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ABSTRACT

Cooperative multi-robot tasks often require heterogeneous agents to collaborate
over long horizons while managing spatial constraints and execution uncertainties.
Although large language models (LLMs) excel at reasoning and planning, their
potential for coordinated control in heterogeneous multi-robot teams has not been
fully explored. We present CLiMRS, an adaptive negotiation framework inspired
by human teamwork. The framework pairs each robot with an independent LLM
agent and dynamically forms subgroups to facilitate perception-driven discussions
and collaborative planning under long-horizon uncertainty. Within each group,
local oracle planners lead parallel discussions to synchronize actions, while agents
provide feedback to refine plans. This grouping–planning–feedback–execution loop
enables efficient long-horizon planning and robust execution. To evaluate these
capabilities, we introduce CLiMBench, a heterogeneous multi-robot benchmark
of challenging assembly tasks with diverse robot types and skill libraries. Across
both CLiMBench and a simpler benchmark, CLiMRS surpasses the best baseline,
boosting success rates and improving efficiency by over 40% on complex tasks
while maintaining very high success on simpler tasks. Our results demonstrate that
leveraging human-inspired group formation and negotiation principles markedly
enhances the efficiency of heterogeneous multi-robot collaboration.

1 INTRODUCTION

Addressing real-world, everyday tasks often requires collaboration to enhance the efficiency of long-
horizon, complex planning and perception. Meanwhile, the development of intelligent agents that can
assist embodiments in accomplishing such tasks remains an open challenge, particularly regarding
how these agents can effectively help humans and other robots execute such intricate operations.
Inspired by human teamwork, incorporating principles of human teaming into multi-agent systems,
where sub-groups coordinate planning and perception through shared observations and information,
offers a promising yet challenging path to improving efficiency and robustness Zhang et al. (2024b).

At the same time, large language models (LLMs) have exhibited outstanding performance across
various dimensions, including natural language question answering Rein et al. (2024), code genera-
tion Jain et al. (2024), and logical reasoning Plaat et al. (2024). In recent years, numerous studies
have integrated LLMs into robotic planning scenarios Song et al. (2023); Zhang et al. (2024a); Mower
et al. (2024); Salimpour et al. (2025); Liang et al. (2025), with some extending their application to
multi-robot collaborative planning tasks Zhang et al. (2024b); Mandi et al. (2024); Liu et al. (2025).

However, earlier explorations of robot collaboration largely center on homogeneous agents, which
restricts the range of capabilities that can be demonstrated Liu et al. (2024a). Furthermore, works
on heterogeneous teams typically assume ideal operating conditions Liu et al. (2025), while such
assumptions ignore the cumulative errors that escalate over long horizons, driving up communication
costs and undermining cooperative efficiency. While these advances show the promise of LLM-driven
multi-robot collaboration, important gaps persist when the setting involves heterogeneous agents,
long-horizon objectives, and the practical constraints of real-world operation.

To address these limitations, we propose CLiMRS (Cooperative Large-Language-Model-Driven
Heterogeneous Multi-Robot System), a human-team-inspired LLM-driven adaptive-negotiation
framework that orchestrates heterogeneous robots through dynamic sub-group formation and cooper-
ative planning, supporting robust long-horizon collaboration in uncertain environments.
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Figure 1: Overview. We present CLiMRS, a human-team-inspired negotiation paradigm for hetero-
geneous multi-robot systems that dynamically forms perception-driven discussion sub-groups, and
CLiMBench, a heterogeneous multi-robot benchmark with challenging assembly tasks.

In this framework, each robot is guided by an independent LLM agent that communicates with
peers to accomplish complex, long-horizon tasks. To strengthen collaborative effectiveness, the
system leverages the broad world knowledge of LLMs and explicitly models inter-agent dependencies
through a carefully designed grouping–planning–feedback–execution loop.

With CLiMRS, we further explore its applicability to challenging industrial scenarios, where heteroge-
neous robots must handle unpredictable execution errors. To evaluate this, we introduce CLiMBench,
a benchmark for heterogeneous multi-robot collaboration. It features five robotic devices across
three types of heterogeneous robots, equipped for transportation, conveyance, and assembly. Tasks
of varying difficulty simulate material-handling and assembly processes with diverse skill usage,
designed to test the planning and perception capabilities of LLM-based frameworks.

