
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHY MULTI-GRADE DEEP LEARNING OUTPERFORMS
SINGLE-GRADE: THEORY AND PRACTICE

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-grade deep learning (MGDL) has recently emerged as an alternative to stan-
dard end-to-end training, referred to here as single-grade deep learning (SGDL),
showing strong empirical promise. This work provides both theoretical and ex-
perimental evidence of MGDL’s computational advantages. We establish con-
vergence guarantees for gradient descent (GD) applied to MGDL, demonstrat-
ing greater robustness to learning-rate choices compared to SGDL. In the case of
ReLU activations with single-layer grades, we further show that MGDL reduces
to a sequence of convex optimization subproblems. For more general settings, we
analyze the eigenvalue distributions of Jacobian matrices from GD iterations, re-
vealing structural properties underlying MGDL’s enhanced stability. Practically,
we benchmark MGDL against SGDL on image regression, denoising, and deblur-
ring tasks, as well as on CIFAR-10 and CIFAR-100, covering fully connected
networks, CNNs, and transformers. These results establish MGDL as a scalable
framework that unites rigorous theoretical guarantees with broad empirical im-
provements.

1 INTRODUCTION

Deep learning has transformed fields from computer vision He et al. (2016); Krizhevsky et al. (2012)
to medicine Chen et al. (2018); Jumper et al. (2021) and scientific computing Raissi et al. (2019).
Despite these successes, training deep neural networks (DNNs) remains challenging due to non-
convex optimization, vanishing/exploding gradients, and spectral bias that favors low-frequency
features Rahaman et al. (2019); Xu et al. (2019). Gradient descent can also exhibit short-term
oscillations near the Edge of Stability Arora et al. (2022); Cohen et al. (2021), making conventional
training inefficient, hard to interpret, and limited in generalization. These challenges motivate multi-
grade deep learning (MGDL) Xu (2025), which incrementally builds networks to improve stability,
accuracy, and interpretability.

MGDL decomposes end-to-end optimization into a sequence of smaller problems, each training
a shallow network on the residuals of previous grades. Previously learned networks remain fixed
and act as adaptive “basis” functions or features. This iterative refinement reduces optimization
complexity and progressively enhances learning.

MGDL has demonstrated superior performance over standard end-to-end training, which we refer to
here as single-grade deep learning (SGDL), in regression Fang & Xu (2024); Xu (2023), oscillatory
Fredholm integral equations Jiang & Xu (2024), and PDEs Xu & Zeng (2023), effectively mitigating
spectral bias.

We provide a mathematical explanation for why MGDL outperforms SGDL. Focusing on gradient
descent, we establish convergence theorems showing MGDL’s greater robustness to learning-rate
choices. When each grade uses a single ReLU layer, MGDL reduces a highly nonconvex problem to
a sequence of convex subproblems, enhancing trainability. Further analysis of a linear surrogate it-
erative scheme based on the Jacobian of the original map shows that MGDL’s eigenvalues lie within
(−1, 1), ensuring stable convergence, whereas SGDL’s can exceed this range, causing oscillatory
loss. Additional experiments benchmark MGDL against SGDL on image regression, denoising, and
deblurring tasks, as well as CIFAR-10 and CIFAR-100 classification, using fully connected net-
works, CNNs, and transformers. These results demonstrate that MGDL unifies rigorous theoretical
guarantees with broad empirical improvements as a scalable framework.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Key contributions of this paper:

1. We provide a rigorous convergence analysis of gradient descent for SGDL and MGDL, offering
deeper insight into MGDL’s computational advantages.

2. We prove that if each grade of MGDL employs a single hidden ReLU layer, the originally
nonconvex optimization problem decomposes into a sequence of convex subproblems.

3. Extensive experiments on image regression, denoising, deblurring, CIFAR-10, and CIFAR-
100 classification, including fully connected networks, CNNs, and transformers, demonstrate that
MGDL consistently outperforms SGDL with greater stability.

4. We analyze the impact of learning rate, showing that MGDL is more robust than SGDL.

5. We study a linear approximation of GD dynamics and the eigenvalue distribution of the associated
Jacobian to explain MGDL’s convergence and stability advantages.

2 STANDARD DEEP LEARNING MODEL

In this section, we review the standard deep learning model and analyze the convergence of the
gradient descent (GD) applied to its optimization problem.

A deep neural network (DNN) is a composition of affine maps and nonlinear activations with input
layer, D − 1 hidden layers, and an output layer. Let d0 = d (input dimension), dD = t (output
dimension), and dj the width of layer j. For j = 1, . . . , D, the weights and biases are Wj ∈
Rdj−1×dj and bj ∈ Rdj , with ReLU activation σ(x) = max{0, x} applied componentwise.

Given x ∈ Rd, the hidden layers are defined recursively:

H1(x) := σ
(
W⊤

1 x+ b1

)
,Hj+1(x) := σ

(
W⊤

j+1Hj (x) + bj+1

)
, j = 1, . . . , D − 2.

The output is ND

(
{Wj ,bj}Dj=1;x

)
= ND(x) := W⊤

DHD−1 (x) + bD. For data D =

{(xn,yn)}Nn=1, the loss is

L({Wj ,bj}Dj=1;D) = 1
2N

∑N

n=1
∥yn −ND(xn)∥2. (1)

The SGDL model minimizes this loss over parameters Θ = {Wj ,bj}Dj=1, yielding optimal Θ∗ and
trained network ND(Θ∗; ·).
Among the most common optimization methods for deep learning are stochastic gradient descent
(SGD) Kiefer & Wolfowitz (1952); Robbins & Monro (1951) and Adam Kingma & Ba (2015), both
rooted in gradient descent (GD). We therefore study GD for minimizing the loss in equation 1.

To facilitate convergence analysis, we stack all parameters {Wj ,bj}Dj=1 into a single vector. For
any matrix or vector A, let A denote its vectorization: stacking columns if A is a matrix, taking
A = A if it is a column vector, and A = A⊤ if a row vector. The parameter vector is W :=(
W⊤

1 , b⊤1 , . . . ,W
⊤
D , b⊤D

)⊤
, with total dimension M =

∑D
j=1(dj−1 + 1)dj .

We consider GD for a general objective F : RM → R, assumed nonnegative, twice continuously
differentiable, and generally nonconvex. The iteration is

W k+1 = W k − η ∂F
∂W (W k), (2)

where k is the iteration index and η > 0 the learning rate. In our setting, F is the loss L in equation 1.

We analyze the convergence of GD for minimizing equation 1. Assume there exists a compact
convex set W ⊂ RM such that for some η0 > 0, all GD iterates W k∞

k=0 from equation 2 with
F = L remain in W whenever η ∈ (0, η0). Convergence depends on the Hessian of L over W ,
where we set α := supW∈W ∥HL(W)∥, with ∥ · ∥ the spectral norm. Since HL(W) ∈ RM×M , α
captures the effect of network depth and size.

The following theorem, proved in Appendix A, establishes convergence of GD with F := L, ex-
tending Theorem 6 in Xu (2025), which assumes zero biases.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: MGDL at grade 3: blue lines denote trainable parameters, while orange lines represent
parameters fixed from grades 1 (first term) and 2 (second term). At this grade, only a shallow
network is trained, building on features learned in the previous grades.

Theorem 1. Let {W k}∞k=0 be generated by equation 2 with F = L and initial guess W 0. Suppose
σ is twice continuously differentiable and the iterates remain in a convex compact set W ⊂ RM . If
the learning rate η ∈ (0, 2/α), then:

(i) limk→∞ L(W k) = L∗ for some L∗ ≥ 0;

(ii) limk→∞
∂L
∂W (W k) = 0;

(iii) Every cluster point Ŵ of {W k} satisfies ∂L
∂W (Ŵ) = 0.

