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ABSTRACT

Negation is a fundamental linguistic phenomenon that poses ongoing challenges
for Large Language Models (LLMs), particularly in tasks requiring deep semantic
understanding. Current benchmarks often treat negation as a minor detail within
broader tasks, such as natural language inference. Consequently, there is a lack
of benchmarks specifically designed to evaluate comprehension of negation. In
this work, we introduce NUBench — a novel benchmark explicitly created to
assess sentence-level understanding of negation in LLMs. NUBench goes be-
yond merely identifying surface-level cues by contrasting standard negation with
structurally diverse alternatives, such as local negation, contradiction, and para-
phrase. This benchmark includes manually curated sentence-negation pairs and a
multiple-choice dataset, allowing for a comprehensive evaluation of models’ un-
derstanding of negation.

1 INTRODUCTION

Negation is a fundamental and universal phenomenon found in languages worldwide. It is closely
associated with various human communicative abilities, such as denial, contradiction, deception,
misrepresentation, and irony. Although affirmative statements are more common, negation still
plays a significant role in language; approximately 25% of sentences in English texts contain some
form of negation (Sarabi & Blanco, 2016; Hossain et al., 2020; Horn & Wansing, 2025). This
prevalence and its impact on meaning make accurate interpretation of negation crucial for several
natural language processing (NLP) tasks, including sentiment analysis, question answering, knowl-
edge base completion, and natural language inference (NLI) (Khandelwal & Sawant, 2020; Hosseini
et al., 2021; Singh et al., 2023). Recent studies have shown that effectively managing negation is
important even for multimodal language models (Quantmeyer et al., 2024; Alhamoud et al., 2025;
Park et al., 2025).

Meanwhile, negation poses significant challenges for both humans and language models. Research
shows that people often find it more difficult to process and comprehend negated statements com-
pared to affirmative ones (Wales & Grieve, 1969; Sarabi & Blanco, 2016). Similarly, many studies
indicate that pretrained language models (PLMs) struggle to interpret negation accurately. For ex-
ample, models like BERT (Devlin et al., 2019) and even large language models (LLMs) such as
GPT-3 (Brown et al., 2020) often have difficulty distinguishing between negated and affirmative
statements. These models tend to rely on superficial cues, which can result in incorrect outputs
when negation is involved (Kassner & Schütze, 2020; Hossain et al., 2022a; Truong et al., 2023).

Despite its significance, there is a notable lack of dedicated evaluation benchmarks for understand-
ing negation. Most existing resources either treat negation as a minor aspect of broader tasks or
focus solely on narrow syntactic detection, often emphasizing encoder-based models (Hossain et al.,
2020; Geiger et al., 2020; Truong et al., 2022; Anschütz et al., 2023). To address this gap, we in-
troduce NUBench (Negation Understanding Benchmark), a dataset explicitly designed to evaluate
LLMs’ sentence-level comprehension of negation. Our benchmark is structured as a multiple-choice
question (MCQ) task: given an original sentence, the model must select the correct standard nega-
tion from four options. The other three choices—local negation, contradiction, and paraphrase—are
carefully designed distractors that test whether models truly grasp semantic scope and logical oppo-
sitions.

The contributions of this paper are summarized as follows:
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• We define standard negation within the framework of sentential logic, moving beyond the
cue-based and often ambiguous accounts of prior work. Grounding standard negation in
logical structure not only clarifies its role in natural language but also supports the evalua-
tion and enhancement of reasoning in LLMs.

• We create a manually curated benchmark that includes a dataset of sentence-negation pairs
for fine-tuning, along with a multiple-choice evaluation task.

• We conduct systematic evaluations of decoder-based LLMs, assessing their performance
under both prompting and supervised fine-tuning. This includes error and confusion anal-
yses that highlight the models’ ongoing challenges with negation.

NUBench provides valuable insights into the semantic reasoning abilities of language models and
serves as a robust standard for future research focused on understanding negation.

2 RELATED WORK

Negation detection and scope resolution. Early work in negation detection and scope resolution
primarily relied on rule-based systems and handcrafted heuristics, especially in domain-specific
contexts like clinical texts. While these systems are effective, they lack flexibility across different
domains (Chapman et al., 2001; de Albornoz et al., 2012; Ballesteros et al., 2012; Basile et al.,
2012). Traditional machine learning methods, such as Support Vector Machines (SVMs) (Hearst
et al., 1998) and Conditional Random Fields (CRFs) (Sutton et al., 2012), were introduced later;
however, they too are limited to narrow domains (Morante et al., 2008; Morante & Daelemans,
2009; Read et al., 2012; Li & Lu, 2018).

More recently, deep learning approaches employing Convolutional Neural Networks
(CNNs) (O’shea & Nash, 2015) and Bidirectional Long Short-Term Memory (BiLSTM) net-
works (Siami-Namini et al., 2019) have enhanced performance by providing improved contextual
embeddings and sequence modeling (Fancellu et al., 2016; Bhatia et al., 2019). Pretrained
transformer models like BERT have been employed through transfer learning techniques (e.g.,
NegBERT (Khandelwal & Sawant, 2020)), significantly increasing the accuracy of negation
detection tasks. Nonetheless, these methods still largely focus on syntactic span detection, leaving
deeper semantic understanding of negation a challenging area to tackle.

Negation-sensitive subtasks of NLU. Negation understanding has become increasingly impor-
tant in natural language understanding (NLU) tasks (Hosseini et al., 2021). However, existing NLU
benchmarks, such as SNLI (Bowman et al., 2015) for natural language inference (NLI), Common-
senseQA (Talmor et al., 2019) for Question Answering (QA), SST-2 (Socher et al., 2013) for senti-
ment analysis, STS-B (Cer et al., 2017) for textual similarity and paraphrasing, have been criticized
for not adequately addressing the semantic impact of negation (Hossain et al., 2022a; Rezaei &
Blanco, 2024). These datasets contain relatively few instances of negation or include negations that
are not crucial to task performance, allowing language models to achieve high accuracy even when
they completely ignore negation.

Recent studies, including NegNLI (Hossain et al., 2020), MoNLI (Geiger et al., 2020), and NaN-
NLI (Truong et al., 2022), have introduced benchmarks for NLU that are sensitive to negation.

Negate the sentence.

Sentence: Batts are commonly used in the walls and ceilings of timber-frame buildings, 
rolls can be cut to size for lofts, and ropes can be used between the logs in log homes.

A (standard negation). Batts aren't typically used in the walls and ceilings of timber-frame buildings, 
rolls cannot be cut to size for lofts, or ropes cannot be utilized between the logs in log homes.

B (local negation). Batts are normally utilized in the walls and ceilings of timber-frame buildings, 
and rolls can be cut to size for lofts, but ropes cannot be utilized between the logs in log homes.

C (contradiction). Batts are rarely found in the walls and ceilings of timber-frame buildings, 
rolls are difficult to cut to size for lofts, and ropes are avoided between the logs in log homes.

D (paraphrase). In timber-frame buildings, batts are frequently installed in walls and ceilings, 
rolls can be trimmed to fit loft spaces, and ropes can be applied between the logs in log homes.

Answer: A

Figure 1: An example of NUBench multiple-choice evaluation task, where the underlined text indi-
cates the main verb phrase of each sentence, and the red text marks the negated part.
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These studies show that model performance significantly declines when negation plays a crucial
role in affecting the outcome (Naik et al., 2018; Yanaka et al., 2019; Hartmann et al., 2021; Hossain
et al., 2022b; Hossain & Blanco, 2022; She et al., 2023; Anschütz et al., 2023). These findings
suggest that current language models tend to depend on superficial linguistic patterns rather than a
genuine understanding of semantics.

Limitations of distributional semantics. Distributional semantics (Harris, 1954; Sahlgren,
2008) aims to create models that learn semantic representations based on patterns of word co-
occurrences (Boleda, 2020; Lenci et al., 2022) and capture broad semantic relationships; however,
it encounters significant challenges with negation. Negated expressions, such as ”not good,” of-
ten appear in similar contexts as their affirmative counterparts, like ”good.” As a result, models
tend to generate similar vector representations for these expressions, despite their opposing mean-
ings. Previous research has pointed out this limitation, showing that PLMs struggle to capture the
subtle semantic differences introduced by antonyms and the reversal of polarity (Rimell et al., 2017;
Jumelet & Hupkes, 2018; Niwa et al., 2021; Jang et al., 2022; Vahtola et al., 2022). Studies have fur-
ther suggested that models like BERT find it difficult to distinguish between affirmative and negated
contexts (Kassner & Schütze, 2020; Ettinger, 2020).

Negations in generative language models. Recent research on understanding negation has pri-
marily focused on bidirectional models, such as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), which have demonstrated strong performance in NLU and negation detection tasks.
However, with the emergence of generative foundation models like GPT (Radford et al., 2018) and
LLaMA (Touvron et al., 2023), attention has shifted towards evaluating how these models handle
negation. Studies have shown that these generative models often exhibit a positive bias and struggle
with producing or interpreting negated statements (Truong et al., 2023; Chen et al., 2023; Garcı́a-
Ferrero et al., 2023). Although some benchmarks, such as CONDAQA (Ravichander et al., 2022)
and ScoNe (She et al., 2023), reveal these limitations, there is still a lack of robust evaluation re-
sources specifically designed for generative models.

Building on previous studies, this paper assesses whether generative models can comprehend nega-
tion in complex sentences and identify semantic differences that extend beyond surface-level pat-
terns.

3 SCOPE AND CATEGORIZATION OF NEGATION

In this work, we aim to clarify the concept of negation by introducing a typology that clearly outlines
its semantic boundaries and differentiates it from related, yet distinct, phenomena. This typology
organizes various forms of meaning reversal into logically consistent categories, allowing for a more
precise and systematic evaluation of how language models handle negation.

3.1 TYPOLOGY OF NEGATION

Negation is a fundamental semantic and syntactic operation found in natural languages, used to
convey denial, rejection, or the absence of a proposition. Hereafter, we denote our negation operation
for a sentence S as Neg(S). In formal logic, negation flips the truth value of a proposition P : if
P is true, then Neg(P ) is false, and vice versa. Semantically, negation creates a binary opposition
between a proposition and its affirmative counterpart, meaning that each one is the opposite of the
other (Horn & Wansing, 2025).

Negation can be categorized along several dimensions: scope, form, and target (see Table 1). In
terms of scope, negation may affect the entire clause (referred to as clausal negation) or only part
of it (known as subclausal negation). Regarding form, negation can manifest as bound morphemes,
such as prefixes and suffixes (morphological negation), or as separate syntactic elements like ”not”
or ”never” (syntactic negation). Finally, depending on its target, negation can apply to the verb (ver-
bal negation) or to other elements in the sentence (non-verbal negation) (Zanuttini, 2001; Miestamo,
2007; Truong et al., 2022; Kletz et al., 2023).

3.2 NEGATION AND CONTRADICTION

Negation and contradiction are closely related concepts that are often conflated in NLP re-
search (Jiang et al., 2021). Contradiction refers to the incompatibility of two propositions, meaning
that they cannot both be true at the same time. While negation frequently serves as a primary mech-
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Table 1: Typology of negation.
Dimension Negation Type Definition Example

Scope

Clausal Negation
( = Sentential

Negation)

Negation that applies to the entire clause or
sentence. This typically involves the use of ”not”,
or its contracted form ”n’t” with auxiliary verbs.

He speaks English fluently.
→ He doesn’t speak English

fluently.

Subclausal Negation
( = Constituent /
Local Negation)

Negation that focuses on negating a specific
part of a clause, such as a word or phrase,
rather than the entire clause.

He speaks English fluently.
→ He speaks English, but not

fluently.

Form
Morphological

Negation

Negation expressed through affixes attached to words
such as prefixes like ”un-”, ”in-”, ”dis-”, or suffixes
like ”-less”.

She is happy.
→ She is unhappy.

Syntactic Negation Negation expressed through separate words (particles)
in the syntax, such as ”not”, ”never”, ”no”, etc.

She is happy.
→ She is not happy.

Target Verbal Negation Negation that applies directly to the verb
or verb phrase.

They have finished the work.
→ They have not finished the work.

Non-verbal
Negation Negation that negates elements other than the verb. There is milk in the fridge.

→ There is no milk in the fridge.

Table 2: Standard negation. P and Q stand for propositions, respectively. In addition to and, or, and
if, other natural language connectives such as when are also considered, and their negations follow
the same principles presented here depending on their function.

Type Definition
Base case If P is an atomic proposition, Neg(P ) is the proposition where the main pred-

icate of P is negated.

Inductive
step

Conjunction Neg(P, and Q) ≡ Neg(P ), or Neg(Q)

Neg(P, but Q) ≡ Neg(P ), or Neg(Q)

Disjunction Neg(P, or Q) ≡ Neg(P ), and Neg(Q)

Implication Neg(if P,Q) ≡ Neg(Neg (P ), or Q) ≡ P, and Neg(Q)

Neg(P if and only if Q) ≡ Neg(if P,Q, and if Q,P )

anism for creating contradictions—by reversing the truth value of a proposition—contradictions can
also arise from antonymy, numeric mismatches, or differences in structure and lexicon (further de-
tails can be found in Appendix A). For instance, the statements ”An individual was born in France”
and ”An individual was born in Italy” are contradictory, but they are not negations, as the second
statement does not reverse the truth of the first.

Many previous studies have overlooked the possibility that contradictions can exist independently of
explicit negation. Recognizing this gap, we specifically examine the ability of LLMs to differentiate
between negations and non-negated contradictions, highlighting the nuanced semantic distinctions
that are involved.

3.3 STANDARD NEGATION

Standard negation refers to the typical form of negation applied to the declarative verbal main clause.
It specifically negates the verb in a main clause (Miestamo, 2000). A main clause can function as a
complete sentence on its own, consisting at minimum of a subject and a predicate. This definition is
grounded in the notion that the verb acts as the head of the clause (Miller & Miller, 2011).

Building on this traditional understanding, we treat standard negation as the process of reversing the
truth value of the verb phrase in the main clause, which we will refer to as the main predicate in
this paper. A verb phrase is headed by a verb and can consist of a single verb or a combination of
auxiliaries, complements, and modifiers (e.g., ”will call” and ”is being promoted”) (Lakoff, 1966).
Since the main predicate conveys the core action or state of the clause, negating it effectively reverses
the proposition of the entire sentence. In this context, we treat standard negation as a truth-functional
operation that maps the main predicate to its complement set within the semantic space.

