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ABSTRACT

Multi-grade deep learning (MGDL) has recently emerged as an alternative to stan-
dard end-to-end training, referred to here as single-grade deep learning (SGDL),
showing strong empirical promise. This work provides both theoretical and ex-
perimental evidence of MGDL'’s computational advantages. We establish con-
vergence guarantees for gradient descent (GD) applied to MGDL, demonstrat-
ing greater robustness to learning-rate choices compared to SGDL. In the case of
ReLU activations with single-layer grades, we further show that MGDL reduces
to a sequence of convex optimization subproblems. For more general settings, we
analyze the eigenvalue distributions of Jacobian matrices from GD iterations, re-
vealing structural properties underlying MGDL'’s enhanced stability. Practically,
we benchmark MGDL against SGDL on image regression, denoising, and deblur-
ring tasks, as well as on CIFAR-10 and CIFAR-100, covering fully connected
networks, CNNs, and transformers. These results establish MGDL as a scalable
framework that unites rigorous theoretical guarantees with broad empirical im-
provements.

1 INTRODUCTION

Deep learning has transformed fields from computer vision He et al.|(2016)); |Krizhevsky et al.[(2012)
to medicine (Chen et al| (2018); Jumper et al.| (2021)) and scientific computing [Raissi et al.| (2019).
Despite these successes, training deep neural networks (DNNs) remains challenging due to non-
convex optimization, vanishing/exploding gradients, and spectral bias that favors low-frequency
features [Rahaman et al. (2019); Xu et al.| (2019). Gradient descent can also exhibit short-term
oscillations near the Edge of Stability |Arora et al.|(2022); |Cohen et al.|(2021), making conventional
training inefficient, hard to interpret, and limited in generalization. These challenges motivate multi-
grade deep learning (MGDL) [Xu|(2025)), which incrementally builds networks to improve stability,
accuracy, and interpretability.

MGDL decomposes end-to-end optimization into a sequence of smaller problems, each training
a shallow network on the residuals of previous grades. Previously learned networks remain fixed
and act as adaptive “basis” functions or features. This iterative refinement reduces optimization
complexity and progressively enhances learning.

MGDL has demonstrated superior performance over standard end-to-end training, which we refer to
here as single-grade deep learning (SGDL), in regression Fang & Xu/(2024); | Xu! (2023)), oscillatory
Fredholm integral equations|Jiang & Xu|(2024), and PDEs|Xu & Zeng|(2023)), effectively mitigating
spectral bias.

We provide a mathematical explanation for why MGDL outperforms SGDL. Focusing on gradient
descent, we establish convergence theorems showing MGDL'’s greater robustness to learning-rate
choices. When each grade uses a single ReLU layer, MGDL reduces a highly nonconvex problem to
a sequence of convex subproblems, enhancing trainability. Further analysis of a linear surrogate it-
erative scheme based on the Jacobian of the original map shows that MGDL’s eigenvalues lie within
(—1,1), ensuring stable convergence, whereas SGDL’s can exceed this range, causing oscillatory
loss. Additional experiments benchmark MGDL against SGDL on image regression, denoising, and
deblurring tasks, as well as CIFAR-10 and CIFAR-100 classification, using fully connected net-
works, CNNs, and transformers. These results demonstrate that MGDL unifies rigorous theoretical
guarantees with broad empirical improvements as a scalable framework.
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Key contributions of this paper:

1. We provide a rigorous convergence analysis of gradient descent for SGDL and MGDL, offering
deeper insight into MGDL’s computational advantages.

2. We prove that if each grade of MGDL employs a single hidden ReLU layer, the originally
nonconvex optimization problem decomposes into a sequence of convex subproblems.

3. Extensive experiments on image regression, denoising, deblurring, CIFAR-10, and CIFAR-
100 classification, including fully connected networks, CNNs, and transformers, demonstrate that
MGDL consistently outperforms SGDL with greater stability.

4. We analyze the impact of learning rate, showing that MGDL is more robust than SGDL.

5. We study a linear approximation of GD dynamics and the eigenvalue distribution of the associated
Jacobian to explain MGDL'’s convergence and stability advantages.

2 STANDARD DEEP LEARNING MODEL

In this section, we review the standard deep learning model and analyze the convergence of the
gradient descent (GD) applied to its optimization problem.

A deep neural network (DNN) is a composition of affine maps and nonlinear activations with input
layer, D — 1 hidden layers, and an output layer. Let dy = d (input dimension), dp = t¢ (output
dimension), and d; the width of layer j. For j = 1,...,D, the weights and biases are W, €
R4i-1%di and b; € R%, with ReLU activation o (x) = max{0, z} applied componentwise.

Given x € R?, the hidden layers are defined recursively:
Hi(x) =0 (W{x+b1), Hj1(x) =0 (W H;(x) +bji1),j=1,....,D -2

The output is Np ({W;,b;}2 ;%) = Np(x) == W]Hp_1(x) + bp. For data D =
{(Xn, yn)}N_;, the loss is

N
LHW; b} 2D) = 55 > llyn = No () (1)

The SGDL model minimizes this loss over parameters © = {W;, b; } le, yielding optimal ©* and
trained network Np (©*; ).

Among the most common optimization methods for deep learning are stochastic gradient descent
(SGD) Kiefer & Wolfowitz|(1952)); [Robbins & Monro|(1951) and Adam Kingma & Ba/(2015), both
rooted in gradient descent (GD). We therefore study GD for minimizing the loss in equation I}

To facilitate convergence analysis, we stack all parameters {W, b }?:1 into a single vector. For
any matrix or vector A, let A denote its vectorization: stacking columns if A is a matrix, taking
A = A if it is a column vector, and A = AT if a row vector. The parameter vector is W :=

(Wbl ... W), bE)T, with total dimension M = Z]-D:1<dj71 +1)d;.

We consider GD for a general objective F : RM — R, assumed nonnegative, twice continuously
differentiable, and generally nonconvex. The iteration is
k+1 k OF ik
W = W —n &5 (W), 2)
where k is the iteration index and 77 > 0 the learning rate. In our setting, F is the loss £ in equation[I]

We analyze the convergence of GD for minimizing equation Assume there exists a compact
convex set YW C RM such that for some 79 > 0, all GD iterates W* ;OZO from equation [2| with
F = L remain in WV whenever n € (0,7). Convergence depends on the Hessian of £ over W,
where we set & := supyycyy |Hz (W)]|, with || - || the spectral norm. Since Hz (W) € RM*M o
captures the effect of network depth and size.

The following theorem, proved in Appendix [A] establishes convergence of GD with F := L, ex-
tending Theorem 6 in |Xu| (2025)), which assumes zero biases.
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Figure 1: MGDL at grade 3: blue lines denote trainable parameters, while orange lines represent
parameters fixed from grades 1 (first term) and 2 (second term). At this grade, only a shallow
network is trained, building on features learned in the previous grades.

