
000 001 CLiMRS: COOPERATIVE LARGE-LANGUAGE-MODEL- 002 DRIVEN HETEROGENEOUS MULTI-ROBOT SYSTEM 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Cooperative multi-robot tasks often require heterogeneous agents to collaborate
011 over long horizons while managing spatial constraints and execution uncertainties.
012 Although large language models (LLMs) excel at reasoning and planning, their
013 potential for coordinated control in heterogeneous multi-robot teams has not been
014 fully explored. We present **CLiMRS**, an adaptive negotiation framework inspired
015 by human teamwork. The framework pairs each robot with an independent LLM
016 agent and dynamically forms subgroups to facilitate perception-driven discussions
017 and collaborative planning under long-horizon uncertainty. Within each group,
018 local oracle planners lead parallel discussions to synchronize actions, while agents
019 provide feedback to refine plans. This grouping–planning–feedback–execution loop
020 enables efficient long-horizon planning and robust execution. To evaluate these
021 capabilities, we introduce **CLiMBench**, a heterogeneous multi-robot benchmark
022 of challenging assembly tasks with diverse robot types and skill libraries. Across
023 both **CLiMBench** and a simpler benchmark, **CLiMRS** surpasses the best baseline,
024 boosting success rates and improving efficiency by over 40% on complex tasks
025 while maintaining very high success on simpler tasks. Our results demonstrate that
026 leveraging human-inspired group formation and negotiation principles markedly
027 enhances the efficiency of heterogeneous multi-robot collaboration.

028 029 1 INTRODUCTION 030

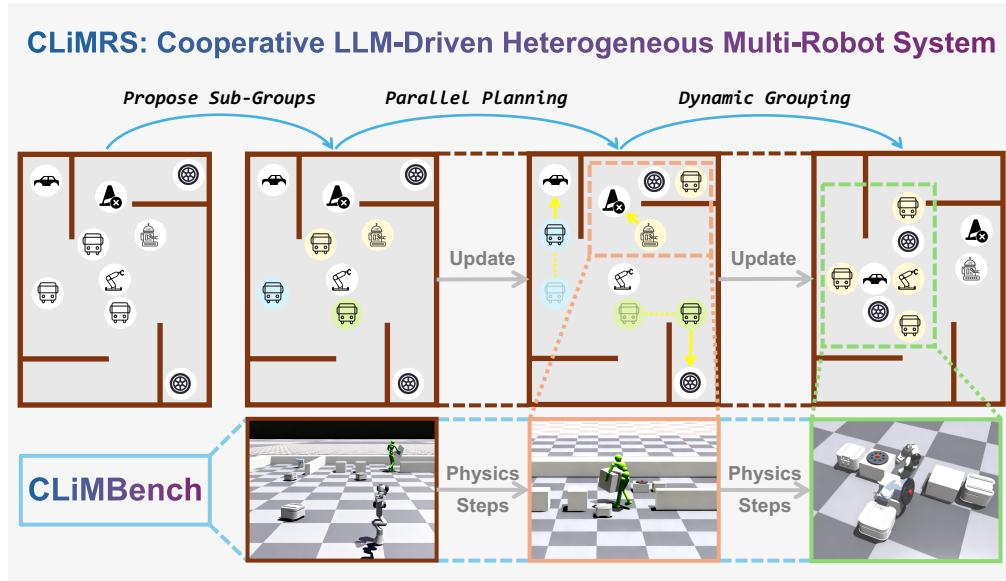
031 Addressing real-world, everyday tasks often requires collaboration to enhance the efficiency of long-
032 horizon, complex planning and perception. Meanwhile, the development of intelligent agents that can
033 assist embodiments in accomplishing such tasks remains an open challenge, particularly regarding
034 how these agents can effectively help humans and other robots execute such intricate operations.
035 Inspired by human teamwork, incorporating principles of human teaming into multi-agent systems,
036 where sub-groups coordinate planning and perception through shared observations and information,
037 offers a promising yet challenging path to improving efficiency and robustness Zhang et al. (2024b).

038 At the same time, large language models (LLMs) have exhibited outstanding performance across
039 various dimensions, including natural language question answering Rein et al. (2024), code genera-
040 tion Jain et al. (2024), and logical reasoning Plaat et al. (2024). In recent years, numerous studies
041 have integrated LLMs into robotic planning scenarios Song et al. (2023); Zhang et al. (2024a); Mower
042 et al. (2024); Salimpour et al. (2025); Liang et al. (2025), with some extending their application to
043 multi-robot collaborative planning tasks Zhang et al. (2024b); Mandi et al. (2024); Liu et al. (2025).

044 However, earlier explorations of robot collaboration largely center on homogeneous agents, which
045 restricts the range of capabilities that can be demonstrated Liu et al. (2024a). Furthermore, works
046 on heterogeneous teams typically assume ideal operating conditions Liu et al. (2025), while such
047 assumptions ignore the cumulative errors that escalate over long horizons, driving up communication
048 costs and undermining cooperative efficiency. While these advances show the promise of LLM-driven
049 multi-robot collaboration, important gaps persist when the setting involves heterogeneous agents,
050 long-horizon objectives, and the practical constraints of real-world operation.

051 To address these limitations, we propose **CLiMRS** (Cooperative Large-Language-Model-Driven
052 Heterogeneous Multi-Robot System), a human-team-inspired LLM-driven adaptive-negotiation
053 framework that orchestrates heterogeneous robots through dynamic sub-group formation and cooper-
ative planning, supporting robust long-horizon collaboration in uncertain environments.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073



074 **Figure 1: Overview.** We present **CLiMRS**, a human-team-inspired negotiation paradigm for heterogeneous
075 multi-robot systems that dynamically forms perception-driven discussion sub-groups, and
076 **CLiMBench**, a heterogeneous multi-robot benchmark with challenging assembly tasks.

077
078 In this framework, each robot is guided by an independent LLM agent that communicates with
079 peers to accomplish complex, long-horizon tasks. To strengthen collaborative effectiveness, the
080 system leverages the broad world knowledge of LLMs and explicitly models inter-agent dependencies
081 through a carefully designed grouping–planning–feedback–execution loop.

082 With **CLiMRS**, we further explore its applicability to challenging industrial scenarios, where heterogeneous
083 robots must handle unpredictable execution errors. To evaluate this, we introduce **CLiMBench**,
084 a benchmark for heterogeneous multi-robot collaboration. It features five robotic devices across
085 three types of heterogeneous robots, equipped for transportation, conveyance, and assembly. Tasks
086 of varying difficulty simulate material-handling and assembly processes with diverse skill usage,
087 designed to test the planning and perception capabilities of LLM-based frameworks.

