
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Unsupervised learning of categories

Anonymous authors
Paper under double-blind review

Abstract

Humans are known to reason using logic and abstract categories, and yet
most state of the art neural models use continuous distributed represen-
tations. These representations offer impressive gradient-based learning ca-
pabilities, but it is often difficult to know what symbolic algorithm the
network might implicitly be implementing, if any. We find that there are
representational geometries that naturally suggest a symbolic structure,
which can be expressed in terms of binary components. We show that we
can recover this structure by fitting the geometry of this binary embedding
to the representational geometry of the original objects. After establishing
general facts and providing some intuitions, we present two algorithms that
work on low-rank or full-rank data, respectively. We assess their reliability
on simulated data, and then use them to interpret neural word embeddings,
in which we expect a compositional structure.

1 Introduction

In biological and artificial learning systems, compositional structure is important to flexible
behavior, yet it is difficult to detect at the representational level. Neural representations
are rarely factorized into purely-selective concept neurons; when there is a neat conceptual
structure it is most often embedded into high-dimensional neural modes (Kaufman et al.,
2022; Higgins et al., 2021; She et al., 2021; Bernardi et al., 2020; Courellis et al., 2024).
Modern machine learning systems also use distributed continuous representations, which are
rarely factorized even when symbolic or compositional structure are explicitly incorporated
into the model (Altabaa et al., 2024; Rigotti et al., 2022; Mao et al., 2019).

Identifying latent structure can enable compact descriptions of neural computation. This
is true for biological systems (Bernardi et al., 2020; Courellis et al., 2024) and artificial.
Huben et al. (2024) were recently able to use sparse autoencoders to find causally-relevant
factors in language model representations. While the factors learned by such approaches
are continuous they are often analyzed discretely (is it active or not), which can introduce
“quantization errors” to the reconstruction and may be misleading, in that they will not
accurately reflect the true latent structure. For that reason, we see advantage in having
factors which are categorical by construction.

In addition to interpreting fixed models, there might be some value to logical representa-
tions when building a model. An early critique of connectionism was its inability to account
for systematic generalization (Fodor and Pylyshyn, 1988). Despite remarkable and unan-
ticipated advances, modern connectionist systems still struggle with abstract reasoning and
out-of-distribution generalization (Chollet, 2019; Mitchell et al., 2023; Moskvichev et al.,
2023; Anil et al., 2022). Being able to efficiently convert learned continuous representations
into a symbolic equivalent can help leverage advantages of both gradient-based and symbolic
computation (Mao et al., 2019; Koh et al., 2020).

We will show that the discovery of latent categories can be formulated as a binary matrix
factorization. Given a representation, X, we will try to find a binary representation, S,
which encodes an assignment of items to logical variables in such a way that preserves
distances. We refer to these logical variables as ‘concepts’. Many structures–including
analogies, clustering, hierarchy, ordering, and hybrids of these–can be captured by binary
concepts. However, binary matrix factorization is a difficult combinatorial problem, so, in
addition to introducing it as a tool for concept discovery, we offer a new efficient algorithm.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prior work We are in many ways motivated by ongoing interest in symbolic capabilities
of continuous representations. There is a long tradition of neuro-symbolic paradigms which
do this explicitly; for example, tensor product representations (Smolensky et al., 2022), and
more recently transformer-inspired architectures (Altabaa et al., 2024; Mao et al., 2019).
Yet compositional and symbol-like vectors can appear in more standard connectionist ar-
chitectures (Zhou et al., 2024), and also in biology, where it is hidden by lack of mechanistic
understanding and requires bespoke analyses to discover. In such a case it could be very
useful to have a systematic way of making explicit underlying compositional structure.

The field of mechanistic interpretability offers many ideas and methods related to continuous
representations of categorical structure. Our formalism and method can be seen as opera-
tionalising the linear representation hypothesis (Park et al., 2024; 2023), by “unembedding”
a linear representation of categorical variables. In particular our use of orthogonal weights
fits nicely in that framework. A similar point of view has been taken by recent work on
the representation of sparse variables in language models (Elhage et al., 2022; Huben et al.,
2024), and we aim to enable a similar discovery process for categorical variables.

In computer science, what we seek has been called locality-sensitive hashing (Andoni and
Indyk, 2006). Salakhutdinov and Hinton (2009) proposed a binary latent variable model

for similarity-preserving hashing of documents, and Mena and Ñanculef (2019) tackled the
same problem with a variational autoencoder. At the level of the generative model these
approaches are very similar to ours, but with different algorithms and goals, as these methods
are often non-linear and do not always seek interpretable features.

In the community detection and applied math literature, our specific factorization problem
has been studied as (semi) binary matrix factorization (SBMF) or binary component decom-
position (BCD). Remarkably, in special cases an algebraic solution is available via tensor
decomposition (Sørensen et al., 2021), but it is highly sensitive to violations of its assump-
tions. There are several optimization-based approaches (Zhang et al., 2007; Kolomvakis
and Gillis, 2023; Sørensen et al., 2022) which are generally built around the assumption of
very low-rank data, and thus may not be applicable in the general case. Our specific model
formulation closely follows that of Kueng and Tropp (2021), and we substantially extend
the scope of their model by fitting more general structures to to noisy data.

Contributions We extend previous work on this topic both conceptually and practically.
While others have formalised the representation of categorical structure in various ways,
they often focus on specific kinds of structure and developed appropriately sophisticated
formalisms. Framing the search for compositional structure as a simple matrix factorization
makes the general problem conceptually tractable, and can be used as a starting point for
more structured analyses. On the technical side, the literature on SBMF has restricted itself
to the case of identifiable factorizations, and we substantially extend the scope of that work
by applying mild regularization, and provide an overlooked connection to graph structure
as a visualisation tool. By bringing insights from the literature on SBMF to the field of
interpretability, we can offer a new perspective on an important and under-studied problem.

Practically speaking, we try to marry the advantages of the matrix factorization and au-
toencoder approaches, by providing a general heuristic algorithm without restrictive require-
ments on the data, which nevertheless can take advantage of the structure of the problem
for substantial gains in efficiency and ground truth recovery. Due to the straightforward
implementation, our algorithms can be more easily integrated into differentiable systems as
well. For instance, “concept bottleneck models” (Koh et al., 2020), in which the eponymous
concepts are normally hand-labeled. In general, we hope that the simplicity and effectiveness
of our approach can inspire deeper exploration of this problem.

2 Problem formulation

Our factorization approach tries to identify any compositional structure that is present in
the representational geometry. For example, the transformation from a white square to
a shaded square is similar to the transformation from a white circle to a shaded circle.
For some representational geometries, this form of compositionality is reflected by vector

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a b

Figure 1: Illustration of the matrix factorization. (a) A representation with compositional
structure in which shared feature vectors are added together. (b) The kernel matrix, which
we model as a conic (i.e. non-negative linear) combination of rank-one binary matrices.

additivity. For example, in Fig. 1a we can get from the white square to the shaded square
by adding the wt “feature” vector associated with t. This is the same vector that allow us
to move from the representation of the white circle to the representation of the black circle.
Thanks to the additivity structure of the geometry, we can also predict what we will see
when we add both the ws and the wt vectors. This kind of conceptual navigation is what
we will try to discover from the data.

Our criterion will be geometry preservation. If the representation of the data is composed of
some shared concepts, then the similarity of a pair of items should be related to the number
of categories they both belong to. More precisely, we will model the dot product between
each pair of observations by the positive weighted sum of the number of shared concepts:

XXT ∼
b∑

α=1

παsαs
T
α (1)

where the rows of X ∈ Rp×n are the representation of the data, sα ∈ {0, 1}p is the binary
assignment of each item to the concept α, and πα ∈ R+ is the weight the concept has in the
representation (Fig.1b). We will refer to the matrix whose columns are the concept vectors
by S, the binary embedding of X. By “∼”ing we mean distance preservation, which will be
made precise in the following section.

