iℓ)}ℓ∈[Mn] and {Rn,2(Im, Iℓ)}m,ℓ∈[Mn],m ̸=ℓ are sets of Mn and Mn(Mn − 1) random
variables, such that Rn,2(Im, Iℓ) ≤ (Rn,1(Im) +Rn,2(Iℓ))/2. Then, the following holds:

(1) If there exists a constant c1 such that Rn,1(Iℓn)
a.s.−−→ c1 for all deterministic sequences {ℓn ∈ [Mn]}∞n=1, then

maxℓ∈[Mn] |Rn,ℓ(Iℓ)− c| a.s.−−→ 0 and E
Iℓ

SRS∼Ik
[|Rn,ℓ(Iℓ)− c|] a.s.−−→ 0.

(2) Further, if there exists a constant c2 such that Rn,2(Imn , Iℓn)
a.s.−−→ c2 for all sequences of sim-

ple random samples {(Imn
, Iℓn)

SRS∼ Ikn
}∞n=1, then max

(Im,Iℓ)
SRS∼Ik

|Rn,2(Im, Iℓ)− c2|
a.s.−−→ 0 and

E
(Im,Iℓ)

SRS∼Ik
[|Rn,2(Imn

, Iℓn)− c2|]
a.s.−−→ 0.

Proof of Lemma G.6. We split the proof into two cases.

Part (1) The conclusion directly follows from Lemma G.5.

Part (2) Observe that

Rn,2(Im, Iℓ) ≤
1

2
(Rn,1(Im) +Rn,2(Iℓ)). (87)

From (1), we have that EI [Rn,1(I)]
a.s.−−→ c1, where the expectation is taken with respect to the uniform distribution over

Ik. From the condition, we have Rn,2(Im, Iℓ)
a.s.−−→ c2 for any Im, Iℓ

SRS∼ Ik. Then, by Pratt’s lemma (see, e.g., Gut, 2005,
Theorem 5.5), the conclusion follows.

H. GCV correction for arbitrary M

Note that the asymptotic limit of the training error for arbitrary M ∈ N is given by

T λ
M = 2E λ

k,2 − E λ
k,1 +

2

M
(E λ

k,1 − E λ
k,2),

where E λ
k,j = ck,M,jT λ

k,j + (1− ck,M,j)Rλ
k,j . Here, ck,M,j is the limiting proportion of the distinct number of observations

from j simple random samples to the distinct number of observations from M simple random samples of size k. Roughly
speaking, the proportion of unseen observations from M simple random samples of size k is (n− k)M/nM and thus

ck,M,j = lim
1− (n− k)j/nj

1− (n− k)M/nM
=

1− (1− ϕ/ϕs)
j

1− (1− ϕ/ϕs)M
.

From the expression, one knows for certain that the GCV asymptotics will not match the risk of the estimator in general.
In addition, the form of the expression also leads to an approach to correct the GCV estimator for general M that we will
discuss below. What we prove in Theorem 3.1 is that the difference between the two asymptotics vanishes as M → ∞. We
expect the difference to scale as 1/M . The explicit analysis of the finite-ensemble effect requires carefully analyzing the
coefficients ck,M,j , and even for the isotropic design, the expression for the GCV asymptotics for general appears to be
very involved. It is in principle possible to perform this analysis, but we did not pursue it further in the paper given our
primary focus on the full-ensemble estimator. Numerically, we observe that the bias is small for a moderate M (e.g., for
M = 10) and a reasonable data model with SNR (SNR = 0.6) from Figure 4. In general, we expect this to be the case for
either moderate k or M and typical real-world SNR ranges. We will consider adding more numerical illustrations of the
finite-ensemble effect in the revision under different settings.
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We aim to define the corrected GCV as

gcvλ
k,M :=

a1T
λ
k,M + a2R̄

λ
k,M

Dλ
k,M

,

where a1 and a2 are two unknown parameters to be determined. To determine the unknown parameters, we need to match
the limiting GCV with the true risk. Since