We further clarify the scope of standard negation within the typology presented in Table 1. Standard
negation includes both clausal negation and verbal negation, as it reverses the meaning of the entire
sentence by negating the main predicate. In terms of form, standard negation can employ both
syntactic and morphological negation.
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Table 3: Typology of local negation.

Type Structure Explanation Local Negation Example

Relative clause
negation

A relative clause is a type of dependent clause that gives
extra details about a noun or noun phrase in the main sentence.
It usually begins with a relative pronoun such as
who, which, that, whom, or whose.

The man who owns the car
is my neighbor. → The man
who does not own the car is
my neighbor.

Participle clause
negation

A participle clause is a type of dependent clause that begins with
a participle (a verb form ending in -ing or a past participle).
It acts like an adverb, giving extra details about the main
clause, often showing time, reason, result, or sequence of actions.

Walking through the park, she
found a lost wallet. → Not
walking through the park, she
found a lost wallet.

Adverbial clause
negation

An adverbial clause is a dependent clause that acts like an adverb,
modifying a verb, adjective, or adverb. It gives information such
as time, reason, condition, or contrast. These clauses are introduced
by subordinating conjunctions like because, although, or while.

She stayed inside because it was
raining. → She stayed inside
because it was not raining.

Compound
sentence

with
local negation

A compound sentence consists of two or more main clauses
joined by coordinating conjunctions such as and, but, or or.
If only one of these clauses is negated, the negation applies
only locally to that clause.

He submitted the report and
attended the meeting. → He
submitted the report and did
not attend the meeting.

Syntactically, standard negation often uses explicit negation particles, such as ”not.” Morphologi-
cally, it can involve complementary antonyms (for example, ”alive” vs. ”dead” or ”true” vs. ”false”),
which occupy mutually exclusive semantic spaces, thus reversing the truth value of the proposition.

In contrast, other types of antonyms, such as gradable antonyms (e.g., ”happy” vs. ”unhappy”) and
relational antonyms (e.g., ”buy” vs. ”sell”) (Lehrer & Lehrer, 1982), do not strictly reverse truth
values. Therefore, they are classified as contradictions rather than standard negation in this paper.

Atomic propositions. While this characterization effectively defines standard negation for atomic
propositions (elementary sentences that cannot be further decomposed) (Davis & Gillon, 2004), its
application to complex sentences with multiple clauses requires a more thorough approach. In this
paper, we treat an atomic proposition as a sentence that contains a single main predicate.

Complex propositions. Specifically, for propositions composed of multiple logically connected
atomic statements, the method for reversing the truth value of the entire complex proposition can
be ambiguous. In natural language, such logical structures typically appear as coordinated clauses
(e.g., ”P and Q or R”) or comma-separated lists connected by ”and” or ”or” (e.g., ”P,Q, and R”).
We treat these as equivalent to a sequence of binary conjunctions or disjunctions.

Definition of standard negation. In this paper, standard negation refers to natural-language sen-
tential negation, which is formally treated as logical negation within the framework of sentential
logic (Enderton, 2001). To address the complexities involved, we define standard negation recur-
sively by applying it pairwise over the logical structure of a sentence until only atomic propositions
remain, ensuring that the truth value of the entire sentence is reversed even when it contains multiple
coordinated clauses. Our definition of Neg(·) is presented in Table 2. Conditionals of the form ”if
P , Q” are equivalent to ”Neg(P ) or Q” in logic, and we adhere to this equivalence when defining
their negation (more details can be found in Appendix C).

Our definition of standard negation is inspired by the framework of sentential logic (Enderton, 2001).
However, it should be viewed as an operational definition rather than a strict mathematical formula-
tion. Natural language sentences often lack explicit structural markers, such as parentheses, which
are vital in well-formed logical formulas. Furthermore, coordination can appear with or without
commas. Unlike formal languages, natural languages do not adhere to strict formation rules, mak-
ing it challenging to map their structures unambiguously to logical formulas. Consequently, our
definition cannot perfectly align with the forms used in sentential logic. Nevertheless, it provides a
clear operational account of standard negation in natural languages.

3.4 LOCAL NEGATION

We define local negation as a form of negation that specifically targets a verb phrase outside the
main clause. While the term is often used interchangeably with subclausal negation, our focus is
solely on local negation relating to subclausal and verbal negation. This concept applies to four
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Figure 2: Dataset generation process.
types of sentence structures: relative clauses, participle clauses, adverbial clauses, and compound
sentences (refer to Table 3 for more details).

In particular, conditional clauses, such as the ”if P ” part in ”if P , Q” are categorized as adverbial
clauses. In compound sentences, standard negation requires all main clauses to be negated in order
to achieve sentence-level negation. If only a subset of the clauses is negated, this is considered local
negation.

Local negation, in terms of structure, resembles standard negation, typically using explicit negation
markers like ”not.” However, its scope is confined to a specific part of the sentence rather than
encompassing the entire main clause. Because explicit cues such as ”not” are still present, models
that depend on shallow cue detection may be misled, failing to distinguish between standard negation
and local negation.

4 NUBENCH DATASET

We construct the NUBench dataset through three main stages: (1) pre-processing, (2) generation,
and (3) review. The overall workflow is illustrated in Figure 2.

Pre-processing. We begin by extracting sentences from two primary corpora: (1) the Hover
dataset (Jiang et al., 2020), designed for multi-hop fact extraction and claim verification, and (2) the
Wikipedia Summary dataset (Scheepers, 2017), which contains concise summaries from English
Wikipedia. We chose these datasets because their factual content and complex sentence structures
are well-suited for developing a dataset aimed at understanding standard negation in complex, suffi-
ciently lengthy sentences. Additionally, we automatically correct any grammatical errors and merge
or split sentences as needed to create well-formed single-sentence units.

Generation. We create two types of datasets from the pre-processed sentences: the sentence-
negation pair dataset and the multiple choice dataset. In the sentence-negation pair dataset, each
original sentence is paired with a manually crafted standard negation, as detailed in Section 3.3.
In the multiple-choice dataset, each original sentence is presented with four options: a standard
negation, a local negation, a contradiction, and a paraphrase. Each of them are described in Table 4.
Together, these categories assess whether models truly understand semantic negation rather than
relying on superficial cues.

Standard and local negation options are manually created rather than generated by LLMs. We have
observed that LLMs often struggle to produce correct standard negations, frequently resulting in
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Table 4: Multiple choice categories included in NUBench.
Category Description
Standard Negation This category involves reversing the truth value of the main clause, which is the primary focus

of the benchmark.
Local Negation In this case, negation is applied to a subordinate clause or a partial structure, which does not

reverse the entire sentence.
Contradiction This category introduces conflicts with the original meaning through semantic changes, such

as the use of antonyms, different numbers, or other entities, without employing explicit nega-
tion.

Paraphrase Here, the original meaning is preserved while the surface form is altered. Examples of para-
phrases are intentionally constructed to vary the sentence structure and word choice signif-
icantly, ensuring that no additional information is added. As a result, the original sentence
still entails its paraphrase. This category tests whether models mistakenly consider different
surface forms as meaning reversals, even when the semantic meanings remain equivalent.

Table 5: NUBench statistics.
Dataset Split Count

Sentence-Negation Train 3,772

Multiple Choice Demonstration 50
Test 1,261

Total 5,083

Table 6: Models used.
Size Model

2-3B

Pretrained gemma-2b, Llama-3.2-3B,
Qwen2.5-3B

Instruction-tuned gemma-1.1-2b-it, Llama-3.2-3B-
Instruct, Qwen2.5-3B-Instruct

7-8B

Pretrained gemma-7b, Llama-3.1-8B, Mistral-
7B-v0.3, Qwen2.5-7B

Instruction-tuned gemma-1.1-7b-it, Llama-3.1-8B-
Instruct, Mistral-7B-Instruct-v0.3,
Qwen2.5-7B-Instruct

API-based GPT-4o mini, GPT-4.1 mini, Claude Haiku 3.5

subclausal or local negations instead. They can also generate incorrect local negations, even when
explicitly prompted to do otherwise. Since precise negation is essential to our benchmark, these
options must be developed by humans to ensure the quality of the dataset. In contrast, contradiction
and paraphrase options are initially created automatically using carefully designed prompts with the
OpenAI API (OpenAI, 2025) and are then refined during the review process.

Review. All constructed data undergo a multi-stage human review process (see Appendix I).
A different author, separated from the creator, cross-checks each instance, and any disagreements
are addressed in regular meetings to ensure consistency. Options for contradictions are reviewed
only after the corresponding standard and local negations are finalized, as they must not overlap
semantically. Consequently, the earlier negations are re-examined during the contradiction review
and are cross-checked by multiple authors.

The guidelines for data generation and review are continuously updated, and any previously created
data are revised accordingly (see Appendix J). This protocol ensures rigorous quality control and
consistency throughout the benchmark.

Dataset statistics. The final dataset includes a training set of sentence-negation pairs and a
multiple-choice evaluation set (see Table 5). For few-shot prompting, we construct a demonstra-
tion set of 50 examples. These are carefully selected to have unique Wikipedia page indices to avoid
any overlap with the test set. Furthermore, to provide the model with a balanced overview of the
task, we match the distribution of local negation types (choice2 type) in the demonstration set to
that of the overall dataset. This ensures that the demonstrations are representative and prevents the
model from developing a biased strategy for specific negation types.

5 EXPERIMENTS

5.1 EVALUATION SETUP

We evaluate models under two common Multiple-Choice Question Answering (MCQA) evaluation
settings: (1) a completion-based evaluation, where the model assigns probabilities to each candidate
by appending it as a continuation of the prompt, and (2) an option-selection evaluation, where the
model selects from labeled options (A/B/C/D). In the completion-based evaluation, we report per-
formance using accuracy, while in the option-selection evaluation, we use exact match. To mitigate
known issues, such as selection or position bias in the option-selection evaluation, we randomly
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Figure 3: Model performance on NUBench. Circles (blue) represent the average performance of 2-
3B models, squares (purple) indicate the average for 7-8B models, upward triangles (orange) signify
the average of base models, and downward triangles (red) denote the average of instruction-tuned
models. Stars (green) represent API models.

shuffle the order of the options (using random seed 42). Details of the specific prompt templates and
formatting can be found in Appendix O.

Models. We evaluate two main groups of model sizes: those with 2-3 billion parameters and
those with 7-8 billion parameters. Each group includes both pretrained models and instruction-
tuned models. To also examine larger models, we incorporate API models, which are assessed
only in the option-selection setting. This is because recent APIs do not provide the log-probability
outputs needed for completion-based evaluation. Table 6 summarizes the models used in our exper-
iment (Team et al., 2024; Grattafiori et al., 2024; Qwen et al., 2025; Jiang et al., 2023; Achiam et al.,
2023; Hurst et al., 2024; Anthropic, 2024).

Zero-shot and few-shot evaluation. For each model, we evaluate performance in both zero-shot
and few-shot settings using the Language Model Evaluation Harness (Gao et al., 2024). In the few-
shot scenario, we use examples from the demonstration set as in-context demonstrations. Results are
averaged over five random seeds (42, 1234, 3000, 5000, and 7000) and are reported for one, five, and
ten examples from the demonstration set (1-shot, 5-shot, and 10-shot). We present the performance
results on the test set for each model and prompt configuration.

Supervised fine-tuning. We conduct Supervised Fine-Tuning (SFT) using the LLaMA-Factory
framework (Zheng et al., 2024) on the Sentence-Negation Pair dataset from NUBench. The dataset
is formatted in the Alpaca instruction style (Taori et al., 2023). To achieve parameter-efficient train-
ing, we apply Low-Rank Adaptation (LoRA) (Hu et al., 2022) with a rank of 8, targeting all linear
layers. The fine-tuning process is carried out for three epochs, using a batch size of 1, a gradient
accumulation step of 8, cosine learning rate scheduling, and bfloat16 precision. After the SFT, we
evaluate the model’s zero-shot performance to directly assess its ability to generalize from instruc-
tion tuning without being influenced by in-context examples. It is important to note that API models
are not fine-tuned, as they are not compatible with the LLaMA-Factory framework.

5.2 MODEL PERFORMANCE ON NUBENCH

Figure 3 displays evaluation results from all models across three settings: the zero-shot baseline,
the few-shot baseline, and the zero-shot after SFT using NUBench. It summarizes the overall trends
concerning model sizes, training configurations (including whether it is instruction-tuned), and eval-
uation settings. Complete results are reported in Appendix P.

In the completion-based evaluation, performance steadily improves from zero-shot to few-shot and
further after SFT, with gaps between smaller and larger models narrowing after SFT. In the option-
selection evaluation, performance also rises with more shots, but SFT yields smaller gains than few-
shot prompting. Meanwhile, instruction-tuned models remain relatively stable across conditions.
API models achieve the best overall performance, though their performance doesn’t consistently
improve with more shots, except at 10-shot.
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Table 7: Error distribution and confusion analysis of pretrained and instruction-tuned Llama-3.1-8B
models across various evaluation settings: zero-shot baseline, five-shot baseline, and SFT zero-shot.

Error
Rate Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

completion-
based

Llama-
3.1-8B

Baseline zeroshot 0.562 70.62 21.33 8.05 25.64 30.84 64.29 43.87
5shot 0.393 83.87 14.31 1.81 20.83 22.40 47.62 45.81

SFT zeroshot 0.203 85.55 12.50 1.95 8.97 11.69 18.71 32.26
Llama-
3.1-8B-
Instruct

Baseline zeroshot 0.488 70.57 26.18 3.25 24.36 25.97 54.76 37.74
5shot 0.347 80.55 18.76 0.69 18.91 19.16 39.80 37.74

SFT zeroshot 0.244 86.04 12.34 1.62 12.18 12.66 28.23 33.87

option-
selection

Llama-
3.1-8B

Baseline zeroshot 0.541 47.95 6.74 45.31 23.08 24.03 41.50 19.03
5shot 0.362 78.95 6.58 14.47 30.45 21.75 40.82 25.16

SFT zeroshot 0.444 58.79 27.34 13.87 20.83 20.13 37.41 20.65
Llama-
3.1-8B-
Instruct

Baseline zeroshot 0.256 76.53 15.11 8.36 16.67 18.83 19.05 23.23
5shot 0.269 74.04 21.83 4.13 20.83 16.88 25.17 19.35

SFT zeroshot 0.254 72.32 19.03 8.65 15.06 17.86 21.09 14.52

5.3 ANALYSIS OF NEGATION UNDERSTANDING PERFORMANCE

We analyze model errors to evaluate the ability of our models to differentiate standard negation from
similar semantic variants. Each type of local negation in our dataset is explicitly labeled based on
its sentence structure: relative clause, participle clause, compound sentence, and adverbial clause,
as defined in Table 3.