Deep neural networks are defined by weight matrices and bias vectors, with parameter counts scaling
rapidly with depth—for example, LeNet-5 has 60K parameters LeCun et al. (1998), ResNet-152
60.2M He et al. (2016), and GPT-3 175B Brown et al. (2020). End-to-end training at such scales
is hampered by optimization and stability issues: (i) deeper networks induce highly nonconvex loss
landscapes, often trapping solutions in poor local minima Bengio et al. (2006); and (ii) training
suffers from vanishing or exploding gradients, which impede convergence Glorot & Bengio (2010);
Goodfellow et al. (2016); Pascanu et al. (2013). To address these challenges, multi-grade deep
learning (MGDL) Xu (2025) trains networks in stages, where each shallow grade builds on the
residuals of the previous one and propagates its output forward, incrementally approximating the
target function.

3 MULTI-GRADE DEEP LEARNING

This section reviews MGDL, and analyzes GD convergence at each grade.

Given data D = {(xn,yn)}Nn=1, MGDL decomposes learning a depth-D DNN into L < D se-
quential grades. Each grade trains a shallow network NDl

on residuals from the previous grade,
with depths 1 < Dl < D and

∑L
l=1 Dl = D + L − 1. Let Θl = {Wlj ,blj}Dl

j=1 denote grade-l
parameters. The model is defined recursively by
g1(Θ1;x) := ND1(Θ1;x), gl+1(Θl+1;x) := NDl+1(Θl+1; ·)◦HDl−1(Θ

∗
l ; ·)◦· · ·◦HD1−1(Θ

∗
1; ·)(x). (3)

The grade-l loss is

Ll(Θl;D) = 1
2N

∑N

n=1
∥eln − gl(Θl;xn)∥2, (4)

with residuals e1n = yn and e(l+1)n = eln − gl(Θ
∗
l ;xn). Each Θ∗

l minimizes Ll given earlier
grades. After L grades, the MGDL output is ḡL({Θ∗

l }Ll=1;x) =
∑L

l=1 gl(Θ
∗
l ;x). Figure 1 illustrates

the multi-grade architecture at grade three.

For optimization, set x1n := xn and recursively define xln := HDl−1−1(Θ
∗
l−1; ·) ◦ · · · ◦

HD1−1(Θ
∗
1; ·)(xn), and dataset Dl = {(xln, eln)}Nn=1. The grade-l loss is

Ll(Θl;Dl) =
1

2N

∑N

n=1
∥eln −NDl

(Θl;xln)∥2.

MGDL’s training time scales linearly with the number of grades (assuming comparable layer and
neuron counts), while its memory cost is much lower than that of a single deep network, since
each grade trains only a shallow model. Let Wl := (W⊤

l1 , b
⊤
l1, . . . ,W

⊤
lDl

, b⊤lDl
)⊤ ∈ RMl , with

Ml :=
∑Dl

j=1(dl(j−1) + 1)dlj . The GD iteration is

W k+1
l = W k

l − ηl
∂Ll

∂Wl
(W k

l).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Assuming W k
l ⊂ Wl for some convex compact Wl ⊂ RMl , define αl := supWl∈Wl

∥HLl
(Wl)∥.

Theorem 2. Let {W k
l } be generated by the above GD iteration from W 0

l . Assume {(xln, eln)} ⊂
Rdl0 × Rd is bounded, σ is twice continuously differentiable, and {W k

l } ⊂ Wl. If ηl ∈ (0, 2/αl),
then

(i) limk→∞ Ll(W
k
l) = L∗

l for some L∗
l ≥ 0;

(ii) limk→∞
∂Ll

∂Wl
(W k

l) = 0;

(iii) Every cluster point Ŵl of {W k
l } satisfies ∂Ll

∂Wl
(Ŵl) = 0.

Theorem 2, proved in Appendix A, parallels Theorem 1, with the key distinction that MGDL opti-
mizes shallow subproblems at each grade. This mitigates vanishing/exploding gradients and allows
a broader admissible learning-rate range (ηl ∈ (0, 2/αl) with αl ≪ α), thereby improving stability
and robustness compared to SGDL.

4 CONVEX OPTIMIZATION IN MGDL WITH SINGLE-LAYER RELU GRADES

In this section, we show that when each grade in MGDL is realized as a single hidden-layer ReLU
network, the overall nonconvex optimization problem decomposes into a sequence of convex sub-
problems. For clarity, we consider bias-free networks with scalar output; the extension to biased
networks is analogous.

A two-layer ReLU network with m neurons is Ñ (x) :=
∑m

j=1 αjσ(w̃
⊤
j x), with hidden parameters

w̃j and outputs αj . Since σ(ax) = aσ(x) for a ≥ 0, each term can be written as αjσ(w̃
⊤
j x) =

σ(w⊤
j x)− σ(v⊤

j x) for suitable wj ,vj , making Ñ equivalent to

N (x) :=

m∑
j=1

(
σ(w⊤

j x)− σ(v⊤
j x)

)
, (5)

which we adopt as the building block of MGDL.

Suppose grade l of MGDL is a single hidden-layer ReLU network with 2ml neurons. By equation 5,
its output is

(Nl ◦ h∗
l−1)(x) :=

∑ml

j=1

(
σ(w⊤

ljh
∗
l−1(x))− σ(v⊤

ljh
∗
l−1(x))

)
. (6)

The input features h∗
l−1 are defined recursively by h∗

0(x) = x, and h∗
l−1(x) := (H∗

l−1◦· · ·◦H∗
1)(x),

with feature map

H∗
k(z) =

(
σ((w∗

k1)
⊤z), . . . , σ((w∗

kmk
)⊤z), σ((v∗

k1)
⊤z), . . . , σ((v∗

kmk
)⊤z)

)⊤
, k ∈ Nl−1.

Let the data matrix at grade l be Xl := [xl1, . . . ,xlN]⊤ ∈ RN×dl with xln := h∗
l−1(xn). At grade

l, we solve the nonconvex problem

p∗l := min
{wlj ,vlj}

ml
j=1

1

2

∥∥∥∑ml

j=1

(
σ(Xlwlj)− σ(Xlvlj)

)
− el

∥∥∥2. (7)

Following Pilanci & Ergen (2020), we show that equation 7 is equivalent to a convex program.
For any wl ∈ Rml−1 , define diag(1[Xlwl ≥ 0]), where 1[Xlwl ≥ 0] ∈ {0, 1}N with entries
1[x⊤

lnwl ≥ 0]. Since Xl is fixed, only finitely many such matrices exist Cover (2006); Stanley et al.
(2007); denote them Dl1, . . . ,DlPl

. This induces a partition {Cli}Pl
i=1 of Rml−1 , where Cli := {wl :

(2Dli−IN)Xlwl ≥ 0}. Each Cli is convex, closed under addition, and satisfies Rml−1 =
⋃Pl

i=1 Cli.
Within Cli, ReLU is linear, that is, σ(Xlwl) = DliXlwl, for wl ∈ Cli.

Using this, we introduce the convex program

q∗l := min
{wli,vli∈Cli}

Pl
i=1

1

2

∥∥∥∑Pl

i=1
DliXl(wli − vli)− el

∥∥∥2. (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 3. Let σ be ReLU. If ml ≥ Pl, then problems equation 7 and equation 8 attain the same
optimal value. Moreover, any optimal solution of equation 8 is also optimal for equation 7 when
ml = Pl.

Proof. Linearity within each region implies that feasible points of equation 8 are feasible for equa-
tion 7, hence p∗l ≤ q∗l . Conversely, given an optimal solution {w∗

lj ,v
∗
lj} of equation 7, regrouping

parameters by the partition {Cli} and using closure under addition yields aggregated vectors w̃∗
li, ṽ

∗
li

that form a feasible point of equation 8 with the same objective value, so q∗l ≤ p∗l . Thus p∗l = q∗l .
When ml = Pl, the correspondence is exact, and optimal solutions coincide.

Unlike Pilanci & Ergen (2020), which convexifies single hidden-layer ReLU networks via explicit
regularization, our multi-grade decomposition reformulates deep ReLU networks as a sequence of
convex programs, extending convexification from shallow to deep architectures.