Theorem 1. Let {Wk}iozo be generated by equation IZ| with F = L and initial guess W°. Suppose
o is twice continuously differentiable and the iterates remain in a convex compact set W C RM . If
the learning rate n) € (0,2/«), then:

(i) limy_ 00 L(WFK) = L* for some L* > 0;
(ii) limp o0 F= (WF) = 0;
(iii) Every cluster point W of {W*} satisfies %(W) =0.

Deep neural networks are defined by weight matrices and bias vectors, with parameter counts scaling
rapidly with depth—for example, LeNet-5 has 60K parameters [LeCun et al| (1998), ResNet-152
60.2M He et al.| (2016)), and GPT-3 175B Brown et al|(2020). End-to-end training at such scales
is hampered by optimization and stability issues: (i) deeper networks induce highly nonconvex loss
landscapes, often trapping solutions in poor local minima Bengio et al| (2006); and (ii) training
suffers from vanishing or exploding gradients, which impede convergence|Glorot & Bengio| (2010);
Goodfellow et al.| (2016); |Pascanu et al.| (2013). To address these challenges, multi-grade deep
learning (MGDL) Xu/ (2025) trains networks in stages, where each shallow grade builds on the
residuals of the previous one and propagates its output forward, incrementally approximating the
target function.

3 MULTI-GRADE DEEP LEARNING

This section reviews MGDL, and analyzes GD convergence at each grade.

Given data D = {(x,,yn)} 1» MGDL decomposes learning a depth-D DNN into L < D se-
quential grades. Each grade trains a shallow network Np, on residuals from the previous grade,
with depths 1 < D; < D and lel Di=D+L—-1 Let®;, = {le,blj}j=1 denote grade-!
parameters. The model is defined recursively by

91(©15%) := Np, (01;%), 9141(O1415%) := Np, ., (O1415-)oHp,-1(O]5 )0 - -0Hp, -1(O1;)(x). (3)
The grade-[ loss is

L1(0;;D) = QNZ llewm — g1(Or %) ||, “4)
with residuals ey, = y, and €41y, = €, — gl(@l ;Xp). Each ©] minimizes £; given earlier
grades. After L grades, the MGDL outputis g, ({O] }2,;x) = Zle 91(07;x). Figureillustrates
the multi-grade architecture at grade three.

For optimization, set X1, := X, and recursively define x;, := Hp, ,-1(0} ;;-) 0 --- o0
Hp,-1(07;-)(xn), and dataset D; = {(xyn, eln)}flvzl. The grade-! loss is

L1(6:Dy) —2NZ et — N, (015 320) 1.

MGDLs training time scales linearly with the number of grades (assuming comparable layer and
neuron counts), while its memory cost is much lower than that of a single deep network, since
each grade trains only a shallow model. Let W; := (WJ,blTl, ceey WJDl,blTDZ)T € RM: | with

M, == 27" (dyj—1) + 1)dy;. The GD iteration is
oL

Wk:-‘rl Wk
Ulryrra oW,

(W)
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Assuming W/ C W, for some convex compact W, C RM:, define oy := supyy, ¢y, [|[He, (W7)]].

Theorem 2. Let {W}*} be generated by the above GD iteration from W. Assume {(Xin,e1n)} C
R0 x RY is bounded, o is twice continuously differentiable, and {W}F} C Wi. If g, € (0,2/ay),
then

(i) limy oo £,(W}) = L for some L} > 0;

(ii) iy o0 gE-(WF) = 0;

(iii) Every cluster point W, of {W}} satisfies ngVll (W) =

Theorem [2] proved in Appendix [A] parallels Theorem [I] with the key distinction that MGDL opti-
mizes shallow subproblems at each grade. This mitigates vanishing/exploding gradients and allows
a broader admissible learning-rate range (n; € (0,2/q;) with oy < «), thereby improving stability
and robustness compared to SGDL.

4 CONVEX OPTIMIZATION IN MGDL WITH SINGLE-LAYER RELU GRADES

In this section, we show that when each grade in MGDL is realized as a single hidden-layer ReLU
network, the overall nonconvex optimization problem decomposes into a sequence of convex sub-
problems. For clarity, we consider bias-free networks with scalar output; the extension to biased
networks is analogous.

A two-layer ReLU network with 1 neurons is N (x) := 27:1 ! jcr(ﬁvax), with hidden parameters
w; and outputs a;. Since o(ax) = ac(x) for a > 0, each term can be written as «;o (W, X) =
T

J

o(w] x) — o(v, x) for suitable w;, v;, making N equivalent to

N(x) =) (o(w,x) - o(v]x)), (5)
j=1

which we adopt as the building block of MGDL.

Suppose grade [ of MGDL is a single hidden-layer ReLU network with 2m; neurons. By equation[5]
its output is

Niohi 1)) =Y (alwlhi1(x)) = o(vlhi 4 (x)))- (©)

The input features h;_, are defined recursively by h§(x) = x, and h}_, (x) := (H]_,0---oH])(x),
with feature map

* * * * * T
Hi(z) = (o((Wi1) ' 2), . o (Wi ) T2),0((vin) T 2), . 0((Vin,) T2) ) kEN.
Let the data matrix at grade [ be X, := [x;1,...,x;n] " € RV*% with x;,, := h}_(x,). At grade
l, we solve the nonconvex problem
2
p;‘ = ‘ } l 2H Z X[le — U(X[Vlj» — elH . (7)
Wl]yVL]

Following [Pilanci & Ergen| (2020), we show that equation [7] is equivalent to a convex program.
For any w; € R™-1, define diag(1[X;w; > 0]), where 1[X;w; > 0] € {0,1}" with entries
1[xlnwl > 0]. Since Xl is fixed, only finitely many such matrices exist|Cover| (2006); Stanley et al.

(2007); denote them Dy, . .., D;p,. This induces a partition {Ch}z:1 of R™-1, where Cj; := {w; :
(2Dy; —In)X;w; > 0}. Each C}; is convex, closed under addition, and satisfies R™-1 = Ufll Cl.
Within Cy;, ReLU is linear, that is, o(X;w;) = D;; X;w,, for w; € Cj;.

Using this, we introduce the convex program

* . B 2
q; = min N 2” Z DX (wy; — i) felH . (8)

{wllavllecl’t}L 1
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Theorem 3. Let o be ReLU. If m; > P, then problems equation [/ and equation[8| attain the same
optimal value. Moreover, any optimal solution of equation [8)is also optimal for equation [7] when
m; = B

Proof. Linearity within each region implies that feasible points of equation [8|are feasible for equa-
tion hence p; < g;. Conversely, given an optimal solution {wl*j, vl*j} of equation regrouping
parameters by the partition {C}; } and using closure under addition yields aggregated vectors W;;, V};
that form a feasible point of equation [8| with the same objective value, so ¢ < p;. Thus pj = ¢}
When m; = P, the correspondence is exact, and optimal solutions coincide.

