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Abstract

Literature review tables are essential for sum-001
marizing and comparing collections of scien-002
tific papers. We explore the task of generating003
tables that best fulfill a user’s informational004
needs given a collection of scientific papers.005
Building on recent work (Newman et al., 2024),006
we extend prior approaches to address real-007
world complexities through a combination of008
LLM-based methods and human annotations.009
Our contributions focus on three key challenges010
encountered in real-world use: (i) User prompts011
are often under-specified; (ii) Retrieved candi-012
date papers frequently contain irrelevant con-013
tent; and (iii) Task evaluation should move be-014
yond shallow text similarity techniques and in-015
stead assess the utility of inferred tables for016
information-seeking tasks (e.g., comparing pa-017
pers). To support reproducible evaluation, we018
introduce ARXIV2TABLE, a more realistic and019
challenging benchmark for this task, along with020
a novel approach to improve literature review021
table generation in real-world scenarios. Our022
extensive experiments on this benchmark show023
that both open-weight and proprietary LLMs024
struggle with the task, highlighting its difficulty025
and the need for further advancements.026

1 Introduction027

Literature review tables play a crucial role in scien-028

tific research by organizing and summarizing large029

amounts of information from selected papers into030

a concise and comparable format (Russell et al.,031

1993). At the core of these tables are the schema032

and values that define their structure, where schema033

refers to the categories or aspects used to summa-034

rize different papers and values correspond to the035

specific information extracted from each paper. A036

well-defined schema allows each work to be repre-037

sented as a row of values, enabling structured and038

transparent comparisons across different studies.039

With recent advancements in large language040

models (LLMs; OpenAI, 2025b; DeepSeek-AI041

Relevant 
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Generate a table that compares different 
scientific tabular generation methods

Figure 1: Overview of our proposed task: Given a user’s
demand, the LLM first selects the relevant papers that
match the request and then generates the schema and
values for the desired table.

et al., 2025), several studies (Newman et al., 2024; 042

Dagdelen et al., 2024; Sun et al., 2024) have 043

explored generating literature review tables by 044

prompting LLMs with a set of pre-selected papers 045

and the table’s caption. While these efforts rep- 046

resent meaningful progress, we argue that the ex- 047

isting task definition and evaluation protocols are 048

somewhat unrealistic, thus hindering the practical 049

applicability of generation methods. 050

First, existing pipelines assume that all provided 051

papers are relevant and should be included in the 052

table. However, in real-world scenarios, distractor 053

papers—those that are irrelevant or contain limited 054

useful information—are common (OpenAI, 2025a). 055

Models should be able to identify and filter out such 056

papers before table construction. Additionally, cur- 057

rent pipelines use the ground-truth table’s descrip- 058

tive caption as the objective for generation. These 059

captions often lack sufficient context, making it 060

difficult for LLMs to infer an appropriate schema, 061

or they may inadvertently reveal the schema and 062

values, leading to biased evaluations. 063

In this paper, we introduce our task, as illustrated 064

in Figure 1, which improves upon previous task 065

definitions through two key adaptations. First, our 066

pilot study shows that LLMs struggle to retrieve 067

relevant papers from large corpora. To benchmark 068
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this, we introduce distractor papers by selecting069