5 PERFORMANCE COMPARISON OF MGDL AND SGDL

In this section, we compare MGDL and SGDL on image reconstruction tasks—regression, denois-
ing, and deblurring—as well as on the CIFAR-100 classification dataset Krizhevsky (2009). The
results demonstrate that MGDL consistently outperforms SGDL, which suffers from training insta-
bility and lower accuracy.

For image reconstruction, we employ full connected networks for both SGDL and MGDL, and
evaluate performance using PSNR equation 30. For classification, we use convolutional neural
networks (CNNs). In both cases, ReLU activations are applied, and training is performed using the
Adam optimizer Kingma & Ba (2015). Overall, MGDL achieves superior stability and accuracy
across both reconstruction and classification tasks.

Image regression. We model grayscale images as functions f : R2 → R, mapping pixel co-
ordinates to intensity values. The training set consists of a regularly spaced grid covering one
quarter of the pixels, while the test set includes all pixels. We evaluate SGDL and MGDL on
six images of varying sizes (Figure 9). For images (b)–(f), we use the fully connected architec-
ture in 26 with (nin, nout, nhidden, nh) = (2, 1, 128, 8) for SGDL and the architecture in 27 with
(nin, nout, nhidden, nh, L) = (2, 1, 128, 2, 4) for MGDL. For image (g), we employ a deeper net-
work, setting G = 12 for SGDL and g = 3 for MGDL.

Numerical results are summarized in Table 1 and Figure 11. Table 1 reports PSNR values, show-
ing that MGDL consistently outperforms SGDL with gains of 0.42–3.94 dB across all testing im-
ages. Figure 11 plots the training losses: SGDL exhibits persistent oscillations for all images, while
MGDL shows image-dependent behavior. For Barbara, Butterfly, and Walnut, MGDL oscillates
initially but stabilizes in later stages, whereas for Pirate and Chest, oscillations appear earlier be-
fore converging. Overall, MGDL tends to stabilize or decrease steadily over time, in contrast to the
sustained oscillations of SGDL.

The Cameraman image further illustrates these differences. Figures 10(a)–(b) show the training
losses: SGDL suffers from strong oscillations, leading to unstable predictions, as seen in Figures
10(c)–(f) at iterations 9800, 9850, 9900, and 9950, with corresponding PSNR fluctuations. In con-
trast, MGDL exhibits a steadily decreasing loss (b), and its predictions (g)–(j) improve consistently
across iterations. These results highlight the robustness and reliability of MGDL compared with
SGDL in image regression tasks.

Image denoising. We address the problem of recovering a clean image f ∈ Rn×n from a noisy
observation f̂ := f + ϵ, where the noise entries are i.i.d. Gaussian with zero mean and standard
deviation s, i.e., [ϵ]i,j ∼ N (0, s2). The optimization problem is formulated in Appendix B, with the
transform operator A set to the identity.

SGDL adopts structure 26 (2, 1, 128, 12), while MGDL uses 27 (2, 1, 128, 3, 4). We test six noise
levels, s = 10, 20, 30, 40, 50, 60, as illustrated in Figure 12. Results are summarized in Table 2
and Figures 13-15. MGDL consistently outperforms SGDL with PSNR gains of 0.16–4.23 dB.
During training, SGDL shows persistent oscillations, while MGDL improves steadily, especially
from grades 2–4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: PSNR comparison for image regression.

Image Method TrPSNR TePSNR
Cameraman SGDL 27.05 24.79

MGDL 31.80 25.21
Barbara SGDL 23.14 22.75

MGDL 24.36 23.84
Butterfly SGDL 26.22 24.87

MGDL 28.23 27.06
Pirate SGDL 24.20 24.34

MGDL 27.40 26.45
Chest SGDL 34.77 34.56

MGDL 39.44 38.50
Walnut SGDL 19.94 20.05

MGDL 21.83 21.31

Table 2: PSNR comparison for image denoising.

Noise Method Butterfly Pirate Chest
10 SGDL 27.53 25.13 36.20

MGDL 31.67 29.36 38.58
20 SGDL 26.73 25.02 35.34

MGDL 28.39 27.74 36.89
30 SGDL 26.05 24.63 34.30

MGDL 27.09 27.20 35.48
40 SGDL 25.54 24.47 33.55

MGDL 26.37 26.25 34.61
50 SGDL 24.65 24.01 33.51

MGDL 25.84 25.77 33.94
60 SGDL 24.30 23.82 32.90

MGDL 25.21 25.32 33.06

Table 3: PSNR comparison for image deblurring.

image method 3 5 7
Butterfly SGDL 25.43 24.20 22.70

MGDL 27.06 25.19 23.65
Pirate SGDL 24.72 23.79 23.13

MGDL 26.47 24.95 23.98
Chest SGDL 35.40 34.61 33.69

MGDL 38.24 36.51 35.14 Figure 2: Impact of learning rate.

Image deblurring. We address the problem of recovering f from a blurred observation f̂ := Kf+ϵ,
where K is a Gaussian blurring operator and [ϵ]i,j ∼ N (0, s2) with s = 3. The optimization
problem and operator A = K are detailed in Appendix B.

The SGDL and MGDL structures are the same as those used in Image Denoising, respectively. We
test three blurring levels (ŝ = 3, ŝ = 5, and ŝ = 7; Figure 16). Results are summarized in Table
3 and Figures 17-19. MGDL achieves PSNR improvements of 0.85–2.84 dB over SGDL. While
SGDL exhibits strong PSNR oscillations during training, MGDL shows stable and consistent gains,
particularly from grades 2 to 4.

Classification on CIFAR-100. We address the problem of image classification on the CIFAR-100
dataset, evaluating SGDL and MGDL in terms of both accuracy and training dynamics. We use
mean squared error (MSE) as the loss function, with architectures specified in equation 28 and 29.

We test two learning rates, 5×10−4 and 1×10−4. Results are shown in Figure 3. For both settings,
SGDL converges to a loss around 10−2, whereas MGDL reaches approximately 10−4, nearly two
orders of magnitude lower. In terms of stability, SGDL begins oscillating once the loss falls below
10−1, while MGDL remains stable until reaching 10−3. These results demonstrate that MGDL
delivers superior accuracy and significantly greater training stability compared to SGDL.

Results on image reconstruction and CIFAR-100 classification show that MGDL consistently out-
performs SGDL. Whereas SGDL exhibits pronounced oscillations in loss or PSNR during training,
MGDL achieves a steady decrease in loss or a consistent increase in PSNR. The underlying reasons
are analyzed in Section 7.

Figure 3: Training on CIFAR-100 using SGDL and MGDL(1-2:η = 5× 10−5, 3-4: η = 1× 10−4).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 IMPACT OF LEARNING RATE ON SGDL AND MGDL

We examine the effect of learning rate on SGDL and MGDL, both trained using gradient descent.

Synthetic data regression. We approximate g : [0, 1] → R defined by g(x) :=∑M
j=1 sin (2πκjx+ φj), x ∈ [0, 1], where φj ∼ U(0, 2π). Two settings are considered: (1)

M = 3, κ = [1, 5.5, 10]; (2) M = 5, κ = [1, 8.25, 15.5, 22.75, 30]. The training set contains
1,024 equally spaced points, and the validation set 1,000 uniformly sampled points.

SGDL adopts structure 26 (1, 1, 32, 4), while MGDL uses structure 27 (1, 1, 32, 1, 4). Learning rates
are selected from [0.001, 0.5], with 106 training epochs. Figure 2 illustrates the impact of learning
rate (left: Setting 1, right: Setting 2; ‘NaN’ indicates divergence). In Setting 1 (low-frequency
function), both methods perform well, while MGDL is robust across a wider range: SGDL achieves
loss < 0.001 only for η ∈ [0.03, 0.08], whereas MGDL sustains this performance for η ∈ [0.01, 0.3].
In Setting 2 (high-frequency function), SGDL converges only at η ≈ 0.005 and diverges for larger
rates, while MGDL remains stable with loss < 0.01 for η ∈ [0.08, 0.3].