Unlike |Pilanci & Ergen| (2020), which convexifies single hidden-layer ReLLU networks via explicit
regularization, our multi-grade decomposition reformulates deep ReLU networks as a sequence of
convex programs, extending convexification from shallow to deep architectures.

5 PERFORMANCE COMPARISON OF MGDL AND SGDL

In this section, we compare MGDL and SGDL on image reconstruction tasks—regression, denois-
ing, and deblurring—as well as on the CIFAR-100 classification dataset Krizhevsky| (2009). The
results demonstrate that MGDL consistently outperforms SGDL, which suffers from training insta-
bility and lower accuracy.

For image reconstruction, we employ full connected networks for both SGDL and MGDL, and
evaluate performance using PSNR equation 30| For classification, we use convolutional neural
networks (CNNGs). In both cases, ReLLU activations are applied, and training is performed using the
Adam optimizer Kingma & Bal (2015). Overall, MGDL achieves superior stability and accuracy
across both reconstruction and classification tasks.

Image regression. We model grayscale images as functions f : R? — R, mapping pixel co-
ordinates to intensity values. The training set consists of a regularly spaced grid covering one
quarter of the pixels, while the test set includes all pixels. We evaluate SGDL and MGDL on
six images of varying sizes (Figure [9). For images (b)—(f), we use the fully connected architec-
ture in 26| with (1, Nout, Mhidden, Mn) = (2,1, 128, 8) for SGDL and the architecture in [27| with
(Nin, Nout, Mhidden, Mh, L) = (2,1,128,2,4) for MGDL. For image (g), we employ a deeper net-
work, setting G = 12 for SGDL and g = 3 for MGDL.

Numerical results are summarized in Table [I| and Figure [T} Table ] reports PSNR values, show-
ing that MGDL consistently outperforms SGDL with gains of 0.42-3.94 dB across all testing im-
ages. Figure[TT]plots the training losses: SGDL exhibits persistent oscillations for all images, while
MGDL shows image-dependent behavior. For Barbara, Butterfly, and Walnut, MGDL oscillates
initially but stabilizes in later stages, whereas for Pirate and Chest, oscillations appear earlier be-
fore converging. Overall, MGDL tends to stabilize or decrease steadily over time, in contrast to the
sustained oscillations of SGDL.

The Cameraman image further illustrates these differences. Figures [I0(a)—(b) show the training
losses: SGDL suffers from strong oscillations, leading to unstable predictions, as seen in Figures
@kc)—(f) at iterations 9800, 9850, 9900, and 9950, with corresponding PSNR fluctuations. In con-
trast, MGDL exhibits a steadily decreasing loss (b), and its predictions (g)—(j) improve consistently
across iterations. These results highlight the robustness and reliability of MGDL compared with
SGDL in image regression tasks.

Image denoising. We address the problem of recovering a clean image f € R™*" from a noisy
observation f := f + €, where the noise entries are i.i.d. Gaussian with zero mean and standard
deviation s, i.e., [€]; ; ~ N(0, s?). The optimization problem is formulated in Appendix with the
transform operator A set to the identity.

SGDL adopts structure 26| (2, 1,128, 12), while MGDL uses 27] (2, 1,128, 3,4). We test six noise
levels, s = 10,20, 30, 40, 50, 60, as illustrated in Figure Results are summarized in Table
and Figures [I3{{I5] MGDL consistently outperforms SGDL with PSNR gains of 0.16-4.23 dB.
During training, SGDL shows persistent oscillations, while MGDL improves steadily, especially
from grades 2—4.
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Table 1: PSNR comparison for image regression. Table 2: PSNR comparison for image denoising.
Image Method TrPSNR — TePSNR Noise Method Butterfly Pirate  Chest
Cameraman SGDL 27.05 24.79 10 SGDL 2753 2513  36.20
MGDL 31.80 25.21 MGDL 31.67 29.36 38.58
Barbara SGDL 23.14 22.75 20 SGDL 26.73 25.02 35.34
MGDL 24.36 23.84 MGDL 28.39 27.74 36.89
Butterfly SGDL 26.22 24.87 30 SGDL 26.05 24.63  34.30
MGDL 28.23 27.06 MGDL 27.09 27.20 35.48
Pirate SGDL 24.20 24.34 40 SGDL 25.54 24.47  33.55
MGDL 27.40 26.45 MGDL 26.37 26.25 34.61
Chest SGDL 34.77 34.56 50 SGDL 24.65 24.01  33.51
MGDL 39.44 38.50 MGDL 25.84 25.77 33.94
Walnut SGDL 19.94 20.05 60 SGDL 24.30 23.82  32.90
MGDL 21.83 21.31 MGDL 25.21 25.32 33.06
Table 3: PSNR comparison for image deblurring. I m—————— NaNmmt eemg o oy SoD-en Moy
image  method 3 5 7 B e, Sl
Butterfly SGDL  25.43 2420 2270  £,= = | Nt L
MGDL 27.06 2519 23.65 *,. * . | T I
Pirate SGDL  24.72 23.79 23.13 W e 103 = et LRy
MGDL 2647 2495 23.98 107 1072 107 10- 10-2 107

Learning rate Learning rate

Chest SGDL 3540 34.61 33.69

MGDL 38.24 3651 35.14 Figure 2: Impact of learning rate.

Image deblurring. We address the problem of recovering f from a blurred observation f:=Kfre
where K is a Gaussian blurring operator and [e]; ; ~ N(0,s?) with s = 3. The optimization
problem and operator A = K are detailed in Appendix [B]

The SGDL and MGDL structures are the same as those used in Image Denoising, respectively. We
test three blurring levels (s = 3, § = 5, and § = 7; Figure . Results are summarized in Table
[3] and Figures MGDL achieves PSNR improvements of 0.85-2.84 dB over SGDL. While
SGDL exhibits strong PSNR oscillations during training, MGDL shows stable and consistent gains,
particularly from grades 2 to 4.

Classification on CIFAR-100. We address the problem of image classification on the CIFAR-100
dataset, evaluating SGDL and MGDL in terms of both accuracy and training dynamics. We use
mean squared error (MSE) as the loss function, with architectures specified in equation[28]and [29]

We test two learning rates, 5 x 104 and 1 x 10~%. Results are shown in Figure For both settings,
SGDL converges to a loss around 10~2, whereas MGDL reaches approximately 10~#, nearly two
orders of magnitude lower. In terms of stability, SGDL begins oscillating once the loss falls below
10!, while MGDL remains stable until reaching 1073, These results demonstrate that MGDL
delivers superior accuracy and significantly greater training stability compared to SGDL.

Results on image reconstruction and CIFAR-100 classification show that MGDL consistently out-
performs SGDL. Whereas SGDL exhibits pronounced oscillations in loss or PSNR during training,
MGDL achieves a steady decrease in loss or a consistent increase in PSNR. The underlying reasons
are analyzed in Section

100 Single-Grade 100+ Multi-Grade 100 Single-Grade 100 Multi-Grade

ﬁ*L — i
10-1 101 10-1 10-1 g
B o

.

