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Abstract

Mixture-of-Experts (MoE) architectures have
emerged as a paradigm-shifting approach for
large language models (LLMs), offering un-
precedented computational efficiency. How-
ever, these architectures grapple with chal-
lenges of token distribution imbalance and ex-
pert homogenization, impeding optimal seman-
tic generalization. We propose a novel expert
routing framework that incorporates: (1) An
efficient routing mechanism with lightweight
computation. (2) An adaptive bidirectional se-
lection mechanism leveraging resonance be-
tween experts and tokens. (3) A module that
determines the lower bounds of expert capacity
based on dynamic token distribution analysis,
specifically designed to address drop-and-pad
strategies. It is also integrated with orthogonal
feature extraction module and an optimized loss
function for expert localization. This frame-
work effectively reduces expert homogeneity
while enhancing the performance of the expert
selection module. Additionally, we introduce a
local expert strategy that simultaneously im-
proves load balancing and reduces network
communication overhead. It achieves a 40%
reduction in token processed by each expert
without compromising model convergence or
efficacy. When coupled with communication
optimizations, the training efficiency improve-
ments of 5.4% to 46.6% can be observed. After
supervised fine-tuning, it exhibits performance
gains of 9.7% to 14.1% across GDAD, GPQA,
and TeleQnA benchmarks.

1 Introduction

Large language models (LLMs) have shown excep-
tional proficiency in understanding deep structures
and complex semantic relationships within lan-
guage (Zhao et al., 2023). As these models scale up,
their capabilities in language generation and log-
ical comprehension are enhanced, but this comes
at the cost of significant computational, communi-
cation, and storage demands (Jiang et al., 2024b).

To scale models efficiently without disproportion-
ately increasing computational costs, researchers
have incorporated the Mixture-of-Experts (MoE)
architecture into LLMs (Lepikhin et al., 2020). The
MoE framework integrates multiple experts within
the model, each tasked with processing specific
types of inputs (Fedus et al., 2022). For a given
input, only a subset of experts is activated, allowing
for more efficient use of computational resources
(Du et al., 2022). Recently, several LLMs employ-
ing MoE structures, such as DeepSeek-V3 (Liu
et al., 2024a) and Mixtral (Jiang et al., 2024a), have
demonstrated outstanding performance on various
leaderboards.

Despite the efficiency benefits of MoE in scaling
model sizes, it introduces several new challenges
and drawbacks (Shazeer et al., 2017). The con-
ventional MoE model’s convergence and the ex-
perts’ generalization capabilities are heavily depen-
dent on the design of the routing strategy, which
easily leads to an imbalanced "winner-takes-all"
phenomenon among experts. The imbalance be-
tween excessively "developed" experts and those
lacking adequate training may compromise or even
nullify the intended functionality of routing strate-
gies. Recent studies address these challenges from
multiple perspectives (Li et al., 2023). StableMoE
(Dai et al., 2022) proposes a two-stage training
approach to address the issue of routing fluctua-
tion. This method involves training the routing
network independently from the backbone model
and utilizing a frozen, distilled routing mecha-
nism to allocate tokens. Dynamic-MoE (Huang
et al., 2024a) designs a dynamic routing Mixture-
of-Experts (MoE) policy that evaluates the suffi-
ciency of current experts while reducing activated
parameters by 90%. The characteristics of classical
gated routing lead to experts being unable to learn
features mastered by other experts. To address
this, MoDE (Xie et al., 2024) proposes moderate
distillation between experts to mitigate the general-



ization problems caused by narrow learning paths.
DYNMOoE (Guo et al., 2024) introduces a unique
gated routing mechanism capable of adaptively de-
termining the number of activated experts through
trainable expert thresholds, even allowing for the
addition or removal of experts.

In addition to the classical token choice scenario,
previous researches also propose work utilizing
expert choice (EC). Google Brain introduces the
EC routing algorithm (Zhou et al., 2022), which
assigns experts with predetermined buffer capac-
ities to the Top-k tokens to ensure load balance.
The Brainformer (Zhou et al., 2023) also adopts
this routing strategy, constructing a trainable gat-
ing matrix to project the input feature space onto
scores corresponding to each expert. Then, each
token is routed to the Top-k experts. This strat-
egy is proven highly effective in achieving expert
load balancing and enhancing expert learning out-
comes. Autonomy-of-Experts models (Lv et al.,
2025) design a novel MoE paradigm in which ex-
perts autonomously select themselves to process
inputs by aware of its own capacity to effectively
process a token.