A distance-preserving embedding can be seen as implicitly inverting a linear encoding model.
In matrix terms, we model the data as the product of a real and a {0, 1}-valued matrix:

X ∼WST

where the columns of W ∈ Rn×b are the feature vectors associated with each concept. If
the columns of W are orthogonal, then the π values above will correspond to their squared
norms. Rather than fitting W jointly with S, which increases the number of parameters
and can be very sensitive to initialization (Sørensen et al., 2022), we fit W after the fact
using either Procrustes or ordinary least squares regression.

Existence and uniqueness Without an orthogonality constraint, clearly all data, X, can
be decomposed with an exact binary embedding; just set W = X and S = I. With orthog-
onal W, not all X can be factorized exactly, and it is NP-hard to check for a particular X
(Deza and Laurent, 1997). Nevertheless, most data is ‘fairly close’ to an exactly-embeddable
representation (Laurent and Poljak, 1996), and we give some small examples in Figure 2.
Among our examples, the square, tetrahedron, and tree are exactly embeddable, while the
grid and hexagon are best approximations (as defined in the following section).

Exact or approximate, the optima are rarely unique1. A necessary and sufficient condition
for uniqueness would be NP-hard to check (Deza and Laurent, 1997), but several sufficient
conditions have been derived of varying restrictiveness and complexity (Kueng and Tropp,
2021; Sørensen et al., 2022). A crude intuition: the higher-dimensional the data, the more
possible solutions. Two extreme examples are the b-cube and the p-simplex. A hypercube
has p points in b dimensions, and its binary representation is unique; meanwhile, a p-
simplex (every point equidistant) has p−1 dimensions, and a tremendous number of possible

1Unique up to flipping all bits of a concept, which is a trivial symmetry of our model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

D
is
ta

nc
es

D
at

a
(X

)

TetrahedronSquare Tree Hexagon Grid

Co
nc

ep
ts

a ab

b

a

b

c

d

a

b

c

a b

a bc c

abc

d

e e

a

a

a

bb

c

bc

d c dd

Figure 2: Examples of some categorical structures recoverable from geometry. The concepts
are found by optimizing Equation 3 with brute force (i.e. setting S = {0, 1}p) and sparsity
regularization. The graphs (see Section 2) are drawn by manual inspection. Notice that the
concept labels (in curly brackets) can be gotten by cutting the graph at the corresponding
edges, and labelling the partition on the arrow side. We chose the source nodes arbitrarily.

representations, including the identity matrix and all Hadamard matrices. Because of this,
we argue for a sparsity inductive bias in Section 2.1.

Graphical representation High-dimensional binary vectors can be hard to interpret,
and we would like a visualization tool. Hierarchical clustering can be visualized with a
dendrogram, i.e. a tree on which observations are leaves and cluster assignments can be
recovered by cutting the tree at a certain depth. Just as we generalize hierarchical clustering,
we can generalize the dendrogram.

Our goal will be to draw a graph in which (1) distances match those in S and (2) the concepts
themselves can easily be recovered. Given a set of b concepts, S, we can isometrically embed
each point (row of S) on a ‘partial cube’, i.e. an isometric subgraph of the b-bit hypercube.
In this representation (e.g. Fig.2, bottom row), nodes are connected by an edge when they
differ by one and only one concept (i.e. only one component of the concept vector differs).
Some nodes of the hypercube which do not correspond to observations might be necessary to
form the graph. Concepts can be read out by cutting (i.e. removing) all edges corresponding
to the same concept, and for visualization it is often easier to color the edges to know which
to cut (as we have done in Fig.2). By analogy to a dendrogram (which is itself a type of
partial cube) we will call this kind of graph an ‘analogram’.

Every partial cube has an easily-obtained unique binary representation (Deza and Laurent
(1997), and see the Appendix A.3 for explicit construction), but there is a combinatorial
number of graphs whose binary representation is S. The analogram should be the smallest
such graph. Unfortunately, as often the case in this problem, finding such an analogram is
NP-hard and it needn’t even be unique (Knauer and Nisse, 2019). Nevertheless, we made a
heuristic algorithm that works well on moderately-sized S, and always on trees (see A.3).

2.1 Objective

Since an exact fit is not always possible (or desirable, in the presence of noise), we must define
goodness of approximation. The centered kernel alignment (CKA) is commonly used to
measure representational similarity in machine learning and neuroscience (Kornblith et al.,
2019), and intuitively measures the similarity of the two representational geometries. It
is related to the decodability of one representation from another, but it is translation and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

scale invariant, which is desirable in a measure of geometric similarity (but see Davari et al.
(2022); Harvey et al. (2023)).

The CKA is the cosine similarity of the flattened, double-centered Gram matrices. Specif-
ically, if we have p × p Gram matrices K = XXT , and Q = SΠST , then double-centering
means computing the dot products after subtracting the mean from each dimension. If we
define the centering matrix H = Ip − 1

p1p, then we will denote the centered features and

kernels by X̄
.
= HX and K̄

.
= HKH, respectively.

So, the problem we want to solve is

argmax
Q=SΠST

tr(K̄Q̄)√
tr(K̄K̄) tr(Q̄Q̄)

(2)

For practical reasons, it will be easier to minimize a distance function than to maximize
the cosine. While it is not generically the case for constrained optimization, since our
constraining set is closed under positive scaling this is equivalent to minimizing the mean
squared error between the centered kernel matrices:

argmin
S∈{0,1}p×b,π∈Rb

+

∥S̄ΠS̄T − X̄X̄T ∥2F (3)

which can be solved directly, when p is small enough, by fixing S to include all binary
vectors in {0, 1}p and optimizing over π. However when p is greater than ∼ 10 this is very
impractical, and so heuristic algorithms are needed.

2.1.1 Regularization

There could be an astronomical number of optima for a given geometry, so we need an
inductive bias to break the tie. We would like to select for the simplest structure that fits
the data. Using the minimal number of concepts might seem like a reasonable choice, but
this will favor dense concepts which can lead to more complex relationships between them
(A.2). Instead we should try to minimize the size of the analogram (Section 2). Since that
is very hard to do directly, we notice that the simpler graphs tend to have sparser concepts,
and propose regularizing for sparsity.

To encourage sparsity, we add linear (in S) term to the loss: 1TS1. This does not guarantee
identifiability2, but, intuitively, there are fewer sparse concepts than dense ones, and so
we try to reduce the space of solutions by asking for the sparsest concepts. Sparsity is a
common requirement for solving otherwise ill-posed inverse problems (Donoho, 2006) and,
as an inductive bias, has also been found to parsimoniously explain structure learning in
humans (Lake et al., 2018; Kemp and Tenenbaum, 2008).

3 Optimization

Being a challenging combinatorial problem, we cannot expect efficient solutions that work
in every situation. There are already remarkably effective approaches for very low-rank
data, but they do not always fail gracefully when their assumptions are violated. Here, we
develop an algorithm which can exploit low-rank structure when it exists, and another to
handle the general case. Note that both algorithms can in principle work on any positive
semidefinite matrix, and are thus quite general.

3.1 Rejection sampling for low-rank data

When the dimensionality of the data is sufficiently small, Kueng and Tropp (2021) and
Kolomvakis and Gillis (2023) provide efficient algorithms based on randomly sampling
columns of S. These methods are based on the following observation: If the data ad-
mits a factorization of the form X̄ = S̄WT , and W ∈ Rn×b has full column rank, then,

2We provide detailed examples in A.2 of the kinds of degeneracy that can exist. For the curious:
in our illustrations, the sparsest solution is unique, but this is not generally true. A counter example
is the 16-vertex cross polytope geometry, which has two solutions of equal sparsity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

since the linear mapping can be inverted, each column of S̄ is also in the image of X̄. So,
these algorithms randomly search for such vectors s ∈ im(X̄) ∩ {0, 1}p. When the rank, r,
is very small, it is possible to use exhaustive search since there are at most 2r such binary
vectors (Slawski et al., 2013). In general, more efficient methods are required.