107 oo o2 o o6 s o 107 oo o5 10 15 20 25 20 35 40 107 00 02 o4 o6 o5 1o 107 do a5 1o 15 20 25
Epochs e Epochs et Epochs e Epochs

Figure 3: Training on CIFAR-100 using SGDL and MGDL(1-2:p = 5 x 1075, 3-4: = 1 x 10~%).
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6 IMPACT OF LEARNING RATE ON SGDL AND MGDL

We examine the effect of learning rate on SGDL and MGDL, both trained using gradient descent.

Synthetic data regression. We approximate g : [0,1] — R defined by g(x) :=
ij\; sin (27k;x + ¢;), x € [0,1], where ¢; ~ U(0,2m). Two settings are considered: (1)
M = 3,k = [1,5.5,10]; @) M = 5,k = [1,8.25,15.5,22.75,30]. The training set contains
1,024 equally spaced points, and the validation set 1,000 uniformly sampled points.

SGDL adopts structure[26](1, 1, 32, 4), while MGDL uses structure[27](1, 1, 32, 1, 4). Learning rates
are selected from [0.001, 0.5], with 10° training epochs. Figure [2|illustrates the impact of learning
rate (left: Setting 1, right: Setting 2; ‘NaN’ indicates divergence). In Setting 1 (low-frequency
function), both methods perform well, while MGDL is robust across a wider range: SGDL achieves
loss < 0.001 only for iy € [0.03, 0.08], whereas MGDL sustains this performance for € [0.01, 0.3].
In Setting 2 (high-frequency function), SGDL converges only at 7 ~ 0.005 and diverges for larger
rates, while MGDL remains stable with loss < 0.01 for n € [0.08, 0.3].

Image regression. We consider image regression as in Section SGDL use (2,1,128,8),
while MGDL uses (2,1,128,2,4). Learning rates are selected from [0.001, 1], with 10° training
epochs. Figureillustrates results on ‘Resolution Chart’, ‘Cameraman’, ‘Barbara’, and ‘Pirate’.
MGDL consistently achieves higher accuracy, while SGDL fails on ‘Cameraman’ and ‘Pirate’ for i
near 1. MGDL remains stable across this wide range of learning rates.

Summary. Across both synthetic and image regression, MGDL demonstrates markedly greater
robustness to the choice of learning rate, maintaining effective training and high accuracy over a
wider interval, whereas SGDL is sensitive and often fails with large learning rates.

7 EIGENVALUE ANALYSIS FOR SGDL AND MGDL

We analyze gradient descent (GD) equation [2] for SGDL and MGDL, expressing it as a Picard
iteration W**1 = (I — 22 )WW* and linearizing the gradient via Taylor expansion: 2 (W*) =
HrWFHWF 4 u#~1 k=1 with remainder »*~! of order (W* — W*~1)2 Neglecting r*~1
gives the linearized update

Wk-i—l _ Ak—ka _ nuk—17 Ak—l —I- 77H]—‘(Wk_1).
Theorem 4. Let F : RM — R be nonnegative and twice continuously differentiable, with
{W*} C Q, a convex compact set. If T := supycq [T — nHx(W)|| < 1, then {W*} converges.

Moreover, if F is thrice continuously differentiable, the sequences {W*} and {W*} (with matching
initializations) converge to the same limit if 7 < 1.

Hence, convergence is governed by the spectrum of I — nH (). Eigenvalues in (—1, 1) ensure
stable loss decay. Explicit Hessians for SGDL (F = £) and MGDL (F = £L;) under ReLU are
given in the Supplementary Material.

We next monitor the eigenvalues of I —nH z(W*) during training. In deep networks such as SGDL,
these eigenvalues often exit (—1, 1), producing oscillatory loss. In contrast, the shallower structure
of MGDL keeps them inside (—1, 1), leading to smooth loss decay.

Synthetic data regression. Setup follows Synthetic data regression in Section[§] Both models are
trained via gradient descent with learning rate € [0.001, 0.5], selected by lowest validation loss.
Results are shown in Figures (Setting 1) and (Setting 2).

For SGDL under Setting 1, Figure ] (first subfigure) shows the ten smallest (solid) and ten largest
(dashed) eigenvalues during training (10% epochs). The smallest eigenvalue drops well below —1,
while indices 1-5 stay near —1. The largest eigenvalues slightly exceed 1. The loss decreases overall
but oscillates, correlating with the number of eigenvalues below or near —1.

For MGDL, the ten smallest eigenvalues remain within (—1, 1) across grades 1-4, while the largest
stay slightly above 1, producing smooth loss decay (Figure[d] second and fourth subfigures).

In Setting 2 (higher-frequency target), SGDL’s eigenvalues initially stay in (—1, 1) but later drop
to —1, causing strong loss oscillations up to 10 epochs. MGDL maintains eigenvalues in (—1,1),
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ensuring stable training and better accuracy (Figure 22] third and fourth subfigures). Across both
settings, the smallest eigenvalue predominantly determines loss behavior.

Single-Grade Multi-Grade

\ —— Training loss = -~
101 v Validation loss 101 S

lues

0.0 \

] 102 N
5-05 S —
& 10- ‘

-1o0 —— Training loss

-15 o 10-4] Validation loss .

00 02 04 06 08 10 00 05 10 15 20 25 00 02 04 06 08 1.0 00 05 10 15 20 25
Epochs Epochs k Epochs Epochs o

Figure 4: Training process of SGDL (1 = 0.08) and MGDL (1 = 0.06) for Setting 1.

Multi-Grade: Eigenvalues of 1— nH (W¥) o Single-Grade Multi-Grade

‘ —— Training loss —— Training loss
Validation loss

‘\ Validation loss

Eigenvalues
Loss.

R

—

00 05 10 15 20 2% 00 05 1.0 15 20 25
Epochs Epochs Epochs Epochs

Figure 5: Training process of SGDL (n = 0.02) and MGDL (1 = 0.2) for ‘Resolution chart’.

Image regression. Following Section 3] shallow networks are used to enable Hessian computation:
SGDL with architecture 26 (2, 1, 48, 4) and MGDL with architecture 27] (2, 1,48, 1, 4). For SGDL,
the smallest eigenvalue approaching —1 causes oscillatory loss, while MGDL’s eigenvalues remain
in (—1, 1), yielding stable reduction (Figures|5H25).

Image denoising. SGDL’s smallest eigenvalue approaches —1, causing oscillatory loss; MGDL
keeps all eigenvalues in (—1, 1), ensuring steady reduction (Figures [26{29).

