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I. INTRODUCTION

This paper addresses the problem of acquiring rich object
models to support high-level task execution in unstructured
a-priori unknown environments. Consider tasking a robot
to explore an a-priori unknown area as follows: “Robot,
explore the path in front, which objects are there on the
ground?”, “Commander, I see a truss, a pipe, a crate and a
tree branch on the ground”, “Robot, clear away the pipe
and the tree branch to the sides”. A core ingredient of
such an interaction is a metric-semantic representation of
the environment that includes knowledge of which objects
are present and maintain their geometric extent and position;
enabling future interactions such as moving a specific object
of interest. Following an instruction such as “clearing away
a tree branch” involves grounding which object, determining
how to grasp as well as determining how to transport it
(without collisions with other objects) and safely place them
in free regions and correcting for any pose errors while
placing. As opposed to small objects that fit within the form
closure of the gripper, interactions with large objects with
a-priori unknown geometries (e.g., a truss, a tree branch
or a pipe) requires significant reasoning in each phase of
grasping, transport and placement. Hence, for a generalist
manipulation agent capable of performing a range of se-
quential interactions with novel objects requires a mechanism
to rapidly form a metric and semantic representation of the
environment online in a zero-shot manner without explicit
prior training.

In this work, we propose an approach that sequentially
fuses prior knowledge from pre-trained foundation models
with raw point clouds acquired online to arrive at rich
object models to facilitate sequential manipulation tasks.
Our approach is structured as follows. First, we leverage
pre-trained VLMs with coarse-to-fine prompts to arrive at
object masks which can be fused from multiple views
to extract object geometry. Next, we observe that directly
projecting the object masks on the 3D point cloud results
in irregular/noisy object geometries which leads to poor
grasp proposals. Hence, we incorporate depth priors from
foundation models trained for monocular depth estimation
via guided filtering over the 3D point cloud. We observe
that the resulting models possess higher geometric accuracies
and lead to more reliable grasps as well as robust collision-
free transport (avoiding other objects) in the scene. Finally,
in order to support sequential interactions, we incorporate a
rapid method to locally build the map region where the object
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Fig. 1.  Highlighting the importance of extracting object models for
instruction following. Directly extracting object models from unfiltered
point cloud results in collisions. Our approach utilizes depth priors from
foundational models in combination with multi-view reconstruction resulting
in a higher goal-reaching rate.

was extracted from (often revealing other objects underneath)
as well as accurately model the region where the object
was placed (also correcting for pose due to errors during
transport and placing). Experimental evaluation demonstrates
high-quality acquisition of 3D object models in relation to
alternate approaches. Project webpage: |ttps://reail-iitdelhi.
github.io/3DObjectModels.github.io/

II. RELATED WORK

Traditional efforts for object modeling for outdoor manip-
ulation rely on the availability of a prior geometric model
which is aligned with the 3D point cloud acquired yielding
the object pose and a segmented out object [1], [4]. Others
attempt to infer objects directly from a SLAM process by
modeling associations between features typically found on
common objects [11], [10]. Their success is primarily in
settings where objects are well separated and application
to setting where objects can be contained within or sup-
ported by other objects are more challenging to deal with.
Finally, other efforts attempt to identify objects by directly
segmenting or explicitly recognizing certain classes within
the 3D point cloud based on geometric feature similarly [6].
The key limitation of the former approach is the absence of
language alignment (preventing future referring interactions)
and the former suffers from generalization beyond the class
distribution the model is trained on.

Recent emergence of large visual and language models
led to a number of efforts exploring the zero-shot capability
of such models. A popular approach is to leverage vision-
language models to form object masks in the 2D visual space
and then project the masks into 3D forming an object models.


https://reail-iitdelhi.github.io/3DObjectModels.github.io/
https://reail-iitdelhi.github.io/3DObjectModels.github.io/
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Fig. 2. The proposed method sequentially builds the global point cloud using a sequence of posed RGBD images. A guided filter employing depth priors
from foundation models is used to refine the noisy depth images. The semantic extractor detects all objects and generates the segmentation mask for each
object, which is fused with the global point cloud to extract the 3D model of the objects.

Wherein, leading efforts in this category [3] show zero-shot
grounding of instructions to the 3D point cloud for object
fetching tasks the resulting object models are limited to small
regular shaped objects and do not further consider object
transfer or updating the map when the object moves. Other
efforts focus on learning priors to facilitate object interaction
such as grasping [2], placing [7].

Our approach employs VLMs as the front end to provide
object labels and masks and fuses depth priors for zero-shot
acquisition of object models. Classical methods such as ICP
[12] are used for multi-view scene reconstruction and local
scene repair during sequential task execution. Subsequent
tasks such as grasping, motion planning and placement use
the proposed model.

III. TECHNICAL APPROACH

Consider the scenario where the robot workspace is pop-
ulated by an a-priori set of objects o € O. The robot is
instructed by a human to perform a task as given by the
natural language instruction A € A. The robot is equipped
with an eye-in-hand camera capable of capturing RGB
images Z,.: and depth images Dy.. The robot’s overall
task is to synthesize the sequence of semantic actions m =
[ao, a1, ...,ay] such as picking, transporting and placing of
objects for a given instruction.