088 We evaluated our proposed framework in two distinct environments: **CLiMBench** and another
089 heterogeneous robot collaboration benchmark Liu et al. (2025). Our experiments show that **CLiMRS**
090 outperforms the best baseline, increasing success rates and improving efficiency by over 40% on
091 complex tasks while maintaining high success on simpler ones. These results demonstrate that
092 incorporating human-inspired group formation and negotiation principles substantially enhances the
093 efficiency of heterogeneous multi-robot collaboration. To summarize, our main contributions are:

094

- 095 • We present **CLiMRS**, a multi-LLM cooperation framework for heterogeneous multi-robot collaboration
096 which can perform long-horizon planning and efficient perception in complex tasks.
- 097 • We propose **CLiMBench**, a benchmark evaluating heterogeneous multi-robot collaboration in
098 industrial assembly scenarios, featuring varied skill sets and a realistic simulation environment.
- 099 • We demonstrate through extensive experiments that **CLiMRS** achieves significant efficiency
100 improvements via dynamic group formation and cooperative long-horizon planning.

101 2 RELATED WORK

102 2.1 EMBODIED SKILLS TRAINING ACROSS DIVERSE SCENARIOS

103 **Embodied Agent Skill Training.** Approaches to train embodied skills for task execution generally
104 follow two primary paradigms: rule-based and learning-driven methods. Traditional embodiment
105 controllers optimize joint movements through the resolution of robotic kinematics, aiming to im-

108 prove motion robustness and generate smoother, more precise trajectories Kashyap & Parhi (2021);
109 Katayama et al. (2023). In recent years, with the advances of reinforcement learning and imitation
110 learning in robotic motion control, spanning domains such as dexterous manipulation Rajeswaran et al.
111 (2017); Zhu et al. (2019); Chen et al. (2022); Luo et al. (2025), bipedal locomotion Li et al. (2025);
112 Zhang et al. (2024c); Serifi et al. (2024), and quadrupedal navigation Bellegarda et al. (2024); Shi et al.
113 (2024), embodied perception has progressively learned to coordinate actions in a cerebellum-like
114 fashion, enabling increasingly complex tasks in diverse environments. Overall, as tasks and envi-
115 ronments grow more complex, embodied intelligence is shifting from traditional low-level planning
116 toward more integrated, end-to-end perception and control.

117 **Multi-agent Skill Training.** Originally developed in game AI Kurach et al. (2020); Perolat et al.
118 (2022), multi-agent skill training has since extended to industrial fields such as robotics Wang et al.
119 (2024); Lai et al. (2025) and autonomous driving Li et al. (2022), where many of the coordination and
120 credit-assignment strategies first pioneered in games remain fundamental. Despite these advances,
121 current methodologies for multi-agent embodied tasks remain underdeveloped, particularly in light of
122 the exponential state-space challenges introduced by an increasing number of robotic agents. Although
123 certain researchers have explored mean-field approximations to alleviate these challenges Yang et al.
124 (2018), robust generalization across heterogeneous robots has yet to be realized.

125 To further this goal, we design a set of generalizable robotic skills in **CLiMBench** to support
126 heterogeneous multi-agent collaboration, leveraging robots' low-level control capabilities for high
127 success rates and reducing the impact of execution failures on higher-level task planning.

128 129 2.2 TASK PLANNING WITH LLMs IN ROBOTICS

130 **LLM Planner for Robotics.** The rapid progress of LLMs in generalization and commonsense
131 reasoning has fueled growing interest in robotics, as their strong few-shot Brown et al. (2020);
132 Madaan et al. (2022) and zero-shot Huang et al. (2022); Kojima et al. (2022) learning capabilities
133 make them well-suited as task planners for robots. Reliable code-generation abilities further allow
134 LLMs to synthesize precise, executable instructions for robotic control Liang et al. (2023a); Singh
135 et al. (2023); Wang et al. (2023); Wu et al. (2023a), and value-function-based approaches Lin et al.
136 (2023); Ahn et al. (2022) leverage these models to select robust, skill-level commands for robotic
137 agents. Recent improvements in context-driven prompting strategies Zhang et al. (2024b); Mandi
138 et al. (2023); Liu et al. (2025); Wu et al. (2023b) have strengthened LLM-based task planning even
139 further. Moreover, some studies Mandi et al. (2023) demonstrate that LLMs can reason and plan
140 directly in 3D joint space, enabling the generation of fine-grained and precise task instructions.

141 **Multi-LLM Task Planning.** A promising way to overcome the limits of a single LLM in complex
142 reasoning is to use multiple LLMs with cooperation, employing strategies such as round-table
143 discussion Chen et al. (2023a), mutual debate Liang et al. (2023b), and role assignment Hong et al.
144 (2024) to divide labor and improve output reliability. In embodied tasks, many studies emphasize the
145 use of feedback Mandi et al. (2023); Liu et al. (2025) and memory modules Zhang et al. (2024b);
146 Mandi et al. (2023); Liu et al. (2025); Wang et al. (2023) to enhance multi-LLM perception and
147 planning. These modules allow LLMs to generate execution-level feedback and refine planning
148 decisions using the rich context stored in well-designed memory components.

149 **Decision Paradigms in Multi-Robot Collaboration.** Two primary decision-making paradigms have
150 emerged for complex multi-robot tasks: centralized and decentralized approaches. In decentralized
151 schemes, multiple models or agents communicate, exchange intermediate plans, and iteratively
152 refine their decisions through structured dialogue Mandi et al. (2023); Zhang et al. (2024b); Liu
153 et al. (2024b), while centralized methods typically rely on a single, large-scale LLM to decompose
154 global objectives and allocate tasks when planning Kannan et al. (2023); Liu et al. (2025). A recent
155 comparative study conducted across four diverse multi-agent 2D scenarios Chen et al. (2023b) further
156 reports that centralized communication consistently achieves higher success rates and markedly
157 greater token efficiency, highlighting its strong potential for scalable real-world deployment.

158 To enhance collaboration in multi-robot scenarios, we propose a multi-LLM cooperation framework
159 inspired by human teamwork. Robots are organized into dynamic subgroups for specific sub-tasks,
160 reducing communication overhead while enabling concurrent discussions, plan refinement, and
161 parallel action execution to improve efficiency and maintain a high success rate.