CIFAR-10 classification. Using 10,000 sampled images, fully connected ReLU networks (26]
(3072,10, 128, 8) for SGDL and (3072,10,128,2,4) for MGDL) are trained with squared loss
and full-batch gradient descent (Figure [). With learning rate 0.004 0.004, SGDL reaches loss
7.16 x 1072 in 26,878 s; MGDL achieves 2.56 x 1073 in 22,177 s. SGDL shows strong oscillations
with eigenvalues often below —1, whereas MGDL exhibits mild oscillations in grade 1 and smooth
loss reduction in subsequent grades, with eigenvalues strictly within (—1, 1).

Across tasks— synthetic regression, image regression/denoising, and CIFAR-10—SGDL’s eigen-
values often fall below —1, causing loss oscillations, while MGDL’s stay within (—1, 1), explaining
its superior stability.

8 MULTI-GRADE TRANSFORMERS (MGT)

The Transformer|Vaswani et al[(2017) is a widely used architecture based on self-attention, enabling
global information exchange. We introduce a MGT and apply it to time series regression.

A single-grade Transformer (SGT) embeds inputs into dpqe-dimensional vectors with positional
encoding, processes them through n;, Transformer blocks (self-attention + feedforward with residu-

Multi-Grade: Eigenvalues of I - nH (W¥)

single-Grade: Ei

Multi-Grade

Single-Grade 100

o =

107t

Eigenvalues
Loss.

1072

> »? - 0 1 2 3 a R » o
Epochs i Epochs b Epochs e

Figure 6: Training on CIFAR-10 using SGDL and MGDL with learning rate 4 x 1073,
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als), and outputs predictions:
Input — Embedding — (Attention(dmodel, 7head) + MLP) X nj, — Output. )

MGT trains multiple grades, each a Transformer of form equation [9] with a single block. Grade 1
uses positional encoding, while later grades inherit positional information and refine residuals. Un-
like SGT, which trains a deep stack at once, MGT decomposes training into smaller stages, yielding
greater stability, fewer oscillations, and improved convergence and generalization.

Time series regression on synthetic data. We consider predicting the next s = 1 value from the
past d = 64 observations, with problem settings, data generation, and network architectures detailed
in Appendix [C] The first 80% of the sequence is used for training and the last 20% for testing.

Tabledreports the training and testing mean squared errors (TtMSE, TeMSE), while Figure[7]shows
predictions on data. Although both methods fit the training data effectively, MGT achieves signif-
icantly better generalization, attaining a test error of 1.6 x 10~! compared to 2.6 for SGT, while
requiring only 28% of the training time. As shown in Figure[7] SGT’s predictions deteriorate sharply
when test sequences deviate from the training distribution, while MGT maintains accurate predic-
tions.

Table 4: Synthetic time series

Value
Value

TrMSE TeMSE Time (s)
MGT 12x1072 1.6x 1077 741 S e e 7 e T
SGT 71%x10-2 2.6 x 10° 2.693 Time step Time step Time step Time step

Figure 7: Synthetic time series: train/test (1-2) and zoomed test (3—4).

Time series regression on financial data. We analyze the SPX (S&P 500 Index) using daily data
from |Yahoo Finance| or Bloomberg , spanning January 1, 2000, to August 22, 2025. The task is to
predict the next s = 1 value from the past d = 20 observations. Details on data preparation and
architectures are given in Appendix [C| The last 5% of the data is reserved for testing, with 5% of
the remainder for validation and the rest for training.

Table E] summarizes mean squared errors (TrMSE, VaMSE, TeMSE), and Figure (8| shows predic-
tions. Although oth models fit the training data affectively, MGT achieves substantially better gen-
eralization, attaining a test error of 1.8 x 10~2 compared to 8.9 x 10~2 for SGT, and requires only
33% of the training time. Crucially, as shown in Figure [8) SGT collapses under distribution shift,
with predictions diverging sharply from reality, whereas MGT remains accurate and stable through-
out.

Table 5: SPX time series.

TIMSE VaMSE TeMSE Time (5)
MGT 8.1x10 7 96x10 7 18x10" 572 N P N
SGT 18x107% 20x10"% 89x10~2 1,742 Time step Time step Time step Time step

Figure 8: SPX time series: train/val/test (1-2), zoomed test (3—4)

9 CONCLUSION

We analyzed MGDL from both theoretical and numerical perspectives. Spectral analysis revealed
that MGDL keeps eigenvalues of the iteration matrix within (—1, 1), ensuring stable convergence,
while SGDL often produces eigenvalues outside this range, leading to oscillatory training. A con-
vergence theorem further confirmed that eigenvalue behavior governs loss dynamics. Experiments
on synthetic regression, image reconstruction, and classification consistently showed MGDL’s ad-
vantages: greater stability, robustness to learning rates, and better accuracy in challenging settings.
These results establish MGDL as a principled and effective alternative to SGDL, combining convex
reformulations with practical performance gains.

Use of Large Language Models. Large Language Models were used to refine the text and ensure
grammatical accuracy.


https://finance.yahoo.com/quote/%5ESPX/history/
https://www.bloomberg.com/quote/SPX:IND
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Reproducibility Statement. Anonymous code and instructions for all experiments are provided in
the supplementary material: Why MGDL outperforms SGDL.
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A CONVERGENCE PROOF

Proofs of Theorem[TI]and Theorem 2|

We begin by establishing the convergence of the general gradient descent iteration [2} which serves
as the foundation for the proofs of Theorems|1{and [2| For a compact convex set 2 C RM, we let

o= sup [Hz(W)] (10)
weQ

where ||-|| is the spectral norm of a matrix.

Theorem 5. Suppose F : RM — R is a nonnegative, twice continuously differentiable function
and Q C RM is a convex, compact set. Let {W"}Zozl be a sequence generate from equation 0r a

given initial guess W° and assume that {W’“}:’;l C Q. If the learning rate ) € (0,2/«), then the
following statements hold:

(i) limy_ o0 F(WF) = F* for some F* > 0;
(ii) limy—o0 25 (WF) = 0 and limy, o0 W — W|| = 0;

(iii) Every cluster point W of {Wk}iio satisfies %(W) =0.

Proof. Since F is twice continuously differentiable, we can expand F(W*+1) at W* yields

OF

-
aw) (WEYAWF + 7y,

FWH) = F(WF) + (

with an error term .
e = §(AW’“)THJT(W)AW’“

where AW* = Wk+L — W% and W is a point between W* and W**!. By using equation equa-
tion 2] we have that

oOF & 1 k
— (W") = ——AW?". 11
ow ( ) n (an
Therefore,
X 1
F(WHE) = F(W") — ;)IIAW'“||2+W (12)

12
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We next estimate 1. Since F is twice contmuously differentiable, Hx is continuous. As €2 is
compact, Hz is also bounded on €2. Moreover, since both W**! and W* are in the convex set 2,
we have that W € Q. It follows from equation m 10/and compactness of € that

e < §||AW]“||2.
Substituting the above inequality into the right-hand side of equation equation |12} we have that
FOVE) < FOVS) = (= DI AW (13)
Since 7 € (0, ) we have that — 5 > 0. The nonnegative of - — 5 yields

0< f(W’f“) < F(Wk), fork=0,2,....