The aforementioned algorithms are able to search efficiently by assuming that the s vectors
are ‘Schur-independent’. This means that the set of bitwise exclusive-or vectors of all pairs
of concept vectors, {1} ∪ {sα ⊕ sβ}bα,β=1, is linearly independent. In that case, because of

the special structure of the set of correlation matrices (Laurent and Poljak, 1996; Kueng and
Tropp, 2021), each s can be found via semidefinite programming (SDP). But in the general
case, when the rank is still low but not low enough, the SDP is not guaranteed to have a
rank-one optimum, and would require a heuristic rounding step. In such a situation it might
not be worth the computational burden of solving an SDP, which has O(p2) variables, and
so we propose a method based on Hopfield networks.

In the presence of noise, the true concept vectors might not be exactly in the image of
X̄, but just the closest among nearby binary vectors. If U are the right singular vectors
(with non-zero singular values) of X, then we expect the true concept vectors, s, to be
local maxima of E(s) = sTUUT s. This is precisely (the negative of) the energy function
of a Hopfield network (Hopfield, 1982), which we can maximize by iteratively updating
st ← sign(UUT st−1) from some initial guess.

There is an interesting connectionist interpretation of this procedure. Let us imagine the
concept s is the binary response pattern of neuron to the whitened inputs – then the Hopfield
updates amount to Hebbian plasticity. If the weights of the neuron are m, then the update
above tells us that it should be set to mi =

∑
j Ui,jsj , which is a Hebbian rule. Taking this

interpretation, we call this algorithm the binary autoencoder (BAE). It works by randomly
sampling s vectors according to Algorithm 1, with a tolerance parameter ϵ. To improve
efficiency, we can also try to discourage any accepted s from being resampled by subtracting
some part of its projection onto U: i.e. applying U← (I− λ

p ss
T)U for some λ ≥ 0.

Numerical validation We find that this simple algorithm performs very well on simu-
lated low-rank data. For p points, we draw

√
2p random s vectors, which almost certainly

admit a unique decomposition, and embed them in d-dimensions with a random orthogonal
matrix. We then add iid Gaussian noise to achieve a specified signal-noise ratio (SNR).

We compare against two baselines: a two-layer tanh autoencoder, and a variational autoen-
coder with Bernoulli latents (Mena and Ñanculef, 2019). The two differ primarily in the a
binary entropy term present in the loss of the VAE; we also include sparsity regularization in
both. We do not compare against algorithms for SBMF since they do not apply to the data
we will test in the next two sections, and have also recently been benchmarked on the same
type of simulations we are running here (Kolomvakis and Gillis, 2023). Compared to the
two gradient-based baselines, the sampling algorithm is better at recovering ground truth
across the full range of sizes, and about an order of magnitude faster (Fig. 3a). We note that
the VAE has slightly better ground truth recovery than the tanh autoencoder, while doing
substantially worse at reconstructing the overall geometry, indicating only partial recovery.

Algorithm 1 Rejection sampler (BAE)

1: function Sample(U ∈ Rp×r, ϵ > 0)

2: s ∼ p0(s ∈ {0, 1}p)
3: while not converged do

4: s← Θ[UUT s]

5: if ∥UT st∥22 ≥ (1− ϵ)p then

6: Return s

7: else

8: Return Sample(U, ϵ)

Algorithm 2 Hopfield coordinate descent

1: function Hop(S, X ∈ Rp×n, x ∈ Rn, T > 0)

2: J = Eq. 9

3: h = Eq. 10

4: s ∼ p0(s ∈ {0, 1}b) ▷ Initialise s

5: for i = 1, ..., b do

6: c = hi + (si − 1
2)Jii −

∑
j ̸=i Jijsj

7: si ∼ Bernoulli(η = c/T)

8: return s

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Tree

points (p)# points (p)

Low rank LR+Tree

T
im

e
(s

)

C
K
A

N
o
rm

.
H

am
.

d
is

t.

C
K
A

N
o
rm

.
H

am
.

d
is

t.

points (p)# points (p) # points (p)

T
im

e
(s

)

a b c

Figure 3: Numerical experiments. All plots are the average of 12 random seeds, and op-
timized over hyper-parameters. (a) Data generated by Schur-independent concepts. We
report the average Hamming distance of the discovered concepts, S, to the nearest ground
truth, S∗, minimized over permutations of the columns of S, and normalized by the size
of the data. (b) Data generated by hierarchically-structured concepts. (c) Same as before,
but with data generated by a mixture of Schur-independent and hierarchical concepts.

3.2 Iterative refinement for full-rank data

When X is full rank, every concept is in im(X̄), and so we cannot use Algorithm 1. We
must instead optimize our objective function (Eq. 3) over {0, 1}p×b × Rb

+, which is hard.
While we leave the full derivation to the Appendix (A.4), we show that optimizing one row
of S at a time with coordinate descent makes it a more tractable problem.

To first establish notation: Assume that we are updating the pth row. We denote the first
p−1 rows by S ∈ {0, 1}p−1×b, and the row being updated by s ∈ {0, 1}b. The corresponding
rows of the data areX and x, respectively. Denote the row-wise mean of S by ⟨s⟩ .

= 1
p−1S

T1.

To minimize the loss (3) with respect to s, we can minimize the following function:

L(s) = sTJs− 2hT s

J = 2S̄T S̄+ t⟨s̃⟩⟨s̃⟩T (4)

h = J⟨s⟩+ t⟨1− s⟩T ⟨s⟩⟨s̃⟩ − tx̄T x̄⟨s̃⟩+ 2ST X̄x̄ (5)

where ⟨s̃⟩ .
= 2⟨s⟩ − 1 and t

.
= p−1

p . The above equations exclude Π for legibility, but the

term can be added back in as shown in the full derivation (A.4). We note that a convex
relaxation is possible, which we describe in (A.5), but in our experience it is less robust.

Because L is a quadratic function of s, there are many heuristic tools available. Pun-
nen (2022) provides a survey of exactly-solvable cases and approximate algorithms, on
top of which we mention recent work on iterative submodular approximation (Konar and
Sidiropoulos, 2019) and old work on Hopfield networks (Hopfield and Tank, 1985). The Hop-
field approach is intriguing, since the weights and offsets are formed of Hebbian terms (S̄T S̄
and STX) and rank-one terms (⟨s̃⟩⟨s̃⟩T) which could be implemented with local learning
rules in a neural or neuromorphic system3. Furthermore, Hopfield updates just use repeated
matrix-vector multiplication, so we can profit off the potentially extreme sparsity of S, given
our chosen regularization. For these reasons it is our method of choice (Algorithm 2).

The Hopfield-style coordinate descent can very naturally be combined with the rejection
sampling algorithm in order to produce a general-purpose algorithm for low-but-not-full

3The middle terms of h are not so clearly local, and may need auxilliary neurons to implement.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

rank data. S can be initialized by sampling b concepts from Algorithm 1, and then we can
iterate between steps of Algorithm 2 and projections onto the image of X̄.

Numerical validation We test this algorithm on hierarchical concepts, as well as a hybrid
low-rank and hierarchical structure. To generate this data, we recursively partition the
points by randomly choosing a number of partitions between 2 and 4, defining a concept for
each partition, and then repeating within each partition. The same noise model was used
as before. The hybrid structure is just the concatenation of randomly-sampled concepts
and the hierarchical ones. We use the iterative refinement algorithm with an exponential
annealing schedule (T = γtT0, with γ = 0.8 and T0 = 5) run for 100 iterations. We note
that the run time of the algorithm is depends on the sparsity of the discovered solution,
since we use sparse matrices, but is roughly the same for both kinds of data.