The design of routing strategy is crucial to the
MOoE structure, while not all tokens may be suitable
for training (Riquelme et al., 2021). In addition to
data preprocessing techniques such as dataset clean-
ing and deduplication, previous studies have also
considered how to discard certain tokens within
the model. Early work introduced the concept of
expert capacity (Lepikhin et al.), which refers to
the maximum number of tokens each expert can
process at once. Tokens exceeding this capacity
are discarded. Expert capacity helps to ensure load
balance among experts while facilitating All-to-
All communication implementation. However, in
situations where it is uncertain whether a token
contributes to training, there is a risk of discarding
class-discriminative samples, potentially compro-
mising the model’s training outcomes. DeepSeek-
V2 (Liu et al., 2024a) designs a device-limited rout-
ing mechanism to bound MoE-related communi-
cation cost. DeepSeek-V3 (Liu et al., 2024a) pio-
neers an auxiliary-loss-free strategy to minimizes
the performance degradation. This approach mini-
mizes the constraints on expert specialization im-
posed by knowledge hybridity and knowledge re-
dundancy. XMoE (Yang et al., 2024) achieves more
precise router by implementing a threshold-based
approach. If a token reaches the specified thresh-
old, it is processed exclusively by a single expert

while being discarded by other experts within the
Top-k selection. This method allows for more nu-
anced token selection and processing. LocMoE (Li
et al., 2024) leverages orthogonal routing weights
to prevent token homogenization across different
expert networks and introduces the Grouped Aver-
age Pooling (GrAP) layer (Wang et al., 2023) for
token feature extraction. Under these conditions,
LocMOoE also provides the theoretical proof for the
lower bound of expert capacity.

In this paper, we propose expert-token resonance,
a mechanism consisting of an expert-token bidi-
rectional selection router and the adaptive expert
capacity strategy. The primary contributions of this
paper are as follows:

1. Affinity-based Efficient Expert Routing via
GrAP. By leveraging cosine similarity be-
tween tokens and gating weights to define
affinity scores, our router effectively guides
experts to focus on distinct token segments,
mitigating the expert homogenization prob-
lem. Meanwhile, the GrAP design reduces
computational complexity by a factor of 1/2D
to 1/D compared to traditional MLPs (D de-
notes the dimension of the intermediate hid-
den layer). This integrated approach demon-
strates both improved routing effectiveness
and substantial computational efficiency.

2. Expert-token Bidirectional Selection. By in-
tegrating the concepts of expert choice router
(ECR) and token choice router (TCR), we
propose the adaptive bidirectional selection
mechanism. Contrast to conventional router,
the bidirectional selection router allows MoE
to enhance the training success rate while con-
sidering expert capacity constraints. Its effec-
tiveness has been theoretically validated.

3. The Adaptive Expert Capacity Bound. Set-
ting an adaptive affinity threshold allows the
lower bound of expert capacity to be signif-
icantly reduced. As training iterations in-
crease, the information density of token fea-
tures grows, causing the expert capacity to ini-
tially decrease and then stabilize. Ultimately,
the training efficiency of MoE can be greatly
enhanced.

Expert-token resonance mechanism adopts the
state-of-the-art MoE model Mixtral 8 x7B as the
backbone, and utilizes MindSpeed-LLM, Mind-
Speed, and Megatron-LM (Shoeybi et al., 2019)



libraries for training on Ascend NPU clusters. As-
cend designs a new computing architecture for
LLM training and inference scenarios (Liao et al.,
2021), boasting powerful low-bit computing capa-
bilities. Experiments conducted on clusters with
32, 64, and 256 NPUs indicate that our approach
improves training efficiency by 5.4% to 46.6% com-
pared to the baseline, and by 2.9% to 13.3% com-
pared to LocMoE. Model performance is enhanced
by 9.7% to 14.1% compared to the baseline, and
by 1.7% to 4.1% compared to LocMoE.

The rest of this paper is structured as follows:
Section Method presents the methods proposed in
this paper, along with theoretical evidence. Sec-
tion Experiments analyzes the experimental re-
sults of our approach regarding training efficiency
and model performance. The final section summa-
rizes the content of this paper and offers an outlook
on future improvements.

2 Method

In this section, we present the efficient routing
mechanism, and our adaptive bidirectional selec-
tion mechanism is detailed. Then, for traditional
drop-and-pad strategies, a dynamic token distri-
bution analysis module that optimizes the lower
bounds of expert capacity are displayed. Moreover,
we also describe the loss for expert load balancing.

2.1 Model Architecture.

Backbone. The MOoE architecture, based on
the Transformer framework, efficiently scales up
model size with low computational overhead, bene-
fiting from two primary structures: a sparse gating
network for routing tokens and expert networks for
processing specific token categories.
We consider the supervised -classification
for brevity where the training samples are
{(™,y:)}N., ~ D. Each training sample = =
(x],...,x]) € R*? has s tokens with token fea-
ture z; € R, Vi € [s], and label y € N'*. The
objective is to learn the map of x to the correspond-
ing y. The general MoE structure are formulated
as S n
MoE(x) = Z Z Gi(x:) - Ei(xy), ()

t=1 i=1
where 7 is the number of experts, G (x;): R —
‘R"™ is the gating weight vector of experts which
maps the tokens of a; into the coresponding experts
with weights, e.g., G;(x) = Softmax(Wx + €)
where the softmax is applied to each row, and

Ei(x): R — R is the i-th expert network, see
(Liu et al., 2024b) for current different router meth-
ods. Generally, n < s, which saves much compu-
tation compared to the dense structure.