This guarantees that { F(W*)} .~ s a convergent sequence, thereby establishing Item (i).
We next prove Item (ii). For any positive integer K, summing inequality equation [I3] over k& =
0,1,..., K and then we get

1 a

D = DNAWH? < F(W?) = F(WH) < FW°).

n

k=0

Since %} — 5 is positive, the above inequality implies that

S IAWHR|? < o

k=0
Therefore,
lim [[AWF|| = 0. (14)
k—o0
Equation equation [TT]yields that
) OF &
lim |5 (W5 =0 (15)

and
lim W — Wk =0
k—o0

which estimates Item (ii).

We next show Item (iii). Let T be a cluster point of {I/V’c } w—o- Ihen there exists a subsequence

{Wk } of {Wk}k 0 such that lim;_,o W* = W. The continuous of the gradient with Item

(i) 1mpiles that
OF - . 3]—'

which proves Item (iii). O]

(W’c )=

Lemma 6. Suppose that the activation function o is twice continuously differentiable and the loss
Sfunction L is defined by equation then the gradient % and hessian H are continuous.

Proof. The key point of the proof is that a polynomial of a continuous function is continuous and so
is a composition of continuous function.

It follows from Lemma 3 of [Xu| (2025) that the componetwise of % and H, are polynomials of

taﬁ

N > .
0,0",{Xn,¥n},—, and the composition of o, o', . These ensure that 5= and H are continuous.

O

proof of Theorem[I] We apply Theorem 3] l with F := L. Under the hypothes1s that o is twice con-
tinuously differentiable, we have shown in Lemma@that the gradient avl‘:/ and H, are continuous.
Therefore, £ is twice continuously differentiable. It follows from the continuity of H, and the
compactness of the domain W that « is finite. Thus, the hypothesis of Theorem |5|is satisfied with
F := L. Theorem(I]is a direct consequence of Theorem 5 O

13
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Lemma 7. Suppose that the activation function o is twice continuously differentiable and the loss
Sfunction L is defined by equationwith {xin, eln}fy:l being bounded, then the gradient gﬁ}i and
hessian H, are continuous.

Proof. Since grade [ in MGDL is essentially a traditional shallow neural network with the only
change being the training data, which is replaced by {xln,eln}gzl. We further assume that

{Xin, eln}g:1 is bounded. This change does not affect the continuity of the gradient and Hessian.
Consequently, this lemma follows directly from Lemmal6] O

Proof of Theorem[2] We apply Theorem [5| with F := £;. Under the hypothesis that o is twice con-
tinuously differentiable, we have shown in Lemma |7|that the gradient gvﬁvll and H, are continuous.
Therefore, £; is twice continuously differentiable. It follows from the continuity of H., and the
compactness of the domain W, that « is finite. Thus, the hypothesis of Theorem [3]is satisfied with

F := L;. Theorem2]is a direct consequence of Theorem 5} O

Proof of Theorem [4]

We now proceed to the proof of Theorem 4} beginning with the following lemma.

Lemma 8. Suppose F : RM — R is nonnegative and twice continuously differentiable, and Q) C
RM is convex and compact. Let 1 > 0 be the learning rate and T as defined in Theorem Ifr<1
forall W € Q, thenn € (0,2/c), where o is given in equation[10]

Proof. For W € Q, let Ay (W), ..., Ay (W) be the eigenvalues of Hx (V). By definition of 7,

[L—n\;(W)| <7, foral WeQ,j=1,....,M,
which implies
-7 <n\(W) <1+
Since 7 < 1 and n > 0, the left inequality gives
1—7
n

)‘J(W) > >0,

which together with the definition of « yields
a=sup{\;(W):5=1,2,.... M,W € Q} > 0.
The right inequality implies na < 1 + 7 < 2, hence n € (0,2/ ). O

Proof of Theoremld] We first prove that the linearized GD sequence {Wk }72 | converges. The iter-
ation is

7=0 m=0 j=m+1
where u™ := g—{V(W’”) —Hy(Wm™wm,
Since || A% <7 <1,
k—1 k—1
ICTT ADOWHE < (TT IAZDIW < 71w — o,
7=0 3=0

so the first term vanishes. For the second, note that u* is bounded: continuity of g—v'f, and Hx on
compact €2 implies ||u*|| < C. Hence,

k—1
IC T Aum| <o

Jj=m+1

14
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and
k—1

e

1l—7 = 1—7

= 1— 7k 1
|| H AJ m||<CZTk1m:C <C

m=0 m=0
Thus the second term converges, and Wk converges.
Now consider the full GD iteration:
k-1 k=1 k-1
W = (HAJ)W1 > ( H AT )u + Z ( II a) an
m=0 j=m+1 m=0 j=m+1
where 7™ = — LWL — W) TTx(W)(W™mH — Wwm).

The first two terms behave as in the linearized case; it remains to show the last term vanishes. From
Lemma 7 < 1whenn € (0,2/a), so Theoremimplies |[WHE+L — W¥|| — 0. Since Tx is
bounded on compact €2, say by C,

C
I < Tt — w2 0,

Split the last sum into m < N and m > N. For fixed N, the first part tends to zero as k — oo
because 7F—1-™

k—1 -
I« H AY) m||<27k1m\|rk||<627 e

m=N j=m+1

Thus the last term vanishes, proving convergence of W*. O

B OPTIMIZATION PROBLEM FOR IMAGE RECONSTRUCTION

This appendix formulates the optimization problems for image reconstruction, covering both de-
noising and deblurring.

Image denoising and deblurring are classical problems in image processing, extensively studied in
the literature Buades et al.|(2005)); Dabov et al.|(2007); Micchelli et al.| (201 1)); Fergus et al.| (20006);
Krishnan & Fergus|(2009); Beck & Teboulle| (2009); Li et al.| (2015). They are commonly modeled
as

f:=Af+e

where f € R"*" is the observed corrupted image, A is a transform operator, f € R™"*" is the
unknown clean image, and e represents additive noise. When A is the identity, the task reduces
to denoising Buades et al. (2005); [Dabov et al.| (2007); Micchelli et al.| (2011), whereas if A is
a blurring operator, it corresponds to deblurring [Fergus et al.| (2006)); [Krishnan & Fergus| (2009);
Beck & Teboulle (2009); [Li et al.| (2015). The statistical nature of the noise € depends on the
specific application: for instance, Gaussian noise is commonly used for natural images [Micchelli
et al.| (2011}, while Poisson noise is typical in medical imaging |Guo et al.| (2022). In this work, we
focus on Gaussian blurring with additive Gaussian noise.

We model a grayscale image as a function f : R? — R mapping pixel coordinates to intensity values
and aim to recover f from the corrupted observation f using neural network-based approximators.