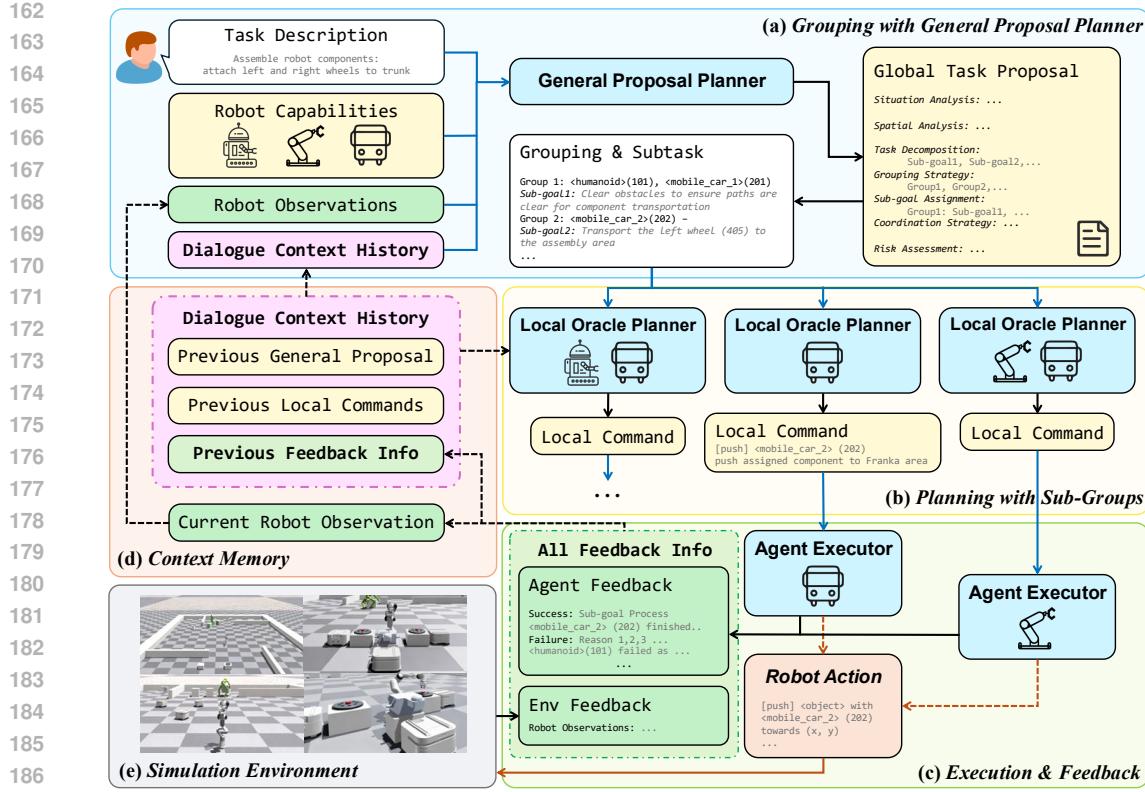


Figure 2: **CLiMRS Framework**. To employ our grouping–planning–feedback–execution cycle, **CLiMRS** comprises (a) a general grouping module, (b) multiple local planners, (c) multiple agent execution and feedback modules, (d) a context memory module, and (e) a simulation environment.

3 METHOD

In this section, we present **CLiMRS**, an adaptive negotiation-driven multi-LLMs cooperation framework for heterogeneous robot systems. Inspired by human teamwork, our approach forms dynamic agent sub-groups that facilitate centralized discussions on robot perception in parallel, with each robot paired with an individual LLM agent to give feedback to these discussions, resulting in a dynamic grouping–planning–feedback–execution cycle. As illustrated in Fig. 2, **CLiMRS** comprises five core modules: (a) a general grouping module that forms dynamic agent groups, (b) multiple local planners that generate agent commands, (c) agent execution and feedback modules that produce robot skills and return execution feedback, (d) a context memory module that records all inter-agent dialogues, and (e) a simulation environment for real-time interaction.

3.1 GROUPING WITH GENERAL PROPOSAL PLANNER

The first stage of our grouping–planning–feedback–execution cycle is to dynamically partition the agents into sub-groups, each responsible for different aspects of the overall task. To achieve this, we use a *general proposal planner* to augment the task instructions and orchestrate the grouping process.

General Proposal Planner. As illustrated in Fig. 2(a), the *general proposal planner* generates a global task proposal that organizes all agents into sub-task-oriented teams. Given the overall task instruction, this prompted LLM incorporates robot capabilities, current observations, and the dialogue history through a structured prompt. It outputs a well-defined plan designed to facilitate systematic reasoning: (1) *Situation Analysis*, assessing the environment and the current progress of the task; (2) *Spatial Analysis*, accounting for the locations of agents and known objects, as well as spatial constraints; (3) *Task Decomposition*, breaking the objective into executable sub-tasks; (4) *Grouping Strategy*, deciding how to cluster agents for concurrent or parallel work while minimizing interference;

216 (5) *Sub-goal Assignment*, specifying the objective of each group; (6) *Coordination Strategy*, outlining
217 inter-group synchronization and execution order; and (7) *Risk Assessment*, identifying potential
218 conflicts and corresponding mitigation plans. The resulting mapping from agent groups to their
219 designated sub-tasks is then extracted and passed to the perception and execution modules.
220

221 3.2 PLANNING WITH SUB-GROUP LOCAL PLANNERS 222

223 Given the agent groupings and their designated sub-tasks, the second stage of our cycle issues precise
224 commands to individual robots according to their capabilities and current observations. Because these
225 sub-tasks are mutually independent, multiple *local oracle planners* operate in parallel to generate
226 commands for different robots simultaneously, which is shown in Fig. 2(b).