We evaluated our proposed framework in two distinct environments: CLiMBench and another
heterogeneous robot collaboration benchmark Liu et al. (2025). Our experiments show that CLiMRS
outperforms the best baseline, increasing success rates and improving efficiency by over 40% on
complex tasks while maintaining high success on simpler ones. These results demonstrate that
incorporating human-inspired group formation and negotiation principles substantially enhances the
efficiency of heterogeneous multi-robot collaboration. To summarize, our main contributions are:

• We present CLiMRS, a multi-LLM cooperation framework for heterogeneous multi-robot collab-
oration which can perform long-horizon planning and efficient perception in complex tasks.

• We propose CLiMBench, a benchmark evaluating heterogeneous multi-robot collaboration in
industrial assembly scenarios, featuring varied skill sets and a realistic simulation environment.

• We demonstrate through extensive experiments that CLiMRS achieves significant efficiency
improvements via dynamic group formation and cooperative long-horizon planning.

2 RELATED WORK

2.1 EMBODIED SKILLS TRAINING ACROSS DIVERSE SCENARIOS

Embodied Agent Skill Training. Approaches to train embodied skills for task execution generally
follow two primary paradigms: rule-based and learning-driven methods. Traditional embodiment
controllers optimize joint movements through the resolution of robotic kinematics, aiming to im-
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prove motion robustness and generate smoother, more precise trajectories Kashyap & Parhi (2021);
Katayama et al. (2023). In recent years, with the advances of reinforcement learning and imitation
learning in robotic motion control, spanning domains such as dexterous manipulation Rajeswaran et al.
(2017); Zhu et al. (2019); Chen et al. (2022); Luo et al. (2025), bipedal locomotion Li et al. (2025);
Zhang et al. (2024c); Serifi et al. (2024), and quadrupedal navigation Bellegarda et al. (2024); Shi et al.
(2024), embodied perception has progressively learned to coordinate actions in a cerebellum-like
fashion, enabling increasingly complex tasks in diverse environments. Overall, as tasks and envi-
ronments grow more complex, embodied intelligence is shifting from traditional low-level planning
toward more integrated, end-to-end perception and control.

Multi-agent Skill Training. Originally developed in game AI Kurach et al. (2020); Perolat et al.
(2022), multi-agent skill training has since extended to industrial fields such as robotics Wang et al.
(2024); Lai et al. (2025) and autonomous driving Li et al. (2022), where many of the coordination and
credit-assignment strategies first pioneered in games remain fundamental. Despite these advances,
current methodologies for multi-agent embodied tasks remain underdeveloped, particularly in light of
the exponential state-space challenges introduced by an increasing number of robotic agents. Although
certain researchers have explored mean-field approximations to alleviate these challenges Yang et al.
(2018), robust generalization across heterogeneous robots has yet to be realized.

To further this goal, we design a set of generalizable robotic skills in CLiMBench to support
heterogeneous multi-agent collaboration, leveraging robots’ low-level control capabilities for high
success rates and reducing the impact of execution failures on higher-level task planning.

2.2 TASK PLANNING WITH LLMS IN ROBOTICS

LLM Planner for Robotics. The rapid progress of LLMs in generalization and commonsense
reasoning has fueled growing interest in robotics, as their strong few-shot Brown et al. (2020);
Madaan et al. (2022) and zero-shot Huang et al. (2022); Kojima et al. (2022) learning capabilities
make them well-suited as task planners for robots. Reliable code-generation abilities further allow
LLMs to synthesize precise, executable instructions for robotic control Liang et al. (2023a); Singh
et al. (2023); Wang et al. (2023); Wu et al. (2023a), and value-function-based approaches Lin et al.
(2023); Ahn et al. (2022) leverage these models to select robust, skill-level commands for robotic
agents. Recent improvements in context-driven prompting strategies Zhang et al. (2024b); Mandi
et al. (2023); Liu et al. (2025); Wu et al. (2023b) have strengthened LLM-based task planning even
further. Moreover, some studies Mandi et al. (2023) demonstrate that LLMs can reason and plan
directly in 3D joint space, enabling the generation of fine-grained and precise task instructions.