them based on semantic similarity to papers in070

the ground-truth table. LLMs must first determine071

which papers should be included before generat-072

ing the table. Second, we replace table captions073

with abstract user demands that describe the goal074

of curating the table, making the task more aligned075

with real-world scenarios. We build upon the ARX-076

IVDIGESTABLES (Newman et al., 2024) dataset077

and construct a sibling benchmark through human078

annotation to verify the selected distractors, com-079

prising 1,957 tables and 7,158 papers.080

Meanwhile, current evaluation methods rely on081

static semantic embeddings to estimate schema082

overlap between generated and ground-truth tables083

and require human annotations to assess the qual-084

ity of unseen schemas and values. However, se-085

mantic embeddings struggle to capture nuanced,086

context-specific variations due to their reliance on087

pre-trained representations, while human annota-088

tion is costly and time-consuming. Moreover, the089

most effective table generation approaches define090

schemas primarily based on paper abstracts. This091

method risks missing important aspects present in092

the full text, leading to loosely defined schemas093

with inconsistent granularity.094

To address these issues, we propose an095

annotation-free evaluation framework that instructs096

an LLM to synthesize QA pairs based on the097

ground-truth table and assess the generated table098

by answering these questions. These QA pairs eval-099

uate table content overlap across three dimensions:100

schema-level, single-cell, and pairwise-cell com-101

parisons. Additionally, we introduce a novel table102

generation method that batches input papers, iter-103

atively refining paper selection and schema def-104

inition by revisiting each paper multiple times.105

Extensive experiments using five LLMs demon-106

strate that they struggle with both selecting relevant107

papers and generating high-quality tables, while108

our method significantly improves performance on109

both fronts. Expert validation further confirms the110

reliability of our QA-synthetic evaluations.111

In summary, our contributions are threefold: (1)112

We introduce an improved task definition for liter-113

ature review tabular generation, benchmarking it114

in a more realistic scenario by incorporating dis-115

tractor papers and replacing table captions with ab-116

stract user demands; (2) We propose an annotation-117

free evaluation framework that leverages LLM-118

generated QA pairs to assess schema-level, single-119

cell, and pairwise-cell content overlap, addressing120

the limitations of static semantic embeddings and 121

human evaluation; and (3) We develop a novel it- 122

erative batch-based table generation method that 123

processes input papers in batches, refining schema 124

definition and paper selection iteratively. 125

To the best of our knowledge, we are the first to 126

introduce a task that simulates real-world use cases 127

of scientific tabular generation by incorporating 128

user demands and distractor papers, providing a 129

more robust assessment of LLMs in this domain. 130

2 Related Works 131

Scientific literature tabular generation Prior 132

works primarily attempt to generate scientific ta- 133

bles through two stages: schema induction and 134

value extraction. For schema induction, early meth- 135

ods like entity-based table generation (Zhang and 136

Balog, 2018) focused on structured input, while 137

recent work has explored schema induction from 138

user queries (Wang et al., 2024) and comparative as- 139

pect extraction (Hashimoto et al., 2017). For value 140

extraction, various approaches such as document- 141

grounded question-answering (Kwiatkowski et al., 142

2019; Dasigi et al., 2021; Lee et al., 2023), aspect- 143

based summarization (Ahuja et al., 2022), and doc- 144

ument summarization (DeYoung et al., 2021; Lu 145

et al., 2020) have been proposed to extract rel- 146

evant information. Beyond these methods, sev- 147

eral datasets have been introduced to support sci- 148

entific table-related tasks, such as TableBank (Li 149

et al., 2020), SciGen (Moosavi et al., 2021), and Sc- 150

iTabQA (Lu et al., 2023). Recently, Newman et al. 151

(2024) proposed streamlining schema and value 152

generation with LLMs sequentially and curated a 153

large-scale benchmark for evaluation. However, all 154

these methods assume a clean and fully relevant 155

set of papers and rely on predefined captions or 156

abstract-based schemas, which risk missing key 157

details. In contrast, we argue for an evaluation ap- 158

proach where candidate papers include tangentially 159

relevant or distracting papers, aligning more closely 160

with real-world literature review workflows. 161

Table induction for general domains Other 162

than the scientific domain, table induction is also 163

widely studied as text-to-table generation. Prior 164

works attempt this as a sequence-to-sequence 165

task (Li et al., 2023; Wu et al., 2022) or as a 166

question-answering problem (Sundar et al., 2024; 167

Tang et al., 2023). Similar to these works, our 168

framework is capable of better handling both struc- 169

tured and distractive input for real-world literature 170
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review and knowledge synthesis.171

