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ABSTRACT

Antibody drug discovery campaigns often leverage immune repertoires from
antigen-exposed animals, which can be divided into clonotypes, subclasses of
sequences derived from the same progenitor B-cell. In this work, we adapt discrete
walk-jump sampling (dWJS) to condition generation on categorical variables like
clonotype, extending both energy-based and score-based dWJS with predictor-free
guidance during Langevin dynamics ("walking") and denoising ("jumping"). Cate-
gorical and numerical variables are learned during training and specified during
sampling, producing diverse and novel sequences from target clonotype classes.
We train conditional WJS models on datasets of over 1.5M sequences obtained
from antigen-exposed rats and human patients post-vaccination. Surprisingly, in-
creasing guidance improves both sample quality and sequence diversity, enabling
controllable sampling from thousands of distinct modes.

1 INTRODUCTION

The success of protein engineering depends on the quality of starting sequences, or leads. For
antibodies, lead discovery traditionally relies on B-cell receptor (BCR) repertoires isolated from
immunized animals using hybridoma or B cell cloning technologies (Zheng et al., 2024) (Pedrioli
& Oxenius, 2021). These repertoires contain diverse antibody sequences that may bind to different
epitopes of the target antigen, organized into canonical subclasses called clonotypes that likely share
binding mechanisms (Mhanna et al., 2024). The identification and expansion of promising clonotypes
is crucial, as subsequent optimization efforts are constrained by the quality of these initial leads.

Machine learning approaches have transformed antibody discovery by replacing traditional mutational
scanning and selection with generative sequence models coupled with discriminative models that
predict protein fitness (Hie & Yang, 2022) (Wu et al., 2021). However, controlling sequence
generation to stay within relevant clonotype neighborhoods remains underexplored. Training on
individual clonotypes (Erlach et al., 2025) restricts sample diversity, while training on multiple
clonotypes without conditioning risks generating chimeric sequences that combine segments from
non-complementary clonotypes. Discrete walk-jump sampling (dWJS) (Frey et al., 2024) has shown
promise for generating viable antibody sequences, but its unconditional sampling approach can make
it difficult to target generation toward specific clonotypes or other subclasses of interest.

We present an improved dWJS that enables controlled generation by conditioning on categorical
and numerical variables. Unlike approaches that require separate classifier or regressor models to
guide sampling (Ikram et al., 2024), our method incorporates conditioning variables directly into the
walk-jump sampling process. We adapt both energy-based and score-based dWJS with predictor-free
guidance towards a protein family, in this case antibody clonotypes. Building on predictor-free
guidance approaches in other domains (Ho & Salimans, 2022) (Liu et al., 2024), our method allows
for generating samples with specific properties without relying on gradients from external property
prediction models during sampling. Here, we improve the fast, efficient, and high-quality sampling of
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dWJS with predictor-free guidance that enables controllable mode exploration. Each model is trained
on a large corpus of BCR repertoire data spanning many clonotypes, with conditioning variables
learned during training and specified explicitly during sampling. As demonstrated in other predictor-
free diffusion methods, this approach allows control of sample diversity and quality, however we
show evidence that one does not come at the expense of the other. To provide mechanistic insights
into the sampling process, the sampling trajectories are inspected by denoising intermediate states
during Langevin dynamics, or the "walking" step of dWJS. We show that these trajectories converge
to the target context with high precision over the course of sampling.

In summary, the main contributions of this work include:

1. A novel formulation of dWJS with predictor-free guidance for steered generation towards de-
sired sequence subclasses, simultaneously preserving the strengths of dWJS while improving
sample quality and diversity.

2. Antibody sequence generation from specific clonotype modes using both categorical and
numerical conditioning variables.

3. Large-scale pretraining of generative protein sequence models trained on 1.5M+ samples,
enabling sampling from ∼3,000 unique clonotype modes.

2 ADAPTING WALK-JUMP SAMPLING WITH DIRECT CONDITIONING

2.1 DIRECT CONTEXT GUIDANCE WITHOUT PREDICTOR GRADIENTS

Given a dataset of BCR (antibody) sequences x of many pre-determined clonotype subclasses ck, we
aim to generate a diverse set of sequences that belong to a target clonotype ct = (cv, cj , cl), where
cv , cj and cl respectively correspond to categorical variables V gene, J gene and numerical variable
CDR3 length. These three canonical variables together define a clonotype subclass (Mhanna et al.,
2024), a group of sequences that stem from the same starting BCR.