In comparison with gradient-based autoencoders, the Hopfield approach does better at re-
covery and geometry matching at all noise levels. All models struggle with the hierarchical
concepts, due to the highly non-identifiable nature of the problem, but ours manages to do
better over a wider range (Fig. 3b). The hybrid geometry is most challenging for all models
(Fig. 3c), presumably as they struggle to find the unique Schur-independent components
without the benefit of the projection steps of Algorithm 1. We note in the case of the
tree-structured data that hamming distance may be deceptive, since the concepts are very
sparse and so any other sparse concept will be close to it; hence we also show the CKA. In
terms of time, we are comparable but slightly faster with the other autoencoders.

4 Application to neural word embeddings

Finally, we will see how this works on a simple example from word2vec (Mikolov et al.,
2013), a well-known word embedding. The embedding is generated by predicting word-
context pairs, in which contexts are the neighboring words in the Google News corpus. The
embeddings can themselves be seen as a matrix factorization (Levy and Goldberg, 2014).
What earned word2vec its notoriety is the fact that certain abstract concepts are encoded
along parallel dimensions–exactly the kind of structure that we are looking for.

Since word2vec has embeddings for several million words, we need to select a subset to
study. WordNet (Fellbaum, 1998) contains manually-encoded ‘is-a’ relations (i.e. ‘dog’
is-a ‘canine’) over a large vocabulary, and we used it to generate a list of words that are
descendants of ‘person’. This comes out to 3841 words. With around 4000 points in 300
dimensions, this has an intermediate dimensionality, and thus is a good use case for the
hybrid sampling and refinement algorithm. Doing this we achieve a CKA of around 0.94
(Fig. 4a) using 993 concepts. The model splits into sparse and dense concepts (Fig.4b),
which is indicative of an underlying low-dimensional structure with some high-dimensional
deviations. It is the low-dimensional variables we will focus on interpreting.

We have replaced a high-dimensional continuous embedding with a high-dimensional binary
embedding, and some additional tools are required to make sense of it. This is a problem
for most large-scale interpretability methods, and modern strategies for analysis of word
embeddings include asking large language models to say what all words in a cluster have
in common (Huben et al., 2024).While there are also practical uses for binary embeddings
(Andoni and Indyk, 2006; Koh et al., 2020), here we will showcase two styles of analysis
which relate to our goals of abstraction and interpretability.

Visualising global structure Our first approach will be to inspect two concepts across
the whole dataset and to find the common variable across them. When we choose two
concepts, this groups together the data into four clusters, based on which combination of
values the word takes (Fig. 4c). We can then compute the “parallelism” of these concepts
by measuring the angle that the vectors connecting centroids of each cluster make (Fig. 4d).
For instance, we take the difference between clusters 1 and 2, which differ only by concept
1, and compare that to the difference between clusters 3 and 4 which also differ only by
concept 1. Likewise for 1/3 and 2/4. Doing this for all pairs of discovered concepts, we pick
the pair with the highest average parallelism (in our case, 0.92 and 0.90). We then project

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

king

a

c d e

b

f g h

king

king

eunuch

guy

girl

queen

queen

queen

manman

man

woman

Concept cluster

w2v cosine simil. binary fit (993 concepts).

m kwq m kwq

king

queen

man

woman

woman

woman

PC1

PC
2

P(concept 1)0
0

1

1

0

1
0 1

P
(c

o
n

ce
p

t
2

)w
ei

g
h
t

Proj onto w1

Pr
oj

 o
n
to

 w
2

Cluster 1
Cluster 3

Cluster 4
Cluster 2

PS = cos θ

Concepts

Rel. size

W
ord

 clu
ster

Figure 4: (a) Cosine similarity of 3841 words, in the word2vec representation (left) and the
binary reconstruction (right). Words were selected using WordNet by taking all hyponyms
of ‘person’ which were also present in word2vec. (b) The distribution of concept sparsity
after fitting (blue) compared with the random projection initialization (grey). (c) Averages
of the rows of S grouped according to two concepts (the middle ones). The relative size of
each word cluster is indicated on the left plot. (d) A cartoon illustrating the parallelism
score (PS) computation on four clusters. (e) With the two most parallel concepts, we
project each word vector onto the corresponding columns of W, coloured according to
its cluster. Sample words are highlighted. (f) PCA plot of four words of interest, with
analogram overlaid and projection of all other selected words. (g) Example of sub-concept
vectors, which are averages over concept vectors conditioned some subset of points. (h)
The ‘conceptual projection’ of all fitted words onto the two high-level concepts. Highlighted
words were selected by manual inspection.

all the data onto the features, W, associated with these two concepts, and find that the
four clusters are well-separated (Fig. 4e).

To interpret the chosen concepts, we will see if there are consistent changes between pairs
of words from one side of a concept to the other. We search for quadruplets which look the
most like a square in the binary space, i.e. which have the fewest bits changing amongst
them, and highlight the top two in Fig.4e. Going from the lower left to upper left cluster, we
go from a familial term (“niece”) to a generic term with the same gender (“girl”); we also go
from a word more common in American English (“retiree”) to its synonym in British English
(“pensioner”). While it is not clear what these changes have in common with each other,
the same types of changes are observed when moving up on the right two clusters (“uncle”
to “boy”, “roommate” to “flatmate”). It is somewhat harder to parse what changes from
left to right. In one quadruplet, gender changes (“girl”/“boy” to “niece”/“uncle”), while it
is hard to summarise what changes between “retiree” and “roommate”. This suggests that

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

our discovered concepts may be too abstract, and further analysis is required to disentangle
the more specific variables changing across each dichotomy.

Visualising local structure Instead of looking across the whole dataset, where a lot of
things might be changing, we can focus on a particular quadruplet and try to interpret the
concepts which separate them based on how other words vary along them. We will pick the
famous quadruplet of “king”, “queen”, “man”, and “woman”. Conditioning on these four
rows of S, we find 6 kinds of concept (Fig. 4f), which can be visualised with the analogram
in Fig .4g. From this we can see idiosyncratic concepts which group together single words,
as well as two concepts which group together “king” and “queen”, or “king” and “man”.

While the “king”/“man” and “king”/“queen” concepts are often interpreted as “class” and
“gender”, respectively, it is not clear from just 4 words whether this is the right interpre-
tation. When we take a subset, we are combining multiple dataset-level concepts into a
single quadruplet-level concept; that is, there are many dataset-level concepts which group
together “king” and “queen” vs. “man” and “woman”. For example, “man” and “woman”
are very generic terms, and something like ‘specificity’ is a concept which could plausibly
affect the contexts in which they appear in the news. From the analysis before, it is clear
that discovered concepts may sometimes correspond multiple variables.

To better understand the quadruplet-level concepts, we can see how the rest of the dataset
varies along them on average. In Fig. 4e we are plotting this average value (which is between
0 and 1) for every word in grey, and some specific words are highlighted. A word’s value
along the first axis can be interpreted as “x% like ‘man’-‘king”’, while the second axis “y%
like ‘queen’-‘king”’. The resulting picture is certainly related to the geometry of the PCA
plot, but it is not exactly the same and is more quantitatively interpretable. This kind of
plot can complement the categorical, global-level analysis from before.

In general, the right side of concept 1 seems to be courtly roles rather than rulers per se,
while the left side are perhaps called ‘mundane’. Concept 2 does seem to capture some
gendered words (‘prince’ vs ‘princess’ and ‘boy’ vs ‘girl’), and the expected parallelisms
are visible in this projection. Meanwhile, there are words which are not gendered but may
nevertheless appear more often in gendered contexts in the news dataset, like “dunce” and
“readhead”. At the center of both concepts is “eunuch”. We note that this qualitative
picture persists for many random seeds and hyperparameter choices (annealing schedule,
regularization, number of concepts).