3 Task Definition172

We first define a pipeline consisting of three sub-173

tasks that extend prior definitions and better capture174

the real-world usage of literature review tabular175

generation. For all the following tasks, we are176

given a user demand prompt p, which specifies the177

intended purpose of creating the table. (T1) Candi-178

date Paper Retrieval: We begin with a given uni-179

verse of papers (e.g., the content of Google Scholar180

or arXiv) from which relevant papers need to be181

identified. Given a large collection, the goal is to182

use a search engine (IR) to retrieve a subset of can-183

didate papers C := {di}Mi=1 of size M , which may184

include distractor papers—i.e., papers that resem-185

ble the user demand prompt but do not fully satisfy186

the requirement. (T2) Paper Selection: Given C,187

the second subtask is to select the relevant subset of188

size m (m < M ): R := {di}mi=1 ⊆ C, which best189

aligns with the user demand p. T2 differs from T1190

in scale. Due to the large scale of T1, IR engines191

must optimize for recall, ensuring that as many rel-192

evant papers as possible are retrieved. However,193

T2 operates at a smaller scale, where precision is194

the priority, as it focuses on filtering out distrac-195

tors and selecting only the most relevant papers.196

(T3) Table Induction: Given the selected papers197

R, the objective is to generate a table with m rows198

and N columns, where N ≥ 2 (i.e., no single-199

column tables). Each row ri ∈ {r1, r2, . . . , rm}200

corresponds to a unique input document di ∈ R,201

and each column cj ∈ {c1, c2, . . . , cN} represents202

a unique aspect of the documents. We refer to203

these N columns as the schema of the table and204

the N × m cells as the values of the table. The205

value of each cell is derived from its respective206

document according to the aspect defined by the207

corresponding column.208

4 ARXIV2TABLE Construction209

We then construct ARXIV2TABLE based on210

the ARXIVDIGESTABLES dataset which consists211

of literature tables (extracted from computer sci-212

ence papers) and their corresponding captions. We213

filter out tables that are structurally incomplete or214

lack full text for all referenced papers. As a re-215

sult, we are left with 1,957 tables (with captions)216

which have rows referring to 7,158 papers. Our217

construction involves three pillars: user demand218

inference (§4.1), a simulated paper retrieval (§4.2)219

and evaluation through utilization (§4.3). 220

4.1 Constructing User Demand Prompts 221

The first step is to collect user demands p that ex- 222

plicitly describe the desired table (can be under- 223

stood without the table content) and do not reveal 224

the table’s schema or specific values. 225

Table captions are not appropriate prompts 226

While the input dataset contains one caption per ta- 227

ble, collected from arXiv papers, these captions are 228

meant to complement tables rather than fully de- 229

scribe them. As a result, they are generally concise. 230

For example, a table caption might read: “Perfor- 231

mance comparison of different approaches,” which 232

is too vague to understand without seeing the ta- 233

ble. Consequently, using table captions as prompts 234

may not yield a well-defined task. A more contex- 235

tually self-contained rewritten user demand might 236

instead be: “Draft a table that compares differ- 237

ent knowledge editing methods, focusing on their 238

performance on QA datasets.” 239

Our prompt construction To address this issue, 240

we propose rewriting the captions of literature re- 241

view tables into abstract yet descriptive user in- 242

tentions using LLMs. We guide GPT-4o with a 243

prompt (see §A) that first explains the task to the 244

LLM, specifying that the user demand should be 245

sufficiently contextualized to clearly state the ta- 246

ble’s purpose while avoiding the inclusion or direct 247

description of column names or specific values. 248

GPT-4o is then expected to infer the user demand 249

for the given table and its caption. For simplicity, 250

we collect only one user demand per table. More 251

examples are provided in Appendix D. 252

Table captions vs. constructed user demand 253

prompts To verify that our collected user de- 254

mands align with our objective, we visualize: (1) 255

the distribution of the number of tokens in the orig- 256

inal and modified user demands, and (2) the ratio 257

of captions and user demands of different lengths 258

that have token overlap with the schema or values. 259

From Figure 2, we observe that our modified user 260

demands are generally longer than the original cap- 261

tions, providing a more detailed description of the 262

table’s goal. Furthermore, as shown in Table 1, 263

user demands exhibit a significantly lower overlap 264

ratio with the schema and table values, resulting 265

in fewer overlapping tokens. This ensures a fairer 266

subsequent evaluation. 267
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Figure 2: Distribution of the number of tokens between
original captions and our modified user demands.