We introduce conditional discrete walk-jump samping (cWJS) as a predictor-free method for
conditional sequence generation. As in discrete WJS, cWJS uses an optional energy-based model
(EBM) and required score-based or denoising model.

Our conditioning approach follows the predictor-free guidance paradigm (Ho & Salimans, 2022)
(Liu et al., 2024) which differs from predictor-based guidance methods that rely on the gradients of
external prediction models to steer the sampling process. In predictor-based approaches (Dhariwal
& Nichol, 2021) Ikram et al. (2024), an unconditional generative model produces initial samples,
and the gradients from separate classifier or regressor models are then used to adjust these samples
toward desired attributes. In contrast, our method directly incorporates the conditioning information
into the walk-jump sampling processes, eliminating the need for external predictor gradients during
sampling. This simplifies the generation pipeline and enables more efficient conditioning on multiple
clonotype properties simultaneously.

CONDITIONAL ENERGY-BASED MODEL

The energy-based model (EBM) is implemented in a similar way to unconditional dWJS but adapted
to additionally take in a context c = (c1, c2...cn). Each context ci is embedded separately, followed
by concatenation and projection to size dcontext. Categorical variables including V & J gene are
one-hot encoded prior to an embedding layer. Numerical variables, such as CDR3 length and number
of somatic hypermutations (SHMs), are encoded using a clustering encoding method following (Liu
et al., 2024). The full context embedding is split into gain and bias terms to modify the embedding of
the noisy, sequence embedding, following the implementation of (Du et al., 2020). Figure 4 shows
the architecture with context included.

The EBM is trained using contrastive divergence with data augmentation. The contrastive divergence
loss encourages the model to assign lower energy to positive samples and higher energy to negative
samples. A positive sample (ypos, cpos) includes a noised sequence ypos = x+N (0, σ2Id) from the
training data and its corresponding context c without noise added. More details on augmenting the
set of negatives samples and training with contrastive divergence may be found in Section A.3.
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Figure 1: Sequence design labels closely match the target clonotypes (TCs) used in conditioning,
showing controllable and diverse mode sampling. Left: DeepNGS Navigator embeddings of training
set and designed sequences. Middle: embedding of designs, colored by TCs. Right: the labeled
clonotypes of designs

CONDITIONAL DENOISER AND SCORE-BASED MODEL

Rather than training an EBM, a score-based model gϕ(y, c) may instead be trained to directly
approximate the score function. gϕ(y, c) is trained with a denoising objective as in dWJS, but the
context is embedded and added to intermediate representations of the sequence to focus denoising on
the intended clonotype. We modify ByteNet for conditioning, as shown in Figure 4.

During training, the context is randomly replaced with a null ∅ token with probability puncond = 0.2,
following (Ho & Salimans, 2022). This enables the model to be sampled unconditionally when ∅
is provided. Having easy access to an unconditional model gϕ(y) also allows for tuning the level
of guidance during sampling. That is, sampling uses a linear combination of the conditional and
unconditional score estimates with w as the level of guidance:

sϕ(y, c, w) = (1 + w)gϕ(y, c)− wgϕ(y,∅) (1)

2.2 SAMPLING WITH CONTEXT GUIDANCE

To generate sequences during inference, we follow (Frey et al., 2024) and use Langevin dynamics,
though we explicitly include the target context. When a conditional EBM is used in energy-based
cWJS, the update rule for each step k is given by:

y(k+1) = y(k) − δ∇yfθ(y(k), ct) +
√
2δϵk

where δ is the step size, ∇y is the gradient of the energy function fθ with respect to noisy data y,
and ϵ is additional noise. In scored-based dWJS, ∇yfθ may be simply replaced with sϕ(y, c, w), the
learned approximation of the score function. After T steps, clean discrete sequences are recovered
by "jumping" using the least-squares estimator from Neural Empirical Bayes (Saremi & Hyvärinen,
2019):

x̂ϕ(yT , ct, w) = yT + σ2sϕ(yT , ct, w)

Note that regardless of the method used, energy-based or scored-based cWJS, sϕ is always used to
denoise. Context ct is specified explicitly during sampling to simplify inference.