5 Discussion

Here we studied the problem of turning a continuous representation into a logical one.
We provided two simple algorithms with complementary use cases and demonstrate their
efficacy. When dealing with very low-rank data, we leveraged results from previous work
to develop a very fast and fairly robust method based rejection sampling. For when the
data is higher-dimensional, we use a coordinate descent approach to refine the solution.
Both algorithms enjoy convergence guarantees by connection to Hopfield networks, and thus
represent a new application of that neuroscience model to optimization (Hopfield and Tank,
1985). We show favorable results on synthetic data when compared to gradient descent, and
demonstrate several secondary analyses on word embeddings.

To the extent that we, humans, are engaged in concept discovery, our work here could also
provide a minimalistic model of that cognitive process. We are not modeling the difficult
process of discovering concepts from the real world: our model is linear, and therefore as-
sumes a representation which already, at least approximately, encodes the relevant concepts.
Instead, we model the process of turning a distributed, noisy code into abstract symbols
and structures (Kemp and Tenenbaum, 2008). At some point, distributed activity in the
brain is turned into discrete words, which is all that is heard by others. Future work can
address how the inherent challenges of unsupervised abstraction, which we laid out, might
be dealt with by more sophisticated algorithms with different inductive biases.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed membership
stochastic blockmodels. J Mach Learn Res.

Altabaa, A., Webb, T. W., Cohen, J. D., and Lafferty, J. (2024). Abstractors and relational
cross-attention: An inductive bias for explicit relational reasoning in transformers. In The
Twelfth International Conference on Learning Representations.

Andoni, A. and Indyk, P. (2006). Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pages 459–468.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra, V., Ramasesh, V., Slone, A., Gur-
Ari, G., Dyer, E., and Neyshabur, B. (2022). Exploring length generalization in large
language models. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A., editors, Advances in Neural Information Processing Systems, volume 35. Curran
Associates, Inc.

Bernardi, S., Benna, M. K., Rigotti, M., Munuera, J., Fusi, S., and Salzman, C. D. (2020).
The geometry of abstraction in the hippocampus and prefrontal cortex. Cell.

Chollet, F. (2019). On the measure of intelligence.

Cleuziou, G. (2007). A generalization of k-means for overlapping clustering. Rapport tech-
nique.

Cortes, C., Mohri, M., and Rostamizadeh, A. (2012). Algorithms for learning kernels based
on centered alignment. The Journal of Machine Learning Research, 13:795–828.

Courellis, H. S., Minxha, J., Cardenas, A. R., Kimmel, D. L., Reed, C. M., Valiante,
T. A., Salzman, C. D., Mamelak, A. N., Fusi, S., and Rutishauser, U. (2024). Abstract
representations emerge in human hippocampal neurons during inference. Nature, (8026).

Dasgupta, S. (2016). A cost function for similarity-based hierarchical clustering. In Pro-
ceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC
’16. Association for Computing Machinery.

Davari, M., Horoi, S., Natik, A., Lajoie, G., Wolf, G., and Belilovsky, E. (2022). Reliability
of cka as a similarity measure in deep learning.

Deza, M. M. and Laurent, M. (1997). Geometry of cuts and metrics. Springer.

Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan, T., Kravec, S., Hatfield-Dodds,
Z., Lasenby, R., Drain, D., Chen, C., Grosse, R., McCandlish, S., Kaplan, J., Amodei,
D., Wattenberg, M., and Olah, C. (2022). Toy models of superposition.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Bradford Books.

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1):3–71.

Harvey, S. E., Larsen, B. W., and Williams, A. H. (2023). Duality of bures and shape
distances with implications for comparing neural representations.

Higgins, I., Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D., and Botvinick,
M. (2021). Unsupervised deep learning identifies semantic disentanglement in single in-
ferotemporal face patch neurons. Nature communications, 12(1):6456.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hopfield, J. J. and Tank, D. W. (1985). “neural” computation of decisions in optimization
problems. Biological Cybernetics.

Huben, R., Cunningham, H., Smith, L. R., Ewart, A., and Sharkey, L. (2024). Sparse
autoencoders find highly interpretable features in language models. In The Twelfth In-
ternational Conference on Learning Representations.

Kaufman, M. T., Benna, M. K., Rigotti, M., Stefanini, F., Fusi, S., and Churchland, A. K.
(2022). The implications of categorical and category-free mixed selectivity on representa-
tional geometries. Current Opinion in Neurobiology.

Kemp, C. and Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of
the National Academy of Sciences.

Knauer, K. and Nisse, N. (2019). Computing metric hulls in graphs. Discrete Mathematics
and Theoretical Computer Science.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., and Liang, P.
(2020). Concept bottleneck models.

Kolomvakis, C. and Gillis, N. (2023). Robust binary component decompositions. In ICASSP
2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP).

Konar, A. and Sidiropoulos, N. D. (2019). Fast optimization of boolean quadratic functions
via iterative submodular approximation and max-flow. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. (2019). Similarity of neural network
representations revisited.

Kueng, R. and Tropp, J. A. (2021). Binary component decomposition part i: The positive-
semidefinite case. SIAM Journal on Mathematics of Data Science.

Lake, B. M., Lawrence, N. D., and Tenenbaum, J. B. (2018). The emergence of organizing
structure in conceptual representation. Cognitive Science, 42(S3):809–832.

Laurent, M. and Poljak, S. (1996). On the facial structure of the set of correlation matrices.
SIAM Journal on Matrix Analysis and Applications.

Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization.
In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., editors,
Advances in Neural Information Processing Systems, volume 27.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J. (2019). The neuro-symbolic
concept learner: Interpreting scenes, words, and sentences from natural supervision. In
International Conference on Learning Representations.

Mena, F. and Ñanculef, R. (2019). A binary variational autoencoder for hashing. In
Nyström, I., Hernández Heredia, Y., and Milián Núñez, V., editors, Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space.

Mitchell, M., Palmarini, A. B., and Moskvichev, A. K. (2023). Comparing humans, GPT-4,
and GPT-4v on abstraction and reasoning tasks. In AAAI 2024 Workshop on ”Are Large
Language Models Simply Causal Parrots?”.

Moskvichev, A. K., Odouard, V. V., and Mitchell, M. (2023). The conceptARC bench-
mark: Evaluating understanding and generalization in the ARC domain. Transactions
on Machine Learning Research.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Park, K., Choe, Y. J., Jiang, Y., and Veitch, V. (2024). The geometry of categorical and
hierarchical concepts in large language models. In ICML 2024 Workshop on Mechanistic
Interpretability.

Park, K., Choe, Y. J., and Veitch, V. (2023). The linear representation hypothesis and
the geometry of large language models. In Causal Representation Learning Workshop at
NeurIPS 2023.

Punnen, A. P. (2022). The Quadratic Unconstrained Binary Optimization Problem. Springer
Cham.

Rigotti, M., Miksovic, C., Giurgiu, I., Gschwind, T., and Scotton, P. (2022). Attention-
based interpretability with concept transformers. In International Conference on Learning
Representations.

Salakhutdinov, R. and Hinton, G. (2009). Semantic hashing. International Journal of
Approximate Reasoning, 50(7):969–978.

Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fukumizu, K. (2013). Equivalence of
distance-based and RKHS-based statistics in hypothesis testing. The Annals of Statistics,
41(5).

She, L., Benna, M. K., Shi, Y., Fusi, S., and Tsao, D. Y. (2021). The neural code for face
memory. BioRxiv, pages 2021–03.