To identify which subtypes of local negation are most frequently confused with standard negation,
we calculate the confusion rate. This is defined as the proportion of examples within each subtype
where the model incorrectly selects the local negation option instead of the correct standard negation.
For example, if 320 items are labeled as participle clause negation and the model incorrectly chooses
the local negation option instead of the correct standard negation option in 32 of these cases, the
confusion rate for participle clause negation would be 10%. Complete analysis results are provided
in Appendix R.

We focus on the results of Llama-3.1-8B and its instruction-tuned version, as shown in Table 7. In
the completion-based setting, error rates generally decrease from zero-shot to 5-shot and continue to
improve after SFT, with most errors concentrated in local negation options. Within local negation,
compound sentences exhibit the highest confusion but also show the largest relative improvement
after SFT.

In the option-selection setting, the base model demonstrates unusually high errors for paraphrase
options in the zero-shot scenario (nearly 40%). Although these errors decrease after SFT, they are
partly offset by increases in errors for local negation and contradiction options. The instruction-
tuned model consistently achieves lower overall error states and confusion rates than the base ver-
sion. Compared to the completion-based setting, the option-selection setting results in lower confu-
sion rates for adverbial clause negation.

Overall, these patterns highlight how different evaluation settings and model configurations lead to
distinct types of errors, and how the addition of more examples or SFT affects error distribution.

6 CONCLUSION

In this work, we introduce NUBench, a benchmark designed to evaluate LLMs’ sentence-level un-
derstanding of negation, going beyond surface cue detection. By distinguishing between standard
negation, local negation, contradiction, and paraphrase, NUBench offers a comprehensive assess-
ment of semantic comprehension. Our experiments demonstrate that while supervised fine-tuning
and in-context learning can help reduce specific errors, these approaches still struggle to differentiate
standard negation from closely related semantic variants. NUBench serves as a valuable diagnostic
tool for analyzing the limitations of models’ understanding of negation and stands as a robust bench-
mark for future research. Its design enables evaluation across diverse model families and settings,
making it broadly applicable for studying semantic reasoning in LLMs.
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A TYPOLOGY OF CONTRADICTION

Contradictions in natural language can arise in diverse ways that go beyond simple negation. Follow-
ing the typology of De Marneffe et al. (2008), contradictions can be grouped into seven categories:
antonymy, explicit negation, numeric mismatch, factive/modal inconsistencies, structural reversals,
lexical incompatibilities, and conflicts based on world knowledge. These categories reflect the fact
that contradiction covers a broader semantic scope than negation alone. Table 8 summarizes these
types with definitions and examples.

Table 8: Contradiction types from De Marneffe et al. (2008). Contradiction covers a broader scope
than negation.

Contradiction Type Definition Example

Antonym Contradiction caused by opposing
meanings of aligned words.

The policy was a success.
→ The policy was a failure.

Negation One sentence explicitly negates
a statement in the other.

She attended the meeting.
→ She did not attend the meeting.

Numeric Inconsistent numbers, dates, or
quantities in related statements.

Totally, ten people were injured.
→ Totally, five people were injured.

Factive/Modal Conflict in implied facts or modal
possibilities due to verbs or auxiliaries.

He managed to enter the building.
→ He did not enter the building.

Structure Syntactic rearrangement or argument
swapping causes contradiction.

Alice hired Bob.
→ Bob hired Alice.

Lexical Contradiction through incompatible
verbs or phrases, not strictly antonyms.

The manager praised her performance.
→ The manager expressed

disappointment in her performance.

World
Knowledge

Contradiction relies on common-sense
or background knowledge.

The Eiffel Tower is in Paris.
→ The Eiffel Tower is in Berlin.

B COPULAR VERBS

Copular verbs, also known as linking verbs, are verbs that connect the subject of a sentence to a
subject complement, which can be a noun, adjective, or other expression that describes or identifies
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the subject. Unlike action verbs, copular verbs do not express actions but rather states or conditions.
The most common copular verb in English is ”to be” in its various forms (am, is, are, was, were).
Other examples include ”seem,” ”appear,” ”become,” ”feel,” ”look,” ”sound,” ”taste,” and ”smell”
when used to describe the subject’s state (Hengeveld, 1986).

As discussed in Section 3.3, standard negation in this work targets the main predicate of a clause.
For sentences with copular verbs, this means that the entire verb phrase, including the copular verb
and its complement, is subject to negation. For example, in the sentence ”She is a doctor,” the main
predicate is ”is a doctor.” Negating this sentence results in ”She is not a doctor,” where the negation
applies to the entire predicate, not just the verb ”is.”

Negation of a verb phrase including a copular verb can be realized either syntactically (e.g., ”is
not an expert”) or by replacing the complement with its complementary antonym (e.g., ”is a non-
expert”), both of which result in the reversal of the main predicate’s truth value. Although such
constructions may superficially appear to be non-verbal negation, especially when the complement
is a noun or adjective, they are, in fact, instances of verbal negation, since the negation applies to the
predicate as a whole.

C NEGATION OF IMPLICATIONS

Negating implications presents challenges, as natural language intuitions often diverge from the
rules of formal logic. Let’s say there is a conditional statement, ”If I study hard, I will pass the bar
exam.” Formally, let P denote ”I study hard” and Q denote ”I will pass the bar exam.” In classical
logic, the conditional ”if P , Q” can be false only when P is true and Q is false. This implies that
the negation of the conditional is ”P and Neg(Q)” (”I study hard and I won’t pass the bar exam,)
while the conditional itself is equivalent to ”Neg(P ) or Q” (”I don’t study hard or I will pass the
exam) (Nguyen et al., 2023).

Psychological studies confirm that people often accept both ”if P , Neg(Q)” (”If I study hard, I won’t
pass the exam.”) and ”if Neg(P ), Q” (”If I don’t study hard, I will pass the exam.”). However, the
former can be interpreted as ”Neg(P ) or Neg(Q)”, and the latter ”P or Q”, both of which are
not equivalent to the original statement’s negation, ”P and Neg(Q)”. ”if Neg(P ), Neg(Q)” (”If I
don’t study hard, I won’t pass the exam.”) is not the correct negation as well, as it is equivalent to
”P or Neg(Q)” (Espino & Byrne, 2012).

While humans often struggle to distinguish the correct negation of a conditional from invalid al-
ternatives, the logical form is unambiguous. We therefore include conditional statements in our
benchmark to test whether language models, like humans, are prone to intuitive but invalid interpre-
tations, or whether they can correctly apply truth-functional reasoning.

Note that implications in natural language are not limited to the explicit ”if P , Q” form, but may also
appear with connectives such as when, as long as, or unless, which functionally convey conditional
meaning and are treated under the same negation principle.

D COMPOUND SENTENCES AND COORDINATING CONJUNCTION

A compound sentence consists of two or more independent clauses joined by a coordinating con-
junction. Each clause can stand alone, but they are combined to express related ideas (Gleitman,
1965).

Coordinating conjunctions connect elements of equal grammatical rank. The seven common ones
in English are: for, and, nor, but, or, yet, so (often remembered as FANBOYS). Among these, and,
or, and but are indisputably used to coordinate clauses. The others can be ambiguous or function in
non-coordinating roles(e.g., indicating cause or result rather than logical structure). These are the
examples using and, or, and but to connect sentences equally.

• ”She studied hard, and she passed the exam.”
• ”I wanted to go, but it was raining.”
• ”You can call me, or you can send an email.”

We consider only the coordinating conjunctions and, or, and but as indicators of compound sen-
tences, in which two or more independent clauses are equally connected. Although but introduces a
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contrast semantically, in terms of logical structure, it functions as a conjunction equivalent to and;
therefore, its negation follows the same principle.

E LOCAL NEGATION CONSTRUCTIONS EXCLUDED

In constructing the NUBench dataset, we consider various types of local (i.e., subclausal) negation,
where negation applies to a phrase or constituent rather than the main predicate. However, several
constructions are excluded due to their semantic ambiguity, syntactic irregularity, or misalignment
with the benchmark’s focus on verbal negation.

Infinitive Phrase Negation. Infinitive phrases (e.g., ”to go”) can be negated with ”not” (e.g., ”not
to go” or ”to not go”). Unlike the clause-level structures that define our local negation category,
infinitive phrases are not full clauses but simply part of a verb phrase, making them less compatible
with our definition. Moreover, although grammatically correct, this construction is relatively rare
and sounds awkward depending on the context.

• Original: George wants to go to the park.
• Negated (infinitive): George wants not to go / George wants to not go to the park.

For these reasons, we exclude infinitive phrase negation from the benchmark.

Appositive Clause Negation. Appositive clauses are noun phrases that provide descriptive clari-
fication. Attempting to negate an appositive typically involves lexical replacement rather than syn-
tactic negation.

• Original: My brother, a talented musician, plays the guitar.
• Negated (appositive): My brother, not a talented musician, plays the guitar.

Such changes alter descriptive content rather than reversing the meaning of the predicate, and often
fall into the domain of contradiction. Accordingly, they are excluded from the dataset.

Prepositional Phrase Negation. Negating a prepositional phrase often involves replacing the
preposition with its antonym (e.g., ”with” → ”without”, ”in” → ”outside”), which results in a sen-
tence that differs in content, rather than reversing the meaning of the predicate.

• Original: She went to the park with her bird.
• Negated (preposition): She went to the park without her bird.

Since such modifications do not negate the verb but instead change the nature of an adjunct or
argument, they fall outside the scope of standard negation or local negation in this work and are
excluded.

In all of the above cases, the negation does not target the whole verb phrase but rather peripheral
elements within the sentence. As the NUBench is designed to evaluate verbal negation, these local
or phrase-level forms of negation were intentionally left out.

F DOUBLE NEGATION

Double negation refers to the use of two forms of grammatical negation within a single sentence. In
standard English, only one negative form should be present in a subject-predicate construction; the
presence of two negatives is generally considered non-standard and often results in an unintended
meaning. For example, while ”He’s going nowhere” is correct, ”He’s not going nowhere” is un-
grammatical. Another example is ”I won’t bake no cake,” which combines verb negation (”won’t”)
with object negation (”no cake”), resulting in a grammatically incorrect construction (Déprez et al.,
2015).

In English, certain double negation constructions convey affirmative meanings rather than intensi-
fying negation, effectively paraphrasing the original positive statement (e.g., ¬¬p ≈ p) (Van der
Wouden, 1996). This rhetorical device, known as litotes, often manifests in expressions such as ”not
bad,” implying ”good,” or ”not unhappy,” implying ”happy.” Leveraging this phenomenon, we have
generated paraphrase candidates for our dataset using such double negation patterns. For example,
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• Sentence: His characteristic style fuses samba, funk, rock and bossa nova with lyrics that
blend humor and satire with often esoteric subject matter.
Double Negation: His characteristic style does not fail to fuse samba, funk, rock, and
bossa nova with lyrics that blend humor and satire with often esoteric topics.

• Sentence: It covers a broad range of fields, including the humanities, social sciences, exact
sciences, applied sciences, and life sciences.
Double Negation: It does not exclude a broad range of fields, including the humanities,
social sciences, exact sciences, applied sciences, and life sciences.

• Sentence: Sanders was honoured to meet with many world dignitaries and representa-
tives of UNESCO member nations, and delighted when delegates from UNESCO, visited
Toowoomba in 2018 in return.
Double Negation: Sanders was not unhappy to meet with many world dignitaries and
representatives of UNESCO member nations, and not displeased when delegates from UN-
ESCO visited Toowoomba in 2018 in return.

However, upon closer examination, these paraphrase candidates do not always preserve the exact
meaning of the original sentence. The antonyms used (e.g., ”exclude” for ”cover,” ”unhappy” for
”honoured”) are not always true complementary antonyms, which does not effectively negate the
meaning. Moreover, the litotes construction (”does not fail to fuse”) tends to add an emphatic nu-
ance, rather than being a perfect semantic equivalent. Therefore, the boundary between paraphrasing
and double negation is ambiguous, and their relationship requires more careful analysis. Given these
issues, and because our primary focus is on standard negation, we ultimately decide to exclude dou-
ble negation constructions as paraphrase candidates from our dataset.

G HOVER DATASET

Table 9: Details of HoVer dataset structure with examples.

Column Detail Example
id Unique claim identifier 0
uid User/annotator identifier 330ca632-e83f-4011-b11b-0d0158145036

claim The statement to be verified, often requiring multi-article evidence

Skagen Painter Peder Severin Krøyer favored
naturalism along with Theodor Esbern Philipsen
and the artist Ossian Elgström studied
with in the early 1900s.

supporting facts List of Wikipedia article titles and sentence indices providing evidence

[ { ”key”: ”Kristian Zahrtmann”, ”value”: 0 },
{ ”key”: ”Kristian Zahrtmann”, ”value”: 1 },
{ ”key”: ”Peder Severin Krøyer”, ”value”: 1 },
{ ”key”: ”Ossian Elgström”, ”value”: 2 } ]

label Whether the claim is supported 1: SUPPORTED or 0: NOT SUPPORTED
num hops Number of articles required for verification 2∼4
hpqa id Reference to the original HotpotQA pair 5ab7a86d5542995dae37e986

The HoVer (Hoppy Verification) dataset is developed for the tasks of multi-hop evidence retrieval
and factual claim verification. In HoVer, each claim requires supporting evidence that spans multiple
English Wikipedia articles to determine whether the claim is substantiated or not. The dataset is
distributed under a CC BY-SA 4.0 License, and it can be accessed via its official homepage1. Table 9
offers an overview of the dataset’s structure. The data is split into training, validation, and test sets,
containing 18,171, 4,000, and 4,000 examples respectively.

HoVer is constructed on top of the HotpotQA dataset, which is designed to evaluate multi-hop
reasoning in question answering. HotpotQA itself is a large-scale collection of Wikipedia-based QA
pairs created to address the limitations of prior QA datasets, which often fail to require complex
reasoning or explanatory answers (Yang et al., 2018). The construction of HoVer involves rewriting
HotpotQA question-answer pairs into claim statements, which are then validated and labeled by
annotators. Claims are extended to require multi-hop evidence from up to four Wikipedia articles
and are systematically modified to increase complexity. Final labels are assigned as SUPPORTED or
NOT-SUPPORTED (Jiang et al., 2020).
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Table 10: Details of Wikipedia Summary dataset structure with examples.