3 EXPERIMENTS

We evaluate cWJS using two BCR repertoire datasets: (1) 1.5 million heavy-chain sequences from
rats immunized with a transmembrane (TM) antigen, annotated with V genes, J genes, and CDR3
lengths. The TM dataset comprises 122 single-context modes (V genes) and 2,994 multi-context
modes (V/J genes & CDR3 length). (2) consists of 167,537 paired-chain sequences from patients
receiving SARS-CoV-2 mRNA vaccines targeting the Spike (S) protein, annotated with heavy-chain
and light-chain V genes. The S dataset contains 2,797 multi-context modes (heavy- & light- V genes).
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Figure 2: Increasing guidance both improves fidelity and diversity metrics. Multi-context conditioning
is done on heavy-chain (HC) and light chain (LC) V genes from human anti-SARS-CoV-2 repertoires
in (Wang et al., 2024)

For each dataset, we train cWJS with relevant context included. For sampling, we select context
conditions with a range of relative abundances in the training repertoire. Given a target context, 100
samples are generated from each starting seed where each seed is a representative sequence from
each V gene cluster in the training set. This ensures no starting seeds are out-of-distribution to the
trained model. Both the training sequences and final samples are labeled by Absolve (Genentech,
2018), a bioinformatics tool for antibody sequence annotation, providing consistent labels for context
conditioning during training and sample labeling.

We evaluate cWJS across three metrics. Fidelity is measured through both accuracy of individual
and joint context conditions and position-wise KL-divergence, calculated as: AA-Position-KL =√

1
n

∑n
i=1 DKL(Si||Ti)2, where Si and Ti are the amino acid distributions of the samples and

conditioned-matched training subset at position i. Diversity is quantified as the ratio of unique to
total samples, while novelty is measured by edit distance to the nearest training sequence.

3.1 CONDITIONING ON V GENE

We first evaluate cWJS on single variable conditioning using V gene as the target context. Samples are
generated by fixing a target V gene and undergoing 10 steps of Langevin MCMC prior to denoising.
Nine V genes from the TM dataset were chosen as conditioning tokens, representing various levels of
abundance and proximity to other V genes.

The generated sequences were embedded and visualized using Deep NGS Navigator (MohammadiPey-
hani et al., 2025), as shown in Figure 1. The assigned labels of samples closely match the target V
gene context and always match the target gene family, a set of related V genes. Mismatches are likely
due to the presence of training sequences from neighboring V genes within the same family and the
blurry delineation between V gene definitions, explained further in Section A.2 (Bentley & Rabbitts,
1983). Interestingly, mismatches still occur when conditioning on V genes highly represented in the
training set (e.g. IGHV2-12), suggesting that subclass definitions may matter more for conditioning
than subclass representation in the training repertoire.

3.2 CONDITIONING ON MULTIPLE CONTEXTS

We examine cWJS’s ability to consider multiple categorical and numerical contexts simultaneously.
For the paired-chain SARS-Cov2 dataset, we condition on heavy-chain V genes and consider ten
different context combinations found in the training repertoire. With the TM dataset, the context is
VH, JH, and CDR3 length, the last of which is numerical ranging from 5 to 24. We choose fifteen
(VH, JH, CDR3) clonotypes, three from the top 1% most represented clonotypes, the top 25%, the
top 50%, the bottom 25% and three that are not found in the training repertoire to assess the ability to
generalize to unseen context pairs.

Figures 2 and 6 show results for the S and TM datasets, respectively. As the guidance level w
increases, the accuracy of samples being in the target context generally increases and AA-Pos-KL
decreases, implying guidance improves the fidelity of generated sequences and their distributions
compared to a conditioned-matched training subset. Interestingly, the uniqueness and edit distance to
the nearest training neighbor also increase with guidance, which indicates that cWJS avoids mode
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collapse and recapitulating training sequences at high guidance levels. We posit this occurs because
increasing w decreases the contributed score of an unconditional model during sampling, as shown in
Equation 1. The unconditional model was tasked with denoising samples from all clonotypes without
context guidance, a challenging task that may have required it to rely on a limited set of representative
samples for each clonotype. This lowers the diversity of sampled sequences from the unconditional
model. Thus, decreasing its contribution would explain why both accuracy and diversity increase
with w.

cWJS is evaluated against two baselines: unconditional dWJS trained only on sequences from a target
context and one trained on sequences from all context modes. Table 1 shows cWJS produces higher
quality and more diverse samples, even when all training sequences are from the target subclass. The
limited sample uniqueness of dWJS trained on all clonotypes further supports why increasing w
improves sample diversity, as alluded to above.