T λ
1 (ϕ, ϕs) = Dλ

1 (ϕ, ϕs)R
λ
1 (ϕ, ϕs), and T λ

2 (ϕ, ϕs) = b1R
λ
1 (ϕ, ϕs) + b2R

λ
2 (ϕ, ϕs),

for some known constants b1 and b2 which can be derived in the proof of Proposition 3.3, the adjustment is given by

a1

[
−
(
1− 2

M

)
(ck,M,1D

λ
1 (ϕ, ϕs) + 1− ck,M,1)R

λ
1 (ϕ, ϕs)

+ 2

(
1 +

1

M

)
(ck,M,2b1R

λ
1 (ϕ, ϕs) + (1− ck,M,2 + b2)R

λ
2 (ϕ, ϕs))

]

+ Dλ
M (ϕ, ϕs)a2

(
−
(
1− 2

M

)
Rλ

1 (ϕ, ϕs) + 2

(
1 +

1

M

)
Rλ

2 (ϕ, ϕs)

)
= −

(
1− 2

M

)
[a1(ck,M,1D

λ
1 (ϕ, ϕs) + 1− ck,M,1) + a2D

λ
M (ϕ, ϕs)]R

λ
1 (ϕ, ϕs)

+ 2

(
1 +

1

M

)
[a1(ck,M,2b1R

λ
1 (ϕ, ϕs) + (1− ck,M,2 + b2)R

λ
2 (ϕ, ϕs)) + a2D

λ
M (ϕ, ϕs)]R

λ
2 (ϕ, ϕs)),

which implies that

a1(ck,M,1D
λ
1 (ϕ, ϕs) + 1− ck,M,1) + a2D

λ
M (ϕ, ϕs) = Dλ

M (ϕ, ϕs)

a1(ck,M,2b1R
λ
1 (ϕ, ϕs) + (1− ck,M,2 + b2)R

λ
2 (ϕ, ϕs)) + a2D

λ
M (ϕ, ϕs)R

λ
2 (ϕ, ϕs) = Dλ

M (ϕ, ϕs)R
λ
2 (ϕ, ϕs).

Solving the above linear system for a1 > 0 and a2 ∈ R gives the correct weights for defining a consistent GCV estimate.
The solutions will depend on Dλ

M (ϕ, ϕs), Rλ
1 (ϕ, ϕs) and Rλ

2 (ϕ, ϕs). For the denominator, (12) is a consistent estimate for
Dλ

M (ϕ, ϕs). For the prediction risks of M = 1, 2, we can use out-of-bag observations to estimate Rλ
1 (ϕ, ϕs) and Rλ

2 (ϕ, ϕs).

I. Additional details for numerical experiments

The covariance matrix of an auto-regressive process of order 1 (AR(1)) is given by Σar1, where (Σar1)ij = ρ
|i−j|
AR1 for some

parameter ρAR1 ∈ (0, 1), and the AR(1) data model is defined as:

yi = x⊤
i β0 + ϵi, xi ∼ N (0,Σar1),

β0 =
1

5

5∑
j=1

w(j), ϵi ∼ N (0, σ2),
(M-AR1)

where w(j) is the eigenvector of Σar1 associated with the top jth eigenvalue r(j). From Grenander & Szegö (1958,
pp. 69-70), the top j-th eigenvalue can be written as r(j) = (1 − ρ2AR1)/(1 − 2ρAR1 cos θjp + ρ2AR1) for some θjp ∈
((j − 1)π/(p + 1), jπ/(p + 1)). Then, under model (M-AR1), the signal strength ρ2 defined in Assumption 2.2 is
5−1(1−ρ2AR1)/(1−ρAR1)

2, which is the limit of 25−1
∑5

j=1 r(j). Thus, model (M-AR1) parameterized by two parameters
ρAR1 and σ2 satisfies Assumption 2.1-2.2.
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