Image regression. We consider image regression as in Section 5. SGDL use 26 (2, 1, 128, 8),
while MGDL uses 27 (2, 1, 128, 2, 4). Learning rates are selected from [0.001, 1], with 105 training
epochs. Figure 20 illustrates results on ‘Resolution Chart’, ‘Cameraman’, ‘Barbara’, and ‘Pirate’.
MGDL consistently achieves higher accuracy, while SGDL fails on ‘Cameraman’ and ‘Pirate’ for η
near 1. MGDL remains stable across this wide range of learning rates.

Summary. Across both synthetic and image regression, MGDL demonstrates markedly greater
robustness to the choice of learning rate, maintaining effective training and high accuracy over a
wider interval, whereas SGDL is sensitive and often fails with large learning rates.

7 EIGENVALUE ANALYSIS FOR SGDL AND MGDL

We analyze gradient descent (GD) equation 2 for SGDL and MGDL, expressing it as a Picard
iteration W k+1 = (I − η ∂F

∂W)W k and linearizing the gradient via Taylor expansion: ∂F
∂W (W k) =

HF (W
k−1)W k + uk−1 + rk−1, with remainder rk−1 of order (W k −W k−1)2. Neglecting rk−1

gives the linearized update

W̃ k+1 = Ak−1W̃ k − ηuk−1, Ak−1 = I− ηHF (W
k−1).

Theorem 4. Let F : RM → R be nonnegative and twice continuously differentiable, with
{W k} ⊂ Ω, a convex compact set. If τ := supW∈Ω ∥I − ηHF (W)∥ < 1, then {W̃ k} converges.
Moreover, if F is thrice continuously differentiable, the sequences {W k} and {W̃ k} (with matching
initializations) converge to the same limit if τ < 1.

Hence, convergence is governed by the spectrum of I − ηHF (W). Eigenvalues in (−1, 1) ensure
stable loss decay. Explicit Hessians for SGDL (F = L) and MGDL (F = Ll) under ReLU are
given in the Supplementary Material.

We next monitor the eigenvalues of I−ηHF (W
k) during training. In deep networks such as SGDL,

these eigenvalues often exit (−1, 1), producing oscillatory loss. In contrast, the shallower structure
of MGDL keeps them inside (−1, 1), leading to smooth loss decay.

Synthetic data regression. Setup follows Synthetic data regression in Section 6. Both models are
trained via gradient descent with learning rate η ∈ [0.001, 0.5], selected by lowest validation loss.
Results are shown in Figures 4 (Setting 1) and 21 (Setting 2).

For SGDL under Setting 1, Figure 4 (first subfigure) shows the ten smallest (solid) and ten largest
(dashed) eigenvalues during training (106 epochs). The smallest eigenvalue drops well below −1,
while indices 1–5 stay near −1. The largest eigenvalues slightly exceed 1. The loss decreases overall
but oscillates, correlating with the number of eigenvalues below or near −1.

For MGDL, the ten smallest eigenvalues remain within (−1, 1) across grades 1–4, while the largest
stay slightly above 1, producing smooth loss decay (Figure 4, second and fourth subfigures).

In Setting 2 (higher-frequency target), SGDL’s eigenvalues initially stay in (−1, 1) but later drop
to −1, causing strong loss oscillations up to 106 epochs. MGDL maintains eigenvalues in (−1, 1),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ensuring stable training and better accuracy (Figure 22, third and fourth subfigures). Across both
settings, the smallest eigenvalue predominantly determines loss behavior.

Figure 4: Training process of SGDL (η = 0.08) and MGDL (η = 0.06) for Setting 1.

Figure 5: Training process of SGDL (η = 0.02) and MGDL (η = 0.2) for ‘Resolution chart’.

Image regression. Following Section 5, shallow networks are used to enable Hessian computation:
SGDL with architecture 26 (2, 1, 48, 4) and MGDL with architecture 27 (2, 1, 48, 1, 4). For SGDL,
the smallest eigenvalue approaching −1 causes oscillatory loss, while MGDL’s eigenvalues remain
in (−1, 1), yielding stable reduction (Figures 5-25).

Image denoising. SGDL’s smallest eigenvalue approaches −1, causing oscillatory loss; MGDL
keeps all eigenvalues in (−1, 1), ensuring steady reduction (Figures 26-29).

CIFAR-10 classification. Using 10,000 sampled images, fully connected ReLU networks (26
(3072, 10, 128, 8) for SGDL and 27 (3072, 10, 128, 2, 4) for MGDL) are trained with squared loss
and full-batch gradient descent (Figure 6). With learning rate 0.004 0.004, SGDL reaches loss
7.16×10−3 in 26,878 s; MGDL achieves 2.56×10−3 in 22,177 s. SGDL shows strong oscillations
with eigenvalues often below −1, whereas MGDL exhibits mild oscillations in grade 1 and smooth
loss reduction in subsequent grades, with eigenvalues strictly within (−1, 1).

Across tasks— synthetic regression, image regression/denoising, and CIFAR-10—SGDL’s eigen-
values often fall below −1, causing loss oscillations, while MGDL’s stay within (−1, 1), explaining
its superior stability.

8 MULTI-GRADE TRANSFORMERS (MGT)

The Transformer Vaswani et al. (2017) is a widely used architecture based on self-attention, enabling
global information exchange. We introduce a MGT and apply it to time series regression.

A single-grade Transformer (SGT) embeds inputs into dmodel-dimensional vectors with positional
encoding, processes them through nh Transformer blocks (self-attention + feedforward with residu-

Figure 6: Training on CIFAR-10 using SGDL and MGDL with learning rate 4× 10−3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

als), and outputs predictions:
Input → Embedding → (Attention(dmodel, nhead) + MLP)× nh → Output. (9)

MGT trains multiple grades, each a Transformer of form equation 9 with a single block. Grade 1
uses positional encoding, while later grades inherit positional information and refine residuals. Un-
like SGT, which trains a deep stack at once, MGT decomposes training into smaller stages, yielding
greater stability, fewer oscillations, and improved convergence and generalization.

Time series regression on synthetic data. We consider predicting the next s = 1 value from the
past d = 64 observations, with problem settings, data generation, and network architectures detailed
in Appendix C. The first 80% of the sequence is used for training and the last 20% for testing.

Table 4 reports the training and testing mean squared errors (TrMSE, TeMSE), while Figure 7 shows
predictions on data. Although both methods fit the training data effectively, MGT achieves signif-
icantly better generalization, attaining a test error of 1.6 × 10−1 compared to 2.6 for SGT, while
requiring only 28% of the training time. As shown in Figure 7, SGT’s predictions deteriorate sharply
when test sequences deviate from the training distribution, while MGT maintains accurate predic-
tions.

Table 4: Synthetic time series

TrMSE TeMSE Time (s)
MGT 1.2× 10−2 1.6× 10−1 741
SGT 7.1× 10−2 2.6× 100 2, 693

Figure 7: Synthetic time series: train/test (1–2) and zoomed test (3–4).

Time series regression on financial data. We analyze the SPX (S&P 500 Index) using daily data
from Yahoo Finance or Bloomberg , spanning January 1, 2000, to August 22, 2025. The task is to
predict the next s = 1 value from the past d = 20 observations. Details on data preparation and
architectures are given in Appendix C. The last 5% of the data is reserved for testing, with 5% of
the remainder for validation and the rest for training.

Table 5 summarizes mean squared errors (TrMSE, VaMSE, TeMSE), and Figure 8 shows predic-
tions. Although oth models fit the training data affectively, MGT achieves substantially better gen-
eralization, attaining a test error of 1.8× 10−2 compared to 8.9× 10−2 for SGT, and requires only
33% of the training time. Crucially, as shown in Figure 8, SGT collapses under distribution shift,
with predictions diverging sharply from reality, whereas MGT remains accurate and stable through-
out.

Table 5: SPX time series.

