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ABSTRACT

Generating image variations, where a model produces variations of an input image
while preserving the semantic context has gained increasing attention. Current im-
age variation techniques involve adapting a text-to-image model to reconstruct an
input image conditioned on the same image. We first demonstrate that a diffusion
model trained to reconstruct an input image from frozen embeddings, can recon-
struct the image with minor variations. Second, inspired by how text-to-image
models learn from web-scale text-image pairs, we explore a new pretraining strat-
egy to generate image variations using a large collection of image pairs. Our dif-
fusion model Semantica receives a random (encoded) image from a webpage as
conditional input and denoises another noisy random image from the same web-
page. We carefully examine various design choices for the image encoder, given
its crucial role in extracting relevant context from the input image. Once trained,
Semantica can adaptively generate new images from a dataset by simply using
images from that dataset as input. Finally, we identify limitations in standard im-
age consistency metrics for evaluating image variations and propose alternative
metrics based on few-shot generation.

1 INTRODUCTION

Machine learning initially focused on optimizing and improving models on small datasets. The
field has transitioned to training general purpose models on web-scale data and then finetuning
them for specific tasks on smaller datasets. This paradigm shift has lead to state-of-the-art results
on a number of different domains. In this paper, we focus on the relatively underexplored task
of adapting an image generative model to different datasets. One approach is to simply train a
generative model on a large dataset of unlabelled images and finetune them on smaller datasets.
While this approach is straight-forward in theory, it requires clever architecture or regularizer design
to prevent overfitting in practice (See Sec.2.2). As models scale up, finetuning for every dataset also
just becomes increasingly impractical.

Image-conditioned diffusion models are now increasingly used to adapt generative models to new
datasets, also known as image variations (Ye et al., 2023; Pinkney, 2022; Xu et al., 2023b). First, an
image encoder trained on a different upstream task, such as self-supervised learning (DINO (Oquab
et al., 2023)) or contrastive-learning on web-image text pairs (CLIP (Radford et al., 2021)) produces
frozen embeddings. The frozen embeddings then condition a diffusion model usually pretrained on
text-to-image, which is finetuned to reconstruct the original image. However in these models, the
study of image variations often remains a secondary objective. In this paper, we take a step back and
directly analyze image variations in isolation. To avoid ambiguity involved in generating multiple
objects in an image, we focus our evaluation on datasets with a single dominant object. We start with
a vanilla image-conditional diffusion architecture that is composed of a frozen image encoder and
conditions the diffusion model with cross-attention. As done in prior works, we train the diffusion
model to reconstruct images from frozen embeddings. We demonstrate that without text-to-image
pretraining or co-training, this model qualitatively achieves near-perfect image reconstruction. This
suggests that the capacity to generate image variations via reconstruction is due to the implicit reg-
ularization inherent in the pre-trained or co-trained text-to-image model. While empirically this
may be sufficient to generate plausible image variations, the relationship between the text-to-image
model, image variations and scale remains unclear.
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Figure 1: Each grid presents a conditioning image at the top followed by 512 × 512 image varia-
tions generated by Semantica, IP-Adapter, and SDv2 IV. Samples generated by a semantic image-
variation model should maintain semantic consistency with the conditioning image while also being
sufficiently diverse. Semantica demonstrates greater diversity than IP-Adapter while preserving
semantic context. While SD v2 generates diverse outputs, the generated outputs are often not con-
gruent with the context image. Additional samples are present in App. A.

In this paper, we explore a different pretraining strategy with the same image-conditioned diffusion
architecture. We train our model Semantica using image episodes, which are image pairs that belong
to the same web page. Therefore, training relies exclusively on the hypothesis that images from the
same web page should have some common semantic attributes. For example, it is probable that
images scraped from a Wikipedia page on dolphins, contain pictures of dolphins. To generate image
variations, the model receives an image and then generates another image that preserves semantic
information. Under this pre-training strategy, our experiments demonstrate that scaling both the
image encoder and the diffusion decoder steadily improve image variation quality. In Fig. 1, we
compare Semantica to state-of-the-art image variation models. Semantica is capable of generating
high quality and diverse images, reflective of semantic information from the conditioning image.

Evaluating image variations is non-trivial. Unlike standard image generative modeling where a
model generates images from scratch, a model has access to the entire test set of images via condi-
tioning when generating image variations. This means a model could simply copy the conditioning
image and achieve high scores both at distribution-level and instance-level metrics. To bridge this
limitation in existing metrics, we instead propose to evaluate image-variations exclusively in the
few-shot setting. Concretely, we limit the number of conditioning images available to the model and
then measure its ability to model the test distribution.

Our main contributions are:
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• Current techniques train diffusion models on image reconstruction to produce image varia-
tions. Our analysis shows that diffusion models trained to reconstruct images from frozen
embeddings produce only minor low-level variations.