227 **Local Oracle Planner.** The *local oracle planner* facilitates a centralized discussion among robots in
228 a sub-group to determine precise commands for completing their assigned sub-tasks. This discussion
229 leverages prior agent feedback stored in the dialogue context history. Similar to the *general proposal*
230 *planner*, the *local oracle planner* takes into account sub-task instructions, robot capabilities, partial
231 observations, and historical dialogue as context, but operates within a narrower scope to make
232 fine-grained decisions focused on individual agents executing specific skills.
233

234 3.3 AGENT EXECUTION AND FEEDBACK 235

236 With commands issued to the robots, the final two stages of our cycle require them to evaluate
237 these commands, determine appropriate actions, and provide feedback to refine future planning
238 while ensuring safe execution. The *agent executor* LLM verifies the feasibility of its command
239 and issues the corresponding action only when the command is deemed executable. The feedback
240 then consolidates outcomes from both the LLMs and the simulator, gathering information to guide
241 subsequent planning cycles and thereby closing the loop of negotiation among the LLMs.
242

243 **Agent Execution with Feedback.** Shown in Fig. 2(c), the *agent executors* verify and execute
244 commands from *local oracle planner* while providing feedback. Each *agent executor* LLM considers
245 its robot’s capabilities, current observations, and available actions. The executor first checks its
246 feasibility against the robot’s physical constraints and observations. If feasible, the action is executed
247 using the robot’s skills; otherwise, the robot remains idle in this loop. Simultaneously, the executor
248 produces feedback based on its evaluation, which is sent to the feedback module to inform future
249 planning. Execution failures are categorized as (1) *improper grouping*: no robot in the group can
250 complete the sub-task; (2) *incorrect agent selection*: a valid sub-task is assigned to an unsuitable
251 robot; and (3) *state inconsistency*: missing information or unmet conditions prevent execution. For
252 successful actions, the module also evaluates whether the sub-task has been fully accomplished.
253

254 **Feedback Formation.** The feedback is aggregated from two sources: (1) environmental ob-
255 servations updated after robot actions are executed in the simulator, and (2) outputs from the
256 *agent executors*. This information is then integrated into the *context memory* for the next group-
257 ing–planning–feedback–execution cycle. The feedback both guides the *general proposal planner*
258 during grouping (Sec. 3.1) and aids centralized discussions by the *local oracle planners* (Sec. 3.2). In
259 this way, the accumulated observations and executor outputs provide essential context for refining
260 both the global task proposal and the detailed local commands.
261

262 3.4 CONTEXT MEMORY AND ENVIRONMENT 263

264 Following the grouping–planning–feedback–execution cycle described above, our framework depends
265 on two essential modules to make the workflow of the entire cycle operate smoothly: the *context*
266 *memory* module and the *simulation environment*.
267

268 **Context Memory.** As shown in Fig. 2(d), the *context memory* collects (1) current feedback and
269 planning dialogue together with the dialogue history from previous cycles, (2) robot observations
270 from the *simulation environment*, and (3) the latest outputs from agents and planners. For the *general*
271 *proposal planner*, it retains the previous five dialogue turns and the newest observations, allowing
272 agent feedback to inform new proposals and groupings. For the *local oracle planners*, it stores each
273 group’s latest observations and the last five dialogue turns, providing rich situational context to guide
274 and refine subsequent planning decisions.
275

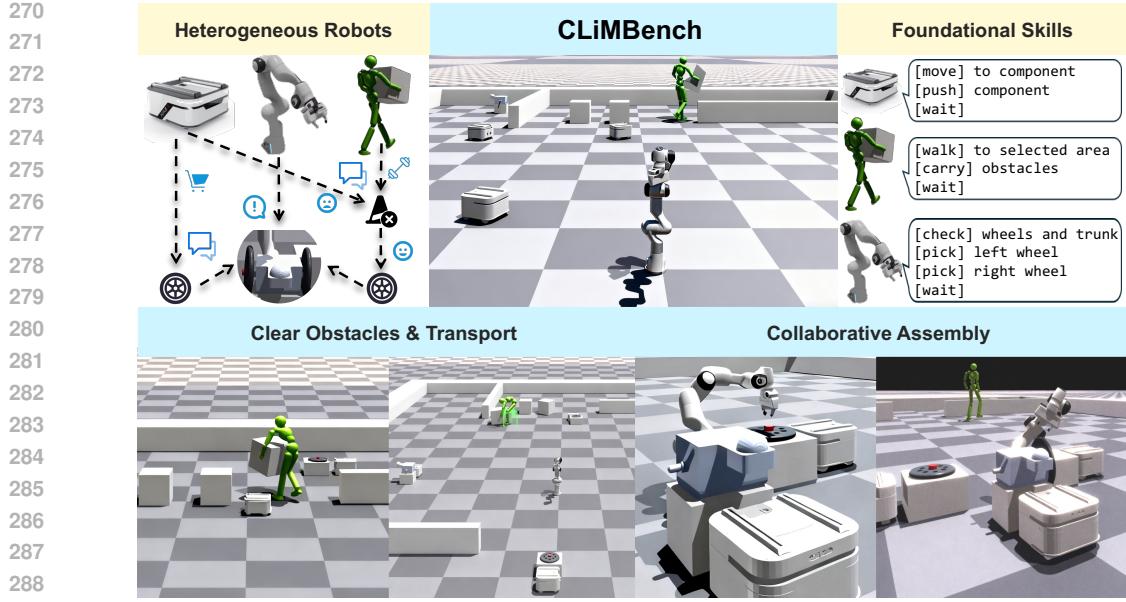


Figure 3: **CLiMBench Benchmark.** **CLiMBench** is a heterogeneous multi-robot collaboration benchmark designed to evaluate **CLiMRS**. It features multi-agent robots with diverse skills, enabling collaboration on tasks like transportation, conveyance, and assembly across varying difficulty levels.

Simulation Environment. Shown in Fig. 2(e), the simulation environment serves as the execution backbone of our framework. It receives the robot skill execution signals issued by the *agent executors* and immediately carries out the corresponding low-level actions in real time. During execution, it monitors the evolving state of the environment and produces both updated robot observations and environment-level feedback. These outputs are fed back to the *context memory*, allowing the overall method to track task progress, refine its understanding of the environment, and supply the information required for the next round of the grouping–planning–feedback–execution cycle.

4 BENCHMARK

In this section, we present **CLiMBench**, a benchmark for heterogeneous multi-robot collaboration. As shown in Fig. 3, we construct an assembly environment in IsaacGym Makoviychuk et al. (2021) that features diverse robotic agents and modular components. To enable effective integration with LLM-based planning, robot actions are executed by invoking predefined skills.

Unlike some other multi-agent collaboration benchmarks Liu et al. (2025), which decouple skill execution from the planning–execution loop and assume that all robot skills succeed by default, **CLiMBench** executes every robot skill within a realistic physics simulation, enabling genuine interaction between planning and execution. This distinction is critical because collaborative assembly tasks are inherently difficult, demanding not only high-precision manipulation but also effective coordination among multiple agents. The following subsections describe the scene construction and skill design mechanisms of **CLiMBench**, and additional details are provided in the Appendix.