4.2 Paper Retrieval Simulation268

The unreliability of paper retrieval Next, we269

approach the first subtask, candidate paper retrieval,270

by conducting a pilot study to assess whether LMs271

can reliably retrieve relevant papers from a large272

corpus. For each table, we employ a Sentence-273

BERT (Reimers and Gurevych, 2019) encoder as274

a retrieval engine, selecting papers from the en-275

tire corpus based on the highest similarity between276

the table’s user demand and each paper’s title and277

abstract. We vary the number of retrieved papers278

between 2 and 100 and plot the precision and recall279

of retrieval against the ground-truth papers in the280

original table (Figure 3).281

We observe consistently low precision and re-282

call across different retrieval sizes, highlighting the283

challenge of retrieving relevant papers from a noisy284

corpus. This demonstrates that the first subtask is285

non-trivial and may introduce noise into subtask286

T2. However, various information retrieval engines,287

such as Google Scholar and Semantic Scholar, can288

replace LMs in this subtask. Thus, we decide to289

simulate T1 by manually adding noisy distractor290

papers into C to construct R, ensuring a noisy in-291

put for T2. This allows us to focus on evaluating292

LLMs’ capabilities in the T2 and T3 subtasks.293

2 12 22 32 42 52 62 72 82 92 102
Number of Retrieved Papers

0.0

0.2

0.4

R
et

rie
va

l P
re

ci
si

on

0.0

0.2

0.4

R
et

rie
va

l R
ec

al
l

Figure 3: Precision and recall curves for different num-
bers of retrieved papers.

Similarity-based paper retrieval Moving for-294

ward, we associate distractor paper candidates with295

each table to simulate a potentially noisy document296

pool before constructing the table. Ideally, distrac-297

Prompt Content #Table ↓ #Tokens ↓

Caption Schema 101 (5.2%) 1.2
Value 46 (2.4%) 1.3

User Demand Schema 14 (0.7%) 1.0
Value 8 (0.4%) 1.0

Table 1: Overlap statistics between prompts (the origi-
nal caption or our constructed user demand) and table
content (schema or values). #Table: Number (and %)
of tables with at least one token from table content over-
lapping with the prompt. #Tokens: Average count of
overlapping tokens between table content and prompt.

tor candidates should be semantically related to the 298

table but exhibit key differences that fail to meet the 299

user demand. To select such candidates, we adopt 300

a retrieve-then-annotate approach. First, we use a 301

SentenceBERT encoder F to obtain embeddings 302

for (1) the user demand F (p) and (2) all papers in 303

the corpus {F (di) | di ∈ C}. Each paper’s embed- 304

ding is computed by encoding the concatenation 305

of its title and abstract. We then rank all papers 306

di /∈ R based on the average of two cosine sim- 307

ilarities: (1) the similarity between the candidate 308

and the user demand, and (2) the average similarity 309

between the candidate and each referenced paper: 310

s(di) = cos(F (di), F (p)) +
1

m

m∑
j=1

cos(F (di), F (duj )).

311
Higher values of s(di) indicate stronger seman- 312

tic relevance, and we select the top 10 ranked pa- 313

pers for each table as its distractor candidates. 314

Candidates verification via human annotation 315

After selecting these candidates, we conduct hu- 316

man annotations to verify whether they should in- 317

deed be excluded from the table. Given that an- 318

notating these tables requires expert knowledge in 319

computer science, we recruit seven postgraduate 320

students with research experience in the field as 321

annotators. To ensure they are well-prepared for 322

the task, the annotators undergo rigorous training, 323

including pilot annotation exams. Their task is to 324

make a binary decision on whether a given distrac- 325

tor paper—based on its title, abstract, user demand, 326

the ground-truth table, and the titles and abstracts 327

of all referenced papers—should be included in 328

the table. Each table contains annotations for 10 329

papers, with each distractor paper initially assigned 330

to two randomly selected annotators. If both an- 331

notators agree on the label, it is finalized. Other- 332

wise, two additional annotators review the paper 333

until a consensus is reached. In the first round, the 334

inter-annotator agreement (IAA) is 94% based on 335
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pairwise agreement, and the Fleiss’ Kappa (Fleiss,336