• We explore an alternative pretraining strategy for generating image variations. This in-
volves conditioning a diffusion model with a random image from a webpage and training
it to denoise a different random image from the same webpage.

• We rigorously compare DINOv2 and CLIP as frozen image encoders to produce image
variations. While CLIP is now the standard image encoder, our experiments demonstrates
that DINOv2 yields superior performance.

• Standard image-level metrics such as LPIPS and distribution-level metrics such as FID fail
to capture diversity in image variations. To address this, we introduce few-shot metrics
designed to assess the diversity in image variations.

2 RELATED WORK

2.1 IMAGE VARIATIONS

SD-V2 Image Variations (Pinkney, 2022), IP-Adapter (Ye et al., 2023), MultiFusion (Bellagente
et al., 2024) and Verstatile Diffusion (Xu et al., 2023b) generate image variations via image re-
construction. Specifically, SD-V2, IP-Adapter and MultiFusion adapt a pretrained Stable Diffusion
model. SD-V2 swaps the frozen CLIP text embedding with the CLIP image embedding, first only
finetunes the cross-attention layers of the SD model to attend to the image embedding and then the
entire backbone. IP-Adapter trains a adapter layer to the output of the clip image embedding and ad-
ditional decoupled cross-attention layers. MultiFusion finetunes a LLM to accept additional image
inputs. The resultant LLM embeddings than condition a pretrained Stable-Diffusion model. Versa-
tile Diffusion trains a single model to perform both text-to-image and image variations, with some
decoupled components such as cross-attention. All these methods use the same input image as the
target image, and rely on regularization for variations. Bordes et al. (2021) analyze the reconstruc-
tions generated by diffusion models conditioned on just the global embedding from self-supervised
models and show that they can reconstruct image semantics. Here we show, with cross-attention
based conditioning, near perfect reconstruction can be achieved.

2.2 GENERATIVE TRANSFER

Prior to image variations, there has been research that studies the adaptation of source-pretrained
generative models to a target dataset with adaptation of weights. Initial works study the transfer of
discriminators and generators in GANs from a source dataset to a target dataset (Wang et al., 2018).
Further, Grigoryev et al. (2022) show that ImageNet pretraining on a large GAN model is beneficial
for transfer to small datasets. A number of papers focus on improving generation quality by adapting
only a subset of parameters. These include scale and shift parameters (Noguchi & Harada, 2019),
updating only the higher discriminator layers (Mo et al., 2020), linear combinations of scale and
shift parameters (Shahbazi et al., 2021), modulating kernels or convolutions (Zhao et al., 2022a;
2020; Cong et al., 2020; Alanov et al., 2022) and singular values (Robb et al., 2020), mapping
networks from noise to latents (Wang et al., 2020; Mondal et al., 2023; Yang et al., 2023) and latent
offsets (Duan et al., 2024). Various works apply regularization losses by enforcing constraints to
samples/weights by the source generator including elastic weight regularization (Li et al., 2020),
domain correspondence (Ojha et al., 2021; Gou et al., 2023; Hou et al., 2022), contrastive learning
(Zhao et al., 2022b), spatial alignment (Xiao et al., 2022), inversion (Wu et al., 2022; Kato et al.,
2023; Thopalli et al., 2023), random masks on discriminators (Zhu et al., 2022) and alignment free
spatial correlation (Moon et al., 2023). Given the increasing popularity of VQ-VAE and diffusion
based models, recent work (Sohn et al., 2023) and (Zhu et al., 2022) explore few-shot finetuning
on VQ-VAE tokens and diffusion models. We defer to Abdollahzadeh et al. (2023) for a detailed
exposition of all these methods. In contrast to these works, we explore training a generator on web-
scale images and study their transfer to standard small-scale image datasets. Retrieval augmented
models (Casanova et al., 2021; Blattmann et al., 2022) compute nearest neighbours for a query image
across a bank of memory images. These retrieved neighbors facilitate the training or generation
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process. Unlike these methods, we do not require access to a memory bank of images during train
or test time.