TrMSE VaMSE TeMSE Time (s)
MGT 8.1× 10−4 9.6× 10−4 1.8× 10−2 572
SGT 1.8× 10−3 2.0× 10−3 8.9× 10−2 1, 742

Figure 8: SPX time series: train/val/test (1–2), zoomed test (3–4)

9 CONCLUSION

We analyzed MGDL from both theoretical and numerical perspectives. Spectral analysis revealed
that MGDL keeps eigenvalues of the iteration matrix within (−1, 1), ensuring stable convergence,
while SGDL often produces eigenvalues outside this range, leading to oscillatory training. A con-
vergence theorem further confirmed that eigenvalue behavior governs loss dynamics. Experiments
on synthetic regression, image reconstruction, and classification consistently showed MGDL’s ad-
vantages: greater stability, robustness to learning rates, and better accuracy in challenging settings.
These results establish MGDL as a principled and effective alternative to SGDL, combining convex
reformulations with practical performance gains.

Use of Large Language Models. Large Language Models were used to refine the text and ensure
grammatical accuracy.

9

https://finance.yahoo.com/quote/%5ESPX/history/
https://www.bloomberg.com/quote/SPX:IND

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. Anonymous code and instructions for all experiments are provided in
the supplementary material: Why MGDL outperforms SGDL.

REFERENCES

Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the edge
of stability in deep learning. In International Conference on Machine Learning, pp. 948–1024.
PMLR, 2022.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19, 2006.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image denoising. In
2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05),
volume 2, pp. 60–65. Ieee, 2005.

Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. The rise
of deep learning in drug discovery. Drug discovery today, 23(6):1241–1250, 2018.

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065,
2021.

Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with ap-
plications in pattern recognition. IEEE transactions on electronic computers, (3):326–334, 2006.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing, 16
(8):2080–2095, 2007.

Ronglong Fang and Yuesheng Xu. Addressing spectral bias of deep neural net-
works by multi-grade deep learning. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Infor-
mation Processing Systems, volume 37, pp. 114122–114146. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/cf1129594f603fde9e1913d10b7dbf77-Paper-Conference.pdf.

Ronglong Fang, Yuesheng Xu, and Mingsong Yan. Inexact fixed-point proximity algorithm for the
ℓ0 sparse regularization problem. Journal of Scientific Computing, 100(2):58, 2024.

Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T Roweis, and William T Freeman. Removing
camera shake from a single photograph. In Acm Siggraph 2006 Papers, pp. 787–794. 2006.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Jianfeng Guo, C Ross Schmidtlein, Andrzej Krol, Si Li, Yizun Lin, Sangtae Ahn, Charles Stearns,
and Yuesheng Xu. A fast convergent ordered-subsets algorithm with subiteration-dependent pre-
conditioners for pet image reconstruction. IEEE transactions on medical imaging, 41(11):3289–
3300, 2022.

10

https://anonymous.4open.science/r/Why-MGDL-outperforms-SGDL-5148/README.md
https://proceedings.neurips.cc/paper_files/paper/2024/file/cf1129594f603fde9e1913d10b7dbf77-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/cf1129594f603fde9e1913d10b7dbf77-Paper-Conference.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jie Jiang and Yuesheng Xu. Deep neural network solutions for oscillatory fredholm integral equa-
tions. Journal of Integral Equations and Applications, 36(1):23–55, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, pp. 462–466, 1952.

D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2015. URL https://arxiv.
org/abs/1412.6980.

Dilip Krishnan and Rob Fergus. Fast image deconvolution using hyper-laplacian priors. Advances
in neural information processing systems, 22, 2009.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Qia Li, Lixin Shen, Yuesheng Xu, and Na Zhang. Multi-step fixed-point proximity algorithms for
solving a class of optimization problems arising from image processing. Advances in Computa-
tional Mathematics, 41(2):387–422, 2015.

Charles A Micchelli, Lixin Shen, and Yuesheng Xu. Proximity algorithms for image models: de-
noising. Inverse Problems, 27(4):045009, 2011.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time con-
vex optimization formulations for two-layer networks. In International Conference on Machine
Learning, pp. 7695–7705. PMLR, 2020.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Lixin Shen, Yuesheng Xu, and Xueying Zeng. Wavelet inpainting with the ℓ0 sparse regularization.
Applied and Computational Harmonic Analysis, 41(1):26–53, 2016.

Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric combinatorics, 13:
389–496, 2007.

11

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Tingting Wu and Yuesheng Xu. Inverting incomplete fourier transforms by a sparse regularization
model and applications in seismic wavefield modeling. Journal of Scientific Computing, 92(2):
48, 2022.

Yuesheng Xu. Successive affine learning for deep neural networks. Analysis and Applications, to
appear. arXiv preprint arXiv:2305.07996, 2023.

Yuesheng Xu. Multi-grade deep learning. Communications on Applied Mathematics and Computa-
tion, pp. 1–52, 2025.

Yuesheng Xu and Taishan Zeng. Multi-grade deep learning for partial differential equations with
applications to the burgers equation. arXiv preprint arXiv:2309.07401, 2023.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain. In Neural Information Processing: 26th International Conference, ICONIP
2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26, pp. 264–274.
Springer, 2019.

A CONVERGENCE PROOF

Proofs of Theorem 1 and Theorem 2

We begin by establishing the convergence of the general gradient descent iteration 2, which serves
as the foundation for the proofs of Theorems 1 and 2. For a compact convex set Ω ⊂ RM , we let

α := sup
W∈Ω

∥HF (W)∥ (10)

where ∥·∥ is the spectral norm of a matrix.

Theorem 5. Suppose F : RM → R is a nonnegative, twice continuously differentiable function
and Ω ⊂ RM is a convex, compact set. Let

{
W k

}∞
k=1

be a sequence generate from equation 2 for a
given initial guess W 0 and assume that

{
W k

}∞
k=1

⊂ Ω. If the learning rate η ∈ (0, 2/α), then the
following statements hold:

(i) limk→∞ F(W k) = F ∗ for some F ∗ ≥ 0;

(ii) limk→∞
∂F
∂W (W k) = 0 and limk→∞ ∥W k+1 −W k∥ = 0;

(iii) Every cluster point Ŵ of
{
W k

}∞
k=0

satisfies ∂F
∂W (Ŵ) = 0 .

Proof. Since F is twice continuously differentiable, we can expand F(W k+1) at W k yields

F(W k+1) = F(W k) +

(
∂F
∂W

)⊤

(W k)∆W k + rk

with an error term
rk =

1

2
(∆W k)⊤HF (W̄)∆W k

where ∆W k = W k+1 −W k and W̄ is a point between W k and W k+1. By using equation equa-
tion 2, we have that

∂F
∂W

(
W k

)
= −1

η
∆W k. (11)

Therefore,

F(W k+1) = F(W k)− 1

η
∥∆W k∥2 + rk (12)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

We next estimate rk. Since F is twice continuously differentiable, HF is continuous. As Ω is
compact, HF is also bounded on Ω. Moreover, since both W k+1 and W k are in the convex set Ω,
we have that W̄ ∈ Ω. It follows from equation 10 and compactness of Ω that

rk ≤ α

2
∥∆W k∥2.

Substituting the above inequality into the right-hand side of equation equation 12, we have that

F(W k+1) ≤ F(W k)− (
1

η
− α

2
)∥∆W k∥2. (13)

Since η ∈ (0, 2
α), we have that 1

η − α
2 > 0. The nonnegative of 1

η − α
2 yields

0 ≤ F(W k+1) ≤ F(W k), for k = 0, 2,

This guarantees that
{
F(W k)

}∞
k=0

is a convergent sequence, thereby establishing Item (i).

We next prove Item (ii). For any positive integer K, summing inequality equation 13 over k =
0, 1, . . . ,K and then we get

K∑
k=0

(
1

η
− α

2
)∥∆W k∥2 ≤ F(W 0)−F(W k+1) ≤ F(W 0).

Since 1
η − α

2 is positive, the above inequality implies that

∞∑
k=0

∥∆W k∥2 < ∞.

Therefore,
lim
k→∞

∥∆W k∥ = 0. (14)

Equation equation 11 yields that

lim
k→∞

∥ ∂F
∂W

(W k)∥ = 0 (15)

and
lim
k→∞

∥W k+1 −W k∥ = 0

which estimates Item (ii).