Cost-Efficient Sparse Expert-Token Affinity.
W, denotes the expert-token affinity matrix.
After processing through the GrAP routing layer,
tokens generate a diagonal sparse matrix as shown.
Compared to the dense matrix produced by tradi-
tional routing layers, this reduces the parameter
count to 1/D of the original, significantly decreas-
ing the computational overhead of the expert rout-
ing layer.

With GrAP as the layer of feature extraction, the
formulation of Wy is as followed:

0 wo 0
Wae=1| . . . . )
0 0 - w,

wi = .1{M gj<(i+1)§} 0<j<d (3
n n

The expert-token affinity matrix is employed as

the gating weight to calculate the affinity score

between each expert and token. We define the

affinity score of ¢-th token and i-th expert as the

cosine similarity between vectors x; and w;:

81i = cos (v, wi) = @ wi/ (|2 - wil) @)

The affinity score intuitively reflect how closely the
two inputs are associated. From a perspective of
semantic, the affinity scores derived from affinity
metrics consisting of orthogonal vectors represent
the degree of association between each token and
various experts, as shown in Figure 1. Therefore,
we leverage the affinity score as the principle of our
affinity-driven active selection routing mechanism.
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Figure 1: The illustration of affinity score.
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Figure 2: The architecture of the gate network along
with the hybrid TCR + ECR router.

Routing Strategy. We consider our affinity-
driven active selection routing as a hybrid of TCR
(Clark et al., 2022; Zhou et al., 2022) and ECR. As
the name suggested, TCR lets each token choose
its top-scored experts, and ECR lets each expert
choose its top-scored tokens. Specifically, we use
the result of the expert-token affinity metrics as
the affinity score between tokens and experts. In
conventional TCR routing strategy, the tokens are
simply route to their Top-1 expert. In our hybird
TCR+ECR routing strategy, experts also select to-
kens for processing from assigned tokens according
to affinity scores:

(Eﬂ, ey Et[) = TOp-é ({5;1, ceey 5tn}) 5

Ly, € [n],Vt € [s], k € [4].

(%)

and then the expert to choose its Top-¢ tokens
where £ is determined by a threshold of the sum of
affinity scores:

(I14y- - -, Ici) = Bottom-C ({t €
Iii € [s] UNone, Vi € [n], k € [C].

(6)
Such bidirectional selection mechanism motivates
each expert to receive a certain number of tokens
with the highest affinity score to itself, thereby
achieving a resonance effect. The resonance ef-
fect can help mitigate the homogenization in MoE.

Locality Loss. Feed-forward network (FFN) lay-
ers are commonly employed in expert networks,
allowing each expert to learn independently as a
separate neural network, thus preventing interfer-
ence between samples. This mechanism leads to

[s]:3j € [0, I; = z}) ,

a severe load imbalance, as experts frequently se-
lected in the early stages are more likely to be
chosen in later stages. To mitigate this skewness
in token allocation, the auxiliary loss (Shazeer
et al., 2017) has been proposed. Building upon
the auxiliary loss, our work introduces a loss
bias term based on data locality, represented as
Lioe = pKL(Dc||D1) = —p [ De(x) In[ 513 da,
i.e., the Kullback-Leibler (KL) divergence of the
current distribution D.(z) and the fully localized
distribution Dj(x). This loss term serves as a soft
constraint, encouraging tokens to be sent to experts
residing on the same node, thereby mitigating the
substantial overhead incurred by partial inter-node
communication.

2.2 Training Strategy

Token Distribution Dynamics under Expert
Routing. Under the premises of orthogonal gat-
ing weights and a data distribution approaching
uniformity, the previous studies demonstrate that
the expert capacity is closely related to the angle
between the gating weights and tokens. For large
scale of the activation, the lower bound of expert
capacity is proven to exist and is represented as
Crnin = % exp{ddmax/( max)}

The hybrid TCR+ECR bidirectional selection
routing, introduced in the model structure, is ex-
emplified in the figure. If the feature fragment
corresponding to the k-th dimension of the gating
weight for a particular token is more prominent,
then that token will be routed to the k-th expert. If
among all tokens routed to the k-th expert, there
is a certain probability of the presence of class-
discriminative tokens, then the capacity C' must
be set to a larger value to ensure the inclusion of
sufficient class-discriminative tokens. The router
proposed in this paper is a hybrid of TCR and ECR
modes. After determining the expert to which a
token will be routed, scores are calculated for the
tokens assigned to each expert, and a Top-¢ se-
lection is performed, where £* is determined by a
threshold of the sum of scores. Subsequent theoret-
ical analysis will demonstrate the effectiveness of
this hybrid routing scheme.