2.3 DIFFUSION

Diffusion and score-based generative models have become increasingly successful in modelling im-
ages (Ho et al., 2022b; Saharia et al., 2022; Nichol et al., 2022; Balaji et al., 2022), videos (Ho
et al., 2022a; Singer et al., 2022) and audio (Kong et al., 2020). As generation quality has steadily
improved, they have been used in contexts with more and more conditioning variables. Well-known
examples are text-to-image and text-to-video modelling, where the conditioning variable is text. In
this case, the conditioning variable can be seen as a sequence from which cross-attention layers
communicate to the feature maps of the image or video, i.e. what the diffusion model is learning
to generate (Saharia et al., 2022; Nichol et al., 2022). As the desire for controllable generation in-
creases, solutions such as ControlNet (Zhang et al., 2023) have been developed. ControlNet takes
in conditioning images of the same size as the generations, and uses a copy of the UNet to learn an
encoder for the conditioning signals. Although this encoder trains fast due to parameter initialization
from a pretrained diffusion UNet, it is difficult to deal with different sized inputs. In those cases,
only conditioning via cross-attention as done in (Xu et al., 2023a) overcomes the in-place additions
between the ControlNet encoder and the base UNet. Conditioning on images as context has pro-
duced impressive results, turning scribbles or edge detections into high quality image generations
(Wang et al., 2023; Najdenkoska et al., 2023) and discriminative tasks (Bai et al., 2023; Li et al.,
2023). In contrast with the above mentioned techniques, our framework relies on general web-based
pretraining for semantic-based adaptive image generation. While (Giannone et al., 2022) study the
transfer of few-shot diffusion models between small datasets (CIFAR-100→miniImageNet, we see
in Sec. 8.3 that this can lead to sub-optimal transfer. (Liu et al., 2023) employ test-time guidance
using similarity scores with a reference image, to steer unconditional generative models. However,
they still require training a separate unconditional generative model for each domain.

3 MODEL

3.1 DIFFUSION

Diffusion models learn to generate examples by gradually denoising a diffusion process. For a
single datapoint, their loss can be expressed as a squared error between the original datapoint and
its prediction:

Et∼U(0,1),ε∼N (0,I)

[
w(t)||x− f(zt, t, t)||2

]
where zt = αtx+ σtεt (1)

It is helpful to define SNR(t) = α2
t /σ

2
t . In the case ofw(t) = SNR(t) the loss above is equivalent to

a loss in ε-space, the simple loss from Ho et al. (2020). After training, the denoising model generates
samples by taking small steps. Starting at t = 1 with initial Gaussian noise and one slowly denoises
for timesteps t = 1, 1−1/N, . . .where the number of sampling steps isN . Although many samplers
are possible, in this paper we use the standard DDPM sampler (Ho et al., 2020).

3.2 IMAGE ENCODER

Training an image-conditioned diffusion model requires an image encoder that extracts semantic
information from a conditioning image. We could train a separate ViT end-to-end as an image en-
coder with the diffusion model to learn useful conditioning representations. Instead, we leverage
pre-trained image encoders and condition our diffusion model on their “frozen” representations.
This offers two advantages. First, we can precompute representations for all images in the dataset
that eliminates expensive forward passes through the encoder during training. Second, we can use
different scales of readily available pre-trained encoders and just focus on scaling the diffusion
model. We investigate ViT image encoders trained with two pretraining strategies, contrastive learn-
ing (SigLIP) (Zhai et al., 2023) and self-supervised learning (DINOv2) (Caron et al., 2021; Oquab
et al., 2023).
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3.3 DIFFUSION DECODER

In early days, diffusion literature typically used UNets that consisted of ResNet blocks, with optional
self-attention layers. More recent architecture either use full Transformers (DiT (Peebles & Xie,
2023), StableDiffusion) or UNeTs with transformer backbones (UViTs) ((Hoogeboom et al., 2023).
The transformer backbone makes it especially easy to use conditioning signals in these architecture
via cross-attention layers. To be precise, the denoising neural network takes in a noised image at
a certain timestep zt ∈ RH×W×3, timestep t ∈ R and contextual information c ∈ RTc×Dc . In
principle it does not matter which diffusion or generative model we use to generate images. In
practice we use the simple diffusion framework (Hoogeboom et al., 2023) because it can learn to
generate high resolution images end-to-end without the need of a separate autoencoder.

3.4 CONDITIONING INFORMATION

Formally, the image encoder encodes the context image Xc ∈ RH×W×C into a sequence of tokens
XC ∈ RTc×Dc , We follow the encoder-decoder framework in the original Transformer (Vaswani,
2017) to condition the diffusion decoder with context tokens. We employ conditioning only in the
lowest-resolution transformer in UViT. Every self-attention block in the transformer backbone is
followed by a cross-attention block, where the diffusion decoder cross-attends toXc. In addition to
conditioning via cross-attention, we also explore conditioning only using global features using the
CLS token. Specifically, we normalize the CLS token, embed it with a dense projection and add it
to the timescale embedding. The resultant embedding then conditions the diffusion model via FiLM
layers (Perez et al., 2018).

4 IMAGE VARIATIONS VIA RECONSTRUCTION

A common technique to generate image variations is to incorporate image-specific context into the
denoising objective using frozen embeddings.

Et∼U(0,1),ε∼N (0,I)

[
||x− f(zt, t,xc)||2

]
(2)

where f is a pre-trained model on a different objective, for example text-to-image modeling (Ye
et al., 2023; Bellagente et al., 2024), x is an image and xc are frozen embeddings from the same
image.

The objective amounts to reconstruction where the diffusion model is trained to reconstruct the
context image in pixel space from frozen embeddings. The generation of diverse image variations
via reconstruction can be attributed to two primary factors.