Slawski, M., Hein, M., and Lutsik, P. (2013). Matrix factorization with binary components.
In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K., editors,
Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.

Smolensky, P., McCoy, R. T., Fernandez, R., Goldrick, M., and Gao, J. (2022). Neurocom-
positional computing: From the central paradox of cognition to a new generation of ai
systems. AI Magazine, 43(3):308–322.

Sørensen, M., De Lathauwer, L., and Sidiropoulos, N. D. (2021). Bilinear factorizations
subject to monomial equality constraints via tensor decompositions. Linear Algebra and
its Applications.

Sørensen, M., Sidiropoulos, N. D., and Swami, A. (2022). Overlapping community detection
via semi-binary matrix factorization: Identifiability and algorithms. IEEE Transactions
on Signal Processing.

Whang, J. J., Dhillon, I. S., and Gleich, D. F. (2015). Non-exhaustive, overlapping k-means.
In Proceedings of the 2015 SIAM international conference on data mining, pages 936–944.
SIAM.

Zhang, Z., Li, T., Ding, C., and Zhang, X. (2007). Binary matrix factorization with appli-
cations. In Seventh IEEE International Conference on Data Mining (ICDM 2007).

Zhou, Y., Lake, B. M., and Williams, A. (2024). Compositional learning of functions in
humans and machines.

A Appendix

A.1 Connections to PCA and clustering

Like many matrix factorizations, our method has an aesthetic similarity to the eigenvalue
decomposition and PCA. In fact, when the concepts are uncorrelated with each other, i.e.
they are orthogonal after subtracting the means, then it is actually equivalent to PCA.
However–the rarity of this situation aside–PCA is not likely to find binary features when
there is approximate rotation-invariance (geometric multiplicity) to the solution. Further-
more, when there are multiple factorizations, the sparsest one will have correlated features
in general and thus not be recoverable.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Geometry Sparse solution Dense solutiona

b

Figure 5: Examples of degenerate solutions. In row (a), we show the two possible em-
beddings of a tetrahedron geometry. S matrices are shown next to the ‘analograms’ with
corresponding edges colored. We can get the columns of S by cutting the graph (removing
edges) along the dashed color-coded lines. Both graphs have the same pairwise distances.
Row (b) is largely the same, except there is one concept (‘blank’ vs ‘shaded’) which is
present in both embeddings–in this sense some embeddings are partially identifiable.

We can also view our problem as a case of non-disjoint similarity-based clustering. Dasgupta
(2016) defined an objective similar to ours for hierarchical clustering, and some of the theo-
retical results therein could be of interest. Work has also been done on generalizing k-means
clustering to allow for overlap (Cleuziou, 2007; Whang et al., 2015) which is conceptually
similar but uses a different cost function with a different implied generative model. The
mixed-membership stochastic blockmodel (Airoldi et al., 2008) is another famous clustering
model tackling a similar problem, and the connection to ours is made explicit by Sørensen
et al. (2022). These clustering models generally incorporate constraints that we do not wish
to include, or differ in their objective.

A.2 Illustrative examples

To build intuition for binary embeddings, we will go over some prototypical cases which can
be inspected manually. We will imagine observations coming from three regular latent struc-
tures, and ask whether the ground truths are recoverable. In each diagram, the distances
given are Euclidean, and the graph distances should match their square.

A.2.1 Independent categories

This is the nicest case, one where we observe all possible combinations of the latent cate-
gories. The resulting geometry is a d-dimensional cube, far lower dimensionality than the
number of observations (2d):

1

1

1

1

√
2√ 2

Above, I have drawn an example geometry for four points (on the left), and the corresponding
graph of the embedding (on the right). In the graph, each edge is colored according to its
corresponding category.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2.2 Mutually exclusive categories

This case is most similar to traditional clustering, in which categories cannot be combined.
Every observation belongs to exactly one latent category, and the resulting dimensionality
is potentially as high as the number of observations. The resulting geometry is one where
every cluster of points is equidistant to every other.

1

11

11

1

In our 4-item example above, there are two possible embeddings: a 3-dimensional one with
more ‘hidden’ nodes (left) and a 4-dimensional one with fewer hidden nodes (right). The 4d
one recapitulates our ‘ground truth’ latent structure since each item has its own category,
but the 3d one does equally well. Intuitively, we might prefer the 4d solution since (1) it does
not group together points unnecessarily and (2) there are fewer hidden nodes. Therefore,
rather than the embedding dimension as the natural notion of parsimony, we suggest to use
the number hidden nodes, or category size.

Hierarchy Instead of a flat clustering, imagine the data fall into hierarchical clusters
in which some categories are subsets of others. The resulting geometry has intermediate
dimensionality:

2

1

2

1

22

Notice this time that the graph on the left is isomorphic with the one in the previous
example, but the blue edges have higher weight (i.e. they are longer in the drawing) to
account for the larger distances. Instead, the graph on the right is a tree – something we
would expect from hierarchical clustering. One category, the blue edges which separate
the two pairs of closest points, appears in both solutions. So, at least some times, some
categories might be identifiable even when the embedding as a whole is not.

A.2.3 An ordinal variable

Our observations now come from one ordered variable – for example, counting. The result-
ing geometry is a line. While all the previous examples admitted exact embeddings, this
geometry is not embeddable on the cube and thus only has an optimal approximation. How
can this be expressed in terms of categories?

1 1 1

3

2 2

We end up with a graph of the expected topology, but the distances are slightly different
since we are trying to match Hamming distances with squared Euclidean distances. With
this example we can also see the utility and limits of our model: while we recover something
meaningful at the graph level, we need 3 binary variables to describe a 1-dimensional struc-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

ture4. So, while it is possible to get a sensible binary embedding of something fundamentally
non-binary, it is not always efficient to do so.

A.3 Partial cubes

Here is the sketch of the algorithm for recovering concepts from a partial cube graph: Start
with an edge e = (x, y), partition5 the vertices into those which are closer to x (call them
Vx) or closer to y (call them Vy). Each Vx node gets a 0 label, each Vy node gets a 1. Pick
another edge, ignoring from now on any edges which cross the partition, and repeat the
process. Here is an illustration of the process for a hexagon graph, coloring edged according
to the partitions:

0 1

0

0

1

1

e

Vx Vy

00 11

01

00

10

11

eVx

Vy

000 110

011

001

100

111

e

Vx

Vy

This algorithm is described in several places, but we used chapter 19 of Deza and Laurent
(1997).

To go the other way around is hard, as mentioned in the main text. Our heuristic algorithm
is based on two components: a global rule for finding hidden nodes, and a local rule for
placing edges.

The global rule finds ‘necessary’ hidden nodes by taking the intersection of all differences
between items. We will assume concepts are centered around the first item, such that the
first row is all 0. We then take the intersection of all rows. For example, if items 1 and 2
differ by concepts {a, b, c}, while items 1 and 3 differ by {a, b, d}, then we will include the
hidden node with concepts {a, b}. This is then repeated after re-centering around all other
items.

The local rule is used to add edges to the graph, and ensure it is connected. It is a rule for
which bits to add from a given node. Let’s again assume we are centered around item 1.
Construct a ‘disjoint’ matrix between concepts, which is equal to 1 only if sTαsβ = 0. Then
construct a ‘superset’ matrix, which is 1 only if sTαsβ = 1T sα. The rule is that, at a given
node i, with concepts Si, we are allowed to add any concepts which (1) are not disjoint
with any concepts of i and (2) have all their supersets active in i. For example, if I has the
concepts (‘dog’, ‘big’), then we could add ‘great dane’ but not ‘pug’, and not ‘cat’.

By using the global rule for placing hidden nodes, and the local rule for laying down paths
between all nodes, we can make a graph that is sometimes of manageable size. It works much
better for sparser graphs like trees, and so a more picky method is going to be necessary
moving forward.