4.1 SCENE CONSTRUCTION IN **CLiMBENCH**

CLiMBench features an industrial assembly scene that includes both assembly components and robotic agents. To increase task complexity and enhance realism, we introduce blocking obstacles into the environment settings. As is illustrated in Fig. 3, our robotic arm is implemented using a Franka Emika Panda arm, the AGV platform is based on the TRACER Mini robot, and the humanoid is implemented using the virtual humanoid agent.

Scene Initialization and Randomization. We initialize the environment and introduce controlled variations in task parameters and object configurations to enhance generalization. At the start of

324
 325 **Table 1: Robot Skill List in CLiMBench.** We assign each robot type a distinct set of skills in
 326 **CLiMBench** based on its specific capabilities.

Robot type	Num	Skill list
329		[check] <franka>check <trunk>
330		[check] <franka>check <left wheel>
331	1	[check] <franka>check <right wheel>
332		[pick] <franka>pick and place <left wheel>on <trunk>
333		[pick] <franka>pick and place <right wheel>on <trunk>
334		[wait] <franka>wait
335	3	[move] <mobile_car>move to component location using RRT path
336		[push] <mobile_car>push selected component to franka area
337		[wait] <mobile_car>wait
338	1	[walk] <humanoid>move to selected area
339		[carry] <humanoid>carry <obstacles>
340		[wait] <humanoid>wait

341 each episode, robots execute their skills under randomized task conditions, leading to diverse skill
 342 sequences and varying levels of inter-agent synchronization. This setup provides a robust testbed for
 343 evaluating the effectiveness of different LLM architectures in multi-agent collaborative tasks.

344 **Environment feedback.** We design the environment feedback along two dimensions: (1) updating
 345 the state of all agents and the coordinates of objects within their perceptible range, and (2) reporting
 346 conflicts that arise when multiple robots execute skills simultaneously.

348 4.2 ROBOT SKILL DESIGN IN CLiMBENCH

349 In **CLiMBench**, each robot receives both the global task objectives and observations pertinent
 350 to its specific skill set (e.g., a humanoid robot observes its joint states, torso status, and target
 351 positions). This requirement makes it essential to clearly specify how each agent’s designated skills
 352 are implemented in practice in **CLiMBench**. Summarized in Table 1, we design distinct skill sets for
 353 different types of robots, with some other details provided in the Appendix.

354 **Robotic Arm Manipulation with Franka.** We employ a two-stage control strategy to balance speed
 355 and precision. The Franka arm first executes a rapid coarse motion, then slows for fine adjustment to
 356 ensure accurate placement. An operational-space controller (OSC) uses the task-space inertia matrix
 357 and gravity compensation to compute joint torques, yielding a spring-damper response Narang et al.
 358 (2022). Smooth, continuous waypoints are generated by interpolation for reliable execution.

359 **AGV Transportation with TRACER Mini Robot.** The robot uses the Rapidly-exploring Random
 360 Tree (RRT) algorithm to locate disassembled components and transport them to the destination. The
 361 resulting path is executed via differential drive control, enabling smooth turns with the AGV robot.
 362 During delivery, the planned route is constrained to straight-line motion to enhance transportation
 363 reliability and ensure accurate placement at the assembly location.

364 **Humanoid Carrying Skills.** We formulate physics-based humanoid control as a goal-conditioned
 365 reinforcement learning problem and adopt the AMP-based single-object manipulation paradigm
 366 from previous research Peng et al. (2021); Gao et al. (2024). Style rewards encourage rapid postural
 367 dynamics such as quick recovery and linear locomotion, while target rewards guide precise object
 368 manipulation, enabling the humanoid to learn efficient carrying behaviors.

371 5 EXPERIMENTS

372 In this section, we present a comprehensive evaluation of **CLiMRS** to address the following questions:

- 373 (1) Is **CLiMRS** effective for simple daily-life multi-robot collaboration?
- 374 (2) Can **CLiMRS** perform well in challenging industrial scenarios with multi-robot assembly tasks?
- 375 (3) Through ablation studies, how critical are the individual components of **CLiMRS**?

378
 379 Table 2: **Comparison Across Task Types in the COHERENT Benchmark.** CLiMRS outperforms
 380 all the baselines, achieving the largest gain on the most challenging trio-type tasks.

Method	Mono-type Task		Dual-type Task		Trio-type Task		Average	
	SR	AS	SR	AS	SR	AS	SR	AS
DMRS-1D	0.700	10.6	0.467	18.0	0.667	20.7	0.600	17.2
DMRS-2D	0.500	11.5	0.267	19.9	0.400	24.5	0.375	19.6
CMRS	0.900	7.9	0.533	16.4	0.533	22.2	0.625	16.5
Primitive MCTS	0.000	14.0	0.000	21.5	0.000	26.9	0.000	21.7
LLM-MCTS	0.700	10.2	0.067	20.9	0.000	26.9	0.200	20.5
COHERENT	0.900	7.4	1.000	11.9	1.000	16.1	0.975	12.4
CLiMRS(Ours)	0.900	6.8	1.000	11.5	1.000	13.1	0.975	10.9
Ground Truth (GT)	–	6.5	–	10.3	–	12.9	–	10.3

391
 392 Table 3: **Comparison Across Scenes in the COHERENT Benchmark.** CLiMRS outperforms all
 393 the baselines in every scene, demonstrating its superior performance.

Method	S1		S2		S3		S4		S5		Average	
	SR	AS										
DMRS-1D	0.500	17.4	0.625	15.8	0.625	18.3	0.750	15.1	0.500	19.3	0.600	17.2
DMRS-2D	0.500	18.9	0.500	18.3	0.375	20.6	0.250	18.9	0.250	21.1	0.375	19.6
CMRS	0.875	13.1	0.625	16.6	0.625	18.5	0.375	18.1	0.625	15.9	0.625	16.5
Primitive MCTS	0.000	21.5	0.000	21.8	0.000	22.5	0.000	20.5	0.000	22.0	0.000	21.7
LLM-MCTS	0.250	20.0	0.250	20.4	0.250	21.3	0.125	19.9	0.125	20.9	0.200	20.5
COHERENT	1.000	13.1	1.000	11.4	1.000	11.9	1.000	11.4	0.875	14.0	0.975	12.4
CLiMRS(Ours)	1.000	10.8	1.000	10.4	1.000	11.8	1.000	10.4	0.875	11.4	0.975	10.9
Ground Truth (GT)	–	10.3	–	10.4	–	10.8	–	9.8	–	10.5	–	10.3

405
 406 We evaluate **CLiMRS** in two distinct environments: **CLiMBench** and a simpler heterogeneous
 407 multi-robot collaboration benchmark from COHERENT Liu et al. (2025). For LLM api use, we use
 408 *gpt-4-0125-preview* to align with the setting in COHERENT. For quantitative analysis, we use task
 409 Success Rate (SR) and Average Step (AS) as evaluation metrics in this paper.