1. The frozen embeddings from the image encoder retain information only useful for the up-
stream task it is trained on. This in turn, leads to a lossy representation of the original
image and the diffusion model has to fill in the missing details.

2. The pretrained diffusion decoder provides implicit regularization that prevents the model
from simply collapsing to the conditional input image.

We train a diffusion model from scratch to optimize Eq 2 with DINOv2 frozen embeddings. Quali-
tatively, we see that extremely early in training, less than 100K steps, the generated samples almost
collapse to the conditional image. Fig. 2 displays three samples from the trained diffusion model,
showing some very minor low-level variations but no high-level variations. Similar results can be
seen using SigLIP frozen embeddings in App. B. This suggests that pretraining or jointly training
on a text-to-image pretraining objective may be the principal source of image variations. While this
may be sufficient to generate reasonable image variations, it is non-trivial to predict the relationship
between f and the quality of image variations. For example, does a bigger text-to-image model lead
to better image variations?
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Figure 2: A conditional diffusion model reconstructs images from frozen DINOv2 embeddings.
Left: Input Images. Right: Three samples from the trained diffusion model with guidance 0.0
exhibiting low-level variation but lacking high-level variation.

5 IMAGE VARIATIONS VIA WEB-SCALE IMAGE PAIRS

Inspired by web-scale image-text pretraining (Radford et al., 2021), we modify the denoising objec-
tive as follows:

Et∼U(0,1),ε∼N (0,I)

[
||x− f(zt, t,yc)||2

]
(3)

where x is an image from a webpage and yc are frozen embeddings obtained from another random
image from the same webpage.

In particular, we use Episodic WebLI (Chen et al., 2023), where each episode contains randomly
sampled loosely related images (i.e., they are clustered according to their URL). Note that Episodic
Webli is explicitly deduplicated from all standard image train and test benchmarks. While Episodic
Webli was originally designed for training few-shot vision language models, we introduce a novel
application by utilizing it to train image variation models. We randomly sample an image as the
conditioning input x and another image from the same episode as the ground-truth ”target” image
yc.

Each episode consists of images that are loosely related, whereas our model assumes conditioning
and target images share semantic information. This mismatch may lead the model to waste capac-
ity on modeling irrelevant noisy conditioning-target pairs. To address this we filter out pairs with
low similarity as done in image-text pretraining. The pretrained encoder computes the global CLS
representation from the conditioning and target image. We compute the cosine similarity between
the global conditioning/target representations and filter out pairs below a lower threshold. Unlike
image-text pretraining, we also filter conditioning-target pairs with similarity above a high thresh-
old. in order to ensure generation of interesting images. This can ensure that generated images retain
the semantics of the conditioning image, while being sufficiently different and interesting. App. D
provide more information on how the high and low thresholds were set. After filtering, we obtain
a dataset of around 50M image pairs. Notably, despite utilizing a dataset an order of magnitude
smaller than standard text-to-image datasets (Schuhmann et al., 2021), we achieve strong results on
image variations.

6 EXPERIMENTS

6.1 ARCHITECTURE DETAILS

For our baseline Semantica model, we inherit all hyper-parameters from the ImageNet label condi-
tioned diffusion model. The denoising model follows a U-ViT architecture that operates on 256×256
images. The architecture consists of a initial 1× 1 convolution. The model has four downsampling
stages, where each stage downsamples the feature maps by a factor of 2 at its output and a final
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SiD B SiD L

DINOv2 B 13.0 9.8
DINOv2 L 11.7 9.0

SiD B SiD L

SigLIP B 17.1 12.9
SigLIP L 15.6 11.2

Table 1: We report the FID on ImageNet across two encoders (DINOv2 and SigLIP), two diffusion
model sizes (SiD B and SiD L) and two encoder sizes (B and L) at 300K steps. DINOv2 encoder
performs better than SigLIP across all setups. Joint scaling of both the diffusion model and the
image encoder works best for both setups.

transformer stage. The resolution of the lowest feature map is 16× 16. Transformer blocks operate
at the stages with the two lowest resolutions 16× 16 and 32× 32 and convolutional blocks operate
in the remaining stages. The four downsampling stages have 128, 128, 256 and 512 channels and
the final transformer has 1024 channels. The first three stages have three blocks each and the last
stage has sixteen blocks. The optimizer is Adam (Kingma & Ba, 2014) with parameters β1 = 0.9,
β2 = 0.99, ε = 1e−12, batch size of 2048 and a learning rate of 2e−4. We also use Polyak averaging
with a decay factor of 0.9999. The diffusion loss parameters include v-prediction with loss in epsilon
phase and a cosine adjusted schedule with a noise resolution of 32. We use the DDPM sampler with
an interpolation of 0.2 (standard deviation is σ0.2

t→sσ
0.8
st ) and 0.5 guidance for our ablations. Each

ablation run utilizes 256 TPUv3 (Google, 2023) chips around 300K steps. However, the consistent
ranking of different ablations throughout training can allow for a much shorter training schedule to
identify the best model. We report the FID on 50000 ImageNet samples. Our final Semantica model
that operates on 512× 512 has a 2× 2 patchification layer instead of 256× 256. We then use 128,
256, 1024, 2048 and 4096 channels with 2, 3, 3, 3 and 12 blocks each.