1971) score is 0.73, indicating a substantial level337

of agreement (Landis and Koch, 1977). Finally, for338

each table, we randomly select a number of distrac-339

tor papers between [m, 10] and merge them with R340

to form C.341

4.3 Evaluation via LLM-based Utilization342

After constructing the benchmark, we propose eval-343

uating the quality of generated tables from a utiliza-344

tion perspective to address the challenge of aligning345

schemas and values despite potential differences346

in phrasing. This is achieved by synthesizing QA347

pairs based on the ground-truth table and using the348

generated table to answer them, or vice versa. The349

flexibility of this QA synthesis allows us to evalu-350

ate multiple dimensions of the table while ensuring351

a structured and scalable assessment. An overview352

with running examples is shown in Figure 4.353

Dimensions of evaluating a table with QAs We354

introduce three key aspects for evaluating a table in355

terms of its usability: (1) Schema: whether a spe-356

cific column is included in the generated schema,357

(2) Unary Value: whether a particular cell from the358

ground-truth table appears in the generated table,359

and (3) Pairwise Value: whether relationships be-360

tween two cells remain consistent in the generated361

table.362

Recall evaluation We guide GPT-4o in gener-363

ating these binary QA pairs based on the ground-364

truth table. For the first two aspects, we generate365

QA pairs for all columns and cells, whereas for366

the third aspect, we randomly sample 10 pairs of367

cells per table and synthesize them into QA pairs.368

We then prompt GPT-4o to answer these questions369

based on the generated table, providing yes/no re-370

sponses. If the answer cannot be found, the model371

is instructed to respond with “no,” and vice versa372

for “yes.” The ratio of “yes” answers indicates how373

well the generated table preserves the schema, in-374

dividual values, and pairwise relationships. This375

represents the recall of the ground-truth table, mea-376

suring how much original information is retained377

in the generated table.378

Precision evaluation To additionally evaluate379

precision, we reverse the process: instead of gen-380

erating QA pairs from the ground-truth table, we381

generate them from the generated table and ask an-382

other LLM to answer them using the ground-truth383

table. The precision score reflects how much of the384

generated table’s content is actually supported by 385

the original data. By computing the ratio of “yes” 386

answers, we quantify the accuracy of the generated 387

table in reflecting genuine ground-truth informa- 388

tion, as well as any additional useful information 389

not present in the ground-truth table. 390

5 Tabular Generation Methodologies 391

We explore a range of methods to evaluate on our 392

proposed task, starting from several baselines in- 393

spired by prior work (§5.1) and then our proposed 394

approach (§5.2). 395

5.1 Baseline Methods 396

We first introduce three methods for generating lit- 397

erature review tables to evaluate their performance 398

on our task and use them as baselines for our pro- 399

posed method. For easy reference, these methods 400

are termed numerically. 401

First, Method 1 generates the table in a one-step 402

process. It takes all available papers R and the user 403

demand p as input, and the model is asked to select 404

all relevant papers and output a table with a well- 405

defined schema and filled values in a single round 406

of conversation. However, this method struggles 407

with extremely long prompts that exceed the LLMs’ 408

context window when generating large tables. 409

To address this issue, Method 2 processes papers 410

individually. For each document, the model decides 411

whether it should be included based on the user 412

demand. If included, the model generates a table 413

for that document. After processing all documents, 414

the final table is created by merging the schemas 415

of all individual tables using exact string matching 416

and copying the corresponding values. While this 417

approach reduces the input prompt length, it results 418

in highly sparse tables due to inconsistent schema 419

across papers and the potential omission of relevant 420

information when individual papers lack sufficient 421

context to define comprehensive table aspects. 422

To overcome both issues, Method 3 (Newman 423

et al., 2024) introduces a two-stage process. In the 424

first stage, the model selects papers relevant to the 425

user demand based on their titles and abstracts, then 426

generates a corresponding schema. In the second 427

stage, the model loops through the selected papers 428

and fills in the respective rows based on the full 429

text of each document. A minor drawback of this 430

method is that the schema is generated solely from 431

titles and abstracts, which may overlook details 432

present only in the full text. 433
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CBFIR 
Networks

Datasets Evaluation 
Metrics

Loss 
Function

GAN DARN Recall@1 TL, AL

CN-LexNet Shopping100K Recall@20 CL, TL

ResNet-v2 DeepFashion Recall@1,10 BCE Loss

Backbone 
Model

Losses Attribu
tes

Datasets

GAN TL+AL Shape DARN Color

CNLexNet CL+TL Various Consumer-to-Shop

ResNet Landmark Various DeepFashion

Ground-truth Table

Generated Table

Schema: Is Dataset included in the 
table schema?
Unary Value: Is CL, TL the loss 
function for paper CN-LexNet?
Pairwise Value:  Is ResNet-v2 using 
more evaluation metrics than GAN?

Schema: Yes!
Unary Value: Yes!
Pairwise Value:       No…

(1) Key Information Extraction and (2) Sub-batching

… …

Based on the current batch of papers, 
select papers that match the user 

demand and generate a table based on 
the selected papers.

Two papers in this batch can be 
included, here is the updated table:

Model Data Loss Title

… … … …

… … … …

(3) Paper Selection and Table Refinement 

Figure 4: Overview of our proposed iterative batch-based tabular generation method (left) and LLM-based QA-
synthesis evaluation protocol (right) with running examples.