Column Detail Example
title Article title from Wikipedia. Alain Connes
description A brief description or category for the article (when available). French mathematician

summary The extracted summary or introduction section of the article,
typically more concise than the full text. Alain Connes (; born 1 April 1947) is a French mathematician...

full text The complete article text (when included), encompassing the
full body of the Wikipedia page. Alain Connes (; born 1 April 1947) is a French mathematician...

index level 0 Index number for each entry in the dataset. 3

H WIKIPEDIA SUMMARY DATASET

The Wikipedia Summary Dataset contains the titles and introductory summaries of English
Wikipedia articles, extracted in September 2017. A summary or introduction in this context refers
to the content from the article title up to the content outline (i.e., before the first section heading).
The dataset was originally released via GitHub2, but is now accessible through the Hugging Face
Hub3. The dataset license is not explicitly mentioned, but as the original Wikipedia data is dis-
tributed under the CC BY-SA 4.0, it is assumed that the dataset would be distributed under the same
license. For licensing details, refer to the Wikimedia Terms of Use 4. Table 10 offers an overview
of the dataset’s structure. The dataset comprises approximately 430,000 articles, only providing the
training set (Scheepers, 2017).

I HUMAN REVIEW PROTOCOL

To ensure high-quality data construction, we implement a rigorous quality control protocol that
combines generation, independent review, and iterative consensus building. The process involves
the following key steps:

• Task allocation and independence. Authors are assigned distinct portions of the dataset,
but no author is permitted to review the data they have generated. This ensures that each
instance is subject to at least one independent review.

• Sequential authoring across choices. For the multiple-choice dataset, construction pro-
ceeds in four stages: standard negation, local negation, contradiction, and paraphrase. At
each stage, different authors are responsible for creating the new option, while reviewers
who have not authored that option perform the verification.

• Cross-checking and layered review. Each newly created option is reviewed by at least one
other author, and reviewers also revisit earlier options in the same instance. For example,
when reviewing the paraphrased sentence, the reviewer also checks that standard negation,
local negation, and contradiction sentences are correct. As a result, every instance under-
goes multiple rounds of verification across stages, such that all authors ultimately examine
data they have not created themselves.

• Guideline refinement and retroactive correction. Generation and reviewing guidelines
are continuously updated based on discussion of ambiguous or problematic cases. When-
ever the guidelines changes, all previously created data are revisited to ensure compliance,
promoting consistency across the dataset.

• Consensus and adjudication. Disagreements are discussed in weekly meetings and, if
necessary, adjudicated by a lead reviewer, ensuring that no instance remains unresolved.

Overall, this iterative and layered procedure ensures that every instance in the multiple-choice
dataset is independently reviewed multiple times, leading to stable guidelines and a consistent
dataset.

J DETAILED PRINCIPLES AND EXAMPLES OF THE NUBENCH

While the main text already defines the core notions of standard and local negation (Section 3) and
explains how they are applied throughout dataset construction (Section 4), here we provide more
detailed illustrations.

1https://hover-nlp.github.io/
2https://github.com/tscheepers/Wikipedia-Summary-Dataset
3https://huggingface.co/datasets/jordiclive/wikipedia-summary-dataset
4https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use
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Paraphrasing before Negation. Before negating, the main verb or other components may be para-
phrased with synonyms, provided that the sentence’s tense, structure, and meaning remain strictly
equivalent before applying standard negation. Authors refer to the Merriam-Webster Thesaurus 5.
For example,

• Original Sentence: Toumour is a village and rural commune in Niger located near the
Niger–Nigeria border.

– Paraphrased Sentence: Toumour is a village and rural commune in Niger that is
found close to the Niger–Nigeria boundary.
→ Standard Negation after Paraphrase: Toumour isn’t a village and rural com-
mune in Niger that is found close to the Niger–Nigeria boundary.

– Explanation: In this example, the participle clause ”located near the Niger–Nigeria
border” is rephrased as a relative clause ”that is found close to the Niger–Nigeria
boundary.” Since both constructions serve as modifiers and preserve the same semantic
role, we treat them as equivalent in meaning for the purpose of standard negation.

• Original Sentence: The armed forces said Boko Haram attacked their military post on
March 15, 2020, which they responded to by repelling the attack, killing 50 insurgents.

– Paraphrased Sentence: The armed forces stated that Boko Haram assaulted their
military post on March 15, 2020, which they responded to by repelling the attack,
killing 50 insurgents.
→ Standard Negation after Paraphrase: The armed forces didn’t state that Boko
Haram assaulted their military post on March 15, 2020, which they responded to by
repelling the attack, killing 50 insurgents.

– Explanation: In this example, the reporting verb “said” is paraphrased as “stated,”
and the verb “attacked” is replaced with the synonym “assaulted.” These substitutions
preserve the original tense and meaning, allowing standard negation to be applied
without altering the semantic content of the sentence.

Negation of Simple Sentences. For simple, declarative sentences, standard negation is achieved
by inserting ”not” after the auxiliary or main verb, or by replacing the predicate with its comple-
mentary antonym. For example, ”She is happy.” → ”She is not happy.”; ”The room is occupied.” →
”The room is unoccupied.”

Negation in Compound Sentences. When multiple clauses or propositions are coordinated (e.g.,
with ”and”, ”or”, ”but”), standard negation is logically applied, governed by De Morgan’s laws.
Here, ”but” is treated as a coordinating conjunction equivalent to ”and” in terms of logical structure,
so its negation follows the same principle.

• Conjunction ”P and/but Q”: the negation is ”Neg(P ) or Neg(Q)”.

• Disjunction ”P or Q”: the negation is ”Neg(P ) and Neg(Q)”.

For example, ”He passed the test and received an award.” is negated as ”He did not pass the test or
did not receive an award.”

When application of logical negation produces unnatural language, sentences may be split or slightly
rephrased for fluency, provided logical meaning is preserved. For example,

• Original: ”He finished the report and submitted the assignment.”

• Standard Negation: ”He did not finish the report or did not submit the assignment.”

• Standard Negation, but Splitted: ”He did not finish the report. Or, he did not submit the
assignment.”

Coordinated Elements in the Sentence. When a sentence contains coordinated elements (such
as subjects, objects, or predicates connected by ”and” or ”or”), standard negation typically follows
logical principles derived from De Morgan’s Laws. However, whether logical negation applies to

5https://www.merriam-webster.com/
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each individual component or to the entire predicate as a whole depends on whether the coordination
expresses multiple independent propositions or a single collective event.

• If the coordination introduces semantically distinct propositions, that is, each conjunct
could form a complete sentence on its own, negation must be applied to each proposi-
tion individually. For example, ”My sister and I studied hard.”
This sentence can be interpreted as: ”My sister studied hard and I studied hard.”
Therefore, the correct standard negation is: ”My sister did not study hard, or I did not study
hard.”

• Conversely, if the coordination connects elements that jointly participate in a single action
or state (e.g., a shared subject or a collective predicate), then the sentence is treated as
a simple clause, and the predicate as a whole is negated. Logical decomposition is not
appropriate. For example, ”My sister and I share clothes.”
This expresses a single collective action involving both participants.
Therefore, the correct standard negation is: ”My sister and I do not share clothes.”
(NOT: ”My sister does not share clothes, or I do not share clothes.”)

• This distinction is crucial: even if two noun phrases are coordinated, if the sentence seman-
tically decomposes into separate atomic propositions, standard negation must apply to each
atomic proposition. Otherwise, it applies to the whole predicate as one unit.

• Other examples of semantically collective predicates where logical splitting is not appro-
priate include: ”be the same”, ”have in common”, ”do something together”, ”combine”,
”unite”, etc. These describe inherently joint or relational properties, not independent propo-
sitions. For example, ”Clarence Brown and Peter Glenville are from the same country.”
should be negated as ”Clarence Brown and Peter Glenville are not from the same country.”

Use of Antonyms. When replacing predicates with antonyms in standard negation, only com-
plementary antonyms are appropriate, as they provide a clear binary opposition, ensuring logical
consistency of negation. Gradable and relational antonyms are unsuitable for standard negation be-
cause their antonyms do not represent the logical complement of the original predicate. In other
words, replacing a predicate p with its antonym does not produce ¬p in a truth-conditional sense.

Specifically, unlike complementary antonyms, which form mutually exclusive pairs (i.e., p∪¬p = U
and p ∩ ¬p = ∅), gradable and relational antonyms do not partition the meaning space cleanly, and
thus fail to reverse the truth value reliably.

• Complementary Antonyms: Also called binary/contradictory antonyms. These antonyms
represent mutually exclusive pairs with no intermediate states. The presence of one implies
the absence of the other. Examples include:

– alive / dead
– true / false
– present / absent
– occupied / vacant

Using complementary antonyms in negation ensures a direct and unambiguous reversal of
the original proposition’s truth value.

• Gradable Antonyms: These antonyms exist on a continuum and allow for varying degrees
between the two extremes. Negating one does not necessarily affirm the other. Examples
include:

– hot / cold
– happy / sad
– tall / short
– young / old

Due to their scalar nature, gradable antonyms are inappropriate for standard negation, as
they do not provide a definitive binary opposition.

• Relational Antonyms: Also known as converse antonyms, these pairs describe a reciprocal
relationship where one implies the existence of the other. Examples include:
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– parent / child
– teacher / student
– buy / sell
– employer / employee

Relational antonyms are context-dependent and do not represent direct opposites in a binary
sense, making them unsuitable for standard negation purposes.

General Principles of Standard Negation.

• The negated sentence must preserve all elements (subject, tense, objects, adjuncts, etc.) of
the original, except for the truth value of the main predicate.

• When naturalness and logical negation conflict, logical correctness takes priority, but min-
imal rephrasing is allowed for fluency.

• If the negated clause creates a contradiction with other parts of the sentence, the contradic-
tory clause must be removed. For example, the standard negation of the sentence ”While
the spatial size of the entire universe is unknown, it is possible to measure the size of the
observable universe, which is approximately 93 billion light-years in diameter.”
will be ”While the spatial size of the entire universe is unknown, it isn’t possible to measure
the size of the observable universe.”
The relative clause must be removed because its content directly contradicts the negated
main clause.

Common Negation Errors and Corrections.

• Original sentence: His characteristic style fuses samba, funk, rock and bossa nova with
lyrics that blend humor and satire with often esoteric subject matter.

– Incorrect negation: His distinctive style doesn’t fuse samba, funk, rock or bossa
nova with lyrics that blend humor and satire with often esoteric subject matter.

– Correct negation: His distinctive style doesn’t fuse samba, funk, rock and bossa
nova with lyrics that blend humor and satire with often esoteric subject matter.

– Explanation: The verb ”fuse” implies a combination of all listed elements. ”and”
must be preserved.

• Original sentence: The mascot of Avon Center School is the ”Koalaty Kid,” while the
mascot at Prairieview is an eagle and the mascot at Woodview is an owl.

– Incorrect negation: Avon Center School’s mascot is not the ”Koalaty Kid,”
Prairieview’s mascot is not an eagle, or Woodview’s mascot is not an owl.

– Correct negation: Avon Center School’s mascot is not the ”Koalaty Kid,” while the
mascot at Prairieview is an eagle and the mascot at Woodview is an owl.

– Explanation: Two clauses connected by while are not coordinated propositions (as
with and or or), but instead express contrastive information. Therefore, applying log-
ical negation across both clauses is incorrect. Negation should apply only to the main
clause (here, the first statement), while the contrasting clause remains affirmative.

K CODE FOR DATA CONSTRUCTION

K.1 SENTENCE-NEGATION PAIR DATASET

To construct the sentence-negation pair dataset, we begin by randomly sampling sentences labeled as
”supported facts” from the HoVer dataset. Since the original data often contains grammatical errors,
we utilize OpenAI’s API (OpenAI, 2025) to automatically correct these issues. In cases where the
selected text consists of multiple sentences, we merge or split them as needed to ensure that each
example is a single sentence, aligning with our sentence-level task objective.

We select different model versions depending on the complexity of each task. For sentence merging,
which demands nuanced contextual understanding and complex syntax, we use GPT-4. For grammar
correction, where edits are more straightforward, GPT-3.5 is sufficient.
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1 def grammar_fix(claim):
2 messages = [{"role": "system", "content": "Fix grammatical errors."},
3 {"role": "user", "content": f"If there are errors, please fix the sentence: {claim} \n If

there aren’t, return the original sentence. Provide only the resulting sentence without
any additional explanation or introduction."}]

4 response = client.chat.completions.create(model="gpt-3.5-turbo", messages=messages)
5 fixed_text = response.choices[0].message.content.strip()
6 return fixed_text

Listing 1: Fixing Grammar with OpenAI API.

1 def merge_sentences_with_gpt(claim):
2 messages = [{"role": "system", "content": "Merge sentences into a single one."},
3 {"role": "user", "content": f"Merge these sentences: {claim} \n Provide only the resulting

sentence without any additional explanation or introduction."}]
4 response = client.chat.completions.create(model="gpt-4-turbo-preview", messages=messages)
5 merged_text = response.choices[0].message.content.strip()
6 return merged_text

Listing 2: Merging Sentences with OpenAI API.

K.2 MULTIPLE CHOICE DATASET

To construct the multiple-choice dataset, we first segment the ”summary” column of the Wikipedia
Summary dataset, which often contains multiple sentences in a single entry, into individual sen-
tences. To focus on the challenges of negation in complex sentences, we filter out sentences that are
too short. This process is done with Python code.

Since conditional sentences (e.g., ”If P , Q”) are rarely present in the Wikipedia summary dataset,
we adopt a two-step approach: (1) prompting the model to generate conditional variants from given
sentences (using OpenAI API, GPT-4o-mini), and (2) manually filtering or lightly editing the re-
sults to obtain valid conditionals.

Subsequently, we automatically generate contradictions and paraphrases for each sentence via the
OpenAI API (GPT-4o) as well, followed by human review. The following scripts illustrate the
procedures.