6.2 CHOICE OF IMAGE ENCODER

We first compare two choices of conditioning the diffusion model on frozen image embeddings.
Global feature conditioning with FiLM layers and local feature conditioning with cross-attention.
Fig. 9 shows that cross-attention with local features, consistently outperforms FiLM across both
SigLIP and DINO encoders. The result highlights the importance of local features for image varia-
tions.

Then, we investigate the impact of scaling pretrained encoders and diffusion models. We evaluate
eight combinations of two encoders each with Base and Large scales and two scales of diffusion
models (SiD B and SiD L). Table. 1 reports the FID of each of these combinations at 300K steps.
Scaling the encoder while keeping the diffusion model fixed, offers improvements ranging from -0.8
for (SiD-L + DINO) to -1.5 for (SiD-B + SigLIP). Scaling the diffusion model with a fixed encoder
size consistently improves FID by around -4.0 for all encoders. Finally, jointly scaling the encoder
and diffusion model together results in significant improvements: DINOv2 improves from 13.0 to
9.0 and SigLIP from 17.1 to 11.2. Thus, from here on we will use DINOv2 as the frozen image
encoder.

7 METRICS FOR IMAGE VARIATIONS

Previous methods assess image variations using the following approach. For each reference image in
a test set, the model generates a new image. To quantify the quality of image variations, these meth-
ods employ LPIPS (Zhang et al., 2018) for individual image comparisons and FID (Heusel et al.,
2017) or Precision/Recall (Kynkäänniemi et al., 2019) to compare test to generated distributions.
These metrics can be sufficient to compare variations of our model on our episodic dataset since we
explicitly filter out near duplicates, and in theory, the model is unlikely to repeat the same image.
However, one major drawback is its inability to measure how diverse the generates samples are with
respect to the input image. For instance, a model that just copies the input image or produces very
minor variations will have near perfect LPIPS and FID. Thus, these metrics are not ideal for image
variation baselines that rely on reconstruction.

To address this limitation, we propose a few-shot approach to assess image variations. Given a set
of N test images, we randomly select K images and generate N/K samples for each, resulting in
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a total of N samples. We then evaluate FID, recall and precision between the N test images and
N samples. Precision measures the quality of the generated samples while recall measures sample
diversity.

We provide a short recap on recall a widely used metric to capture diversity between a real and
generated dataset. For each generated sample, we store the distance to its Kth nearest neighbor,
which serves as a per-sample threshold. A real image has recall 1.0 if its distance to any generated
image is less than its corresponding threshold. If a model simply copies a real image, the distance
between the original and the copy is zero, which will always be less than its threshold.

Imagine a toy real dataset with 1 class and ten images. To measure 1-shot recall, we condition the
image variation model on just one image randomly sampled from the ten images and generate ten
samples. If the model just copies the same image ten times, then its nearest neighbour threshold per
image is zero. However, the distance between each of the nine other images and the conditioning
image is greater than zero, which is greater than the threshold of zero. Thus each of the nine images
have a recall of 0.0.

0.0 0.5 1.0 1.5 2.0
Guidance

0.3

0.4

0.5

0.6

0.7

M
et

ric

One Shot Recall
Full Recall

Figure 3: One-shot recall vs full recall on varying guidance. On increasing guidance, thus reducing
diversity, one-shot recall decreases while recall on the full dataset counter intuitively increases.

We empirically illustrate this behavior by comparing recall against one-shot recall in Fig. 3. We
control the diversity of the image diffusion model by varying the guidance. Note that higher Guid-
ance results in lower diversity but higher precision. A good metric for diversity should therefore
drop with higher guidance. This is not the case for full-dataset recall which actually increases with
higher Guidance (=lower diversity). Conversely, one-shot recall decreases with higher Guidance
(=lower diversity), and is therefore a better metric for diversity.

8 COMPARISONS

8.1 BASELINES

We compare Semantica to state-of-the-art image variation baselines: Versatile Diffusion (Xu et al.,
2023b), Stable Diffusion v2 Image Variations and IP-Adapter (Ye et al., 2023) on generating image
variations of size 512 × 512. As seen in Sec. 2.1, all baselines rely on image reconstruction to
generate image variations. We sweep across a range of guidance factors for all baselines. See App.
H) for detailed results of FID with respect to guidance.

8.2 IMAGENET ONESHOT

Setup. We compare Semantica with Versatile Diffusion, IP-Adapter and SD-v2 Image Variations
on one-shot ImageNet. Remember that ImageNet has a total of thousand classes. We sample ten
images randomly per-class and create a ground truth set of 10000 images. Each baseline model
receives one image per-class and generates ten samples per-image with different random seeds,
leading to a total of 10000 samples. We then compute FID, precision and recall between 10000
ground truth images and 10000 samples.