Multi-LLM Task Planning. A promising way to overcome the limits of a single LLM in complex
reasoning is to use multiple LLMs with cooperation, employing strategies such as round-table
discussion Chen et al. (2023a), mutual debate Liang et al. (2023b), and role assignment Hong et al.
(2024) to divide labor and improve output reliability. In embodied tasks, many studies emphasize the
use of feedback Mandi et al. (2023); Liu et al. (2025) and memory modules Zhang et al. (2024b);
Mandi et al. (2023); Liu et al. (2025); Wang et al. (2023) to enhance multi-LLM perception and
planning. These modules allow LLMs to generate execution-level feedback and refine planning
decisions using the rich context stored in well-designed memory components.

Decision Paradigms in Multi-Robot Collaboration. Two primary decision-making paradigms have
emerged for complex multi-robot tasks: centralized and decentralized approaches. In decentralized
schemes, multiple models or agents communicate, exchange intermediate plans, and iteratively
refine their decisions through structured dialogue Mandi et al. (2023); Zhang et al. (2024b); Liu
et al. (2024b),while centralized methods typically rely on a single, large-scale LLM to decompose
global objectives and allocate tasks when planning Kannan et al. (2023); Liu et al. (2025). A recent
comparative study conducted across four diverse multi-agent 2D scenarios Chen et al. (2023b) further
reports that centralized communication consistently achieves higher success rates and markedly
greater token efficiency, highlighting its strong potential for scalable real-world deployment.

To enhance collaboration in multi-robot scenarios, we propose a multi-LLM cooperation framework
inspired by human teamwork. Robots are organized into dynamic subgroups for specific sub-tasks,
reducing communication overhead while enabling concurrent discussions, plan refinement, and
parallel action execution to improve efficiency and maintain a high success rate.
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(b) Planning with Sub-Groups...

All Feedback Info

Figure 2: CLiMRS Framework. To employ our grouping–planning–feedback–execution cycle,
CLiMRS comprises (a) a general grouping module, (b) multiple local planners, (c) multiple agent
execution and feedback modules, (d) a context memory module, and (e) a simulation environment.

3 METHOD

In this section, we present CLiMRS, an adaptive negotiation-driven multi-LLMs cooperation frame-
work for heterogeneous robot systems. Inspired by human teamwork, our approach forms dynamic
agent sub-groups that facilitate centralized discussions on robot perception in parallel, with each robot
paired with an individual LLM agent to give feedback to these discussions, resulting in a dynamic
grouping–planning–feedback–execution cycle. As illustrated in Fig. 2, CLiMRS comprises five core
modules: (a) a general grouping module that forms dynamic agent groups, (b) multiple local planners
that generate agent commands, (c) agent execution and feedback modules that produce robot skills
and return execution feedback, (d) a context memory module that records all inter-agent dialogues,
and (e) a simulation environment for real-time interaction.

3.1 GROUPING WITH GENERAL PROPOSAL PLANNER

The first stage of our grouping–planning–feedback–execution cycle is to dynamically partition the
agents into sub-groups, each responsible for different aspects of the overall task. To achieve this, we
use a general proposal planner to augment the task instructions and orchestrate the grouping process.

General Proposal Planner. As illustrated in Fig. 2(a), the general proposal planner generates a
global task proposal that organizes all agents into sub-task-oriented teams. Given the overall task
instruction, this prompted LLM incorporates robot capabilities, current observations, and the dialogue
history through a structured prompt. It outputs a well-defined plan designed to facilitate systematic
reasoning: (1) Situation Analysis, assessing the environment and the current progress of the task;
(2) Spatial Analysis, accounting for the locations of agents and known objects, as well as spatial
constraints; (3) Task Decomposition, breaking the objective into executable sub-tasks; (4) Grouping
Strategy, deciding how to cluster agents for concurrent or parallel work while minimizing interference;
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(5) Sub-goal Assignment, specifying the objective of each group; (6) Coordination Strategy, outlining
inter-group synchronization and execution order; and (7) Risk Assessment, identifying potential
conflicts and corresponding mitigation plans. The resulting mapping from agent groups to their
designated sub-tasks is then extracted and passed to the perception and execution modules.

3.2 PLANNING WITH SUB-GROUP LOCAL PLANNERS

Given the agent groupings and their designated sub-tasks, the second stage of our cycle issues precise
commands to individual robots according to their capabilities and current observations. Because these
sub-tasks are mutually independent, multiple local oracle planners operate in parallel to generate
commands for different robots simultaneously, which is shown in Fig. 2(b).