1 import pandas as pd
2 import re
3 from datasets import load_dataset
4 import random
5
6 df = pd.DataFrame(load_dataset("jordiclive/wikipedia-summary-dataset")[’train’].shuffle(seed

=42).select(range(10000))
7 df = df.drop(columns=[’full_text’])
8
9 def split_into_sentences(text):

10 sentences = re.split(r’(?<=[.!?]) +’, text)
11 return sentences
12
13 df[’sentence’] = df[’summary’].apply(split_into_sentences)
14 df = df.explode(’sentence’)
15 df = df[df[’sentence’].apply(lambda x: len(x.split()) >= 30)]
16 df = df.reset_index(drop=True)
17 df.to_csv("file/wikipedia_summary_sentences.csv", index=False)

Listing 3: Sentence extraction and preprocessing from Wikipedia summaries.

1 def generate_conditionals(sentence):
2 prompt = f"""
3 Based on the sentence below, write a conditional sentence that uses the main topic of the

sentence.
4 The conditional sentence should express a hypothetical situation or cause-effect

relationship related to the topic. It can be slightly complex in structure.
5 For example:
6 - If it rains tomorrow, I will stay home.
7 Sentence:
8 ’{sentence}’
9 """

10
11 completion = client.chat.completions.create(
12 model="gpt-4o-mini",
13 messages=[
14 {"role": "system", "content": "You are a helpful assistant that specializes in

generating conditional sentences."},
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15 {"role": "user", "content": prompt}
16 ]
17 )
18
19 return completion.choices[0].message.content

Listing 4: Conditionals sentence generation.

1 def generate_contradiction(sentence):
2 prompt = f"""
3 You will be given a sentence. Generate a contradictory sentence that directly conflicts

with the original sentence without using standard negation.
4
5 Definitions:
6 - Standard negation: Directly negating the main verb or using words like ’not’, ’no’, ’

never’, or negative contractions such as \"isn’t\", \"doesn’t\", or \"can’t\".
7 - Contradiction: A sentence that logically conflicts with the original statement. The

contradiction must be such that both sentences cannot logically be true at the same time
under any circumstances.

8
9 Important:

10 - Do not change the main verb from the original sentence.
11 - Do not use ’never’ or other negative words to form the contradiction.
12 - Ensure the contradicted sentence logically excludes the possibility of the original

sentence being true simultaneously.
13
14 Examples:
15 Original sentence: \"The tallest student won the award.\"
16 Contradicted sentence: \"The shortest student won the award.\"
17
18 Original sentence: \"The room was completely dark.\"
19 Contradicted sentence: \"The room was brightly lit.\"
20
21 Original sentence: \"The event took place in the morning.\"
22 Contradicted sentence: \"The event took place in the evening.\"
23
24 Original sentence: \"All people are dying.\"
25 Contradicted sentence: \"Some people are dying.\"
26
27 Now, generate a contradictory sentence without standard negation, without changing the

main verb, and ensuring the two sentences are logically incompatible, for the following:
28
29 Original sentence: \"{sentence}\"
30
31 Contradicted sentence:
32 """
33
34 completion = client.chat.completions.create(
35 model="gpt-4o",
36 messages=[
37 {"role": "system", "content": "You are a helpful assistant tasked with generating

logical contradictions. Do not use negation to make contradiction."},
38 {"role": "user", "content": prompt}
39 ]
40 )
41
42 return completion.choices[0].message.content

Listing 5: Contradiction generation.

1 def generate_paraphrase(sentence):
2 prompt = f"""
3 Paraphrase the following sentence using synonyms or slight structural variations

without changing its meaning.
4 Do not add or remove any main verbs. Keep the original intent of the sentence intact.
5
6 Original sentence: "{sentence}"
7
8 Paraphrased sentence:
9 """

10
11 completion = client.chat.completions.create(
12 model="gpt-4o",
13 messages=[
14 {"role": "system", "content": "You are a helpful assistant skilled at generating

paraphrases while keeping the meaning of sentences unchanged."},
15 {
16 "role": "user",
17 "content": prompt
18 }
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19 ]
20 )
21
22 return completion.choices[0].message.content

Listing 6: Paraphrase generation.

L NUBENCH DATASET STRUCTURE

NUBench consists of two subsets: a sentence-negation pair dataset for supervised fine-tuning and
a multiple-choice dataset for evaluation. Both datasets are built on English text and reviewed by
authors following strict guidelines.

L.1 SENTENCE-NEGATION PAIR DATASET

This subset contains pairs of affirmative and corresponding standard negation sentences. It includes
the following fields:

• index: the index of the data.
• premise: the original sentence.
• hypothesis: its logically negated form.

L.2 MULTIPLE-CHOICE DATASET

This evaluation set presents each original sentence with four candidate transformations.

• wikipedia index: the original index of the Wikipedia Summary dataset.
• index: the index of the data.
• sentence: the original sentence.
• choice1: standard negation (correct answer).
• choice2: local negation (subclausal negation).
• choice2 type: specifies the type of local negation.
• choice2 element: a short description of the phrase or clause that was negated (e.g.,

”being built”, ”which crashed”).
• choice3: contradiction (non-negated, semantically incompatible).
• choice4: paraphrase (semantically equivalent).

Table 11: Choice 2 Types and Distributions.

choice2 type Definition Demonstration
Set Test Set

relative part negation inside relative clauses
(e.g., ”who did not attend. . . ”). 12 312

pp part negation in participle clauses
(e.g., ”not walking through the park. . . ”). 12 308

adverb part negation in adverbial clauses
(e.g., ”because it was not raining”). 12 310

compound part negation applied to one clause within a compound sentence. 12 294

non-applicable used when the sentence structure does not support
a valid local negation variant under our definition. 2 37

Total 50 1,261

The details of choice2 type and distribution on demonstration and test sets are described in Ta-
ble 11. It follows the definition in Table 3.

In addition to the Wikipedia Summary dataset, we supplement the evaluation set with conditionals
(e.g., If P , Q) by manually searching Wikipedia articles where such constructions are more likely
to occur (e.g., Newton’s laws of motion). Among the 100 conditional sentences included across
demonstration and test sets, 20 are collected through manual search (marked with indices beginning
with ”S” in wikipedia index). Meanwhile, the remaining 80 are sampled from the Wikipedia
Summary dataset and converted into conditional form using the script in Listing 4 (Appendix K).
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M INCORPORATING NUBENCH INTO LM EVALUATION HARNESS

This section describes how NUBench is integrated into the LM Evaluation Harness (Gao et al., 2024)
for zero-shot and few-shot evaluation, both in completion-based and option-selection settings.

1 task: nubench_completion
2 dataset_path: {dataset_path}/NUBench
3 dataset_name: multiple-choice
4 output_type: multiple_choice
5 test_split: test
6 fewshot_split: demonstration
7 process_docs: !function utils.process_docs_completion
8 doc_to_text: "{{query}}"
9 doc_to_target: "{{gold}}"

10 doc_to_choice: "choices"
11 metric_list:
12 - metric: acc
13 aggregation: mean
14 higher_is_better: true

Listing 7: NUBench/NUBench completion.yaml

1 task: nubench_option
2 dataset_path: {dataset_path}/NUBench
3 dataset_name: multiple-choice
4 output_type: generate_until
5 test_split: test
6 fewshot_split: demonstration
7 process_docs: !function utils.process_docs_option
8 doc_to_text: "{{query}}"
9 doc_to_target: "{{answerLetter}}"

10 generation_kwargs:
11 until:
12 - "</s>"
13 - "\n"
14 metric_list:
15 - metric: exact_match
16 aggregation: mean
17 higher_is_better: true
18 ignore_punctuation: true
19 ignore_case: true
20 filter_list:
21 - name: get_response
22 filter:
23 - function: "regex"
24 regex_pattern: "ˆ(.*?)(?=\\n|$)"
25 - function: remove_whitespace
26 - function: "regex"
27 regex_pattern: "ˆ(.*?)\\s*$"
28 - function: take_first
29 dataset_kwargs:
30 trust_remote_code: true

Listing 8: NUBench/NUBench option.yaml

1 import re
2 import datasets
3 import random
4
5 def process_docs_completion(dataset: datasets.Dataset) -> datasets.Dataset:
6 def _process_doc(doc):
7 prompt = f"Negate the sentence.\nSentence: {doc[’sentence’]}\nNegation:"
8
9 if doc.get("choice2_type", "") == "non-applicable":

10 choices = [doc["choice1"], doc["choice3"], doc["choice4"]]
11 else:
12 choices = [doc["choice1"], doc["choice2"], doc["choice3"], doc["choice4"]]
13
14 return {
15 "query": prompt,
16 "choices": choices,
17 "gold": 0
18 }
19 return dataset.map(_process_doc)
20
21
22 def process_docs_option(dataset: datasets.Dataset, seed: int = 42) -> datasets.Dataset:
23 rng = random.Random(seed)
24
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25 def _process_doc(doc):
26 initial_prompt = f"Negate the sentence.\nSentence: {doc[’sentence’]}\n"
27
28 c1 = doc.get("choice1", "")
29 c2 = doc.get("choice2", "")
30 c3 = doc.get("choice3", "")
31 c4 = doc.get("choice4", "")
32 c2_na = str(doc.get("choice2_type", "")).lower() == "non-applicable"
33
34 gathered = []
35 keys = []
36
37 if c1:
38 gathered.append(c1); keys.append("choice1")
39 if c2 and not c2_na:
40 gathered.append(c2); keys.append("choice2")
41 if c3:
42 gathered.append(c3); keys.append("choice3")
43 if c4:
44 gathered.append(c4); keys.append("choice4")
45
46 assert len(gathered) >= 3, "Need at least 3 choices for multiple-choice."
47
48 paired = list(zip(gathered, keys))
49 rng.shuffle(paired)
50 choices, choice_keys = zip(*paired)
51
52 try:
53 answer_idx = choice_keys.index("choice1")
54 except ValueError:
55 answer_idx = 0
56
57 label_map = ["A", "B", "C", "D"]
58 labels = label_map[:len(choices)]
59
60 lines = [
61 "Given the following instruction and candidate answers, choose the single best

answer.",
62 f"Instruction: {initial_prompt}",
63 ]
64 for lab, ch in zip(labels, choices):
65 lines.append(f"{lab}. {ch}")
66 joined = ", ".join(labels)
67 lines += ["", f"Your response should be one of {joined}.", "Only output the letter.",

"Answer:"]
68 prompt = "\n".join(lines)
69
70 return {
71 "query": prompt,
72 "choices": list(choices),
73 "choice_keys": list(choice_keys),
74 "answerKey": answer_idx,
75 "answerLetter": labels[answer_idx],
76 }
77
78 return dataset.map(_process_doc)

Listing 9: NUBench/utils.py

N FINETUNING VIA LLAMA-FACTORY

We detail our supervised fine-tuning setup using LLaMA-Factory (Zheng et al., 2024) with
LoRA (Hu et al., 2022) on NUBench training data, including configuration of the fine-tuning and
instruction-based examples in Alpaca format (Taori et al., 2023).

The YAML configuration provided in Listing 10 is specific to the LLaMA-3.1-8B model. Other
models (e.g., Qwen or Mistral) can be fine-tuned similarly by modifying the model name or path
and template fields in the configuration file accordingly.

1 ### model
2 model_name_or_path: Llama-3.1-8B
3 trust_remote_code: true
4
5 ### method
6 stage: sft
7 do_train: true
8 finetuning_type: lora
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9 lora_rank: 8
10 lora_target: all
11
12 ### dataset
13 dataset: nubench_train
14 template: llama3
15 cutoff_len: 512
16 max_samples: 5000
17 overwrite_cache: true
18 preprocessing_num_workers: 16
19 dataloader_num_workers: 4
20
21 ### output
22 output_dir: lora/sft/Llama-3.1-8B
23 logging_steps: 10
24 save_steps: 500
25 plot_loss: true
26 overwrite_output_dir: true
27 save_only_model: false
28 report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
29
30 ### train
31 per_device_train_batch_size: 1
32 gradient_accumulation_steps: 8
33 learning_rate: 1.0e-4
34 num_train_epochs: 3.0
35 lr_scheduler_type: cosine
36 warmup_ratio: 0.1
37 bf16: true
38 ddp_timeout: 180000000
39 resume_from_checkpoint: null

Listing 10: Llama-3.1-8B lora sft.yaml

1 [
2 {
3 "instruction": "Negate the sentence.",
4 "input": "Sentence: Eddie Vedder was born before Nam Woo-hyun.",
5 "output": "Eddie Vedder wasn’t born before Nam Woo-hyun."
6 },
7 {
8 "instruction": "Negate the sentence.",
9 "input": "Sentence: Halestorm is from Pennsylvania, while Say Anything is from California.

",
10 "output": "Halestorm is not from Pennsylvania, while Say Anything is from California."
11 },
12 (...)
13 ]

Listing 11: Sentence-Negation Pair dataset for training in alpaca format.

O PROMPT SELECTION FOR IN-CONTEXT LEARNING

We explore a range of prompt types for in-context learning, from minimal instructions to more
detailed variants (Zhao et al., 2021; Li, 2023; Wan et al., 2023). Specifically, we evaluate three
prompt styles:

1. Simple prompt: a minimal instruction, “Negate the sentence.”
2. Definition prompt: a concise description of the task, “Negate the main predicate of the

main clause so that the proposition is logically reversed.”
3. Detail prompt: an extended instruction with explicit step-by-step guidelines on identifying

the main predicate, preserving other sentence elements, handling antonyms, and applying
negation consistently across logical operators (see Listing 12 for the full format).

"Reverse the truth value of the main predicate (verbal phrase) in the main
clause, while preserving all other elements of the main clause
unchanged.

1) Identify the main clause and its main verb (main predicate). Ignore
subordinate clauses.

2) Preserve all other main-clause content.
3) Insert a negative particle such as "not" into the main verb, or replace

it with a complementary antonym only if it forms an absolute binary (e
.g., alive/dead, true/false, possible/impossible).
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4) If the sentence contains multiple propositions connected by logical
operators (e.g., and, or, conditional constructions), negate it in a
way that reverses the entire proposition (e.g., A and B => not A or
not B; If A then B => A and not B).

Sentence: {doc[’sentence’]}"

Listing 12: Detail prompt format.

Across both completion-based and option-selection evaluation settings, we found that the simple
prompt consistently achieved the highest average performance in zero-shot and few-shot settings
(See results in Appendix P.) While the definition-based and detail prompts occasionally provided
more explicit guidance, they did not improve performance overall. Therefore, we adopt the simple
prompt as our default setting in the main experiments. The complete prompt formats, including
prompt–response structures for each evaluation setting, are provided in Listings 13 and 14, based on
the simple prompt.