2.2.1 Dynamic Lower Bound Module for
Expert Capacity in ETR

To explain the motivation of our method, we show

some theoretical insights in this section. Our theo-

retical analyis is bulit on Chowdhury et al. (2023),

where they make the following data assumption:
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Figure 3: (a) The average composition of computation, communication, overlap, and idle with different schemes
and cluster sizes. (b) The perplexity during training iterations with different schemes.

Assumption 1 (data assumption). Each input x €
R with s tokens is comprised of one class-
discriminative pattern o1, . . ., 0,, € R% with each
decides the label in [n), and s — 1 class-irrelevant
patterns v ~ N for certain distribution N'. For
..,Ts—1) has label

1, where r; "X N\ Vi € [s — 1].

Based on Assumption 1, Chowdhury et al. (2023)
demonstrated that the training of MoE go through
two phases:

Phase 1: Router training (Chowdhury et al.,
2023, Lemma 4.1 and Assumption 4.4), which
makes class-discriminative patterns all to the cor-
responding expert. This process ensures that each
expert only receives the class-discriminative tokens
related to the specific class.

Phase 2: Expert training (Chowdhury et al.,
2023, Theorem 4.2 and Theorme 4.5), which makes
each expert learn to predict the label based on its
class-discriminative inputs from Phase 1. This pro-
cess is designed to establish each expert’s ability to
handle and solve problems.

example, x = (r1,712,01,T3, .

Hence, the traning of an input in the current
step is valid if the class-discriminative patterns is
correctly dispatched. To quantitatively measure
the difference between TCR and ECR, we define
training success rate of input motivated by the
training process of MoE.

Definition 2 (training success rate). We say the
input x € R** with s tokens succeed in training
if the class-discriminative pattern in x, e.g., 0;
is correctly dispatched to i-th expert. We further
define training success rate as the probability that
the input succeed in training.

Furthermore, to show the quantitative compari-
son of TCR and ECR in training success rate, we
need following asssumptions and notations of to-

ken patterns.

Assumption 3 (class-discriminative). We assume
the location and feature of class-discriminative pat-
tern is uniformly distribute in [s] and [n], i.e.,

i ~ Unif([s]), ; ~ Unif {o01,...,0n}). (7

We also assume that ¥'i € [n], 0; should be sent to
the i-th expert, and define the true positive proba-
bility in token choice setting is no worse than the
uniform dispatch as below

P(bo;,i > 0a;,i, Y5 € [s]) =pi > 1/n,Vi € [n]. (8)

Assumption 4 (class-irrelevant). The distribution
of class-irrelevant patterns is isotropy, i.e.,

P(r ~N,bri > 0z,4,Vj € [s]) =1/n,Vie[n]. (9)

And we define the false positive probability in ex-
pert choice setting as

P(T ~ N, 57‘,72 2 6oi,i) == (Iz,Vl (S [n}, (10)

which measures the possibility that expert i chooses
the wrong token r instead of the correct token o;.

Assumption 3 assumes the valid token is uni-
formly distributed in training samples due to the
massive amounts of data nowadays. Assumption
4 assumes the invalid tokens can be uniformly dis-
patched to experts since the invalid tokens do not
provide supervised signal to router and experts in
training. We consider such uniform settings are
common assumptions in theoretical analyis. Now
we compute the training success rate of TCR and
ECR.

Theorem 5. Under Assumptions 3 and 4, the train-
ing success rate of TCR in each sample x is

P(TCR succeed) = ©(C z:pi/s)7 (11)
i=1



and the training success rate of ECR is Yi € [n],

_(s—1)q;

1 n A5 )95 .
P(ECR succeed) S Zi:gce % s, O<(s—1a/2,
>1—e3¢/16, C > 2sq;.

12)
Corollary 6. In practice, For constant number of
experts (Jiang et al., 2024a), i.e., n = O(1), and
C < s to save computation cost. We have the
following lower bound for capacity C' to ensure
high training success rate:

1. Suppose q; = ©(1). Then TCR is much better
than ECR, and we only need C' = O(s).

2. Suppose Vi € [n], sq; < C* for some C* > 0.
Then ECR is much better than TCR, and we
only need C' > 2C*.

Remark 7. We explain the benefit of swicthing
TCR to ECR during training based on Theorem 5
and feature distrution during training.

At the beginning of training, the model seldom
learn the task. Then the feature of class-irrelevant
tokens is nearly isotropy, e.g., uniformly distrbute
around the sphere (see Appendix), leading to q; =
©(1). The succed rate of TCR with the form C'/s is
better than ECR with the form e=%. Thus we should
choose TCR with a large capacity C = ©(s) to
improve the success rate of training samples.