Results. Fig. 4 left reports the one-shot FID of all four models. For each model, we tune the
guidance factors. Table 6 provides detailed results on the relationship between guidance factors
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Model One-Shot FID

SD Image Variations v2 34.5
Versatile Diffusion 26.3

IP-Adapter 20.2
Semantica 18.5

0.4 0.5 0.6 0.7 0.8 0.9
One Shot Precision
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Figure 4: Comparison of Semantica against three state-of-the-art image variation baselines on one-
shot ImageNet, using evaluation metrics: FID (Left Table) and Precision-Recall (Right Plot:) as
evaluation metrics. Each point in Fig. 3 Right represents a different guidance factor. Semantica
outperforms image-variation baselines achieving lower FID and a better precision-recall tradeoff.

Model Preference Rate

IP-Adapter 43 %
Semantica 57 %
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Figure 5: Left: We conduct a mechanical turk user experiment to assess the diversity of the models
while maintaining consistency with the input image. Semantica achieves a higher user-preference
rate as compared to IP-Adapter. Right:

and FID for each model. Semantica improves over the previous image variation models achieving
a FID of 17.9, 2.3 over the second-best model IP-Adapter. Fig. 4 right displays the precision-
recall tradeoff of all models across different guidance factors. Since the conditioning information
is present to all models, note that all models have much higher precisions than recall. IP-Adapter
and Versatile Diffusion have precision greater than 0.8. SD-V2 IV has higher recall but much lower
precision. At lower precisions, Semantica achieves similar recall as compared to SD-V2 IV with
much higher precision. At a precision of 0.8, Semantica achieves a high recall higher than the IP-
Adpater baseline. Semantica achieves the best-tradeoff between precision and recall among all the
baselines.

User Study. To assess the diversity of our models while maintaining consistency with the input
image, we conduct a user study on Amazon Mechanical Turk. We present the conditioning image
and two sets of image randomly selected from either Semantica or IP-Adapater and provide the
following prompt. You will see an example image with an object. You get to choose between two
alternative sets, Set 1 and Set 2 of related images. Please choose the set that matches the following
criteria: 1) The main object of the images in the set should look similar to the example image. 2)
There should be diversity between the images in the set. e.g. background and perspective. Semantica
demonstrated a significant preference advantage over IP-Adapter, achieving a 57% preference rate
compared to 43% for IP-Adapter (95% CI: 54-59%)

Image Alignment. We additionally compare alignment between the conditioning and generated
image between IP-Adapter and Semantica. We employ two embedding space: CLIP B/16 and
DINOv2 B/16 which is known to be better aligned with humans Fu et al. (2023). 5 shows that
Semantica achieves a better alignment-recall tradeoff than IP-Adapter in DINO embedding sapce.
On CLIP embedding space, Semantica achives slightly better tradeoff or comparable performance
to IP-Adapter (See: 11).
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ImageNet Bedroom Church SUN397

Label grouped 4.8 46.2 27.1 29.7
Semantica 18.4 6.2 17.3 6.7

Guidance @ 0.5

Label grouped 5.1 34.2 20.4 22.4
Semantica 6.2 2.4 4.0 2.5

Table 2: Comparison between Semantica and a Label Grouped baseline (LG) trained on Ima-
geNet. The conditioning and target pairs have the same label for LG. LG outperforms Semantica
in-distribution and performs worse on out-of-distribution datasets.

8.3 LABEL GROUPED BASELINE

Here we compare Semantica to a baseline that has direct label supervision (for example, ImageNet)
on lower resolution images 256 × 256. Recall that the conditioning and target image belong to
the same webpage. However, in the presence of label supervision (as in ImageNet), the target
and conditioning image can just belong to the same class label. So as a supervised baseline, we
group images on ImageNet as per their label and train Semantica on this dataset. Table 2 compares
the FID of the Label Grouped baseline (LG) to Semantica. Since LG is trained on ImageNet, it
significantly outperforms Semantica (FID 4.8 vs FID 18.4). However, this trend reverses on all other
datasets, where Semantica outperforms LG. Both the supervised baseline and Semantica rely on the
DINOv2 encoder which was trained on a wide variety of data sources. Therefore the encoder itself
may provide useful representations on a number of datasets. But training LG just on ImageNet,
might limit the diffusion model’s exposure from non ImageNet images, potentially explaining its
significant performance drop on all other datasets.

9 CONCLUSION AND LIMITATIONS

Our paper explores a new method for training image-conditioned diffusion models to generate image
variations. Instead of the typical image reconstruction approach, we condition the model on one
random image from a webpage and train it to denoise another random image from the same webpage.
Through rigorous evaluations, DINOv2 as the image encoder produces better image variations than
the popular CLIP model. Finally, we emphasize the difficulty in measuring image variations, and
propose new metrics that are applicable in the one-shot setting.