Prompt] "Negate the sentence.
Sentence: Chromosome 2 is the second-largest human chromosome, spanning

more than 242 million base pairs and representing almost eight percent
of the total DNA in human cells.

Negation:"

Response] "Chromosome 2 isn’t the second-largest human chromosome, which
measures more than 242 million base pairs and represents almost eight
percent of the entire DNA in human cells."

Listing 13: Completion-based Format.

Prompt] "Given the following instruction and candidate answers, choose the
single best answer.

Instruction: Negate the sentence.
Sentence: Chromosome 2 is the second-largest human chromosome, spanning

more than 242 million base pairs and representing almost eight percent
of the total DNA in human cells.

A. Chromosome 2 isn’t the second-largest human chromosome, which measures
more than 242 million base pairs and represents almost eight percent
of the entire DNA in human cells.

B. Chromosome 2 is the second-largest human chromosome, which doesn’t span
more than 242 million base pairs or represent nearly eight percent of
the whole DNA in human cells.

C. Chromosome 2 is the smallest human chromosome, spanning fewer than 50
million base pairs and representing less than two percent of the total
DNA in human cells.\

D. Chromosome 2 is the second-biggest human chromosome, with over 242
million base pairs, making up nearly 8% of all DNA in human cells.

Your response should be one of A, B, C, D.
Only output the letter.
Answer:"

Response] "A"

Listing 14: Option-selection Format.

P TOTAL MODEL PERFORMANCE ON NUBENCH

Following the classification of prompts introduced in Appendix O, we report results on NUBench
separately for the simple, definition, and detail prompt styles. The experiments are conducted under
three evaluation regimes: (i) zero-shot, (ii) few-shot (1-, 5-, and 10-shot, averaged across seeds), and
(iii) supervised fine-tuning (SFT). For SFT, we assess models only in the zero-shot setting in order
to directly measure the effect of task-specific training without the influence of in-context examples.

Table 12, Table 13, and Table 14 present the complete numerical results for the simple, definition,
and detail prompts, respectively. The same results are also summarized in graphical form in Figure 3,
Figure 4, and Figure 5.

Across prompt types, we observe the following trends:

• Simple prompts. Results for simple prompts are described in Section 5.2; we summarize
them here only for completeness.
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Table 12: Zero-shot, few-shot, and SFT evaluation results on NUBench with the simple prompt.
SD denotes standard deviation across random seeds or runs. Few-shot results are averaged over five
random seeds (42, 1234, 3000, 5000, and 7000) and one, five, and ten demonstration examples (1-,
5-, 10-shot). Red text indicates the model with the highest performance in each column (excluding
API models).

zero-shot 1-shot 5-shot 10-shot After SFT

evaluation
setting

comple-
tion option

comple-
tion

(±SD)

option
(±SD)

comple-
tion

(±SD)

option
(±SD)

comple-
tion

(±SD)

option
(±SD)

comple-
tion option

gemma-2b 0.437 0.197 0.437
(±0.005)

0.248
(±0.005)

0.524
(±0.005)

0.276
(±0.007)

0.572
(±0.004)

0.267
(±0.011) 0.732 0.259

gemma-1.1-
2b-it 0.388 0.264 0.428

(±0.005)
0.347

(±0.004)
0.526

(±0.009)
0.357

(±0.008)
0.540

(±0.008)
0.336

(±0.004) 0.750 0.007

gemma-7b 0.454 0.388 0.465
(±0.001)

0.631
(±0.012)

0.561
(±0.002)

0.691
(±0.010)

0.620
(±0.010)

0.720
(±0.006) 0.797 0.722

gemma-1.1-
7b-it 0.663 0.645 0.689

(±0.009)
0.684

(±0.006)
0.730

(±0.007)
0.714

(±0.003)
0.759

(±0.007)
0.707

(±0.004) 0.786 0.733

Llama-3.2-3B 0.444 0.313 0.481
(±0.006)

0.417
(±0.011)

0.574
(±0.006)

0.463
(±0.009)

0.601
(±0.007)

0.501
(±0.009) 0.733 0.342

Llama-3.2-3B-
Instruct 0.472 0.530 0.487

(±0.009)
0.540

(±0.011)
0.557

(±0.006)
0.526

(±0.006)
0.587

(±0.004)
0.532

(±0.005) 0.745 0.604

Llama-3.1-8B 0.439 0.459 0.493
(±0.007)

0.549
(±0.012)

0.596
(±0.006)

0.635
(±0.008)

0.635
(±0.006)

0.667
(±0.011) 0.797 0.556

Llama-3.1-8B-
Instruct 0.512 0.744 0.571

(±0.007)
0.708

(±0.007)
0.646

(±0.007)
0.726

(±0.008)
0.675

(±0.004)
0.729

(±0.011) 0.756 0.747

Mistral-7B-v0.3 0.425 0.376 0.471
(±0.003)

0.603
(±0.008)

0.548
(±0.012)

0.702
(±0.010)

0.597
(±0.002)

0.720
(±0.013) 0.773 0.386

Mistral-7B-
Instruct-v0.3 0.619 0.642 0.635

(±0.007)
0.630

(±0.007)
0.664

(±0.005)
0.664

(±0.004)
0.690

(±0.008)
0.667

(±0.007) 0.765 0.650

Qwen2.5-3B 0.458 0.500 0.470
(±0.008)

0.538
(±0.008)

0.520
(±0.005)

0.560
(±0.008)

0.554
(±0.006)

0.567
(±0.009) 0.724 0.629

Qwen2.5-3B-
Instruct 0.534 0.620 0.599

(±0.007)
0.584

(±0.003)
0.633

(±0.009)
0.600

(±0.007)
0.656

(±0.007)
0.609

(±0.006) 0.700 0.726

Qwen2.5-7B 0.480 0.623 0.474
(±0.008)

0.608
(±0.007)

0.504
(±0.004)

0.622
(±0.007)

0.556
(±0.006)

0.629
(±0.003) 0.761 0.656

Qwen2.5-7B-
Instruct 0.542 0.676 0.558

(±0.007)
0.637

(±0.005)
0.620

(±0.004)
0.623

(±0.005)
0.659

(±0.005)
0.614

(±0.005) 0.718 0.793

gpt-4o-mini - 0.643 - 0.682
(±0.002) - 0.687

(±0.005) - 0.704
(±0.008) - -

gpt-4.1-mini - 0.797 - 0.822
(±0.005) - 0.841

(±0.008) - 0.846
(±0.005) - -

claude-3-5-
haiku-latest - 0.722 - 0.505

(±0.016) - 0.476
(±0.009) - 0.633

(±0.004) - -

2-3B models
average 0.456 0.404 0.484 0.446 0.556 0.464 0.585 0.469 0.731 0.428

7-8B models
average 0.517 0.569 0.545 0.631 0.609 0.672 0.649 0.682 0.769 0.655

api models
average - 0.721 - 0.670 - 0.668 - 0.728 - -

base models
average 0.448 0.408 0.470 0.513 0.547 0.564 0.591 0.582 0.760 0.507

instruct-tuned
models average 0.533 0.589 0.567 0.59 0.625 0.601 0.652 0.599 0.746 0.608

total average 0.491 0.538 0.518 0.573 0.586 0.598 0.622 0.615 0.753 0.558
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Table 13: Zero-shot, few-shot, and SFT evaluation results on NUBench with the definition prompt.
SD denotes standard deviation across random seeds or runs. Few-shot results are averaged over five
random seeds (42, 1234, 3000, 5000, and 7000) and one, five, and ten demonstration examples (1-,
5-, 10-shot). Red text indicates the model with the highest performance in each column (excluding
API models).

zero-shot 1-shot 5-shot 10-shot After SFT

evaluation
setting

comple-
tion option

comple-
tion

(±SD)

option
(±SD)

comple-
tion

(±SD)

option
(±SD)

comple-
tion

(±SD)

option
(±SD)

comple-
tion option

gemma-2b 0.443 0.176 0.427
(±0.002)

0.260
(±0.002)

0.515
(±0.005)

0.272
(±0.009)

0.560
(±0.007)

0.266
(±0.014) 0.720 0.259

gemma-1.1-
2b-it 0.402 0.263 0.436

(±0.004)
0.322

(±0.006)
0.542

(±0.006)
0.319

(±0.004)
0.570

(±0.005)
0.309

(±0.007) 0.753 0.334

gemma-7b 0.501 0.404 0.484
(±0.006)

0.568
(±0.009)

0.581
(±0.008)

0.638
(±0.008)

0.630
(±0.002)

0.675
(±0.006) 0.803 0.709

gemma-1.1-
7b-it 0.656 0.614 0.680

(±0.006)
0.627

(±0.009)
0.728

(±0.006)
0.657

(±0.006)
0.748

(±0.005)
0.668

(±0.006) 0.775 0.692

Llama-3.2-3B 0.416 0.324 0.471
(±0.006)

0.381
(±0.008)

0.561
(±0.007)

0.451
(±0.008)

0.590
(±0.008)

0.491
(±0.009) 0.754 0.282

Llama-3.2-3B-
Instruct 0.454 0.516 0.477

(±0.006)
0.464

(±0.010)
0.546

(±0.005)
0.452

(±0.008)
0.589

(±0.004)
0.450

(±0.006) 0.769 0.386

Llama-3.1-8B 0.462 0.477 0.499
(±0.005)

0.512
(±0.013)

0.598
(±0.006)

0.591
(±0.008)

0.645
(±0.005)

0.630
(±0.009) 0.817 0.608

Llama-3.1-8B-
Instruct 0.519 0.684 0.557

(±0.005)
0.640

(±0.004)
0.628

(±0.002)
0.663

(±0.004)
0.665

(±0.007)
0.681

(±0.014) 0.784 0.762

Mistral-7B-v0.3 0.446 0.297 0.475
(±0.006)

0.571
(±0.013)

0.560
(±0.011)

0.683
(±0.010)

0.608
(±0.002)

0.694
(±0.007) 0.781 0.427

Mistral-7B-
Instruct-v0.3 0.596 0.630 0.635

(±0.006)
0.622

(±0.007)
0.685

(±0.005)
0.630

(±0.011)
0.707

(±0.009)
0.632

(±0.007) 0.765 0.629

Qwen2.5-3B 0.427 0.531 0.474
(±0.007)

0.490
(±0.007)

0.540
(±0.003)

0.499
(±0.006)

0.574
(±0.007)

0.500
(±0.007) 0.722 0.648

Qwen2.5-3B-
Instruct 0.474 0.585 0.530

(±0.008)
0.511

(±0.006)
0.628

(±0.007)
0.512

(±0.006)
0.665

(±0.010)
0.513

(±0.006) 0.696 0.713

Qwen2.5-7B 0.454 0.628 0.483
(±0.009)

0.606
(±0.005)

0.541
(±0.007)

0.622
(±0.007)

0.587
(±0.002)

0.639
(±0.007) 0.745 0.706

Qwen2.5-7B-
Instruct 0.536 0.636 0.549

(±0.007)
0.634

(±0.009)
0.634

(±0.010)
0.634

(±0.008)
0.674

(±0.006)
0.636

(±0.004) 0.734 0.764

gpt-4o-mini - 0.621 - 0.659
(±0.008) - 0.688

(±0.005) - 0.700
(±0.009) - -

gpt-4.1-mini - 0.842 - 0.845
(±0.007) - 0.857

(±0.005) - 0.867
(±0.005) - -

claude-3-5-
haiku-latest - 0.688 - 0.495

(±0.006) - 0.470
(±0.008) - 0.613

(±0.013) - -

2-3B models
average 0.436 0.399 0.469 0.405 0.555 0.418 0.591 0.422 0.736 0.437

7-8B models
average 0.521 0.546 0.545 0.598 0.619 0.640 0.658 0.657 0.775 0.662

api models
average - 0.717 - 0.666 - 0.672 - 0.727 - -

base models
average 0.450 0.405 0.473 0.484 0.557 0.537 0.599 0.556 0.763 0.520

instruct-tuned
models average 0.520 0.561 0.552 0.546 0.627 0.552 0.660 0.556 0.754 0.611

total average 0.485 0.524 0.513 0.542 0.592 0.567 0.629 0.586 0.758 0.566
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Table 14: Zero-shot, few-shot, and SFT evaluation results on NUBench with the detail prompt.
SD denotes standard deviation across random seeds or runs. Few-shot results are averaged over five
random seeds (42, 1234, 3000, 5000, and 7000) and one, five, and ten demonstration examples (1-,
5-, 10-shot). Red text indicates the model with the highest performance in each column (excluding
API models).

zero-shot 1-shot 5-shot 10-shot After SFT

evaluation
setting

comple-
tion option

comple-
tion

(±SD)

option
(±SD)

comple-
tion

(±SD)

option
(±SD)

comple-
tion

(±SD)

option
(±SD)

comple-
tion option

gemma-2b 0.404 0.257 0.423
(±0.003)

0.253
(±0.005)

0.511
(±0.003)

0.257
(±0.012)

0.547
(±0.004)

0.145
(±0.009) 0.496 0.514

gemma-1.1-
2b-it 0.394 0.260 0.440

(±0.007)
0.282

(±0.005)
0.524

(±0.009)
0.241

(±0.007)
0.561

(±0.009)
0.242

(±0.009) 0.519 0.476

gemma-7b 0.462 0.410 0.472
(±0.005)

0.483
(±0.008)

0.564
(±0.004)

0.531
(±0.007)

0.607
(±0.010)

0.549
(±0.008) 0.731 0.635

gemma-1.1-
7b-it 0.588 0.472 0.653

(±0.008)
0.510

(±0.009)
0.708

(±0.009)
0.501

(±0.004)
0.728

(±0.006)
0.533

(±0.011) 0.725 0.616

Llama-3.2-3B 0.445 0.306 0.463
(±0.005)

0.317
(±0.011)

0.550
(±0.008)

0.365
(±0.010)

0.582
(±0.006)

0.407
(±0.008) 0.567 0.553

Llama-3.2-3B-
Instruct 0.454 0.429 0.440

(±0.006)
0.387

(±0.009)
0.501

(±0.007)
0.381

(±0.008)
0.560

(±0.005)
0.389

(±0.006) 0.586 0.595

Llama-3.1-8B 0.442 0.402 0.466
(±0.004)