After training for some iterations, the experts
can roughly distinguish the class-irrelevant and
discriminative patterns, leading to q; < 1 or sq; <
C* for some C* > 0 (see Appendix). Then ECR
with success rate nearly 1 is better than TCR with
the form C'/s as long as C' > 2C*. Thus we should
choose ECR with a small capacity C = ©(1) to
improve the success rate of training samples.

Indeed, we find that Chowdhury et al. (2023, the
definition of £*) consider the ECR setting and ver-
ify the benefit in sample complexity. They assume
the maximum number of class-irrelevant patches
that are close to class-discriminative patches are
bounded, which has similar effect as C* in our
scene.

2.3 Communication Optimization

The training framework employs the Communica-
tion Over Computation (CoC) optimization tech-
nique to address performance bottlenecks in LLM
training. During forward propagation in LLMs,
the ColumnParallelLinear and RowParallelLinear
components involve sequentially dependent compu-
tation (matrix multiplication) and communication

(collective operations like AllReduce, AllGather,
and ReduceScatter). These dependencies lead
to inefficient serial execution. CoC decomposes
these tasks into finer-grained subtasks and merges
computation and communication into single ker-
nels, such as MATMUL_ALL_REDUCE and MAT-
MUL_REDUCE_SCATTER, utilizing MTE’s re-
mote memory access capabilities. This approach al-
lows for pipeline-style parallel execution and over-
lapping of computation and communication, signif-
icantly enhancing overall efficiency.

3 Experiments

3.1 Experimental Setup

This study employs the Mixtral 8x7B model, in-
corporating our proposed approach. The Mixtral
model, comprising 46.7 billion parameters and uti-
lizing Group Query Attention (GQA), features 32
sparse expert blocks with 8 experts in the MoE
Feedforward layer, where each token engages the
top 2 experts for processing. Given the prevalence
of long-text corpora in our application scenarios,
we extended the sequence length to 32,768 and
implemented tailored parallel strategies for cluster
scales of 32N, 64N, and 256N, encompassing ten-
sor, pipeline, data, and expert parallelism, with a
consistent global batch size of 128. For the three
cluster scales of 32N, 64N, and 256N, the parallel
strategies are set as follows: 32N - tensor paral-
lel (TP=4) / pipeline parallel (PP=4) / data parallel
(DP=2) / expert parallel (EP=2), 64N - TP=8 / PP=4
/ DP=2/ EP=2, and 256N - TP=8 / PP=8 / DP=4/
EP=2. Other details of experimental setup includ-
ing datasets, environment, and metrics, can be seen
in Appendix.

3.2 Efficiency Promotion and Memory
Footprint Reduction

As detailed in Section Method, we consistently
use Top-1 routing to ensure the routing implemen-
tation aligns with our theoretical framework. The
Baseline model utilizes a limited expert capacity
mode instead of the groupedGEMM scheme, which
avoids token dropping, with the capacity factor set
to 1.1. LocMoE considers data distribution unifor-
mity and estimates expert capacity using a lower
bound formula derived from its theoretical conclu-
sions in the first batch, maintaining it as a constant
during subsequent training. Our approach (abbre-
viate to "LocMoE+" in figures) fixes the range of
score sums, processes hidden states, and calculates
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Figure 4: The time consumption during training itera-
tions with different schemes and cluster sizes.

current expert capacity. The subsequent analysis
addresses the training time, convergence, and mem-
ory usage efficiency of these schemes on multiple
sizes of Ascend clusters.

Figure 3a illustrates the time consumption of
these methods during the first 1000 iterations of
training. Due to initialization and some unstable
factors, time consumption is recorded starting from
the 5Sth iteration. The Baseline model’s time con-
sumption is relatively stable. As iterations increase,
LocMoE’s time consumption slightly decreases,
particularly in 32N and 64N, consistent with the
conclusion that locality loss is effective only when
the number of experts is greater than or equal to
the number of nodes. Our approach incurs slightly
higher time consumption than LocMoE due to the
computational overhead of token rearrangement.
However, as token features converge, the required
tokens gradually decrease and stabilize, leading to
a decline in time consumption, which remains sta-
ble in subsequent training processes. Overall, our
approach reduces training time by 2.9% to 13.3%
compared to LocMoE, and by 5.4% to 46.6% com-
pared to the Baseline.

We select 10 iterations at equal intervals from the
training iterations to collect data on the time con-
sumption of computation, communication, overlap,
and idle periods, as shown in Figure 3a. It is im-
portant to note that the data collection operation
also introduces some overhead. After integrating
LocMOoE and our approach, the time consumption
of each component decreases, with a significantly
greater reduction in computation overhead com-
pared to communication overhead. Additionally, as
the cluster size increases, the proportion of compu-
tation/communication overlap decreases, and the
magnitude of the reduction in computation over-
head diminishes. Figure 3b illustrates perplexity as
a measure of convergence. The convergence curves
of these approaches indicate normal loss conver-
gence, with our approach not adversely impacting
convergence.