3.3 LEVERAGING AFFINITY DATA FOR GUIDANCE

To demonstrate practical utility, we use the human S dataset containing 15,538 sequences with binding
labels for the S protein. We identify the five VH/VL pairs most enriched and five least enriched
among S binders, using these for conditioning. For each context, 7,200 sequences are sampled and
compared by edit distance to known S binders from CoVAbDab (Raybould et al., 2021).

Table 2 shows the number of samples within 5 mutations of a known S binders in CoVAbDab.
When conditioned on context enriched in S binders, more samples are within 5 edits of CoVAbDab
than conditioned on non-enriched context and thus more likely to be S-binders. This suggests only
knowing the VH and VL genes of binders and using this alone as context for conditioning can
dramatically increase the efficiency of discovering novel binders, showing the practicality of using
cWJS to accelerate protein discovery.

3.4 EVALUATING TRAJECTORIES TAKEN DURING SAMPLING

We analyze sampling trajectories by examining intermediate states during Langevin MCMC. For
each state, a sample is denoised to clean sequence space and annotated with its V gene. For a given
target V gene, we sample 1000 sequences per starting seed and track their V gene annotations across
ten Langevin steps (Figure 3), also showing V gene frequencies at the final state.

Most samples converge to the target V gene within 1-3 steps, with some exploration of nearby genes
within the same gene family (e.g. IGHV2-X when conditioned on IGHV2-63), but never outside
a family. Convergence is slower when related V genes exist in the training repertoire (Figure 8).
In some cases, sequences converge to a closely related but incorrect V gene (Figure 8), likely due
to imperfect separation between V gene definitions. Across the nine contexts assessed using the
TM dataset, 79.7% (±33.9) of samples converged to the target context, six of which showed 99%
convergence.

4 CONCLUSIONS

We present a conditional adaptation of discrete walk-jump sampling that enables controlled generation
of antibody sequences from specific categorical and numerical variables, including clonotype. We
demonstrate that increasing the level of guidance improves sample fidelity to target contexts, novelty,

Method Accuracy ↑ Uniqueness ↑ KL(tr_match, gen) ↓
cWJS w=4.0 (ours) 0.99 ± 0.02 1.0 ± 0.01 0.49 ± 0.17
cWJS w=0.1 (ours) 0.89 ± 0.07 0.97 ± 0.06 0.80 ± 0.04
Unc dWJS (single clonotype) 0.40 ± 0.55 1.0 ± 0.00 2.27 ± 0.63
Unc dWJS (all clonotypes) 0.08 ± 0.25 0.77 ± 0.32 4.48 ± 6.67

Table 1: cWJS outperforms unconditional dWJS trained in a variety of scenarios on accuracy,
uniqueness, and KL-div. Values shown are mean and std. across 10 contexts from the SARS-CoV-2
dataset.
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Table 2: When using binding-enriched context, cWJS generates more sequences (out of 36,000) near
known SARS-CoV-2 binders in CoVAbDab compared to using binding-depleted context. (HC only),
e.d. computed with heavy chain only; (HC+LC), e.d. computed with both chains

Min edit distance
to CovAbDab

binders

Binding-enriched
context (HC only) ↑

Binding-depleted
context (HC only) ↓

Binding-enriched
context (HC+LC) ↑

Binding-depleted
context (HC+LC) ↓

<= 5 2444 238 147 0
<= 3 255 2 6 0
<= 1 2 0 0 0

Figure 3: Sampled sequences (N=1000) converge on the target V-gene IGHV5-10 over 10 steps of
Langevin MCMC "walking" with w = 1. The target V-gene is outlined and the fraction of samples
converging to each class is shown (right).

and diversity when trained on BCR repertoire data. Our analysis of sampling trajectories shows quick
convergence to target contexts and local exploration within the target and nearby v-genes. When
applied to SARS-CoV-2 repertoire data, conditioning only on enriched heavy and light v-gene pairs
produced sequences proximal to known binders while remaining novel, highlighting the method’s
potential for accelerating lead discovery.