B.1 PROBLEM FORMALIZATION FOR SGDL

Let Np(8;x) denote the SGDL network with parameters © := {W,b;}12 . and define the as-

sociated image matrix Ng € R"*" by [Ng); ; := Np(©O;x; ;). To suppress noise and stabilize
the ill-posed problem, we adopt the Rudin—Osher—Fatemi (ROF) total variation model |[Rudin et al.
(1992), leading to the objective

1 4 2
G(©) = 5IIf — ANellz + AIBNe|, , (18)
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where B denotes the first-order difference operator, || - || denotes the Frobenius norm and || - ||1 1
denotes the entrywise /; norm. The parameter A > 0 balances data fidelity and regularization.

Since | BN || 11 is non-differentiable term ||-||, ;, we introduce an auxiliary variable u and penalize
the deviation u — BNO, yielding
La 2 B 2
£(0,0) = 5 - AN + 5l — BNo|[2 + Al ;.

see, [Fang et al.| (2024)); [Shen et al.| (2016); [Wu & Xul (2022). The corresponding optimization
problem is

argmin {£(u,0) : u € R#™" W, € RT-1%4 b, € RY | for j € Np}. (19)

We update u via the proximity operator and © via gradient-based optimization, yielding the iterative
scheme

uhtl = PrOXa /61, (aBNgk + (1 — a)u¥), (20)

Using gradient-based optimizer to minimize £(u**!, ©) and obtain @~ (21)

B.2 PROBLEM FORMALIZATION FOR MGDL

We now present the MGDL framework for reconstructing f. Grade 1 follows the same setup as
SGDL, except with a smaller hidden layer. Its objective is

1 4 2
£(1,0,) = £~ ANo,|I? + 2 [ju — BNe, |2 + Alull, .
2 2

with optimization problem
argmin {El(u, 01) :u e R W,y € Rdl(ﬁl)Xd“’,blj e R% forj e NDI} ) (22)
For grade | > 2, we learn a new network A/p, composed with the trained subnetworks from earlier
grades. Let [go+];j := Np, (©7;X; ;) and define
[g8e,)ij == aNp,(©1;-) oHp,_,-1(O]_1;) 0...0Hp, 1(07;%i ) + [8er_ Jij

where ¢; is a normalization factor. The grade-[ loss is then
1,4 2 B 2
Li(u,01) i= 5 |F — Ago, I + S llu — Bgo, I + Alull 1
with minimization problem

argmin {ﬁl(u, 0)):ue RQ”X",WU S Rdl(j—l)Xd“,bU e R%, forj e ND,} . (23)

Both equation[22)and equation[23]are solved using the proximity-gradient scheme equation[20}-equa-
tion [21] with the loss replaced accordingly.

C PROBLEM SETTING FOR TIME SERIES REGRESSION

We describe the problem setting for time series regression.
Given a univariate time series:
{y eR:t=0,1,...,N — 1},

the task is to predict the next s future values from the past d observations. Formally, we seek a
regression function

Werts - virsl ' = folyaris-- '),
where fo : R? — R® is parameterized by ©.

The dataset is constructed using a sliding window of size d. For each index ¢ = 0,1,..., N —d — s,
the input-output pairs is defined as

X; = [Yi, Yit1s - Yird—1] € R 2z = [yita, .., Yirdrs—1] € R". 24)

16



Under review as a conference paper at ICLR 2026

Synthetic Data
In Section[8] the synthetic dataset is generated as

2t 2t 2t 2t
%:gnﬁ%)+05m%é%)+0%m({%+05mﬁ&9+QmL t=0,1,...,N—1

with N := 2,000. Input—output pairs are formed via equation [24{ with d = 64 and s = 1.
The SGT architecture is

Input — Embedding(64) — (Attention (64, 1) + MLP(128)) x 3 — Mean Pool — Output(1).  (25)
For MGT, the model is divided into three grades, each containing one transformer block.
Financial Data

In Section|[8] we also use financial data: the daily closing prices of the S&P 500 Index from January
1, 2000, to August 22, 2025 (N = 6,449). Input-output pairs are formed using equation [24] with
d = 20 and s = 1. Before training, the series is normalized using the training set mean y and
standard deviation o

=" E 01, N-1,
g

with the same normalization applied to validation and test sets.

The SGT follows equation@ but with six transformer blocks instead of three. For MGT, the model
is split into six grades, each with one transformer block.

Training

For both synthetic and financial datasets, SGT and MGT are trained with the Adam optimizer and
mini-batch size 128.

D NETWORK STRUCTURES

This Appendix details the network architectures used in the paper.

We begin with the fully connected network for SGDL, where each hidden layer has the same width.
The architecture is

[nin] — [nhidden] X Np — [nout]y (26)
where n;, is the input dimension, np;q4en, the number of neurons per hidden layer, n; the
number of hidden layers, and n,,; the output dimension. The parameters of the network are
(ni’ru Nouts Mhidden s nh)~

In MGDL, the network expands grade by grade. Each grade uses nj, hidden layers with np;qden
neurons per layer. At grade [, the structure is

[Min] = [Mhidden]F % (L = 1)y = [Mhidden] X = [Nowt], 1=1,2,...,L, 27

where [npidden| 7 X ([—1)ny, are the layers trained in the first {—1 grades (kept fixed), and [npidden] ¥
ny, are the layers trained at grade [. The network parameters are (1n, Nout, Rhiddens Tk, L)

For CIFAR-100, the SGDL architecture is
32x32x3 — [Conv(64) x 3 — AvgPool| x 2 — [Conv(128) x 3 — AvgPool] x 2

— Flatten — Dense(128) — Dense(100). 28
The MGDL counterpart consists of four grades:
G1:32x32x3 — Conv(64) x 3 — AvgPool — Flatten — Dense(64) — Dense(100)
G2:16 x 16 x 64 — Conv(64) x 3 — AvgPool — Flatten — Dense(64) — Dense(100) 29)

G3: 8 x 8 x 64 — Conv(128) x 3 — AvgPool — Flatten — Dense(128) — Dense(100)
G4:4 x4 x 128 — Conv(128) x 3 — AvgPool — Flatten — Dense(128) — Dense(100).

Here, Conv(c) x m denotes m convolutional layers with ¢ channels, and Dense(n) a fully connected
layer with n neurons. Convolutions use 3 x 3 kernels, and average pooling uses a 2 x 2 window.
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0

(e ® (€3]

Figure 9: Clean images: (a) ‘Resolution chart’, (b) ‘Cameraman’, (c) ‘Barbara’, (d) ‘Butterfly’, (e)
‘Pirate’, (f) ‘Chest’, (g) “Walnut’.

E SUPPORTING MATERIAL FOR SECTIONS [3H7]

The experiments in Sections [5}{7] were performed on X86_64 server with an AMD 7543 @ 2.8GHz
(64 slots) supporting AVX512, 2 Nvidia Ampere A100 GPUs.