The proportional time consumption at the op-
erator level is depicted in Figure 6. Among the
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Figure 6: The distribution of time consumption for op-
erators.

components, Al CORE efficiently executes matrix
multiplications and convolutions in Al algorithms;
AI VECTOR CORE accelerates vector operations
through parallel processing; MIX AIC integrates
different types of operators and optimizes for mul-
tiple tasks; AI CPU is optimized in hardware and
instruction sets to better support Al algorithms. Our
approach selects fewer tokens, resulting in a 17 x
performance improvement in the FFN MatMul op-
erator compared to the Baseline and a 2.6x im-
provement compared to LocMoE. This leads to
an overall 2.8 reduction in the cumulative time
consumption of the MatMul operator and a 2.6 x
decrease in Cube computing load. However, the
proportions of TopK and IndexPutV2, related to
rearrangement, show a slight increase.

We select a single iteration during the stable
training period and describe the per-device memory
usage (Allocated) using the first 100,000 samples
from its memory monitoring, as shown in Figure 5.
Overall, our approach achieves memory usage re-
duction of 4.57% to 16.27% compared to the Base-
line and 2.86% to 10.5% compared to LocMoE. As
cluster size increases, the proportion of computa-
tional overhead decreases, and the gap in memory
usage narrows. Additionally, instantaneous mem-
ory peaks gradually disappear, and the fluctuation
amplitude of short-term memory also diminishes.

3.3 The Performance of Downstream Tasks

To enhance the model’s conversational capabili-
ties and adaptability to downstream task, we fine-
tuned the pre-trained models. As shown in Fig-
ure 7, with sufficient supervised fine-tuning (SFT),
our approach achieves an average improvement
of approximately 20.1% in 16 sub-capabilities of
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Domain Task Capability, which is a portion of
General and Domain-specific Assessment Dataset
(GDAD), compared to the Baseline, and an in-
crease of about 3.5% compared to LocMoE. The
Rewriting and Summary capabilities show the high-
est improvement, with a 28.2% increase compared
to the Baseline and a 6.7% increase compared to
LocMoE. In the 13 tests of Domain Competency
Exam, our approach demonstrates an average im-
provement of 16% relative to the Baseline and an
average increase of approximately 4.8% compared
to LocMoE. The IP Training in the digital com-
munications domain shows the most significant
improvement, with a 27.3% increase compared to
the Baseline and a 3.0% increase compared to Loc-
MoE. Among the 18 sub-capabilities of General
Ability, our approach exhibits an improvement of
about 13.9% relative to the Baseline and an aver-
age increase of 4.8% compared to LocMoE. The
capability of Planning demonstrates the highest
improvement, with a 26.8% increase compared to
the Baseline and a 2.92% increase compared to
LocMoE.

Table 1 presents the holistic evaluation results for
multiple datasets, where GDAD-1 represents Do-
main Task Capability, and the other metrics follow
accordingly. Notably, due to the 6:4 ratio of Chi-
nese to English data in our incremental pre-training
domain data and the 7:3 ratio in the fine-tuning
data, our approach achieves an improvement of ap-
proximately 13.6% compared to the Baseline and
2.8% compared to LocMoE in the GPQA (Rein
et al., 2023) evaluation, despite the limited data
available for training. During incremental train-
ing and fine-tuning, we incorporated substantial
telecommunications domain knowledge, questions,
and case studies. TeleQnA (Maatouk et al., 2023),
the first benchmark dataset designed to evaluate
the knowledge of LLMs in telecommunications, ef-
fectively measures the model’s capabilities in this

Table 1: Performance promotion obtained by our ap-
proach on different datasets.

GDAD
GDAD-1 GDAD-2 GDAD-3 Avg GPQA TeleQnA
Baseline 47.8 43.0 65.4 52.8 29.5 62.1
LocMoE 55.5 47.6 71.1  59.0 32.6 67.6
LocMoE+ 57.4 49.9 745 615 33.5 68.8

domain. Consequently, our approach comprehen-
sively surpasses both the Baseline and LocMoE on
this specific dataset.

4 Conclusion

In this paper, we propose a novel expert routing
framework that enhances MoE efficiency through
three key innovations: an efficient routing mech-
anism with lightweight computation, a bidirec-
tional expert-token resonance selection mechanism,
which combined ECR and TCR, and a dynamic ca-
pacity bounds module. The framework integrates
orthogonal feature extraction and optimized expert
localization loss, effectively addressing expert ho-
mogeneity while improving routing performance.
Our local expert strategy demonstrates advantages
in both load balancing and communication effi-
ciency. Experimental results validate the effective-
ness of the proposed framework across multiple
benchmarks. Our approach achieves performance
improvements up to 46.6% (32N) compared to the
Baseline and 13.3% (32N) compared to LocMoE,
while reducing memory usage by up to 16.27%
and 10.5%, respectively. To evaluate model per-
formance, all models are evaluated with the open-
source datasets GPQA and TeleQnA, and closed
domain benchmark GDAD. In downstream tasks,
our approach outperforms the Baseline by 14.1%,
13.6%, and 9.7% on GDAD, GPQA, and TeleQnA,
respectively. Future work may explore methods
to compress communication data to further reduce
communication overhead.