410 5.1 EVALUATING CLiMRS ON SIMPLE DAILY-LIFE MULTI-ROBOT COLLABORATION

411
 412 To answer Question (1), we evaluate **CLiMRS** on the COHERENT benchmark, a simpler heterogeneous
 413 multi-robot benchmark that includes diverse tasks across five real-world scenes, but involves at
 414 most three heterogeneous robots and assumes perfect skill execution. We adopt its evaluation metrics
 415 and use the reported results as our baseline.

416
 417 Results shown in Table 2 and 3 suggest that **CLiMRS** succeeds on nearly all COHERENT tasks and
 418 achieves higher efficiency with fewer steps. This trend holds across every scene, demonstrating our
 419 **CLiMRS**’ superior performance. Notably, in the most challenging trio-type tasks, which require all
 420 three robots to collaborate, **CLiMRS** delivers the largest gain, reducing the Average Step count by
 421 18.6%, indicating that our approach offers stronger improvements on more complex tasks.

422 5.2 EVALUATING CLiMRS ON CLiMBENCH WITH ROBOT ASSEMBLY TASKS

423
 424 To answer Question (2), we evaluate **CLiMRS** on **CLiMBench**. Our baselines include the following:

425

- 426 • DMRS-1D: a variant of CoELA Zhang et al. (2024b), this decentralized framework lets robots
 427 determine their next step through dialogue, with the final decision summarized by the last robot.
- 428 • CMRS: a primitive centralized system Huang et al. (2022) that uses a single decision-making
 429 LLM to output executable actions, where all information is stored in the prompt.
- 430 • COHERENT: an approximately centralized approach combining an oracle planner LLM
 431 and feedback LLM for robots, where dialogue is passed through memory, forming a Pro-
 posal–Execution–Feedback–Adjustment cycle.

432
433 **Table 4: Comparison Across Tasks in CLiMBench.** **CLiMRS** outperforms all our baselines and
434 reduces the Average Step (AS) by over 40%.

Method	Task 1 (Easy)		Task 2 (Easy)		Task 3 (Hard)		Task 4 (Hard)		Average	
	SR	AS	SR	AS	SR	AS	SR	AS	SR	AS
DMRS-1D	0.000	15.0	0.000	15.0	0.000	19.0	0.000	19.0	0.000	17.0
CMRS	0.000	15.0	0.000	15.0	0.000	19.0	0.000	19.0	0.000	17.0
COHERENT	1.000	13.6	0.800	13.6	0.400	18.2	0.600	17.8	0.700	15.8
CLiMRS (Ours)	1.000	8.2	1.000	8.4	1.000	9.4	1.000	9.2	1.000	8.8
Ground Truth (GT)	–	7.0	–	7.0	–	9.0	–	9.0	–	8.0

444 **Table 5: Ablation Studies.** Removing dialogue history, feedback information, or the grouping stage
445 significantly reduces both Success Rate (SR) and Average Step (AS).

Method	Task 1 (Easy)		Task 2 (Easy)		Task 3 (Hard)		Task 4 (Hard)		Average	
	SR	AS	SR	AS	SR	AS	SR	AS	SR	AS
CLiMRS w/o history	0.000	15.0	0.000	15.0	0.000	19.0	0.000	19.0	0.000	17.0
CLiMRS w/o feedback	0.200	14.8	0.200	14.8	0.200	18.8	0.200	18.8	0.200	16.8
CLiMRS w/o grouping	0.600	14.0	0.800	13.2	0.600	17.2	0.600	17.4	0.650	15.5
CLiMRS (Ours)	1.000	8.2	1.000	8.4	1.000	9.4	1.000	9.2	1.000	8.8
Ground Truth (GT)	–	7.0	–	7.0	–	9.0	–	9.0	–	8.0

455 For quantitative evaluation, we fixed the scene parameters and selected four representative scenarios,
456 manually deriving minimal-step solutions as ground-truth references. A task is deemed successful
457 only if completed within twice the ground-truth step count. Due to stochastic skill execution in
458 **CLiMBench**, we run each task five times and report mean Success Rate (SR) and Average Step (AS).

459 Results in Table 4 show that **CLiMRS** achieves 100% success in **CLiMBench**, surpassing every
460 baseline. It also reduces the Average Step (AS) by 44.30% compared with the best baseline, a
461 substantial efficiency gain highlighting the strength of **CLiMRS** for long-horizon heterogeneous
462 multi-robot collaboration. Moreover, comparing baseline performance in Tables 2 and 4 reveals that
463 the assembly tasks in **CLiMBench** are more challenging than those in the COHERENT benchmark,
464 demonstrating the value of **CLiMBench** as a tougher testbed for heterogeneous multi-robot systems.

466 5.3 ABLATION STUDIES ON CLiMRS

468 To answer Question (3), we assess the necessity of each component of **CLiMRS** through: (i) removing
469 the dialogue history, (ii) removing the feedback information, and (iii) removing the grouping stage
470 from the grouping–planning–feedback–execution cycle. We use the same evaluation tasks and metrics
471 as in Section 5.2, and the results are reported in Table 5. The results show that removing any of these
472 components lowers the task success rate and markedly increases the average steps, underscoring the
473 crucial roles of dialogue history, feedback information, and the grouping stage in our method.

474 6 CONCLUSION

477 In this paper, we present **CLiMRS**, a human-team-inspired adaptive negotiation paradigm for
478 heterogeneous multi-robot systems. To evaluate these capabilities, we introduce **CLiMBench**, a
479 heterogeneous multi-robot benchmark of challenging assembly tasks. Extensive experiments suggest
480 that **CLiMRS** surpasses all baselines, boosting success rates and improving efficiency by over 40%
481 on more complex tasks. Our results demonstrate that leveraging human-inspired group formation and
482 negotiation principles markedly enhances the efficiency of heterogeneous multi-robot collaboration.