Objects can have a large geometric extent and possess
complex intra-object relationships. E.g., an object can be
positioned inside, supported by or lean over an another
object. For the safe transport (without colliding with other
objects) of these objects in the workspace, an accurate 3D
model of the objects is required. However, directly using
the point clouds does not suffice for an accurate 3D model
due to the limited visibility of the workspace. Hence, we
propose a pipeline to estimate the model of the objects
M = {m;};=1. n directly from the point cloud of the scene
Z, in a zero-shot manner. Each object in the scene consists
of a 3D model in point cloud space (z;), SE(3) pose in the
global frame (6;), a semantic label (I;), and grasp-poses (¢;)
respectively as given by m; = (z;,60,,1;, ¢;).

Semantic Mask and Label Extraction: The first stage
in the pipeline is to extract the semantics of the object

S = (s;4,1;), where s; is the segmentation mask. For this, a
stage-wise method is employed, where the objects are first
detected followed by the extraction of segmentation masks.
Object detection is accomplished through a combination of
a Visual Question Answering model (GPT-4V) and a phrase
grounding model [9]. A class-agnostic foundational model-
based segmentor [8] is used to extract the masks.

SemanticExtraction(Zy.t) — St (D

Model Refinement using Depth Priors: To remove noise
from raw depth images induced due to reflections, texture-
less surfaces, we employ a custom guided filtering approach
GuidedFilter(G;, D;) built on [5] which takes as input a
guidance image G; and the noisy depth data D; to produce
D;. D; is a depth image that exhibits less noise compared to
D; while also inheriting structural information from G;. G;
is a high-fidelity relative depth map that is estimated from
monocular depth estimation foundation models [13].

3D Object Model Extraction: Using the global point
cloud Z;, obtained through point cloud registration [12], and
the semantics Sy, the object model M, is extracted.

ObjectModelExtraction(Z;, S¢) — M; )

For each m; € M, a coordinate frame is attached at
the geometric centroid, and the transformation between this
frame and the global frame is represented by SE(3) pose
6;. Additionally, grasp poses ¢ are computed for each object
by a grasp generator Grasp(z;), optimizing the pipeline for
multiple interactions.

Local Scene Update Post Action Execution: A Large
Language Model (LLM)-based planner is utilized to syn-
thesize the plan 7 for the provided language instruction .
During the execution of the plan, the object model needs to
be updated rapidly. This is accomplished by estimating the
object’s placement location 9;-, assuming a rigid transforma-
tion between the end-effector and the object once the object
is grasped, considering the robot kinematics. The object’s
3D model p; is also updated using the locally updated point
cloud Z; 4.
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Visualization of the plan rollout and scene reconstruction for a scenario involving occlusion. Red arrows indicate the pose update of the object,

while blue arrows represent local scene reconstruction. Initially, only the briefcase was visible. Upon removing the briefcase and subsequent local rebuilding,
the hose was detected. The figure also demonstrates how the scene is updated when the object is manipulated without requiring global scene reconstruction.

IV. EXPERIMENTS AND RESULTS

The experiments were conducted using a URS5e manip-
ulator mounted on a Husky mobile platform and a Robotiq
3F-gripper end-effector and OAK-D Pro eye-in-hand camera.
Evaluation was performed on a dataset containing 15 — 20
objects commonly found in outdoor environments, including
items such as trusses, construction tools, pipes, barrels, and
crates, among others. Ground truth 3D models were acquired
using a Revopoint Range 3D Scanner.
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Fig. 4. Qualitative comparison of the 3D model of objects generated using
the unfiltered approach (directly masking raw point cloud) and proposed
approach with the ground truth model.
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Fig. 5. The proposed method improves over the unfiltered approach in
object modelling. (a) Left: Average MRA for a range of allowable error
distance d and (b) Right: RMSE across objects dataset.

Accuracy of 3D Object Models: We evaluate both
qualitatively and quantitatively the quality of the 3D model

extracted for each object. Fig. [ illustrates that the proposed
method, which utilizes depth priors, produces more accurate
and complete 3D object models in relation to the unfiltered
approach. Specifically, the resulting models show lower noise
reduction, smooth surfaces, and capture structural informa-
tion, which is lacking in the unfiltered method.

We quantitatively evaluate our method using two metrics:
(1) Root Mean Squared Error (RMSE): RMSE quantifies the
root mean squared distance of each point in the reconstructed
model to the nearest point in the ground truth. Results indi-
cate that the proposed approach has a lower error compared
to the unfiltered approach with respect to the ground truth.
(i1) Model Reconstruction Accuracy (MRA): MRA quantifies
the percentage of points in the reconstructed model that
are within a distance d to the nearest point in the ground
truth. Results indicate that the proposed method has a higher
Model Reconstruction Accuracy compared to the unfiltered
approach, meaning that a higher percentage of points of the
reconstructed model are within tolerance d from the ground
truth.

Rapid Scene Reconstruction: Fig. 3] illustrates qualita-
tively how the scene is rapidly reconstructed during plan
rollout without requiring global point cloud registration. Our
approach aids in handling cases of occlusion and updating
the object model m; after action execution.

V. CONCLUSIONS AND FUTURE SCOPE

In this paper, we introduce a pipeline for the acquisition
of 3D models of objects in a zero-shot manner, leveraging
priors from foundation models. This enables the robot to
robustly execute sequential tasks in scenarios populated by
unstructured and a-priori objects. Enhancing our method
with a more accurate multi-view association and uncertainty-
guided exploration will bolster 3D model quality. Further-
more, investigating a depth prior-based hole filling approach
holds promise for further refinement. This work relates to the
“acquiring 3D geometric information” theme of the ICRA
Workshop on 3D Visual Representations for Robot Manipu-
lation and contributes a method for allowing rapid acquisition
of object models using foundation model priors for robust
instruction following in unstructured environments.
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