5.2 Iterative Batch-based Tabular Generation434

Then, we introduce our proposed method for gen-435

erating literature review tables, as illustrated in436

Figure 4. Our approach consists of three steps: (A)437

key information extraction, (B) paper batching, and438

(C) paper selection and schema refinement, where439

the latter two steps can be iterated multiple times.440

(A) Key Information Extraction Processing441

multiple papers simultaneously using their full text442

often results in excessively long prompts that ex-443

ceed the LLMs’ context window. To address this,444

we first shorten each paper by instructing the LLM445

to extract key information from the full text that is446

relevant to the user’s requirements. Notably, we do447

not rely solely on the abstract, as important details448

often appear in the full text but are omitted from the449

abstract. For each paper, we provide the LLM with450

its title, abstract, and full text, along with the user’s451

request, and ask it to generate a concise paragraph452

that preserves all potentially relevant details. These453

summary paragraphs serve as condensed represen-454

tations of the papers for subsequent processing.455

(B) Paper Batching Next, we divide all key in-456

formation paragraphs into smaller batches. Process-457

ing too many papers at once negatively affects the458

model’s performance (as demonstrated by the com-459

parison of Method 1 in Table 2), whereas batching460

facilitates more efficient comparisons within each461

batch. For simplicity, we set a batch size of 4 and462

randomly partition R into
⌈
|R|
4

⌉
batches.463

(C) Paper Selection and Schema Refinement 464

We initialize an empty schema and table, then se- 465

quentially process each batch with the LLM by 466

providing it with the user’s request and summaries 467

of batched papers. The LLM is instructed to (1) 468

decide whether each paper should be included or 469

removed based on its key information and (2) refine 470

the schema based on the current batch of papers. 471

Schema refinement involves adding or removing 472

specific columns or modifying existing values to 473

align with different formats. For new papers that 474

are not deemed suitable for inclusion yet are not in 475

the current table, we also prompt the LLM to insert 476

a new row according to the refined schema. This 477

ensures that the table remains dynamically struc- 478

tured, continuously adapting to new information 479

while maintaining consistency across batches. 480

Afterward, we iterate steps B and C for k itera- 481

tions. Here k is a hyper-parameter and we set k = 5 482

in our experiments. The rationale is that multiple 483

iterations allow the schema and table contents to 484

progressively improve, ensuring better alignment 485

with user demands. In each iteration, the batches 486

are newly randomized so that each paper is com- 487

pared with different subsets, enabling more robust 488

decision-making and reducing bias from specific 489

batch compositions. This iterative refinement also 490

mitigates errors from earlier batches by revisiting 491

and adjusting prior decisions based on newly pro- 492

cessed information. After completing all iterations, 493

we individually prompt the LLM to revisit the full 494
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Backbone Model Method Paper Schema Unary Value Pairwise Value Avg
Recall P R F1 P R F1 P R F1

LLAMA-3.3 (70B)

Method 1 52.8 31.3 37.7 34.2 29.6 40.4 34.2 28.4 31.8 30.0 32.8
Method 2 65.4 26.7 69.3 38.5 17.0 56.8 26.2 11.2 22.5 15.0 26.6
Method 3 61.9 36.4 40.5 38.3 32.8 44.5 37.8 29.5 30.2 29.8 35.3
Ours 69.3 41.9 55.4 47.7 43.1 62.6 51.1 36.4 46.9 41.0 46.6

Mistral-Large (123B)

Method 1 54.7 33.1 34.5 33.8 31.6 30.4 31.0 15.5 24.7 19.0 27.9
Method 2 66.8 27.4 65.0 38.5 22.7 47.4 30.7 17.8 30.7 22.6 30.6
Method 3 67.9 39.9 41.6 40.7 34.7 46.3 39.7 29.9 35.1 32.3 37.6
Ours 71.3 45.4 56.7 50.4 43.3 61.5 50.8 42.0 49.2 45.3 48.8

DeepSeek-V3 (685B)

Method 1 57.5 38.7 41.7 40.1 32.5 43.8 37.3 28.7 31.8 30.1 35.8
Method 2 69.8 34.9 69.0 46.4 27.1 55.5 36.4 25.7 32.7 28.8 37.2
Method 3 70.9 39.4 44.2 41.7 36.6 49.2 42.0 33.3 36.5 34.8 39.5
Ours 74.3 39.6 56.9 46.7 47.7 65.2 55.1 40.4 49.8 44.6 48.8