We next show Item (iii). Let Ŵ be a cluster point of
{
W k

}∞
k=0

. Then there exists a subsequence{
W ki

}∞
i=0

of
{
W k

}∞
k=0

such that limi→∞ W ki = Ŵ . The continuous of the gradient with Item
(ii) implies that

∂F
∂W

(Ŵ) = lim
i→∞

∂F
∂W̃

(W ki) = 0,

which proves Item (iii).

Lemma 6. Suppose that the activation function σ is twice continuously differentiable and the loss
function L is defined by equation 1, then the gradient ∂L

∂W and hessian HL are continuous.

Proof. The key point of the proof is that a polynomial of a continuous function is continuous and so
is a composition of continuous function.

It follows from Lemma 3 of Xu (2025) that the componetwise of ∂L
∂W and HL are polynomials of

σ, σ′, {xn,yn}Nn=1 and the composition of σ, σ′, σ′′. These ensure that ∂L
∂W and HL are continuous.

proof of Theorem 1. We apply Theorem 5 with F := L. Under the hypothesis that σ is twice con-
tinuously differentiable, we have shown in Lemma 6 that the gradient ∂L

∂W and HL are continuous.
Therefore, L is twice continuously differentiable. It follows from the continuity of HL and the
compactness of the domain W that α is finite. Thus, the hypothesis of Theorem 5 is satisfied with
F := L. Theorem 1 is a direct consequence of Theorem 5.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lemma 7. Suppose that the activation function σ is twice continuously differentiable and the loss
function Ll is defined by equation 4 with {xln, eln}Nn=1 being bounded, then the gradient ∂Ll

∂Wl
and

hessian HLl
are continuous.

Proof. Since grade l in MGDL is essentially a traditional shallow neural network with the only
change being the training data, which is replaced by {xln, eln}Nn=1. We further assume that
{xln, eln}Nn=1 is bounded. This change does not affect the continuity of the gradient and Hessian.
Consequently, this lemma follows directly from Lemma 6.

Proof of Theorem 2. We apply Theorem 5 with F := Ll. Under the hypothesis that σ is twice con-
tinuously differentiable, we have shown in Lemma 7 that the gradient ∂Ll

∂Wl
and HLl

are continuous.
Therefore, Ll is twice continuously differentiable. It follows from the continuity of HLl

and the
compactness of the domain Wl that α is finite. Thus, the hypothesis of Theorem 5 is satisfied with
F := Ll. Theorem 2 is a direct consequence of Theorem 5.

Proof of Theorem 4

We now proceed to the proof of Theorem 4, beginning with the following lemma.

Lemma 8. Suppose F : RM → R is nonnegative and twice continuously differentiable, and Ω ⊂
RM is convex and compact. Let η > 0 be the learning rate and τ as defined in Theorem 4. If τ < 1
for all W ∈ Ω, then η ∈ (0, 2/α), where α is given in equation 10.

Proof. For W ∈ Ω, let λ1(W), . . . , λM (W) be the eigenvalues of HF (W). By definition of τ ,

|1− ηλj(W)| ≤ τ, for all W ∈ Ω, j = 1, . . . ,M,

which implies
1− τ ≤ ηλj(W) ≤ 1 + τ.

Since τ < 1 and η > 0, the left inequality gives

λj(W) ≥ 1− τ

η
> 0,

which together with the definition of α yields

α = sup{λj(W) : j = 1, 2, . . . ,M,W ∈ Ω} > 0.

The right inequality implies ηα ≤ 1 + τ < 2, hence η ∈ (0, 2/α).

Proof of Theorem 4. We first prove that the linearized GD sequence {W̃ k}∞k=1 converges. The iter-
ation is

W̃ k+1 = (

k−1∏
j=0

Aj)W̃ 1 − η

k−1∑
m=0

(

k−1∏
j=m+1

Aj)um, (16)

where um := ∂F
∂W (Wm)−HF (W

m)Wm.

Since ∥Ak∥ ≤ τ < 1,

∥(
k−1∏
j=0

Aj)W̃ 1∥ ≤ (

k−1∏
j=0

∥Aj∥)∥W̃ 1∥ ≤ τk−1∥W̃ 1∥ → 0,

so the first term vanishes. For the second, note that uk is bounded: continuity of ∂F
∂W and HF on

compact Ω implies ∥uk∥ ≤ C. Hence,

∥(
k−1∏

j=m+1

Aj)um∥ ≤ τk−1−mC

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

and
k−1∑
m=0

∥(
k−1∏

j=m+1

Aj)um∥ ≤ C

k−1∑
m=0

τk−1−m = C
1− τk

1− τ
≤ C

1

1− τ
.

Thus the second term converges, and W̃ k converges.

Now consider the full GD iteration:

W k+1 =
(k−1∏

j=0

Aj
)
W 1 − η

k−1∑
m=0

(k−1∏
j=m+1

Aj
)
um +

k−1∑
m=0

(k−1∏
j=m+1

Aj
)
rm, (17)

where rm = −η
2 (W

m+1 −Wm)⊤TF (W̄)(Wm+1 −Wm).

The first two terms behave as in the linearized case; it remains to show the last term vanishes. From
Lemma 8, τ < 1 when η ∈ (0, 2/α), so Theorem 5 implies ∥W k+1 − W k∥ → 0. Since TF is
bounded on compact Ω, say by C,

∥rk∥ ≤ ηC

2
∥W k+1 −W k∥2 → 0.

Split the last sum into m < N and m ≥ N . For fixed N , the first part tends to zero as k → ∞
because τk−1−m → 0. For the second, |rm| < ϵ for m ≥ N , so

∥
k−1∑
m=N

(

k−1∏
j=m+1

Aj)rm∥ ≤
k−1∑
m=N

τk−1−m∥rk∥ ≤ ϵ

k−1∑
m=N

τk−1−m ≤ ϵ

1− τ
.

Thus the last term vanishes, proving convergence of W k.

B OPTIMIZATION PROBLEM FOR IMAGE RECONSTRUCTION

This appendix formulates the optimization problems for image reconstruction, covering both de-
noising and deblurring.

Image denoising and deblurring are classical problems in image processing, extensively studied in
the literature Buades et al. (2005); Dabov et al. (2007); Micchelli et al. (2011); Fergus et al. (2006);
Krishnan & Fergus (2009); Beck & Teboulle (2009); Li et al. (2015). They are commonly modeled
as

f̂ := Af + ϵ

where f̂ ∈ Rn×n is the observed corrupted image, A is a transform operator, f ∈ Rn×n is the
unknown clean image, and ϵ represents additive noise. When A is the identity, the task reduces
to denoising Buades et al. (2005); Dabov et al. (2007); Micchelli et al. (2011), whereas if A is
a blurring operator, it corresponds to deblurring Fergus et al. (2006); Krishnan & Fergus (2009);
Beck & Teboulle (2009); Li et al. (2015). The statistical nature of the noise ϵ depends on the
specific application: for instance, Gaussian noise is commonly used for natural images Micchelli
et al. (2011), while Poisson noise is typical in medical imaging Guo et al. (2022). In this work, we
focus on Gaussian blurring with additive Gaussian noise.

We model a grayscale image as a function f : R2 → R mapping pixel coordinates to intensity values
and aim to recover f from the corrupted observation f̂ using neural network-based approximators.

B.1 PROBLEM FORMALIZATION FOR SGDL

Let ND(Θ;x) denote the SGDL network with parameters Θ := {Wj ,bj}Dj=1, and define the as-
sociated image matrix NΘ ∈ Rn×n by [NΘ]i,j := ND(Θ;xi,j). To suppress noise and stabilize
the ill-posed problem, we adopt the Rudin–Osher–Fatemi (ROF) total variation model Rudin et al.
(1992), leading to the objective

G(Θ) :=
1

2
∥f̂ −ANΘ∥

2

F + λ∥BNΘ∥1,1 (18)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where B denotes the first-order difference operator, ∥ · ∥F denotes the Frobenius norm and ∥ · ∥1,1
denotes the entrywise l1 norm. The parameter λ > 0 balances data fidelity and regularization.