This work opens several promising directions for future research. While this work focuses on
clonotype-level conditioning, this framework can be extended to other categorical and continuous
properties relevant for antibody discovery, such as developability metrics or binding affinity. Overall,
our cWJS approach provides a practical tool for targeted antibody sequence generation.
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A APPENDIX

Figure 4: An overview of context conditioning. a) B-cell receptor (BCR) repertoire data is taken
from an antigen-exposed animal’s immune system. The subclasses of chosen leads provide context
for coditional sampling from a cWJS trained on the repertoire. b) V gene, J gene and CDR3 length
define the clonotype subclass of a sequence and the context for conditioning. c) The EBM and
score-based/denoiser are conditioned by adding a context embedding to a noisy sequence y prior to
outputting energy (cEBM) or the predicted score.

A.1 TRAINING AND SAMPLING PARAMETERS

All models, including cWJS and baseline dWJS, are trained with a learning rate of 2e-4 that decays by 1% after
each epoch. Antibody sequences are one-hot encoded and noised with σ = 0.5. Sampling takes 10 Langevin
MCMC steps (Sachs et al.) with σ = 0.5 and δ = 0.5

A.2 ABSOLVE FOR ANNOTATION

Absolve is a command-line tool for antibody variable domain sequence annotation (Genentech, 2018). The
tool annotates single or paired-chain antibody sequences with open reading frames (ORFs), framework and
CDR regions, Kabat numbering, germline assignments, and somatic hypermutations based on a set of reference
germline sequences. Absolve is used for annotating the training BCR sequences and generated sequences with
germline assignments, though its annotations are not perfect, especially when sequences are similar edit distances
to two distinct germline sequences.

A.3 AUGMENTING NEGATIVE DATA FOR EBM TRAINING

Contrastive divergence loss is formulated as:

L = E(ypos,cpos)∼Dpos [E(ypos, cpos)]

− E(yneg,cneg)∼Dneg [E(yneg, cneg)]

where Dpos and Dneg are the distributions of positive and negative samples, respectively.

To create a smoother energy lanscape, three negatives are sampled for each positive, each in a different way.
The first negative comes from a traditional implementation of contrastive divergence, in which a random seed
undergoes langevin MCMC, guided by the score of an underfit EBM (Frey et al., 2024). Additional negatives
are sampled by pairing (ypos) with an incorrect subclass. (ypos, crand) is a negative with a randomly-drawn
subclass and (ypos, cfamily) is in a related, but still incorrect subclass. In clonotype conditioning, cfamily is
from the same gene family but from a different gene (e.g. IGVH2-5 instead of IGHV2-11).
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Figure 5: Sequence logo plots of the full training set (top), the subset of training data labeled as
IGHV2-63 (middle), and the generated samples from cWJS with IGHV2-63 conditioning (bottom).

Figure 6: Multi-context conditioning on clonotypes (V-gene, J-gene, CDR3 length) from the TM
dataset with each context condition shown separately, including context permutations not seen in the
training set. All three contexts are sampled with high accuracy and diversity. Sample novelty also
increases with guidance strength, as measured by edit distance to the nearest sequence in the training
repertoire.
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A.4 CONDITIONING ON NUMBER OF SOMATIC HYPERMUTATIONS

Figure 7: Accuracy and RMSE of generated samples with different number of somatic hypermutations
(SHMs) used as conditioning. Accuracy is defined as within 3 SHMs of target; RMSE, root-mean
squared error. This acts as a more challenging setting for conditioning on a numerical variable. RMSE
drops as guidance increases for high SHM contexts, the most challenging.
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(a) Trajectories when conditioned on IGHV6-5 and the ending fraction of samples in each V-gene. This is the
most common convergence pattern seen using the TM dataset.

(b) Target V gene is IGHV2-63, with 98.8% of samples from IGHV2-63 after 10 steps while 1.2% are from
other genes in the IGVH2 family.

(c) Only 18.6% of samples are from the target V gene (IGHV5-29) while 61.5% are from a nearby V gene,
IGHV5-7.

Figure 8: Trajectories with varying convergence patterns. (a) Shows quick, targeted convergence, the
most common pattern seen (b) Demonstrates slower, near-perfect convergence with exploration to
nearby V-genes (c) Illustrates incomplete convergence with 61.5% of samples converging to a nearby
V gene rather than the target.
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