0.394
(±0.008)

0.566
(±0.006)

0.462
(±0.012)

0.624
(±0.005)

0.518
(±0.010) 0.726 0.642

Llama-3.1-8B-
Instruct 0.508 0.539 0.529

(±0.008)
0.515

(±0.010)
0.627

(±0.005)
0.554

(±0.004)
0.669

(±0.003)
0.580

(±0.006) 0.673 0.681

Mistral-7B-v0.3 0.454 0.236 0.485
(±0.004)

0.416
(±0.014)

0.551
(±0.010)

0.597
(±0.009)

0.591
(±0.007)

0.631
(±0.007) 0.586 0.545

Mistral-7B-
Instruct-v0.3 0.588 0.586 0.608

(±0.013)
0.551

(±0.010)
0.662

(±0.005)
0.556

(±0.008)
0.685

(±0.005)
0.558

(±0.005) 0.672 0.646

Qwen2.5-3B 0.415 0.463 0.461
(±0.005)

0.399
(±0.002)

0.532
(±0.005)

0.324
(±0.006)

0.568
(±0.006)

0.313
(±0.003) 0.662 0.615

Qwen2.5-3B-
Instruct 0.467 0.548 0.492

(±0.009)
0.473

(±0.009)
0.653

(±0.008)
0.227

(±0.008)
0.671

(±0.008)
0.495

(±0.011) 0.674 0.572

Qwen2.5-7B 0.443 0.555 0.464
(±0.005)

0.515
(±0.010)

0.537
(±0.008)

0.542
(±0.005)

0.577
(±0.003)

0.566
(±0.004) 0.691 0.689

Qwen2.5-7B-
Instruct 0.507 0.545 0.511

(±0.006)
0.527

(±0.008)
0.621

(±0.012)
0.526

(±0.007)
0.662

(±0.004)
0.544

(±0.003) 0.674 0.705

gpt-4o-mini - 0.595 - 0.620
(±0.014) - 0.647

(±0.003) - 0.669
(±0.006) - -

gpt-4.1-mini - 0.858 - 0.864
(±0.004) - 0.876

(±0.003) - 0.870
(±0.005) - -

claude-3-5-
haiku-latest - 0.604 - 0.472

(±0.009) - 0.537
(±0.009) - 0.689

(±0.013) - -

2-3B models
average 0.430 0.377 0.453 0.352 0.545 0.299 0.582 0.332 0.584 0.554

7-8B models
average 0.499 0.468 0.524 0.489 0.605 0.534 0.643 0.560 0.685 0.645

api models
average - 0.686 - 0.652 - 0.687 - 0.743 - -

base models
average 0.438 0.376 0.462 0.397 0.544 0.440 0.585 0.447 0.637 0.599

instruct-tuned
models average 0.501 0.483 0.525 0.464 0.614 0.427 0.648 0.477 0.646 0.613

total average 0.469 0.474 0.493 0.469 0.579 0.478 0.617 0.512 0.642 0.606
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Figure 4: Model performance on NUBench with definition prompt. Circles (blue) represent the
average performance of 2-3B models, squares (purple) indicate the average for 7-8B models, upward
triangles (orange) signify the average of base models, and downward triangles (red) denote the
average of instruction-tuned models. Stars (green) represent API models.
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Figure 5: Model performance on NUBench with detail prompt. Circles (blue) represent the average
performance of 2-3B models, squares (purple) indicate the average for 7-8B models, upward trian-
gles (orange) signify the average of base models, and downward triangles (red) denote the average
of instruction-tuned models. Stars (green) represent API models.

• Definition prompts. Performance patterns closely resemble those of simple prompts.
However, in the option-selection evaluation, 2-3B models show smaller gains from ad-
ditional shots, while 7-8B models tend to achieve slightly higher accuracy after SFT com-
pared to 10-shot prompting.

• Detail prompts. For smaller (2-3B) models in the option-selection evaluation, adding
more shots can actually reduce performance, reflecting difficulties with long and complex
prompt instructions to these small models. Nonetheless, these models, along with larger
ones, show larger SFT gains under detail prompts than under simple or definition prompts.

Overall, these findings show that prompt formulation plays a non-trivial role in shaping performance
trends. In all cases, SFT consistently boosts zero-shot performance.

Q GENERAL BENCHMARK PERFORMANCE AFTER SFT

To assess whether supervised fine-tuning (SFT) on NUBench affects performance on broader natural
language understanding tasks, we evaluate models on six widely used benchmarks: ARC-Challenge,
ARC-Easy, GSM8K, HellaSwag, OpenBookQA, and WinoGrande (Clark et al., 2018; Cobbe et al.,
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Table 15: Average performance of 2–3B / 7–8B, and base / instruction-tuned models on six general
benchmarks before and after SFT on NUBench. Here, acc denotes accuracy, acc norm is normalized
accuracy, and exact match requires an exact string match with the reference answer.

tasks arc
challenge

arc
easy gsm8k hellaswag openbook-

qa
wino-

grande avg

metric acc acc exact
match acc norm acc norm acc

Before SFT
with simple prompt

on NUBench

2-3B models
average 0.432 0.747 0.325 0.714 0.409 0.668 0.549

7-8B models
average 0.514 0.810 0.592 0.797 0.458 0.727 0.65

base models
average 0.464 0.784 0.480 0.768 0.437 0.709 0.607

instruct-tuned
models average 0.493 0.782 0.475 0.756 0.437 0.694 0.606

total average 0.479 0.783 0.478 0.762 0.437 0.702 0.607

After SFT
with simple prompt

on NUBench

2-3B models
average 0.431 0.746 0.365 0.713 0.411 0.671 0.556

7-8B models
average 0.524 0.819 0.536 0.798 0.453 0.721 0.642

base models
average 0.474 0.788 0.428 0.772 0.437 0.706 0.601

instruct-tuned
models average 0.495 0.787 0.497 0.751 0.432 0.693 0.609

total average 0.484 0.788 0.463 0.762 0.435 0.699 0.605

Before SFT
with definition prompt

on NUBench

2-3B models
average 0.431 0.747 0.325 0.714 0.409 0.668 0.549

7-8B models
average 0.514 0.810 0.592 0.797 0.458 0.727 0.65

base models
average 0.464 0.784 0.480 0.768 0.437 0.709 0.607

instruct-tuned
models average 0.493 0.782 0.475 0.755 0.437 0.694 0.606

total average 0.479 0.783 0.478 0.762 0.437 0.701 0.607

After SFT
with definition prompt

on NUBench

2-3B models
average 0.433 0.745 0.341 0.713 0.407 0.669 0.551

7-8B models
average 0.528 0.819 0.545 0.799 0.455 0.725 0.645

base models
average 0.477 0.785 0.419 0.772 0.436 0.709 0.600

instruct-tuned
models average 0.498 0.790 0.496 0.753 0.433 0.694 0.611

total average 0.487 0.788 0.457 0.762 0.434 0.701 0.605

Before SFT
with detail prompt

on NUBench

2-3B models
average 0.431 0.747 0.325 0.714 0.409 0.668 0.549

7-8B models
average 0.514 0.810 0.592 0.797 0.458 0.727 0.65

base models
average 0.464 0.784 0.480 0.768 0.437 0.709 0.607

instruct-tuned
models average 0.493 0.782 0.475 0.755 0.437 0.694 0.606

total average 0.479 0.783 0.478 0.762 0.437 0.701 0.607

After SFT
with detail prompt

on NUBench

2-3B models
average 0.429 0.746 0.359 0.713 0.409 0.668 0.554

7-8B models
average 0.523 0.816 0.551 0.8 0.458 0.723 0.645

base models
average 0.469 0.785 0.424 0.773 0.439 0.704 0.599

instruct-tuned
models average 0.496 0.787 0.513 0.753 0.434 0.695 0.613

total average 0.483 0.786 0.469 0.763 0.437 0.699 0.606
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2021; Zellers et al., 2019; Mihaylov et al., 2018; Sakaguchi et al., 2021). These datasets cover a
diverse range of domains, including commonsense reasoning, scientific knowledge, mathematics,
and reading comprehension.

Following the classification of prompts introduced in Appendix O, SFT is conducted separately for
the simple, definition, and detail prompt styles. We then report post-SFT zero-shot performance
across the six benchmarks to verify whether task-specific training on NUBench preserves general
capabilities.

Table 15 summarizes the results. We find that performance on general benchmarks remains broadly
stable after SFT, indicating that fine-tuning on NUBench does not substantially harm general capa-
bilities.

R TOTAL ANALYSIS OF MODEL PREDICTIONS ON THE NUBENCH

This appendix extends the error analysis presented in Section 5.3, providing the complete results. In
particular, we examine (i) incorrect choice distributions and (ii) confusion rates for local negation
categories, comparing models of different sizes (2-3B vs. 7-8B) and training paradigms (pretrained
vs. instruction-tuned) under both zero-shot and few-shot conditions.

We report few-shot results using a fixed random seed (1234), which corresponds to the default seed
used in the LM Evaluation Harness framework. Averaging over multiple seeds was avoided, as it
could obscure specific error patterns and make fine-grained confusion analysis less interpretable.

For consistency with the main text, we report results only under the simple prompt, which serves as
the default evaluation setting throughout the paper.

We organize the complete prediction analysis by model family.

• Results for the Gemma family are reported in Table 16, Table 17.
• Results for the LLaMA family are reported in Table 18, Table 19.
• Results for the Mistral family are reported in Table 20, Table 21.
• Results for the Qwen family are reported in Table 22, Table 23.
• Results for API models are reported in Table 24.

Each table follows the same format, reporting error rates, incorrect choice distributions, and confu-
sion rates across local negation subcategories under zero-shot, few-shot, and SFT conditions.

In the option-selection evaluation setting, we also track cases labeled as “Answer Format Wrong.”
This category captures instances where the model’s output does not follow the required answer
format (selecting strictly one of A, B, C, or D). Because such responses cannot be mapped to a
specific incorrect option, they are not included in the incorrect choice distribution or confusion
rate. Instead, we report their raw counts alongside the other error statistics. This also serves as an
indicator of the model’s ability to follow output-format instructions.

Overall, we observe consistent trends that larger models (7-8B) achieve lower error rates than smaller
ones (2-3B), and introduction-tuned variants generally outperform base models. Supervised fine-
tuning (SFT) tends to reduce error rates. Meanwhile, incorrect choice distributions and local nega-
tion confusion rates vary across models and settings, showing that this analysis can serve as a useful
tool to identify which aspects of negation remain particularly challenging.

Notably, we also find some unusual behaviors. For example, the Gemma-1.1-2B-it model after SFT
produces 1,239 outputs with incorrect answer formats in the option-selection setting, indicating
formatting issues rather than genuine reasoning errors. Similarly, for API models, Claude 3.5 Haiku
shows increasing formatting errors as more shots are added, which directly degrades performance.
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Table 16: Error rates, incorrect choice distributions, and local negation confusion rates for the
Gemma family under zero-shot, few-shot, and SFT conditions, evaluated in the completion-based
setting.

Error
Rate Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

gemma-2b baseline

zero-shot 0.563 74.08 21.41 4.51 29.17 32.14 67.69 44.19
1-shot 0.558 74.54 21.34 4.13 32.37 31.49 63.27 45.16
5-shot 0.474 81.61 15.89 2.51 26.28 30.19 55.78 48.06

10-shot 0.421 82.49 16.01 1.51 23.72 23.38 48.64 48.06

sft zero-shot 0.268 84.91 14.20 0.89 13.14 18.51 26.87 35.48

gemma-1.1-
2b-it

baseline

zero-shot 0.612 59.20 32.25 8.55 31.09 28.25 55.44 35.48
1-shot 0.565 66.76 28.47 4.77 32.37 29.55 55.10 39.35
5-shot 0.471 66.50 27.44 6.06 25.64 24.35 47.96 31.94

10-shot 0.468 68.98 26.44 4.58 26.28 22.40 49.66 35.48

sft zero-shot 0.250 81.27 17.78 0.95 11.86 15.26 26.87 30.00

gemma-7b baseline

zero-shot 0.546 72.28 24.24 3.48 29.49 32.14 59.18 42.90
1-shot 0.535 77.74 18.10 4.15 30.77 31.82 57.82 51.61
5-shot 0.437 84.39 13.79 1.81 25.64 26.95 47.96 51.94

10-shot 0.369 84.95 13.33 1.72 22.44 23.05 35.71 48.06

sft zero-shot 0.203 81.64 16.80 1.56 10.26 11.36 18.03 28.71

gemma-1.1-
7b-it

baseline

zero-shot 0.337 55.06 38.35 6.59 9.29 14.29 26.53 26.77
1-shot 0.310 69.57 26.09 4.35 14.10 13.31 26.53 35.16
5-shot 0.279 73.01 25.00 1.99 13.14 13.64 20.07 37.10

10-shot 0.232 73.72 24.91 1.37 10.58 7.79 15.31 36.77

sft zero-shot 0.214 80.74 17.78 1.48 10.90 11.04 17.35 31.94

Table 17: Error rates, incorrect choice distributions, and local negation confusion rates for the
Gemma family under zero-shot, few-shot, and SFT conditions, evaluated in the option-selection
setting.

Error
Rate Answer

Format
Wrong

Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

gemma-2b baseline

zero-shot 0.803 274 33.29 33.42 33.29 20.51 23.05 21.43 15.48
1-shot 0.750 0 31.18 29.6 39.22 22.44 26.62 23.47 23.87
5-shot 0.722 0 30.63 23.82 45.55 20.19 23.70 28.23 19.35
10-shot 0.736 0 29.42 22.74 47.84 21.47 23.70 23.81 20.32

sft zero-shot 0.741 6 32.54 34.48 32.97 22.44 27.92 25.51 22.90

gemma-1.1-
2b-it

baseline

zero-shot 0.738 4 34.23 27.86 37.90 24.04 28.25 25.85 25.48
1-shot 0.654 0 46.67 18.91 34.42 29.81 35.71 30.61 29.68
5-shot 0.631 0 48.68 14.59 36.73 32.05 37.34 27.55 29.35
10-shot 0.660 0 43.87 11.06 45.07 29.49 34.42 25.85 29.35

sft zero-shot 0.994 1,239 85.71 0 14.29 0.96 0.97 1.02 0.97

gemma-7b baseline

zero-shot 0.612 195 57.89 9.88 32.24 17.31 19.81 44.90 28.06
1-shot 0.351 0 69.07 12.19 18.74 20.51 14.61 40.82 24.84
5-shot 0.307 0 77.52 15.50 6.98 22.76 17.86 35.03 22.90
10-shot 0.288 0 81.54 13.50 4.96 24.36 16.23 31.29 25.16

sft zero-shot 0.278 1 70.57 12.57 16.86 11.54 14.29 28.91 26.45

gemma-1.1-
7b-it

baseline

zero-shot 0.355 0 64.51 20.09 15.40 16.99 15.26 40.14 22.90
1-shot 0.307 0 63.05 15.76 21.19 16.03 11.36 34.01 19.03
5-shot 0.283 0 63.87 18.77 17.37 16.99 9.42 29.59 19.03
10-shot 0.289 0 65.93 17.31 16.76 19.23 8.77 30.61 20.32

sft zero-shot 0.269 2 76.26 16.91 6.820 22.12 14.61 27.21 20.32

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 18: Error rates, incorrect choice distributions, and local negation confusion rates for the
LLaMA family under zero-shot, few-shot, and SFT conditions, evaluated in the completion-based
setting.