GPT-4o-mini

Method 1 55.9 32.0 35.7 33.7 28.9 39.3 33.3 25.0 31.0 27.7 31.6
Method 2 68.2 31.5 67.7 43.0 27.7 50.8 35.9 21.6 28.3 24.5 34.5
Method 3 69.3 40.3 45.9 42.9 38.3 47.5 42.4 35.0 37.8 36.3 40.5
Ours 72.6 46.5 59.7 52.3 49.0 66.7 56.5 43.5 51.9 47.3 52.0

GPT-4o

Method 1 58.5 35.8 43.2 39.2 36.9 41.8 39.2 29.0 34.7 31.6 36.7
Method 2 70.2 34.2 68.0 45.5 27.9 56.0 37.2 19.4 33.6 24.6 35.8
Method 3 71.3 45.0 47.9 46.4 38.7 49.8 43.6 36.9 40.0 38.4 42.8
Ours 74.6 51.5 59.4 55.2 46.1 66.7 54.5 45.9 55.7 50.3 53.3

Table 2: Tabular evaluation results (%) of five LLMs on the ARXIV2TABLE. The best performances within each
backbone are underlined and the best among all backbones are bold-faced. Avg refers to averaging three F1 scores.

text of the selected papers to verify the values,495

thereby completing the tabular generation process.496

6 Experiments and Analyses497

6.1 Experiment Setup498

To demonstrate the generalizability of our method499

and evaluations, we conduct experiments using500

two proprietary and three open-source LLMs as501

backbone model representatives: GPT-4o (OpenAI,502

2024b), GPT-4o-mini (OpenAI, 2024a), DeepSeek-503

V3 (685B; DeepSeek-AI et al., 2024), LLAMA-504

3.3 (70B; Dubey et al., 2024), and Mistral-Large505

(123B; Mistral-AI, 2024). We apply all baseline506

methods and our proposed method to each model507

and use our evaluation framework to assess the508

quality of the generated tables based on our bench-509

mark, focusing on four aspects: paper selection510

(Paper), schema content overlap (Schema), single-511

cell value overlap (Unary Value), and comparisons512

across cells (Pairwise Value). For paper selection,513

we use recall as the metric to measure the number514

of ground-truth papers successfully selected. For515

the latter three tasks, we report precision (P), recall516

(R), and F1 scores (F1), as explained in §4.3.517

6.2 Main Evaluation Results518

We report the main evaluation results in Table 2519

and summarize our key findings as follows:520

(1) All methods and models struggle to distin-521

guish relevant papers from distractors. For ex-522

ample, even with their best-performing methods,523

LLAMA-3.3 and GPT-4o achieve only 65.4% and524

71.3% recall on average, respectively. This indi- 525

cates that a significant number of distractor pa- 526

pers are still being included in the generated tables. 527

Additionally, we observe that processing papers 528

individually or using only abstracts for inclusion 529

decisions yields better performance than concate- 530

nating full texts. This suggests that excessively 531

long prompts may weaken LLMs’ ability to make 532

accurate inclusion decisions for each paper. 533

(2) Aligning generated schemas with the ground- 534

truth table remains challenging. Among the 535

baselines, the second method consistently achieves 536

higher recall (e.g., 69.3% with LLAMA-3.3), pri- 537

marily because it generates a larger number of 538

columns, leading to more overlaps with the ground- 539

truth schema. However, other methods exhibit sig- 540

nificantly lower recall, indicating that LLMs still 541

struggle to generate meaningful columns that align 542

well with the ground-truth structure. 543

(3) While unary values are well preserved, pair- 544

wise comparisons suffer substantial losses. Most 545

methods, especially our proposed approach, ex- 546

tract unary values with relatively high F1 scores. 547

However, extracting and maintaining pairwise rela- 548

tionships remains challenging. For instance, using 549

LLAMA-3.3, our method achieves a unary F1 score 550

of 51.1 but drops to 41.0 for pairwise values. This 551

trend is consistent across different models, suggest- 552

ing that while individual entries are correctly iden- 553

tified, capturing the relationships between them 554

remains difficult. The significant gap highlights the 555

challenge of preserving complex relational compar- 556

isons within the generated tables. 557
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Figure 5: Ablation study on the number of iterations for
our iterative batch-based table generation method.