Since ∥BNΘ∥1,1 is non-differentiable term ∥·∥1,1, we introduce an auxiliary variable u and penalize
the deviation u−BNΘ, yielding

L(u,Θ) :=
1

2
∥f̂ −ANΘ∥

2

F +
β

2
∥u−BNΘ∥2F + λ∥u∥1,1,

see, Fang et al. (2024); Shen et al. (2016); Wu & Xu (2022). The corresponding optimization
problem is

argmin
{
L(u,Θ) : u ∈ R2n×n,Wj ∈ Rdj−1×dj ,bj ∈ Rdj , for j ∈ ND

}
. (19)

We update u via the proximity operator and Θ via gradient-based optimization, yielding the iterative
scheme

uk+1 = proxαλ/β∥·∥1,1

(
αBNΘk + (1− α)uk

)
, (20)

Using gradient-based optimizer to minimize L(uk+1,Θ) and obtain Θk+1. (21)

B.2 PROBLEM FORMALIZATION FOR MGDL

We now present the MGDL framework for reconstructing f . Grade 1 follows the same setup as
SGDL, except with a smaller hidden layer. Its objective is

L1(u,Θ1) :=
1

2
∥f̂ −ANΘ1∥

2

F +
β

2
∥u−BNΘ1∥

2
F + λ∥u∥1,1,

with optimization problem

argmin
{
L1(u,Θ1) : u ∈ R2n×n,W1j ∈ Rd1(j−1)×d1j ,b1j ∈ Rd1j , for j ∈ ND1

}
. (22)

For grade l ≥ 2, we learn a new network NDl
composed with the trained subnetworks from earlier

grades. Let [gΘ∗
1
]i,j := ND1

(Θ∗
1;xi,j) and define

[gΘl
]i,j := ϵlNDl

(Θl; ·) ◦ HDl−1−1(Θ
∗
l−1; ·) ◦ . . . ◦ HD1−1(Θ

∗
1;xi,j) + [gΘ∗

l−1
]i,j

where ϵl is a normalization factor. The grade-l loss is then

Ll(u,Θl) :=
1

2
∥f̂ −AgΘl

∥
2

F +
β

2
∥u−BgΘl

∥2F + λ∥u∥1,1,

with minimization problem

argmin
{
Ll(u,Θl) : u ∈ R2n×n,Wlj ∈ Rdl(j−1)×dlj ,blj ∈ Rdlj , for j ∈ NDl

}
. (23)

Both equation 22 and equation 23 are solved using the proximity-gradient scheme equation 20–equa-
tion 21, with the loss replaced accordingly.

C PROBLEM SETTING FOR TIME SERIES REGRESSION

We describe the problem setting for time series regression.

Given a univariate time series:

{yt ∈ R : t = 0, 1, . . . , N − 1},
the task is to predict the next s future values from the past d observations. Formally, we seek a
regression function

[yt+1, . . . , yt+s]
⊤ ≈ fΘ([yt−d+1, . . . , yt]

⊤),

where fΘ : Rd → Rs is parameterized by Θ.

The dataset is constructed using a sliding window of size d. For each index i = 0, 1, . . . , N − d− s,
the input-output pairs is defined as

xi := [yi, yi+1, . . . , yi+d−1]
⊤ ∈ Rd, zi := [yi+d, . . . , yi+d+s−1]

⊤ ∈ Rs. (24)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Synthetic Data

In Section 8, the synthetic dataset is generated as

yt = sin
(2πt
50

)
+ 0.5 sin

(2πt
23

)
+ 0.3 sin

(2πt
10

+ 0.5 sin
2πt

100

)
+ 0.01t, t = 0, 1, . . . , N − 1

with N := 2, 000. Input–output pairs are formed via equation 24 with d = 64 and s = 1.

The SGT architecture is

Input → Embedding(64) →
(
Attention (64, 1) + MLP(128)

)
× 3 → Mean Pool → Output(1). (25)

For MGT, the model is divided into three grades, each containing one transformer block.

Financial Data

In Section 8, we also use financial data: the daily closing prices of the S&P 500 Index from January
1, 2000, to August 22, 2025 (N = 6, 449). Input-output pairs are formed using equation 24 with
d = 20 and s = 1. Before training, the series is normalized using the training set mean µ and
standard deviation σ:

ỹt =
yt − µ

σ
, t = 0, 1, . . . , N − 1,

with the same normalization applied to validation and test sets.

The SGT follows equation 25, but with six transformer blocks instead of three. For MGT, the model
is split into six grades, each with one transformer block.

Training

For both synthetic and financial datasets, SGT and MGT are trained with the Adam optimizer and
mini-batch size 128.

D NETWORK STRUCTURES

This Appendix details the network architectures used in the paper.

We begin with the fully connected network for SGDL, where each hidden layer has the same width.
The architecture is

[nin] → [nhidden]× nh → [nout], (26)
where nin is the input dimension, nhidden the number of neurons per hidden layer, nh the
number of hidden layers, and nout the output dimension. The parameters of the network are
(nin, nout, nhidden, nh).

In MGDL, the network expands grade by grade. Each grade uses nh hidden layers with nhidden

neurons per layer. At grade l, the structure is

[nin] → [nhidden]F × (l − 1)nh → [nhidden]× nh → [nout], l = 1, 2, . . . , L, (27)

where [nhidden]F×(l−1)nh are the layers trained in the first l−1 grades (kept fixed), and [nhidden]×
nh are the layers trained at grade l. The network parameters are (nin, nout, nhidden, nh, L).

For CIFAR-100, the SGDL architecture is

32× 32× 3 →
[
Conv(64)× 3 → AvgPool

]
× 2 →

[
Conv(128)× 3 → AvgPool

]
× 2

→ Flatten → Dense(128) → Dense(100).
(28)

The MGDL counterpart consists of four grades:

G1: 32× 32× 3 → Conv(64)× 3 → AvgPool → Flatten → Dense(64) → Dense(100)

G2: 16× 16× 64 → Conv(64)× 3 → AvgPool → Flatten → Dense(64) → Dense(100)

G3: 8× 8× 64 → Conv(128)× 3 → AvgPool → Flatten → Dense(128) → Dense(100)

G4: 4× 4× 128 → Conv(128)× 3 → AvgPool → Flatten → Dense(128) → Dense(100).

(29)

Here, Conv(c)×m denotes m convolutional layers with c channels, and Dense(n) a fully connected
layer with n neurons. Convolutions use 3× 3 kernels, and average pooling uses a 2× 2 window.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)

(e) (f) (g)

Figure 9: Clean images: (a) ‘Resolution chart’, (b) ‘Cameraman’, (c) ‘Barbara’, (d) ‘Butterfly’, (e)
‘Pirate’, (f) ‘Chest’, (g) ‘Walnut’.

E SUPPORTING MATERIAL FOR SECTIONS 5-7

The experiments in Sections 5-7 were performed on X86 64 server with an AMD 7543 @ 2.8GHz
(64 slots) supporting AVX512, 2 Nvidia Ampere A100 GPUs.

Image reconstruction quality is measured by the peak signal-to-noise ratio (PSNR), defined as

PSNR := 10 log10

(
(n× 2552)/ ∥v − v̂∥2F

)
(30)

where v is the ground-truth image, v̂ is the reconstructed image, n is the number of pixels, and ∥ ·∥F
is the Frobenius norm.

Supporting figures referenced in Section 5 include:

1. Figure 9: Clean images used in the paper.
2. Figures 10–11: Results for the ‘Image Regression’ in Section 5.
3. Figure 12: Noisy image used in the experiments. Figures 13–15: PSNR values during

training and the denoised images produced by SGDL and MGDL. These figures correspond
to the ‘Image Denoising’ in Section 5.