483 **Discussion and Limitation.** In this paper, we primarily aim to enhance the efficiency of multi-robot
484 collaboration, while leaving inference latency and computational cost of the LLMs outside the present
485 scope. Managing API costs under inference-efficiency constraints and exploring asynchronous
486 inference–execution are promising aspects that we plan to investigate in future work.

486 **ETHICS STATEMENT**

488 Our study investigates multi-robot collaboration using large language models (LLMs) for planning
489 and negotiation. Below we address the main ethical considerations relevant to this work:

491 • **No Human or Sensitive Data.** Our research involves only simulated robotic environments and
492 does not include human subjects, personally identifiable information, or sensitive real-world data.

493 • **Safety and Deployment.** Although our benchmark and methods are evaluated only in simulation,
494 real-world deployment of autonomous multi-robot systems may present physical-safety risks.
495 Any future use outside simulation should therefore incorporate rigorous testing, appropriate
496 safety protocols, and adherence to all relevant regulations.

497 • **Potential Bias and Fairness.** The LLMs used are pretrained by third parties and may inherit
498 societal biases. Our work does not amplify these biases in deployment scenarios; nevertheless, we
499 acknowledge this limitation and recommend further bias auditing for any real-world applications.

500 The authors affirm compliance with the ICLR Code of Ethics and accept full responsibility for the
501 integrity and societal implications of the research.

503 **REPRODUCIBILITY STATEMENT**

505 We have taken extensive measures to ensure the reproducibility of our results. A full description of
506 the **CLiMRS** framework is provided in Sec. 3. Details on the **CLiMBench** are provided both in
507 Sec. 4 and in the Appendix. Evaluation protocols are reported in Sec. 5. An anonymous link to the
508 source code and the Appendix is included in the supplementary material, allowing reproduction.

510 **REFERENCES**

512 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
513 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
514 Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey,
515 Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
516 Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
517 Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
518 Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
519 Zeng. Do as i can and not as i say: Grounding language in robotic affordances. In *arXiv preprint*
520 *arXiv:2204.01691*, 2022.

521 Guillaume Bellegarda, Milad Shafiee, and Auke Ijspeert. Visual cpg-rl: Learning central pattern
522 generators for visually-guided quadruped locomotion. In *2024 IEEE International Conference on*
523 *Robotics and Automation (ICRA)*, pp. 1420–1427. IEEE, 2024.

524 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
525 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
526 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
527 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
528 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
529 Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.

531 Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit Bansal. Reconcile: Round-table conference
532 improves reasoning via consensus among diverse llms. *arXiv preprint arXiv:2309.13007*, 2023a.

533 Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot
534 collaboration with large language models: Centralized or decentralized systems? *arXiv preprint*
535 *arXiv:2309.15943*, 2023b.

537 Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu, Stephen
538 McAleer, Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level bimanual
539 dexterous manipulation with reinforcement learning. *Advances in Neural Information Processing*
540 *Systems*, 35:5150–5163, 2022.

540 Jiawei Gao, Ziqin Wang, Zeqi Xiao, Jingbo Wang, Tai Wang, Jinkun Cao, Xiaolin Hu, Si Liu,
541 Jifeng Dai, and Jiangmiao Pang. Coohoi: Learning cooperative human-object interaction with
542 manipulated object dynamics. In *Advances in Neural Information Processing Systems*, 2024.

543

544 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
545 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
546 Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
547 collaborative framework. In *The Twelfth International Conference on Learning Representations*,
548 2024. URL <https://openreview.net/forum?id=VtmBAGCN7o>.

549 Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
550 planners: Extracting actionable knowledge for embodied agents. *arXiv preprint arXiv:2201.07207*,
551 2022.

552 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
553 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
554 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

555

556 Shyam Sundar Kannan, Vishnunandan LN Venkatesh, and Byung-Cheol Min. Smart-llm: Smart
557 multi-agent robot task planning using large language models. *arXiv preprint arXiv:2309.10062*,
558 2023.

559 Abhishek Kumar Kashyap and Dayal R Parhi. Particle swarm optimization aided pid gait controller
560 design for a humanoid robot. *ISA transactions*, 114:306–330, 2021.

561

562 Sotaro Katayama, Masaki Murooka, and Yuichi Tazaki. Model predictive control of legged and
563 humanoid robots: models and algorithms. *Advanced Robotics*, 37(5):298–315, 2023.

564

565 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
566 language models are zero-shot reasoners. In *Proceedings of the 36th International Conference on
567 Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates
568 Inc. ISBN 9781713871088.

569

570 Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem, Lasse Espeholt, Carlos
571 Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
572 A novel reinforcement learning environment. In *Proceedings of the AAAI conference on artificial
573 intelligence*, volume 34, pp. 4501–4510, 2020.

574

575 Matthew Lai, Keegan Go, Zhibin Li, Torsten Kröger, Stefan Schaal, Kelsey Allen, and Jonathan
576 Scholz. Roboballet: Planning for multirobot reaching with graph neural networks and reinforce-
577 ment learning. *Science Robotics*, 10(106):eads1204, 2025.

578

579 Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong, Siheng Chen, and Chen Feng. V2x-
580 sim: Multi-agent collaborative perception dataset and benchmark for autonomous driving. *IEEE
581 Robotics and Automation Letters*, 7(4):10914–10921, 2022.

582

583 Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, and Koushil Sreenath.
584 Reinforcement learning for versatile, dynamic, and robust bipedal locomotion control. *The
585 International Journal of Robotics Research*, 44(5):840–888, 2025.

586

587 Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
588 and Andy Zeng. Code as policies: Language model programs for embodied control. In *2023
589 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 9493–9500, 2023a. doi:
590 10.1109/ICRA48891.2023.10160591.

591

592 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu,
593 and Shuming Shi. Encouraging divergent thinking in large language models through multi-agent
594 debate. *arXiv preprint arXiv:2305.19118*, 2023b.

595

596 Wenlong Liang, Rui Zhou, Yang Ma, Bing Zhang, Songlin Li, Yijia Liao, and Ping Kuang. Large
597 model empowered embodied ai: A survey on decision-making and embodied learning. *arXiv
598 preprint arXiv:2508.10399*, 2025.