Error
Rate Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

Llama-3.2-
3B

baseline

zero-shot 0.556 70.04 23.11 6.85 24.68 30.19 62.59 44.19
1-shot 0.519 75.99 20.49 3.52 25.32 30.19 60.54 47.42
5-shot 0.419 78.41 18.94 2.65 20.19 25.32 46.60 43.87
10-shot 0.401 80.20 16.83 2.97 22.44 24.03 43.20 43.23

sft zero-shot 0.267 82.79 15.43 1.78 14.42 17.53 25.85 33.55

Llama-3.2-
3B-Instruct

baseline

zero-shot 0.528 72.67 23.87 3.45 23.72 29.55 50.68 54.84
1-shot 0.502 75.36 23.22 1.42 28.85 27.27 48.98 51.29
5-shot 0.441 76.08 22.84 1.08 25.64 26.62 39.80 46.45
10-shot 0.410 76.79 21.86 1.35 25.64 24.68 35.03 44.52

sft zero-shot 0.255 83.80 14.95 1.25 12.82 13.31 27.55 34.52

Llama-3.1-
8B

baseline

zero-shot 0.562 70.62 21.33 8.05 25.64 30.84 64.29 43.87
1-shot 0.507 77.78 18.15 4.07 25.96 29.87 59.18 48.39
5-shot 0.393 83.87 14.31 1.81 20.83 22.40 47.62 45.81
10-shot 0.358 84.51 13.72 1.77 20.19 23.05 40.82 41.29

sft zero-shot 0.203 85.55 12.50 1.95 8.97 11.69 18.71 32.26

Llama-3.1-
8B-Instruct

baseline

zero-shot 0.488 70.57 26.18 3.25 24.36 25.97 54.76 37.74
1-shot 0.419 73.86 24.43 1.70 22.76 25.97 44.56 34.84
5-shot 0.347 80.55 18.76 0.69 18.91 19.16 39.80 37.74
10-shot 0.329 81.20 18.31 0.48 19.55 20.45 34.01 36.45

sft zero-shot 0.244 86.04 12.34 1.62 12.18 12.66 28.23 33.87

Table 19: Error rates, incorrect choice distributions, and local negation confusion rates for the
LLaMA family under zero-shot, few-shot, and SFT conditions, evaluated in the option-selection
setting.

Error
Rate Answer

Format
Wrong

Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

Llama-3.2-
3B

baseline

zero-shot 0.688 0 42.21 25.95 31.83 22.12 33.12 32.65 31.94
1-shot 0.570 0 62.59 14.74 22.67 31.09 32.14 45.58 38.71
5-shot 0.548 0 74.10 14.33 11.58 34.62 35.06 50.34 47.74
10-shot 0.500 0 78.13 13.00 8.87 35.90 31.82 43.88 49.68

sft zero-shot 0.658 0 39.40 33.01 27.59 23.40 31.17 27.89 24.52

Llama-3.2-
3B-Instruct

baseline

zero-shot 0.474 8 63.90 10.34 25.76 19.55 28.25 60.20 16.77
1-shot 0.461 0 71.60 12.56 15.83 23.40 25.97 61.22 26.77
5-shot 0.472 0 74.62 10.92 14.45 29.81 28.25 63.27 25.16
10-shot 0.467 0 73.85 10.36 15.79 33.01 25.00 62.24 23.23

sft zero-shot 0.437 87 61.85 7.11 31.03 11.22 18.51 43.54 21.61

Llama-3.1-
8B

baseline

zero-shot 0.541 0 47.95 6.74 45.31 23.08 24.03 41.50 19.03
1-shot 0.454 0 67.66 4.55 27.80 27.56 28.25 47.62 23.87
5-shot 0.362 0 78.95 6.58 14.47 30.45 21.75 40.82 25.16
10-shot 0.316 0 82.46 6.02 11.53 30.77 21.75 31.97 23.23

sft zero-shot 0.444 48 58.79 27.34 13.87 20.83 20.13 37.41 20.65

Llama-3.1-8B-
Instruct

baseline

zero-shot 0.256 12 76.53 15.11 8.36 16.67 18.83 19.05 23.23
1-shot 0.290 0 71.51 21.37 7.12 19.23 18.18 29.25 19.03
5-shot 0.269 0 74.04 21.83 4.13 20.83 16.88 25.17 19.35
10-shot 0.290 0 80.00 14.52 5.48 25.00 20.78 26.87 22.90

sft zero-shot 0.254 31 72.32 19.03 8.65 15.06 17.86 21.09 14.52
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Table 20: Error rates, incorrect choice distributions, and local negation confusion rates for the Mis-
tral family under zero-shot, few-shot, and SFT conditions, evaluated in the completion-based set-
ting.

Error
Rate Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

Mistral-7B-
v0.3

baseline

zero-shot 0.575 76.97 18.48 4.55 26.60 32.14 66.33 58.39
1-shot 0.532 78.39 17.59 4.02 26.92 33.12 59.52 53.23
5-shot 0.439 83.57 14.98 1.44 22.12 25.65 51.70 52.58
10-shot 0.401 84.39 13.83 1.78 21.15 24.68 47.28 47.10

sft zero-shot 0.227 88.81 9.09 2.10 8.65 13.31 29.93 31.61

Mistral-7B-
Instruct-v0.3

baseline

zero-shot 0.381 67.29 30.83 1.88 13.46 18.51 30.95 42.90
1-shot 0.365 72.61 26.09 1.30 15.38 20.45 34.69 39.03
5-shot 0.331 72.66 26.86 0.48 14.10 15.58 31.97 37.74
10-shot 0.304 73.63 25.85 0.52 12.18 14.29 30.61 35.48

sft zero-shot 0.236 85.52 13.80 0.67 10.26 12.01 27.21 33.87

Table 21: Error rates, incorrect choice distributions, and local negation confusion rates for the Mis-
tral family under zero-shot, few-shot, and SFT conditions, evaluated in the option-selection setting.

Error
Rate Answer

Format
Wrong

Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

Mistral-7B-
v0.3

baseline

zero-shot 0.624 351 53.21 21.56 25.23 16.99 18.18 26.53 14.52
1-shot 0.410 0 67.12 16.63 16.25 30.77 24.68 28.91 29.03
5-shot 0.306 0 83.16 11.92 4.92 26.28 24.35 24.49 29.68
10-shot 0.272 0 85.42 8.45 6.12 23.40 22.73 21.09 28.39

sft zero-shot 0.614 0 40.05 29.46 30.49 22.44 27.92 28.57 22.58

Mistral-7B-
Instruct-v0.3

baseline

zero-shot 0.358 1 65.56 25.78 8.67 27.24 23.05 27.55 18.71
1-shot 0.370 0 61.03 34.90 4.07 27.24 20.78 26.19 19.03
5-shot 0.335 0 68.96 29.86 1.18 28.85 19.81 26.19 20.32
10-shot 0.331 0 71.22 27.10 1.68 28.53 22.08 25.51 20.97

sft zero-shot 0.351 1 67.57 21.32 11.11 23.08 23.05 33.67 18.06
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Table 22: Error rates, incorrect choice distributions, and local negation confusion rates for the Qwen
family under zero-shot, few-shot, and SFT conditions, evaluated in the completion-based setting.

Error
Rate Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

Qwen2.5-
3B

baseline

zero-shot 0.542 67.69 26.02 6.29 24.68 30.19 55.10 42.26
1-shot 0.522 67.63 25.53 6.84 24.36 28.25 55.78 38.06
5-shot 0.481 70.84 23.89 5.27 25.00 28.57 50.00 37.74
10-shot 0.437 73.14 22.14 4.72 23.40 25.32 45.58 38.06

sft zero-shot 0.276 85.34 13.22 1.44 14.74 20.78 30.95 30.97

Qwen2.5-
3B-Instruct

baseline

zero-shot 0.466 68.03 28.57 3.40 19.23 28.25 42.86 40.97
1-shot 0.393 67.68 28.28 4.04 16.67 20.45 42.52 30.65
5-shot 0.355 77.01 21.88 1.12 19.55 22.40 39.46 31.94
10-shot 0.351 77.83 21.04 1.13 21.15 23.05 35.71 32.90

sft zero-shot 0.300 85.19 13.49 1.32 15.71 22.40 33.33 34.19

Qwen2.5-
7B

baseline

zero-shot 0.520 70.73 24.54 4.73 24.68 31.17 53.06 43.55
1-shot 0.534 71.47 25.56 2.97 29.17 31.17 56.12 41.61
5-shot 0.492 71.13 25.81 3.06 24.36 28.25 51.70 40.65
10-shot 0.447 74.07 23.98 1.95 24.04 24.68 45.58 42.58

sft zero-shot 0.240 87.75 11.59 0.66 15.06 15.91 22.45 33.23

Qwen2.5-
7B-Instruct

baseline

zero-shot 0.458 65.16 31.54 3.29 18.27 29.22 39.80 36.13
1-shot 0.438 69.02 30.07 0.91 22.12 23.70 43.88 35.48
5-shot 0.378 71.85 27.94 0.21 19.55 19.16 37.41 36.13
10-shot 0.335 73.76 25.77 0.47 19.23 18.18 30.61 34.19

sft zero-shot 0.282 88.76 10.96 0.28 16.03 19.48 31.29 36.77

Table 23: Error rates, incorrect choice distributions, and local negation confusion rates for the Qwen
family under zero-shot, few-shot, and SFT conditions, evaluated in the option-selection setting.

Error
Rate Answer

Format
Wrong

Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

Qwen2.5-
3B

baseline

zero-shot 0.500 0 38.99 19.49 41.52 23.08 19.16 26.87 11.61
1-shot 0.463 0 45.89 27.23 26.88 25.00 21.43 26.53 14.84
5-shot 0.431 0 44.75 25.60 29.65 24.04 19.81 23.13 12.58
10-shot 0.439 0 45.85 23.10 31.05 25.00 21.10 25.17 11.94

sft zero-shot 0.373 2 51.07 13.25 35.68 17.31 15.58 26.19 19.35

Qwen2.5-
3B-Instruct

baseline

zero-shot 0.380 0 49.27 40.29 10.44 20.19 15.91 24.15 17.10
1-shot 0.419 0 53.22 32.39 14.39 26.28 19.16 28.23 18.39
5-shot 0.398 2 54.40 31.60 14.00 27.24 19.16 29.25 13.55
10-shot 0.388 0 56.44 29.24 14.31 26.60 20.13 30.61 13.23

sft zero-shot 0.274 1 59.13 34.49 6.38 12.18 13.31 21.43 20.00

Qwen2.5-
7B

baseline

zero-shot 0.377 0 68.21 15.79 16.00 28.53 22.73 36.39 18.71
1-shot 0.392 0 70.65 15.59 13.77 33.97 26.30 38.10 16.13
5-shot 0.377 0 72.00 15.16 12.84 33.65 23.05 38.78 16.77
10-shot 0.372 0 73.13 14.93 11.94 32.69 23.05 40.48 16.45

sft zero-shot 0.344 0 82.03 13.13 4.84 30.77 24.35 43.54 18.39

Qwen2.5-7B-
Instruct

baseline

zero-shot 0.324 0 62.84 29.34 7.82 23.72 22.73 23.47 14.19
1-shot 0.363 0 61.79 31.66 6.55 30.45 21.10 27.21 13.87
5-shot 0.368 0 66.38 26.51 7.11 31.41 19.81 34.69 15.16
10-shot 0.390 0 67.07 25.81 7.11 34.62 20.78 35.03 17.74

sft zero-shot 0.207 0 78.54 17.62 3.83 18.59 20.13 17.69 10.65
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Table 24: Error rates, incorrect choice distributions, and local negation confusion rates for the API
models under zero-shot and few-shot conditions, evaluated in the option-selection setting.

Error
Rate Answer

Format
Wrong

Incorrect Choice Distribution Local Negation Confusion Rate

(1-acc)
Local

Negation
(%)

Contra-
diction

(%)

Para-
phrase

(%)

Relative
Clause

(%)

Participle
Clause

(%)

Compound
Sentence

(%)

Adverbial
Clause

(%)

gpt-4o-
mini baseline

zero-shot 0.357 0 34.67 65.33 0 17.31 8.44 13.27 11.94
1-shot 0.317 0 40.00 59.75 0.25 19.87 7.47 13.95 10.97
5-shot 0.316 0 38.35 61.15 0.50 19.23 7.14 11.90 11.61
10-shot 0.298 0 42.02 57.98 0 19.23 8.12 12.93 11.29

gpt-4.1-
mini baseline

zero-shot 0.203 0 51.95 48.05 0 14.10 6.49 8.16 14.52
1-shot 0.184 0 64.66 35.34 0 16.35 6.17 10.20 16.13
5-shot 0.156 0 65.48 34.52 0 13.46 6.17 7.14 15.16
10-shot 0.153 0 64.77 35.23 0 14.74 5.19 4.76 15.81

claude-3-5-
haiku-latest baseline

zero-shot 0.278 0 67.81 30.48 1.71 22.76 14.29 15.99 24.52
1-shot 0.477 434 83.93 15.48 0.60 20.19 6.49 10.54 8.71
5-shot 0.527 574 95.56 4.44 0 13.78 3.57 5.44 5.16
10-shot 0.368 324 94.29 5.00 0.71 20.83 6.17 5.44 10.32
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