Limitations

Despite our comprehensive evaluation efforts, sev-
eral limitations of this study warrant acknowl-
edgment. First, our assessment framework does
not encompass certain important capabilities, such
as role-playing scenarios and multilingual perfor-
mance evaluations. These aspects could provide
additional insights into the model’s versatility and
practical applications. Furthermore, due to com-
putational resource constraints, our investigation
was limited to models with parameters under 100B.
This restriction prevented us from extending our
experimental framework to larger-scale models, in-
cluding current state-of-the-art architectures such
as DeepSeek V3/R1. A more extensive study in-
corporating these larger models could potentially
reveal additional insights about the scalability of
our approach. Additionally, our cluster’s inter-node
bandwidth limitations and our primary focus on
large-scale sparse expert architectures resulted in a
less thorough investigation of pipeline parallelism
and All-to-All communication strategies. A more
comprehensive analysis of these aspects could po-
tentially yield superior computation and communi-
cation efficiency. Future work could explore these
directions to achieve more optimal performance in
distributed training scenarios.
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A Appendix
B Missing Proof

B.1 Auxiurary Results

Lemma 8 (Theorem 4 in (Chung and Lu, 2006)).
Let X1,...,X, be n independent random vari-
ables with

P(XZ 1) = pi,P(Xi = 0) =1 — Di- (13)

We consider the sum X = Z?:l X, with expecta-
tion E(X) = >""" | pi. Then we have

A2

P(X <EX —)\) <e %X,
o TERTRT

(Lower tail) 14

(Upper tail) P(X >EX + ) <

B.2 Proof of Theorem 5

Proof. 1) For the TCR, denote

s; = |{t < k : @ sent to expert i, xx, = 0;}|, Vi € [n]
15)

as the top class-irrelevant token number candidated
to the i-th expert before the valid token. Then
by Assumption 4, each class-irrelevant token uni-
formly gives to any expert, leading to s;|(x; =

0;) ~ B(k — 1,1/n) (Binomial distribution), i.e.,
Vit e [k —1],

B _ B ]{j 1 1 t 1 k—1—t
= (7)-(2) -3

Then we could derive that

P( succeed in training)

n
= ZP(oi sent to expert ¢|o; is in &) - P(0; is in x)
i=1

= % ZZpﬂ?(si < Clzr = 05)

i=1 k=1

,%Zp <C+ Z 7781<ka01)>.

k=C+1

Note that £s; = (k — 1)/n. When k > 2nC, by
lower tail bound in Lemma 8, we get

(k—1—n(C—1))2
2(k—1)n

P(si < Clar =o0;) < e~ <e S (17)
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Hence, we get the upper bound that

P( succeed in training)

<B2> 1 ZZpZ (s; < Clzx, = 04)
i=1 k=1
,—sz <2nC+k ZZC 1PSZ<C|;1;,€_OZ)>
nC+
Sizpz <2nC+ Z e gn>
k=2nC
g
S%sz <2nc+1_e;n>
2 LS anc s on ) < OB

where (i) uses the inequality that e™* < 1/(1 +
t), vt > 0.

Moreover, for 1 + % < k <1+ %, i.e.,
2(k —1) < nC < 4(k — 1), by upper tail bound
in Lemma 8, we get
P(si < Cler =0i) =1 —P(si > Clxi = 04)

_ 3(nC—k+1)?
>1—¢ 2nRGE-DFnC] >1 ¢~

k=1
in |

Hence, we get the lower bound that

P (¢ succeed in training)

ZZPL s; < Cler = 0;)

zlkl

(B 2 1

1 & [1+nC/2]
= ZI% Z P(s; < Clzk, = 0;)
i—1 k=[1+nC/4]

n [14+nC/2]
1 nC _ k=1
> i - — 4an
> (4 - > e )
i=1 k=[14+nC/4]
n C
1 nC e 16
>—Np [ -1 S —
~ ns ;p < 4 16—41n>
® 1< nC _c Cyr i
> i — —2— (4 1 16 | > —&i=10t
I R B

where (i) uses the inequality that e™* < 1/(1 +

t),Vt > 0, and the final inequality needs C' > 48,
which can be satisified in common experiments.
Combining the upper and lower bounds, we obtain
the desired result.

2) For the ECR, denote s; as the class-irrelevant
token number with the score larger than o; for i-
th expert. By Assumption 4, we derive that s; ~
B(s —1,q),Vi € [n].

P( succeed in training)
n
= Z ‘P(expert i choose 0;|0; is in )P (0; is in )
=1
n

= %ZP(&SC—I,&'NB(S

i=1
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Figure 8: The correlation matrix of one training sample
feature before (left) and after (right) training.