Local Oracle Planner. The local oracle planner facilitates a centralized discussion among robots in
a sub-group to determine precise commands for completing their assigned sub-tasks. This discussion
leverages prior agent feedback stored in the dialogue context history. Similar to the general proposal
planner, the local oracle planner takes into account sub-task instructions, robot capabilities, partial
observations, and historical dialogue as context, but operates within a narrower scope to make
fine-grained decisions focused on individual agents executing specific skills.

3.3 AGENT EXECUTION AND FEEDBACK

With commands issued to the robots, the final two stages of our cycle require them to evaluate
these commands, determine appropriate actions, and provide feedback to refine future planning
while ensuring safe execution. The agent executor LLM verifies the feasibility of its command
and issues the corresponding action only when the command is deemed executable. The feedback
then consolidates outcomes from both the LLMs and the simulator, gathering information to guide
subsequent planning cycles and thereby closing the loop of negotiation among the LLMs.

Agent Execution with Feedback. Shown in Fig. 2(c), the agent executors verify and execute
commands from local oracle planner while providing feedback. Each agent executor LLM considers
its robot’s capabilities, current observations, and available actions. The executor first checks its
feasibility against the robot’s physical constraints and observations. If feasible, the action is executed
using the robot’s skills; otherwise, the robot remains idle in this loop. Simultaneously, the executor
produces feedback based on its evaluation, which is sent to the feedback module to inform future
planning. Execution failures are categorized as (1) improper grouping: no robot in the group can
complete the sub-task; (2) incorrect agent selection: a valid sub-task is assigned to an unsuitable
robot; and (3) state inconsistency: missing information or unmet conditions prevent execution. For
successful actions, the module also evaluates whether the sub-task has been fully accomplished.

Feedback Formation. The feedback is aggregated from two sources: (1) environmental ob-
servations updated after robot actions are executed in the simulator, and (2) outputs from the
agent executors. This information is then integrated into the context memory for the next group-
ing–planning–feedback–execution cycle. The feedback both guides the general proposal planner
during grouping (Sec. 3.1) and aids centralized discussions by the local oracle planners (Sec. 3.2). In
this way, the accumulated observations and executor outputs provide essential context for refining
both the global task proposal and the detailed local commands.

3.4 CONTEXT MEMORY AND ENVIRONMENT

Following the grouping–planning–feedback–execution cycle described above, our framework depends
on two essential modules to make the workflow of the entire cycle operate smoothly: the context
memory module and the simulation environment.

Context Memory. As shown in Fig. 2(d), the context memory collects (1) current feedback and
planning dialogue together with the dialogue history from previous cycles, (2) robot observations
from the simulation environment, and (3) the latest outputs from agents and planners. For the general
proposal planner, it retains the previous five dialogue turns and the newest observations, allowing
agent feedback to inform new proposals and groupings. For the local oracle planners, it stores each
group’s latest observations and the last five dialogue turns, providing rich situational context to guide
and refine subsequent planning decisions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CLiMBench
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[move] to component
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[check] wheels and trunk 
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[pick] right wheel
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[carry] obstacles
[wait]

Foundational SkillsHeterogeneous Robots 

Figure 3: CLiMBench Benchmark. CLiMBench is a heterogeneous multi-robot collaboration
benchmark designed to evaluate CLiMRS. It features multi-agent robots with diverse skills, enabling
collaboration on tasks like transportation, conveyance, and assembly across varying difficulty levels.

Simulation Environment. Shown in Fig. 2(e), the simulation environment serves as the execution
backbone of our framework. It receives the robot skill execution signals issued by the agent executors
and immediately carries out the corresponding low-level actions in real time. During execution, it
monitors the evolving state of the environment and produces both updated robot observations and
environment-level feedback. These outputs are fed back to the context memory, allowing the overall
method to track task progress, refine its understanding of the environment, and supply the information
required for the next round of the grouping–planning–feedback–execution cycle.

4 BENCHMARK

In this section, we present CLiMBench, a benchmark for heterogeneous multi-robot collaboration.
As shown in Fig. 3, we construct an assembly environment in IsaacGym Makoviychuk et al. (2021)
that features diverse robotic agents and modular components. To enable effective integration with
LLM-based planning, robot actions are executed by invoking predefined skills.