A.4 Derivation of the Hopfield energy function

Here we will show very explicitly how to convert the centered MSE loss function into a
series of quadratic functions. When we use continuous variables, this will give us convex

4It is still possible to see the 1-dimensional structure by computing the ‘lattice dimension’ of
the partial cube graph, which is the minimum dimension of an integer lattice that can contain the
graph.

5This rule partitions the graph because partial cubes are bipartite. In fact, the partitioning is
the basis of a certain binary relation, the Djokovic-Winkler relation, which is the theoretical basis
of this construction.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

problems. When we use binary variables, this will let us leverage heuristics for quadratic
unconstrained binary optimization (QUBO), like the Hopfield network. We will break this
down into a few parts: (1) high-level motivation for row-wise optimization; (2) showing how
to deal with centering; and (3) writing down the quadratic functions.

Throughout, I will be working with matrices denoted by bold upper case letters. A corre-
sponding lower case letter with a subscript means a row of the matrix, e.g. si is the ith row
of S. We will be using the convention that treats vectors as p× 1 matrices, even when they
are indexed as a row of a matrix.

In terms of dimension, the data is X ∈ Rp×n and the binary embedding is S ∈ {0, 1}p×b.
There is an equivalent version (which is what I originally did) of everything I am going to
write in which S ∈ {−1, 1}p×b, but this representation does not allow us to take advantage
of sparsity so it is not what I use in the paper.

A.4.1 Motivation

Here we will go through every step of converting our loss to a series of quadratics. First
consider a simpler version of our loss function, the mean squared error between the Gram
matrices but without any centering. The derivation of the actual loss is messier, but will
end up with something conceptually similar to this very simple thing.

∥XXT − SST ∥2F = tr(XXTXXT) + tr(SSTSST)− 2 tr(XXTSST)

Remember that the trace terms, like those above, correspond to fourth-order summations
in this case:

tr(XXTSST) =

p∑
i,j=1

d∑
k=1

b∑
l=1

XikXjkSilSjl

and likewise for the other term. If we are minimizing with respect to all elements of S
simultaneously, then we have a quartic (fourth-order) optimization, which is hard in general
even for continuous variables. Instead, we can optimize one row at a time keeping all others
fixed – a kind of block coordinate descent. By nudging one summation and separating the
i = j case we can make things easier. For the first term we have:

tr(SSTSST) =

p∑
i=1

b∑
k,l=1

SikSil

p∑
j=1

SjkSjl

=

p∑
i=1

b∑
k,l=1

SikSil

 p∑
j ̸=i

SjkSjl + SikSil


=

p∑
i=1

b∑
k,l=1

SikSil

p∑
j ̸=i

SjkSjl + (SikSil)
2

=

p∑
i=1

b∑
k,l=1

SikSil

p∑
j ̸=i

SjkSjl + SikSil

=

p∑
i=1

sTi (S̃
T S̃)si + (1T si)

2 (6)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where we’ve used the fact the 02 = 0 and 12 = 1. In the last line, we’re using S̃ to indicate
all the rows except i. For the second term of the loss it looks like:

tr(XXTSST) =

p∑
i=1

d∑
k=1

b∑
l=1

XikSil

p∑
j=1

XjkSjlXikXjkSilSjl

=

p∑
i=1

d∑
k=1

b∑
l=1

XikSil

 p∑
j ̸=i

XjkSjl +XikSil


=

p∑
i=1

d∑
k=1

b∑
l=1

XikSil

p∑
j ̸=i

XjkSjl + (XikSil)
2

=

p∑
i=1

xT
i (X̃

T S̃)si + xT
i xi1

T si (7)

which is quite similar as before, but linear in si. This is all to show that, even though the
MSE between Gram matrices is quartic, the updates for individual rows is quadratic (when
one of them is binary).

A.4.2 Centering

For theoretical Cortes et al. (2012); Sejdinovic et al. (2013) and empirical reasons, we want
to use the centered distance/alignment. We can assume that the data is centered, but
centering the binary matrix requires some consideration.

Review First, we review some facts about centering and constrained optimization. To
center data, we remove mean from each column: X̄ij = Xij − 1

p

∑
k Xkj . We can encode

this transformation in a projection matrix, H = I− 1
p11

T , so that X̄ = HX. The resulting

kernel matrix, K̄ = X̄X̄T is

K̄ij = (HXXTH)ij

= (HKH)ij

= Kij −
1

p

∑
k

Kik −
1

p

∑
l

Klj +
1

p2

∑
kl

Kkl

where, remember, p is the number of rows of X. This centering transformation works on
any kernel (symmetric positive semidefinite) matrix. One result is that the sum along each
row and column of K, and therefore so is the total sum. Another fun fact about H is that,
being a projection, it is idempotent, meaning HH = H.

Our objective function, as mentioned in the main text, is the centered kernel alignment.
This is the Frobenius inner product of the centered kernel matrices, i.e.

⟨HKH,HQH⟩F = tr(HKHHQH)

= tr(HHKHHQ)

= tr(HKHQ)

where we’ve used the fact that tr(XYZ) = tr(ZXY) and the idempotence of H to unclutter
the expressions. One implication of the simplified expression above, is that only one matrix
actually needs to be centered. In these terms our objective, the CKA, is:

CKA(K,Q) =
tr(HKHQ)√

tr(HKHK) tr(HQHQ)

Since the above has a square root and a fraction, we would rather use a different form for
optimization. The CKA is analogous to the cosine similarity of two real vectors, and so
one can imagine that maximizing the cosine–equivalent to minimizing the angle between
the vectors–could be equivalent to minimizing the distance. In the context of constrained

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: Example of the inequivalence of cosine and distance in constrained optimization.

optimization, that is not always the case (see Fig. 6). One way to make them equivalent,
though, is to ensure that our variable can be freely scaled.

Just for fun, even though it’s kind of obvious, let’s show why scaling makes the two equiv-
alent. We can add a non-negative scaling variable, σ, and pick the minimum distance with
respect to that:

L(y) = min
σ≥0
∥x− σy∥2

= min
σ≥0
⟨x,x⟩ − 2σ⟨x,y⟩+ σ2⟨y,y⟩

= ⟨x,x⟩ − 2
⟨x,y⟩
⟨y,y⟩

⟨x,y⟩+ ⟨x,y⟩
2

⟨y,y⟩2
⟨y,y⟩

= ⟨x,x⟩ − ⟨x,y⟩
2

⟨y,y⟩
which we could do since the second line is just a single-variable quadratic equation. It
is a constrained minimization, but since the Frobenius inner product is non-negative, the
unconstrained σ∗ ≥ 0 so we can just plug it in. Notice that minimising this is the same as
maximising the cosine:

argmin
y
⟨x,x⟩ − ⟨x,y⟩

2

⟨y,y⟩
= argmin

y
1− ⟨x,y⟩2

⟨y,y⟩⟨x,x⟩

= argmax
y

⟨x,y⟩2

⟨y,y⟩⟨x,x⟩
− 1

= argmax
y

⟨x,y⟩√
⟨y,y⟩⟨x,x⟩

Hopefully we are fully convinced that maximising alignment is the same as minimising
distance so long as we can freely scale.

Application In our model, S can be freely scaled by the π values, or more cheekily when
b is unbounded, by just having many duplicates of certain concept vectors. For that reason,
we will assume that scale is not an issue and comfortably try to minimise the distance
between the centered kernels:

∥X̄X̄T − S̄S̄T ∥2F = tr(HSSTHSST)− 2 tr(HXXTHSST) + const(S)

For simplicity, we will drop the π, but it’s not hard to add back later. We can use the
row-wise updates from the before, but the centering requires some slight tweaking since
each row contributes to the mean. We will re-frame everything in terms of the recursive
alignment, and find that it makes things easier.