4. Figure 16: Blurred image used in the experiments. Figures 17–19: PSNR values during
training and the deblurred images produced by SGDL and MGDL. These figures corre-
spond to the ‘Image Deblurring’ in Section 5.

Figure 20 is the supporting figure referenced in Section 6, which presents the results for ‘Image
Regression’.

The supporting figures referenced in Section 7 include:

1. Figures 21-22: Results for the ‘Synthetic data regression’ in Section 7.
2. Figures 23-25: Results for the ‘Image regression’ in Section 7.
3. Figures 26-29: Results for the ‘Image denoising’ in Section 7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 10: Comparison of SGDL and MGDL on the ‘Cameraman’ image. (a)–(b) show loss curves.
(c)–(f) display SGDL reconstructions at iterations 9,800, 9,850, 9,900, and 9,950; (g)–(j) show the
corresponding MGDL reconstructions at grade 4. PSNR values are given in the titles.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) (b) (c) PSNR: 22.75 (d) PSNR: 23.84

(e) (f) (g) PSNR: 24.87 (h) PSNR: 27.06

(i) (j) (k) PSNR: 24.34 (l) PSNR: 26.45

(m) (n) (o) PSNR: 35.56 (p) PSNR: 38.49

(q) (r) (s) PSNR: 20.05 (t) PSNR: 21.31

Figure 11: Comparison of SGDL and MGDL for image regression. (a)-(d) ‘Barbara’; (e)-(h) ‘But-
terfly’; (i)-(l) ‘Pirate’; (m)-(p) ‘Chest’; (q)-(t) ‘Walnut’.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) PSNR: 28.12 (b) PSNR: 22.10 (c) PSNR: 18.57 (d) PSNR: 16.08

(e) PSNR: 14.14 (f) PSNR: 12.55 (g) PSNR: 28.14 (h) PSNR: 22.12

(i) PSNR: 18.60 (j) PSNR: 16.10 (k) PSNR: 14.16 (l) PSNR: 12.57

(m) PSNR: 28.14 (n) PSNR: 22.12 (o) PSNR: 18.60 (p) PSNR: 16.10

(q) PSNR: 14.16 (r) PSNR: 12.57

Figure 12: Noisy images at noise levels s = 10, 20, 30, 40, 50, 60: (a)–(f) ‘Butterfly’; (g)–(l) ‘Pi-
rate’; (m)–(r) ‘Chest’. PSNR values are given in the titles.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) (b) (c) PSNR: 27.53 (d) PSNR: 31.67

(e) (f) (g) PSNR: 26.73 (h) PSNR: 28.39

(i) (j) (k) PSNR: 26.05 (l) PSNR: 27.09

(m) (n) (o) PSNR: 25.54 (p) PSNR: 26.37

(q) (r) (s) PSNR: 24.65 (t) PSNR: 25.84

(u) (v) (w) PSNR: 24.30 (x) PSNR: 25.21

Figure 13: Comparison of SGDL and MGDL denoising results for the ‘Butterfly’ image. Rows 1–6
correspond to noise levels s = 10, 20, 30, 40, 50, 60, showing both the PSNR during training and
the reconstructed images, with their PSNR values indicated in the subtitles.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) (b) (c) PSNR: 25.12 (d) PSNR: 29.28

(e) (f) (g) PSNR: 25.02 (h) PSNR: 27.74

(i) (j) (k) PSNR: 24.63 (l) PSNR: 27.20

(m) (n) (o) PSNR: 24.15 (p) PSNR: 26.25

(q) (r) (s) PSNR: 24.65 (t) PSNR: 25.77

(u) (v) (w) PSNR: 23.82 (x) PSNR: 25.32

Figure 14: Comparison of SGDL and MGDL denoising results for the ‘Butterfly’ image. Rows 1–6
correspond to noise levels s = 10, 20, 30, 40, 50, 60, showing both the PSNR during training and
the reconstructed images, with PSNR values indicated in the subtitles.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) (b) (c) PSNR: 36.20 (d) PSNR: 38.58

(e) (f) (g) PSNR: 35.34 (h) PSNR: 36.89

(i) (j) (k) PSNR: 34.30 (l) PSNR: 35.48

(m) (n) (o) PSNR: 33.55 (p) PSNR: 34.61

(q) (r) (s) PSNR: 33.51 (t) PSNR: 33.94

(u) (v) (w) PSNR: 32.90 (x) PSNR: 33.06

Figure 15: Comparison of SGDL and MGDL denoising results for the ‘Chest’ image. Rows 1–6
correspond to noise levels s = 10, 20, 30, 40, 50, 60, showing both the PSNR during training and
the reconstructed images, with PSNR values indicated in the subtitles.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) PSNR: 24.61 (b) PSNR: 22.61 (c) PSNR: 21.54 (d) PSNR: 24.94 (e) PSNR: 22.99

(f) PSNR: 21.85 (g) PSNR: 34.72 (h) PSNR: 33.00 (i) PSNR: 31.61

Figure 16: Images blurred with operators of standard deviations ŝ = 3, 5, 7: (a)-(c) ‘Butterfly’; (d)-
(f) ‘Pirate’; (g)-(i) ‘Chest’. The PSNR value is indicated in each title.

(a) (b) (c) PSNR: 25.43 (d) PSNR: 27.06

(e) (f) (g) PSNR: 24.20 (h) PSNR: 25.19

(i) (j) (k) PSNR: 22.70 (l) PSNR: 23.65

Figure 17: Comparison of SGDL and MGDL deblurring results for the ‘Butterfly’ image. Rows 1–3
correspond to blurring kernel standard deviations ŝ = 3, 5, 7.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) (b) (c) PSNR: 24.72 (d) PSNR: 26.47

(e) (f) (g) PSNR: 23.79 (h) PSNR: 24.95

(i) (j) (k) PSNR: 23.13 (l) PSNR: 23.98

Figure 18: Comparison of SGDL and MGDL deblurring results for the ‘Pirate’ image. Rows 1–3
correspond to blurring kernel standard deviations ŝ = 3, 5, 7.

(a) (b) (c) PSNR: 35.40 (d) PSNR: 38.24

(e) (f) (g) PSNR: 34.61 (h) PSNR: 36.51

(i) (j) (k) PSNR: 33.69 (l) PSNR: 35.14

Figure 19: Comparison of SGDL and MGDL deblurring results for the ‘Chest’ image. Rows 1–3
correspond to blurring kernel standard deviations ŝ = 3, 5, 7.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 20: Impact of learning rate.

Figure 21: Training process of SGDL (η = 0.005) and MGDL (0.2) for Setting 2.

Figure 22: SGDL and MGDL predictions on synthetic data regression: Setting 1 (subfigures 1–2),
Setting 2 (subfigures 3–4).

Figure 23: Training process of SGDL (η = 0.1) and MGDL (η = 0.2) for image ‘Cameraman’.

Figure 24: Training process of SGDL (η = 0.08) and MGDL (η = 0.2) for image ‘Barbara’.

Figure 25: Training process of SGDL (η = 0.05) and MGDL (η = 0.05) for image ‘Butterfly’.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 26: Training processes of SGDL and MGDL on the ‘Butterfly’ image (noise level 10).

Figure 27: Training processes of SGDL and MGDL on the ‘Butterfly’ image (noise level 30).

Figure 28: Training processes of SGDL and MGDL on the ‘Barbara’ image (noise level 10).

Figure 29: Training processes of SGDL and MGDL on the ‘Barbara’ image (noise level 30).

28

	Introduction
	Standard Deep Learning Model
	Multi-Grade Deep Learning
	Convex Optimization in MGDL with Single-Layer ReLU Grades
	Performance Comparison of MGDL and SGDL
	Impact of Learning Rate on SGDL and MGDL
	Eigenvalue Analysis for SGDL and MGDL
	Multi-Grade Transformers (MGT)
	Conclusion
	Convergence Proof
	Optimization Problem for Image Reconstruction
	Problem Formalization for SGDL
	Problem Formalization for MGDL

	Problem setting for time series regression
	Network Structures
	Supporting material for Sections 5-7