Unlike some other multi-agent collaboration benchmarks Liu et al. (2025), which decouple skill
execution from the planning–execution loop and assume that all robot skills succeed by default,
CLiMBench executes every robot skill within a realistic physics simulation, enabling genuine
interaction between planning and execution. This distinction is critical because collaborative assembly
tasks are inherently difficult, demanding not only high-precision manipulation but also effective
coordination among multiple agents. The following subsections describe the scene construction and
skill design mechanisms of CLiMBench, and additional details are provided in the Appendix.

4.1 SCENE CONSTRUCTION IN CLIMBENCH

CLiMBench features an industrial assembly scene that includes both assembly components and
robotic agents. To increase task complexity and enhance realism, we introduce blocking obstacles
into the environment settings. As is illustrated in Fig. 3, our robotic arm is implemented using a
Franka Emika Panda arm, the AGV platform is based on the TRACER Mini robot, and the humanoid
is implemented using the virtual humanoid agent.

Scene Initialization and Randomization. We initialize the environment and introduce controlled
variations in task parameters and object configurations to enhance generalization. At the start of

6
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Table 1: Robot Skill List in CLiMBench. We assign each robot type a distinct set of skills in
CLiMBench based on its specific capabilities.

Robot type Num Skill list

Robotic Arm 1

[check] <franka>check <trunk>
[check] <franka>check <left wheel>
[check] <franka>check <right wheel>
[pick] <franka>pick and place <left wheel>on <trunk>
[pick] <franka>pick and place <right wheel>on <trunk>
[wait] <franka>wait

AGV 3
[move] <mobile_car>move to component location using RRT path
[push] <mobile_car>push selected component to franka area
[wait] <mobile_car>wait

Humanoid 1
[walk] <humanoid>move to selected area
[carry] <humanoid>carry <obstacles>
[wait] <humanoid>wait

each episode, robots execute their skills under randomized task conditions, leading to diverse skill
sequences and varying levels of inter-agent synchronization. This setup provides a robust testbed for
evaluating the effectiveness of different LLM architectures in multi-agent collaborative tasks.

Environment feedback. We design the environment feedback along two dimensions: (1) updating
the state of all agents and the coordinates of objects within their perceptible range, and (2) reporting
conflicts that arise when multiple robots execute skills simultaneously.

4.2 ROBOT SKILL DESIGN IN CLIMBENCH

In CLiMBench, each robot receives both the global task objectives and observations pertinent
to its specific skill set (e.g., a humanoid robot observes its joint states, torso status, and target
positions). This requirement makes it essential to clearly specify how each agent’s designated skills
are implemented in practice in CLiMBench. Summarized in Table 1, we design distinct skill sets for
different types of robots, with some other details provided in the Appendix.

Robotic Arm Manipulation with Franka. We employ a two-stage control strategy to balance speed
and precision. The Franka arm first executes a rapid coarse motion, then slows for fine adjustment to
ensure accurate placement. An operational-space controller (OSC) uses the task-space inertia matrix
and gravity compensation to compute joint torques, yielding a spring–damper response Narang et al.
(2022). Smooth, continuous waypoints are generated by interpolation for reliable execution.

AGV Transportation with TRACER Mini Robot. The robot uses the Rapidly-exploring Random
Tree (RRT) algorithm to locate disassembled components and transport them to the destination. The
resulting path is executed via differential drive control, enabling smooth turns with the AGV robot.
During delivery, the planned route is constrained to straight-line motion to enhance transportation
reliability and ensure accurate placement at the assembly location.

Humanoid Carrying Skills. We formulate physics-based humanoid control as a goal-conditioned
reinforcement learning problem and adopt the AMP-based single-object manipulation paradigm
from previous research Peng et al. (2021); Gao et al. (2024). Style rewards encourage rapid postural
dynamics such as quick recovery and linear locomotion, while target rewards guide precise object
manipulation, enabling the humanoid to learn efficient carrying behaviors.

5 EXPERIMENTS

In this section, we present a comprehensive evaluation of CLiMRS to address the following questions:

(1) Is CLiMRS effective for simple daily-life multi-robot collaboration?
(2) Can CLiMRS perform well in challenging industrial scenarios with multi-robot assembly tasks?
(3) Through ablation studies, how critical are the individual components of CLiMRS?