In this work, we focus on evaluating image variations on datasets consisting of mainly a single ob-
ject. When multiple objects are present in an image, additional supervision in the form of bounding
boxes or text can allow for fine-grained control of generations. Further, as in prior works, we focus
on frozen image encoders to efficiently encode representations and filter data as opposed to training
an image encoder end-to-end. Thus Semantica can inherit the biases of the frozen image encoder.
We leave studying the tradeoffs between finetuning and using frozen representations to future work.

REFERENCES

Milad Abdollahzadeh, Touba Malekzadeh, Christopher TH Teo, Keshigeyan Chandrasegaran,
Guimeng Liu, and Ngai-Man Cheung. A survey on generative modeling with limited data, few
shots, and zero shot. arXiv preprint arXiv:2307.14397, 2023.

Aibek Alanov, Vadim Titov, and Dmitry P Vetrov. Hyperdomainnet: Universal domain adaptation
for generative adversarial networks. Advances in Neural Information Processing Systems, 35:
29414–29426, 2022.

Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan Yuille, Trevor Darrell, Jitendra
Malik, and Alexei A Efros. Sequential modeling enables scalable learning for large vision models.
arXiv preprint arXiv:2312.00785, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika
Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu Liu. ediff-i:
Text-to-image diffusion models with an ensemble of expert denoisers. CoRR, abs/2211.01324,
2022.

Marco Bellagente, Manuel Brack, Hannah Teufel, Felix Friedrich, Björn Deiseroth, Constantin
Eichenberg, Andrew M Dai, Robert Baldock, Souradeep Nanda, Koen Oostermeijer, et al. Multi-
fusion: Fusing pre-trained models for multi-lingual, multi-modal image generation. Advances in
Neural Information Processing Systems, 36, 2024.

Andreas Blattmann, Robin Rombach, Kaan Oktay, Jonas Müller, and Björn Ommer. Retrieval-
augmented diffusion models. Advances in Neural Information Processing Systems, 35:15309–
15324, 2022.

Florian Bordes, Randall Balestriero, and Pascal Vincent. High fidelity visualization of what your
self-supervised representation knows about. arXiv preprint arXiv:2112.09164, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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Figure 6: We present additional samples and comparisons on ImageNet. Samples from Semantica
reflect diversity while being congruent with the conditioning image.
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B CLIP: RECONSTRUCT IMAGES

We train a diffusion model conditioned on SigLIP embeddings to reconstruct the original image. Fig.
7 shows four samples images from the ImageNet validation set and the corresponding generations
from the generative model.

Conditional Image Generated Sample Conditional Image Generated Sample

Figure 7: A conditional diffusion model reconstructs images from frozen SigLIP embeddings. As
seen in the case with frozen DINOv2 embeddings in Fig.2, the generated samples exhibit very minor
low-level variations.
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Figure 8: Left: FID of DINO-v2 B/14 + Cross Attention with and without data filtering. Center:
Histogram of DINO Similarities between Episodic WebLi image pairs. Right: Histogram of SigLIP
Similarities between Episodic WebLi image pairs

Here, we investigate the impact of semantic data filtering. We first manually looked at pairs of
images from the Episodic Webli training set and computed their similarites in DINO embedding
space. We found a lower threshold of 0.3 to be sufficient to filter out completely unrelated images
and 0.9 to filter out near duplicates. Interestingly. we also found that the distribution of similiarities
to be dependent on the embedding space used. For example, DINOv2 (Fig. 8 Center) assigns more
examples a lower similarity as compared to SigLIP (Fig. 8 Right). So we set the lower threshold
of CLIP and DINOv2 models such that, the total number of examples are roughly the same. This
lead to a lower threshold of 0.65 for CLIP. Fig. 8 middle shows the FID of the DINO-v2 B/14
+ Cross Attention with and without data filtering. Similarity-based data filtering in DINO feature
space positively impacts the generation quality and improves FID by greater than 10. In future
work, we can explore tuning these thresholds for a desired quality-diversity tradeoff or even directly
conditioning the diffusion model on the desired similarity with the conditioning image.
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D FILM VS CROSS-ATTENTION

Here, we compare Film based conditioning to cross-attention based conditioning.
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Figure 9: We plot ImageNet FID as a function of number of training steps on Episodic WebLI. Left:
DINO-v2 B/14 with Film and cross attention Right: SigLIP B/14 with film and cross attention.