If C —1 < (s—1)g/2, by lower tail bound in
Lemma 8 with A = (s —1)g; — (C' —1) < Es;, we
obtain that

__Cc-1 )2
(s—1)aq; <e

(s=1)q; s—1)q;
,%(1 _C 8>q

(1)
If C > 2(s — 1)g;, by upper tail bound in Lemma
8 with A\ = C' — (s — 1)¢; > 0, we obtain that

P(sigcfl)ge

Psi<C—-1)=1—-P(s; > C)

[C—(s—1)g;]?

— SRk 7L S _ 30
>1—e 20C+26s-Da)/3 > 1 — ¢ 16

Hence, we conclude Eq. (12).

C Token Feature Distribution

We also validate the feature distribution before and
after MoE training shown in Figure 8. We can
see before training, all 8192 tokens in one training
sample are nearly orthogonal with correlation coef-
ficient near zero, which verifies the isotropy distri-
bution assumption in the first bullet of Remark 7.
After training, the token features are nearly aligned
with correlation coefficien large than 0.8. We can
also observe that neighbouring tokens share similar
features, and clear block feature behavior, meaning
that the token features are relatively separated and
the number of tokens in each cluster is bounded,
which somehow matches the distribution assump-
tion in the second bullet of Remark 7.

D Experimental Setup
D.1 Datasets for Training and Fine-Tuning

The dataset used in this paper is a self-constructed
dataset that integrates knowledge from multiple
domains, including wireless, data communication,
and cloud-core technologies. It comprises Chinese,
English, and bilingual corpora. The corpora are
parsed from various internal technical documents,
such as iCase, blogs, Wiki, and feature documents.
Taking iCase as an example, iCase is a case record
of problem localization and handling processes,
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containing code, instructions, and corresponding
logs. In addition, the above-mentioned domain-
specific knowledge corpora are mixed with general
corpora in a ratio of 1:5. The general corpora are
collected from hundreds of websites, including on-
line novels, cooking guides, movie reviews, and
more. After cleaning, deduplication, and review op-
erations, the dataset is thoroughly shuffled. A total
of 4.19 billion tokens is sampled as the experimen-
tal pre-training dataset. To evaluate downstream
tasks, this paper also adopt hybrid sft data items to
fine-tune the pre-trained model. The dataset com-
prises 762,321 general question-answer pairs and
11,048 domain-specific question-answer pairs, with
a general-to-domain ratio of 68:1. The general char-
acteristics encompass multi-tasking, mathematical
ability, coding ability, logical reasoning, multi-turn
dialogue, knowledge reasoning, language under-
standing, text generation, multi-tasking, Function-
Call, CoT, MRC summarization, refusal to answer,
Chinese, and English. The domain-specific charac-
teristics include domain knowledge understanding,
RAG, FunctionCall, information extraction, multi-
turn dialogue, reading comprehension, paraphras-
ing, and intent recognition.

D.2 Experimental Environment

The experiments are conducted on a cluster com-
posed of Ascend 910B3 NPUs, divided into three
groups: 32 NPUs (hereinafter referred to as 32N,
and so on), 64N, and 256N. The 910B3 series NPU
contains 20 Al cores with a main frequency of
1.8GHz and a theoretical computing power of 313T
under fp16 precision. The physical High Band-
width Memory (HBM) of the 910B3 NPU is 64G,
with an HBM frequency of 1.6GHz and an HBM
bandwidth of 1.6T. Every 8 NPUs are mounted on
the same Atlas 800T A2 server, which internally
adopts a fullmesh networking scheme, meaning
that any two NPUs are interconnected. The version
of the Ascend Hardware Development Kit (HDK)
is 23.0.2.1, and the version of the Compute Archi-
tecture for Neural Networks (CANN) suite is 7.0.0,
which is the commercial release version for Q4
2023. The models in this paper use ModelLink,
an LLM training framework based on the Ascend
architecture, and run in the torch_npu 5.0.0 envi-
ronment.

D.3 Evaluation Metrics and Datasets

To evaluate model performance, this paper de-
signs a comprehensive metric called the General



and Domain-specific Assessment Dataset (GDAD),
which consists of three evaluation systems: do-
main task capability, domain capability certifica-
tion exam, and general capability. Among them,
the domain task capability includes a total of 16
categories and 2,657 questions, such as domain
logical reasoning; the domain capability certifica-
tion exam includes a total of 13 categories and
13,968 questions, such as data communication; and
the general capability includes a total of 18 cate-
gories and 1,435 questions, such as programming
ability. The questions include objective and subjec-
tive questions in Chinese, English, and bilingual
formats. For subjective questions, the cosine simi-
larity between the model output and the standard
answer is used as the score. In addition, this paper
also employs GPQA (Rein et al., 2023) and Tele-
QnA (Maatouk et al., 2023) to evaluate the model’s
Chinese language capability.
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