Image reconstruction quality is measured by the peak signal-to-noise ratio (PSNR), defined as
PSNR := 101log;, ((n x 2552)/ ||v — \7||§) (30)

where v is the ground-truth image, ¥ is the reconstructed image, n is the number of pixels, and || - ||
is the Frobenius norm.

Supporting figures referenced in Section [5]include:

1. Figure[0} Clean images used in the paper.
2. Figures[IOHIT} Results for the ‘Image Regression’ in Section 5]

3. Figure [I2} Noisy image used in the experiments. Figures [[3HI5} PSNR values during
training and the denoised images produced by SGDL and MGDL. These figures correspond
to the ‘Image Denoising’ in Section 3]

4. Figure [T} Blurred image used in the experiments. Figures [T7HI9 PSNR values during
training and the deblurred images produced by SGDL and MGDL. These figures corre-
spond to the ‘Image Deblurring’ in Section 3]

Figure [20] is the supporting figure referenced in Section [6] which presents the results for ‘Image
Regression’.

The supporting figures referenced in Section [7]include:

1. Figures[21}22} Results for the ‘Synthetic data regression’ in Section[7]
2. Figures [23}25} Results for the ‘Image regression’ in Section|[7}
3. Figures 26}29 Results for the ‘Image denoising’ in Section 7}
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Figure 11: Comparison of SGDL and MGDL for image regression. (a)-(d) ‘Barbara’; (e)-(h) ‘But-
terfly’; (i)-(1) ‘Pirate’; (m)-(p) ‘Chest’; (q)-(t) “Walnut’.
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Noisy image: s = 50

Noisy image: s = 60 Noisy image: s = 10 Noisy image: s = 20

(e) PSNR: 14.14 (f) PSNR: 12.55 (g) PSNR: 28.14 (h) PSNR: 22.12

Noisy image: s = 30 Noisy image: s = 40 Noisy image: s = 50 Noisy image: s = 60

(i) PSNR: 18.60 (i) PSNR: 16.10 (k) PSNR: 14.16 (1) PSNR: 12.57

Noisy image: s =10 Noisy image: s =20 Noisy image: s = 30 Noisy image: s = 40

(m) PSNR: 28.14 (n) PSNR: 22.12 (o) PSNR: 18.60 (p) PSNR: 16.10

Nois ge: s =50 Noisy image: s = 60

e

(q) PSNR: 14.16 (r) PSNR: 12.57

Figure 12: Noisy images at noise levels s = 10, 20, 30, 40, 50, 60: (a)—(f) ‘Butterfly’; (g)-(1) ‘Pi-
rate’; (m)—(r) ‘Chest’. PSNR values are given in the titles.
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Figure 13: Comparison of SGDL and MGDL denoising results for the ‘Butterfly’ image. Rows 1-6
correspond to noise levels s = 10, 20, 30, 40, 50, 60, showing both the PSNR during training and
the reconstructed images, with their PSNR values indicated in the subtitles.
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Figure 14: Comparison of SGDL and MGDL denoising results for the ‘Butterfly’ image. Rows 1-6

correspond to noise levels s = 10, 20, 30, 40, 50, 60, showing both the PSNR during training and
the reconstructed images, with PSNR values indicated in the subtitles.
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Figure 15: Comparison of SGDL and MGDL denoising results for the ‘Chest’ image. Rows 1-6
correspond to noise levels s = 10, 20, 30, 40, 50, 60, showing both the PSNR during training and
the reconstructed images, with PSNR values indicated in the subtitles.
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Figure 16: Images blurred with operators of standard deviations § = 3,5, 7: (a)-(c) ‘Butterfly’; (d)-

(f) ‘Pirate’; (g)-(i) ‘Chest’. The PSNR value is indicated in each title.
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Figure 17: Comparison of SGDL and MGDL deblurring results for the ‘Butterfly’ image. Rows 1-3
correspond to blurring kernel standard deviations § = 3,5, 7.
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Single-Grade

(c) PSNR: 24.72

Single-Grade

(2) PSNR: 23.79

Single-Grade

(k) PSNR: 23.13

correspond to blurring kernel standard deviations § = 3,5, 7.

Single-Grade Multi-Grade

38 K——k
36
34

o«

Z 32

2
30
28

Single-Grade

Multi-Grade: Grade 4

(d) PSNR: 26.47

Multi-Grade: Grade 4

(h) PSNR: 24.95

Multi-Grade: Grade 4

(1) PSNR: 23.98

Multi-Grade: Grade 4

PSNR
NN W W W
o ® & N &

N

26
0.0 0.5 1.0 15 2.0 2 4
Epochs e Epochs
(a) (b)
Single-Grade Multi-Grade
36 36 o
34 34 /(m"
x 32 o 32
=4 =
€30 €30
28 28
26 26
0.0 0.5 1.0 15 2.0 4
Epochs 1ot Epochs
© ®
Single-Grade Multi-Grade

//

0.

=)

PSNR
NN W W
o ® O N

0.5 1.0 15 2.0
Epochs

®

Figure 19: Comparison of SGDL and MGDL deblurring results for the ‘Chest’ image. Rows 1-3
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Figure 21: Training process of SGDL (n = 0.005) and MGDL (0.2) for Setting 2.

3 Single-Grade 3 Multi-Grade: Grade 4 Single-Grade Multi-Grade: Grade 4
4
2 \ \ 2 \ \
\ | 2 \
1 1 ) ’
\f | | \ \
= of /) ~ 0 | s of [ “ | [
. | i I
\ \ -2 W
-2 \ -2
-3 -3 -4
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
X X X

Figure 22: SGDL and MGDL predictions on synthetic data regression: Setting 1 (subfigures 1-2),
Setting 2 (subfigures 3—4).
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Figure 23: Training process of SGDL (1 = 0.1) and MGDL () = 0.2) for image ‘Cameraman’.
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Figure 24: Training process of SGDL (1 = 0.08) and MGDL (n = 0.2) for image ‘Barbara’.
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Figure 25: Training process of SGDL (1 = 0.05) and MGDL (n = 0.05) for image ‘Butterfly’.
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Figure 26: Training processes of SGDL and MGDL on the ‘Butterfly’ image (noise level 10).

Single-Grade: Eigenvalues of 1 - nH,(W¥)
1

0.0

02 04 06

Epochs

Eigenvalues

Multi-Grade: of 1= nH.(W¥)

NS

0 1 2 3 4
Epochs A

70 Single-Grade 70 Multi-Grade
68 68
66 66
@ @
564 564
62 62
60 60 \
00 02 04 06 08 1.0 0 1 2 3 4
Epochs e Epochs b

Figure 27: Training processes of SGDL and MGDL on the ‘Butterfly’ image (noise level 30).
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Figure 28: Training processes of SGDL and MGDL on the ‘Barbara’ image (noise level 10).
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Figure 29: Training processes of SGDL and MGDL on the ‘Barbara’ image (noise level 30).
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