Let’s say we have only seen p items, so that X and S have p rows. We can compute the
centered distance for that. We will now show how to update the loss when a new row is
added to each matrix. The kernels when we get row p+ 1 are:

K(p+1) =

(
K(p) k
kT k0

)
, Q(p+1) =

(
Q(p) q
qT q0

)
Furthermore, let’s assume that K(p) and Q(p) are already centered. We will say that the
row-mean of S is ⟨s⟩ = 1

pS
T1, so that Q(p) = (S− 1⟨s⟩T)(ST − ⟨s⟩1T). Likewise for X and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

K(p). The appendages are thus:

q = (S− 1⟨s⟩T)(s− ⟨s⟩)
q0 = (s− ⟨s⟩)T (s− ⟨s⟩)

where s is the new row of S.

This all makes centering K(p+1) and Q(p+1) straightforward. Here it is after some simplifi-
cation:

Q̄
(p+1)
ij =


Q

(p)
ij − 1

p+1qi − 1
p+1qj +

1
(p+1)2 q0 i, j = 1, ..p

p
p+1qi − p

(p+1)2 q0 i = 1, ...p, j = p+ 1
p2

(p+1)2 q0 i = p+ 1, j = p+ 1

which just comes from the fact that Q1 = 0 and 1Tq = 0. The same can be done for K of
course.

Without replicating the algebra here, we can use this form to compute the alignment of
Q̄(p+1) and K̄(p+1):〈

Q̄(p+1), K̄(p+1)
〉
F
=

〈
Q̄(p), K̄(p)

〉
F
+ 2tkTq+ t2k0q0 (8)

in which we’ve defined t = p
p+1 . The same update can be used for the other inner products,

to give an update of the loss. Plugging in the form of q and q0, we’ve shown how to write
the loss with respect to one row of S in a way that is quadratic in that row.

A.4.3 Derivation

All that remains is to write the row-wise loss out explicitly. The form of q that we supplied
earlier is not the only one, and in fact we’ve considered a few different ways to extend the
model kernel. For example, in section A.5 we consider an ‘infinite-dimensional’ version, in
which q is updated using variables in [0, 1]. In principle, especially if you aren’t committed
to a quadratic loss, q and k could be formed by many functions. Here we will stick with
the simple version given above.

We will be plugging in the equation for q into the recursive form of the inner products (8)
of the loss:∥∥∥Q̄(n+1) − K̄(n+1)

∥∥∥2
F
=

〈
Q̄(n+1), Q̄(n+1)

〉
F
+

〈
K̄(n+1), K̄(n+1)

〉
F
− 2

〈
Q̄(n+1), K̄(n+1)

〉
F

=
∥∥∥Q̄(n) − K̄(n)

∥∥∥2
F
+ 2tqTq+ t2q20 − 4tkTq− 2t2k0q0 + const(q)

That is, we’ll be plugging q = S̄(s − ⟨s⟩) and q0 = (s − ⟨s⟩)T (s − ⟨s⟩) into the equation
above. We will end up with something similar to the uncentered forms (6 and 7) but too
messy to reproduce at this hour. After gathering terms, we have:

L(s) = sTJs− 2hT s

J = 2S̄T S̄+ t⟨s̃⟩⟨s̃⟩T (9)

h = J⟨s⟩+ t⟨1− s⟩T ⟨s⟩⟨s̃⟩ − tk0⟨s̃⟩+ 2STk (10)

⟨s̃⟩ = 2⟨s⟩ − 1

which is a quadratic unconstrained binary objective in s, as promised. Note that we are
using S̄

.
= S − 1⟨s⟩T in the expressions above. They can also be rewritten in terms of the

uncentered S and some rank-one terms, which allows us to take advantage of the sparsity
of S during optimization.

Note on asymmetric case While we chose the kernel alignment objective for pragmatic
reasons, having a locally-implemented (biologiclly plausible) algorithm actually relies on it.
If we minimize the mean squared error with alternating least squares (alternating between
optimization of W and S), then updates for S are also row-wise quadratic functions. But

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

if we are using a Hopfield network to do the optimization, then the weights would be some-
thing like WTW, which would require neurons to correlate their efferent weights in order
to compute their recurrent weights, instead of correlating their activity. The asymmetric
factorization, SWT seems a bit trickier to optimize according to Sørensen et al. (2022) and
Kolomvakis and Gillis (2023), but there may still be some advantages to it (like speed, and
more flexible loss functions) that are worth tricky optimization, and giving up the pretty
Hopfield algorithm.

A.5 Convex relaxation

Algorithm 3 Convex item assignment

1: function Fit(X, K ∈ N, n ≤ p)

2: for k = 1, ..,K do ▷ Parallel branches

3: S(k) = {0, 1}n
4: π(k) = argminπ 3

5: for i = n, ..., N do

6: ε ∼ N (0, I)
7: p̂, π0 = argmin 12 +εT p̂

8: S(k)←
(

S S 0n

1T
b 0T

b 1

)
9: π(k)← (p̂, π − p̂, π0)

10: Return S, π

Here we provide a continuous relaxation of the discrete row updates. 3.

We assume we have a fit for the first p items. The kernels when we see item p+ 1 are:

K(p+1) =

(
K(p) k
kT k0

)
, Q(p+1) =

(
Q(p) q
qT q0

)
The loss we want to compute is∥∥∥Q̄(p+1), K̄(p+1)

∥∥∥
F
=

〈
Q̄(p+1), Q̄(p+1)

〉
F
+
〈
K̄(p+1), K̄(p+1)

〉
F
− 2

〈
Q̄(p+1), K̄(p+1)

〉
F

To compute the required inner products, we need to double-center the matrices. Recall from
section A.4 that the recursive update of the loss given k, k0, q, and q0 is:〈

Q̄(p+1), K̄(p+1)
〉
H

=
〈
Q̄(p), K̄(p)

〉
H
+ 2tk̄T q̄+ t2k̄0q̄0

where I have abbreviated t = n
n+1 . Plugging these into the loss equation and fiddling a bit,

we have:

∥K(p+1) −Q(p+1)∥2H = ∥K(p) −Q(p)∥2H + 2tq̄T q̄+ t2q̄0
2 − 2

(
2tk̄T q̄+ t2k̄0q̄0

)
+ 2tk̄T k̄+ t2k̄0

2

= ∥K(p) −Q(p)∥2H + 2t
∥∥q̄− k̄

∥∥2
2
+ t2(q̄0 − k̄0)

2 + const. (11)

which we can get by completing the square. This means that we are just solving a (slightly)
weighted least squares between the centered data and prediction. So long as q̄ and q̄0 are
linear functions of our parameters (which they will be), minimizing the loss at each step is
just a quadratic program. We will now see that they are.

It remains to write out q̄ and q̄0. The centered form of our concept update is:

S̄←
(

S̄ S̄ 0n

1− ⟨s⟩ −⟨s⟩ 1

)
and remember that the π update is

π ← (Πp, Π(1− p), π0)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

To get the kernel values we need to take the dot product of the last row with the first n
rows and with itself (weighting columns by π). Working through the algebra on that we
get:

q̄ = S̄Π(p− ⟨s⟩)
and

q̄0 = (1− 2⟨s⟩)TΠp+ ⟨s⟩TΠ⟨s⟩+ π0

which are indeed linear functions of our parameters, p and π0.

The resulting quadratic program is:

argmin
p̂,π0

2
∥∥S̄(p̂− ⟨ŝ⟩)− k

∥∥2
2
+

n

n+ 1

(
(1− 2⟨s⟩)T p̂+ π0 + ⟨ŝ⟩T ⟨s⟩ − k0

)2
(12)

s.t. 0 ≤ p̂ ≤ π, 0 ≤ π0

22