7
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Table 2: Comparison Across Task Types in the COHERENT Benchmark. CLiMRS outperforms
all the baselines, achieving the largest gain on the most challenging trio-type tasks.

Method Mono-type Task Dual-type Task Trio-type Task Average

SR AS SR AS SR AS SR AS

DMRS-1D 0.700 10.6 0.467 18.0 0.667 20.7 0.600 17.2
DMRS-2D 0.500 11.5 0.267 19.9 0.400 24.5 0.375 19.6
CMRS 0.900 7.9 0.533 16.4 0.533 22.2 0.625 16.5
Primitive MCTS 0.000 14.0 0.000 21.5 0.000 26.9 0.000 21.7
LLM-MCTS 0.700 10.2 0.067 20.9 0.000 26.9 0.200 20.5
COHERENT 0.900 7.4 1.000 11.9 1.000 16.1 0.975 12.4

CLiMRS(Ours) 0.900 6.8 1.000 11.5 1.000 13.1 0.975 10.9
Ground Truth (GT) – 6.5 – 10.3 – 12.9 – 10.3

Table 3: Comparison Across Scenes in the COHERENT Benchmark. CLiMRS outperforms all
the baselines in every scene, demonstrating its superior performance.

Method S1 S2 S3 S4 S5 Average

SR AS SR AS SR AS SR AS SR AS SR AS

DMRS-1D 0.500 17.4 0.625 15.8 0.625 18.3 0.750 15.1 0.500 19.3 0.600 17.2
DMRS-2D 0.500 18.9 0.500 18.3 0.375 20.6 0.250 18.9 0.250 21.1 0.375 19.6
CMRS 0.875 13.1 0.625 16.6 0.625 18.5 0.375 18.1 0.625 15.9 0.625 16.5
Primitive MCTS 0.000 21.5 0.000 21.8 0.000 22.5 0.000 20.5 0.000 22.0 0.000 21.7
LLM-MCTS 0.250 20.0 0.250 20.4 0.250 21.3 0.125 19.9 0.125 20.9 0.200 20.5
COHERENT 1.000 13.1 1.000 11.4 1.000 11.9 1.000 11.4 0.875 14.0 0.975 12.4

CLiMRS(Ours) 1.000 10.8 1.000 10.4 1.000 11.8 1.000 10.4 0.875 11.4 0.975 10.9
Ground Truth (GT) – 10.3 – 10.4 – 10.8 – 9.8 – 10.5 – 10.3

We evaluate CLiMRS in two distinct environments: CLiMBench and a simpler heterogeneous
multi-robot collaboration benchmark from COHERENT Liu et al. (2025). For LLM api use, we use
gpt-4-0125-preview to align with the setting in COHERENT. For quantitative analysis, we use task
Success Rate (SR) and Average Step (AS) as evaluation metrics in this paper.

5.1 EVALUATING CLIMRS ON SIMPLE DAILY-LIFE MULTI-ROBOT COLLABORATION

To answer Question (1), we evaluate CLiMRS on the COHERENT benchmark, a simpler heteroge-
neous multi-robot benchmark that includes diverse tasks across five real-world scenes, but involves at
most three heterogeneous robots and assumes perfect skill execution. We adopt its evaluation metrics
and use the reported results as our baseline.

Results shown in Table 2 and 3 suggest that CLiMRS succeeds on nearly all COHERENT tasks and
achieves higher efficiency with fewer steps. This trend holds across every scene, demonstrating our
CLiMRS’ superior performance. Notably, in the most challenging trio-type tasks, which require all
three robots to collaborate, CLiMRS delivers the largest gain, reducing the Average Step count by
18.6%, indicating that our approach offers stronger improvements on more complex tasks.

5.2 EVALUATING CLIMRS ON CLIMBENCH WITH ROBOT ASSEMBLY TASKS

To answer Question (2), we evaluate CLiMRS on CLiMBench. Our baselines include the following:

• DMRS-1D: a variant of CoELA Zhang et al. (2024b), this decentralized framework lets robots
determine their next step through dialogue, with the final decision summarized by the last robot.

• CMRS: a primitive centralized system Huang et al. (2022) that uses a single decision-making
LLM to output executable actions, where all information is stored in the prompt.