594 Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
595 from natural language instructions to feasible plans. *Autonomous Robots*, Nov 2023. ISSN
596 1573-7527. doi: 10.1007/s10514-023-10131-7. URL <https://doi.org/10.1007/s10514-023-10131-7>.
598

599 Kehui Liu, Zixin Tang, Dong Wang, Zhigang Wang, Xuelong Li, and Bin Zhao. Coherent: Collaboration
600 of heterogeneous multi-robot system with large language models. In *2025 IEEE International
601 Conference on Robotics and Automation (ICRA)*, pp. 10208–10214. IEEE, 2025.

602 Xinzhu Liu, Peiyan Li, Wenju Yang, Di Guo, and Huaping Liu. Leveraging large language model for
603 heterogeneous ad hoc teamwork collaboration. *arXiv preprint arXiv:2406.12224*, 2024a.
604

605 Xinzhu Liu, Peiyan Li, Wenju Yang, Di Guo, and Huaping Liu. Leveraging large language model
606 for heterogeneous ad hoc teamwork collaboration, 2024b. URL <https://arxiv.org/abs/2406.12224>.
607

608 Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic manipulation
609 via human-in-the-loop reinforcement learning. *Science Robotics*, 10(105):eads5033, 2025.
610

611 Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of code
612 are few-shot commonsense learners, 2022. URL <https://arxiv.org/abs/2210.07128>.
613

614 Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
615 David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
616 gpu-based physics simulation for robot learning. *arXiv preprint arXiv:2108.10470*, 2021.
617

618 Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models, 2023.

619

620 Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
621 language models. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp.
622 286–299. IEEE, 2024.

623 Christopher E Mower, Yuhui Wan, Hongzhan Yu, Antoine Grosnit, Jonas Gonzalez-Billandon,
624 Matthieu Zimmer, Jinlong Wang, Xinyu Zhang, Yao Zhao, Anbang Zhai, et al. Ros-llm: A
625 ros framework for embodied ai with task feedback and structured reasoning. *arXiv preprint
arXiv:2406.19741*, 2024.

626

627 Yashraj Narang, Kier Storey, Iretiayo Akinola, Miles Macklin, Philipp Reist, Lukasz Wawrzyniak,
628 Yunrong Guo, Adam Moravanszky, Gavriel State, Michelle Lu, Ankur Handa, and Dieter Fox.
629 Factory: Fast contact for robotic assembly, 2022. URL <https://arxiv.org/abs/2205.03532>.
630

631

632 Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. Amp: adversarial
633 motion priors for stylized physics-based character control. *ACM Transactions on Graphics*, 40(4):
634 1–20, July 2021. ISSN 1557-7368. doi: 10.1145/3450626.3459670. URL <http://dx.doi.org/10.1145/3450626.3459670>.
635

636

637 Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
638 Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of stratego
639 with model-free multiagent reinforcement learning. *Science*, 378(6623):990–996, 2022.

640

641 Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Bäck.
Reasoning with large language models, a survey. *CoRR*, 2024.

642

643 Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
644 Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
645 learning and demonstrations. *arXiv preprint arXiv:1709.10087*, 2017.

646

647 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

648 Sahar Salimpour, Lei Fu, Farhad Keramat, Leonardo Militano, Giovanni Toffetti, Harry Edelman,
649 and Jorge Peña Queralta. Towards embodied agentic ai: Review and classification of llm-and
650 vlm-driven robot autonomy and interaction. *arXiv preprint arXiv:2508.05294*, 2025.

651

652 Agon Serifi, Ruben Grandia, Espen Knoop, Markus Gross, and Moritz Bächer. Vmp: Versatile
653 motion priors for robustly tracking motion on physical characters. In *Computer graphics forum*,
654 volume 43, pp. e15175. Wiley Online Library, 2024.

655 Jiyuan Shi, Chenjia Bai, Haoran He, Lei Han, Dong Wang, Bin Zhao, Mingguo Zhao, Xiu Li,
656 and Xuelong Li. Robust quadrupedal locomotion via risk-averse policy learning. In *2024 IEEE*
657 *International Conference on Robotics and Automation (ICRA)*, pp. 11459–11466. IEEE, 2024.

658

659 Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
660 Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
661 large language models. In *2023 IEEE International Conference on Robotics and Automation*
(ICRA), pp. 11523–11530, 2023. doi: 10.1109/ICRA48891.2023.10161317.

662

663 Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
664 Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
665 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2998–3009, 2023.

666

667 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
668 Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. *arXiv*
669 *preprint arXiv: Arxiv-2305.16291*, 2023.

670

671 Weizheng Wang, Le Mao, Ruiqi Wang, and Byung-Cheol Min. Multi-robot cooperative socially-
672 aware navigation using multi-agent reinforcement learning. In *2024 IEEE International Conference*
673 *on Robotics and Automation (ICRA)*, pp. 12353–12360. IEEE, 2024.

674

675 Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg,
676 Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot assistance with large
677 language models. *Autonomous Robots*, 2023a.

678

679 Yue Wu, So Yeon Min, Yonatan Bisk, Ruslan Salakhutdinov, Amos Azaria, Yuanzhi Li, Tom Mitchell,
680 and Shrimai Prabhumoye. Plan, eliminate, and track – language models are good teachers for
681 embodied agents, 2023b. URL <https://arxiv.org/abs/2305.02412>.

682

683 Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
684 agent reinforcement learning. In *International conference on machine learning*, pp. 5571–5580.
685 PMLR, 2018.

686

687 Hangtao Zhang, Chenyu Zhu, Xianlong Wang, Ziqi Zhou, Shengshan Hu, and Leo Yu Zhang.
688 Badrobot: Jailbreaking llm-based embodied ai in the physical world. *arXiv preprint*
689 *arXiv:2407.20242*, 3, 2024a.

690

691 Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B. Tenenbaum, Tianmin
692 Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
693 models, 2024b. URL <https://arxiv.org/abs/2307.02485>.

694

695 Qiang Zhang, Peter Cui, David Yan, Jingkai Sun, Yiqun Duan, Gang Han, Wen Zhao, Weinig
696 Zhang, Yijie Guo, Arthur Zhang, et al. Whole-body humanoid robot locomotion with human
697 reference. In *2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*,
698 pp. 11225–11231. IEEE, 2024c.

699

700 Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous ma-
701 nipulation with deep reinforcement learning: Efficient, general, and low-cost. In *2019 International*
Conference on Robotics and Automation (ICRA), pp. 3651–3657. IEEE, 2019.