E MAE ENCODER

We also experiment with a frozen MAE Enocder. Plugging in a ViT-L MAE encoder has reasonable
results on one-shot FID but performs slightly worse than SigLIP ViT-L. Fig. 10 compares the one-
shot FID of DINO-v2, SigLIP and MAE with ViT-L Image Encoders.
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Figure 10: We compare three models: DINO-v2, SigLIP and MAE with a ViT-L image encoder on
one-shot ImageNet FID.
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Figure 11: Left: Semantica achives slightly better tradeoff or comparable performance to IP-
Adapter on CLIP Alignment. Right:
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G COMPARISON WITH RIVAL

RIVAL employs additional text-based conditioning and therefore does not form a direct baseline
to our model. Nevertheless, we compared Semantica to RIVAL with text conditioning based on
imagenet class names. On one-shot FID, RIVAL achieves a FID of 17.5 and outperforms Semantica
by 1 FID point. However, Fig. 11 demonstrates that RIVAL achieves a worse precision-recall
tradeoff.

H IMAGENET ONE-SHOT FID VS GUIDANCE HYPERPARAMETERS

We report fine-grained FID results for different guidance values. Tab. 3 reports fine-grained FID
results for SD-v2 IV and Versatile Diffusion. Tab. 5, reports results for IP-Adapter and Semantica.

Guidance FID

1.0 46.7
4.0 30.8
6.0 34.5
8.0 37.6

Guidance FID

1.0 28.5
4.0 26.3
6.0 29.4
8.0 31.8

Table 3: Guidance against one-shot ImageNet FID. Left: SD-IV and Right: Versatile Diffusion

Guidance Scale FID

1.0 0.5 57.4
4.0 0.5 25.4
7.0 0.5 24.5
1.0 1.0 42.6
2.0 1.0 23.2
4.0 1.0 20.2
7.0 1.0 20.6
7.0 1.0 21.2

Guidance FID

0.1 29.4
0.5 21.0
1.0 18.5

Table 4: Semantica

Table 5: Guidance against one-shot ImageNet FID. Left: IP Adapter and Right: Semantica

I SUN-397 ONESHOT

This experiment compares Semantica with IP-Adapter on one-shot SUN-397. SUN-397 has a total
of 397 classes. We sample 25 images randomly per-class and create a ground truth set of 9925
images. Each model generates 25 samples given a randomly sampled image, leading to total of 9925
samples. Similar to ImageNet, Fig. 12 reports FID, precision and recall between the 9925 generated
samples and ground-truth images. Semantica achieves a one-shot FID of 13.0, outperforming IP-
Adapter. It also achieves a much more favourable precision-recall tradeoff.

Guidance Scale FID

1.0 0.5 24.6
4.0 0.5 14.1
7.0 0.5 16.7
1.0 1.0 20.0
4.0 1.0 17.8
7.0 1.0 27.9

Guidance FID

0.1 13.2
0.3 12.6
0.5 13.0
0.7 13.5
1.0 14.7

Table 6: Guidance against one-shot SUN397 FID. Left: IP Adapter and Right: Semantica
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Model One-Shot FID

IP-Adapter 12.8
Semantica 12.6
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Figure 12: Comparison of Semantica against IP-Adapter on one-shot SUN397, using evaluation
metrics: FID (Left Table) and Precision-Recall (Right Plot:) as evaluation metrics.
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Figure 13: We present additional samples and comparisons on SUN397

J QUALITATIVE EFFECT OF GUIDANCE

Fig. 14, displays five conditioning images from ImageNet and the generated samples at different
guidance factors. At guidance factor 0.0, the samples reflect a broad semantic category from the
conditioning image. Increasing the guidance factor leads to samples that incorporate more specific
details from the conditioning image. For example, with the conditioning image of the dog and the
kid, Semantica stars with a sample of a dog. The specific breed of the dog and the child in the image
appear as we amplify the guidance. Fig. 15 showcases samples for each small dataset across various
guidance factors. In row four, the bed (main object) persists across all guidance levels, while the
chair and the fence appear at high guidance levels. Row five exhibits a similar effect: the number of
minarets in the generated church increases from one to two and the shape of the main dome begins
to resemble the conditioning image. In row one, the sample resembles toys with zero guidance, the
sample resembles toys but transforms into a crowded convention as guidance increases.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 14: Left: Conditioning Image from ImageNet. Right: Generated samples with guidance
factors 0.0, 0.1, 0.2, 0.5 and 1.0. At guidance factor 0.0, the samples reflect a broad semantic cate-
gory from the conditioning image. Increasing the guidance factor leads to samples that incorporate
more specific details from the conditioning image.
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SUN397

LSUN Bedrooms

LSUN Churches

Figure 15: Left: Conditioning Images from SUN397 (Top two rows), LSUN Bedrooms (Middle two
rows) and LSUN churches (Last two rows). Right: Generated samples with guidance factors 0.0,
0.1, 0.2, 0.5, 1.0 and 1.5.
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ImageNet

SUN397

LSUN Churches

LSUN Bedroom

Figure 16: Left: Conditioning image Right: Five samples at guidance 0.5. Semantica is trained
exclusively on web-image pairs. During adaptation, it receives a conditioning image and generates
samples reflective of semantic information. Semantica requires no label supervision or finetuning.
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