• COHERENT: an approximately centralized approach combining an oracle planner LLM
and feedback LLM for robots, where dialogue is passed through memory, forming a Pro-
posal–Execution–Feedback–Adjustment cycle.
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Table 4: Comparison Across Tasks in CLiMBench. CLiMRS outperforms all our baselines and
reduces the Average Step (AS) by over 40%.

Method Task 1 (Easy) Task 2 (Easy) Task 3 (Hard) Task 4 (Hard) Average

SR AS SR AS SR AS SR AS SR AS

DMRS-1D 0.000 15.0 0.000 15.0 0.000 19.0 0.000 19.0 0.000 17.0
CMRS 0.000 15.0 0.000 15.0 0.000 19.0 0.000 19.0 0.000 17.0
COHERENT 1.000 13.6 0.800 13.6 0.400 18.2 0.600 17.8 0.700 15.8

CLiMRS (Ours) 1.000 8.2 1.000 8.4 1.000 9.4 1.000 9.2 1.000 8.8
Ground Truth (GT) – 7.0 – 7.0 – 9.0 – 9.0 – 8.0

Table 5: Ablation Studies. Removing dialogue history, feedback information, or the grouping stage
significantly reduces both Success Rate (SR) and Average Step (AS).

Method Task 1 (Easy) Task 2 (Easy) Task 3 (Hard) Task 4 (Hard) Average

SR AS SR AS SR AS SR AS SR AS

CLiMRS w/o history 0.000 15.0 0.000 15.0 0.000 19.0 0.000 19.0 0.000 17.0
CLiMRS w/o feedback 0.200 14.8 0.200 14.8 0.200 18.8 0.200 18.8 0.200 16.8
CLiMRS w/o grouping 0.600 14.0 0.800 13.2 0.600 17.2 0.600 17.4 0.650 15.5

CLiMRS (Ours) 1.000 8.2 1.000 8.4 1.000 9.4 1.000 9.2 1.000 8.8
Ground Truth (GT) – 7.0 – 7.0 – 9.0 – 9.0 – 8.0

For quantitative evaluation, we fixed the scene parameters and selected four representative scenarios,
manually deriving minimal-step solutions as ground-truth references. A task is deemed successful
only if completed within twice the ground-truth step count. Due to stochastic skill execution in
CLiMBench, we run each task five times and report mean Success Rate (SR) and Average Step (AS).

Results in Table 4 show that CLiMRS achieves 100% success in CLiMBench, surpassing every
baseline. It also reduces the Average Step (AS) by 44.30% compared with the best baseline, a
substantial efficiency gain highlighting the strength of CLiMRS for long-horizon heterogeneous
multi-robot collaboration. Moreover, comparing baseline performance in Tables 2 and 4 reveals that
the assembly tasks in CLiMBench are more challenging than those in the COHERENT benchmark,
demonstrating the value of CLiMBench as a tougher testbed for heterogeneous multi-robot systems.

5.3 ABLATION STUDIES ON CLIMRS

To answer Question (3), we assess the necessity of each component of CLiMRS through: (i) removing
the dialogue history, (ii) removing the feedback information, and (iii) removing the grouping stage
from the grouping–planning–feedback–execution cycle. We use the same evaluation tasks and metrics
as in Section 5.2, and the results are reported in Table 5. The results show that removing any of these
components lowers the task success rate and markedly increases the average steps, underscoring the
crucial roles of dialogue history, feedback information, and the grouping stage in our method.

6 CONCLUSION

In this paper, we present CLiMRS, a human-team-inspired adaptive negotiation paradigm for
heterogeneous multi-robot systems. To evaluate these capabilities, we introduce CLiMBench, a
heterogeneous multi-robot benchmark of challenging assembly tasks. Extensive experiments suggest
that CLiMRS surpasses all baselines, boosting success rates and improving efficiency by over 40%
on more complex tasks. Our results demonstrate that leveraging human-inspired group formation and
negotiation principles markedly enhances the efficiency of heterogeneous multi-robot collaboration.

Discussion and Limitation. In this paper, we primarily aim to enhance the efficiency of multi-robot
collaboration, while leaving inference latency and computational cost of the LLMs outside the present
scope. Managing API costs under inference-efficiency constraints and exploring asynchronous
inference–execution are promising aspects that we plan to investigate in future work.
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