(4) Our proposed method improves performance558

across all aspects and models. Across all back-559

bone models and evaluation criteria, our method560

consistently outperforms the baselines. For exam-561

ple, it achieves the highest recall and F1 scores562

for both unary and pairwise metrics, regardless of563

model size. This demonstrates that our approach564

not only enhances overall performance but also pro-565

vides a more robust solution for handling distractor566

paper selection and precise table generation.567

(5) Larger models lead to better performance.568

For the three open-source LLMs, we observe a569

clear trend that increasing the model size improves570

performance across all aspects when using the same571

method. For instance, with our approach, scaling572

from 70B to 123B parameters leads to consistent573

improvements in most aspects and metrics, rein-574

forcing the importance of stronger generative capa-575

bilities in addressing this task.576

6.3 Ablation Study on Iteration Number577

We further study the impact of the number of itera-578

tions, k, in our proposed method to illustrate the im-579

portance of refining the schema and table contents580

over multiple iterations using different batches of581

papers. As described in §5.2, we perform one round582

of paper selection and schema refinement five times583

to achieve optimal performance. In this section, we584

analyze this process by studying the model’s per-585

formance across previous rounds. We select GPT-586

4o as the backbone model and visualize changes587

in the recall of paper selection and the F1 scores588

for schema, unary value, and pairwise comparison589

overlap by applying the same evaluation protocol590

to the generated tables after completing iterations591

ranging from 1 (the first cycle) to 5.592

The results are plotted in Figure 5. We observe593

that during the first four iterations, performance594

steadily improves across all aspects, demonstrat-595

ing the effectiveness of iteratively refining paper596

selection and table schema through multiple itera-597

Table Schema Unary Value Pairwise Value

Source 99.5% 100% 98.5%
Target 98.5% 99.5% 97.0%

Table 3: Expert acceptance rate for the synthesized QA
pairs sampled from our evaluations.

tions and comparisons between different subsets of 598

papers. At the fifth iteration, however, the improve- 599

ment slows down, and in some cases, performance 600

even decreases. One possible reason is that the 601

table starts overfitting by including additional val- 602

ues that do not appear in the ground-truth table, 603

reducing precision and leading to lower F1 scores. 604

Considering the overall performance, k = 5 is sup- 605

ported as the optimal number of iterations. 606

6.4 Expert Validation on Synthesized QAs 607

Lastly, we verify the reliability of synthesizing 608

QA pairs with LLMs for evaluating tabular data. 609

To achieve this, we conduct expert annotations 610

by inviting the authors to manually inspect a ran- 611

dom sample of 200 QA pairs covering schema, 612

unary value, and pairwise value comparison as- 613

pects. They are asked to annotate (1) whether 614

the generated QA pair is firmly grounded in the 615

source table and (2) whether the LLM correctly 616

answers it based on the target table. The expert ac- 617

ceptance rates are reported in Table 3. We observe 618

that our LLM-synthesized QA pairs are highly re- 619

liable, with most acceptance rates above 98% for 620

both source and target tables across schema, unary, 621

and pairwise value comparisons. These results sup- 622

port our evaluation protocol, demonstrating that 623

LLMs can effectively automate the assessment of 624

semantically diverse tabular data. 625

7 Conclusions 626

In this work, we introduce an improved literature 627

review table generation task that incorporates dis- 628

tractor papers and replaces table captions with ab- 629

stract user demands to better align with real-world 630

scenarios, and curated an associated benchmark. 631

Additionally, we propose an annotation-free evalu- 632

ation framework using LLM-synthesized QA pairs 633

and a novel method to enhance table generation. 634

Our experiments show that current LLMs and ex- 635

isting methods struggle with our task, while our 636

approach significantly improves performance. We 637

envision that our work paves the way for more au- 638

tomated and scalable literature review table genera- 639

tion, ultimately facilitating the efficient synthesis 640

of scientific knowledge in large-scale applications. 641
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Limitations642

A minor limitation is that our work uses ARXIVDI-643

GESTABLES as the source of literature review ta-644

bles for subsequent data reconstruction. However,645

Newman et al. (2024) have included their pipeline646

for scalably extracting literature review tables from647

scientific papers, thus resolving the data reliance648

gap. Another limitation of our work is its reliance649

on GPT-4o, a proprietary LLM, for benchmark cu-650

ration and subsequent evaluation, which may in-651

troduce several issues. First, it raises concerns652

about data contamination (Deng et al., 2024; Dong653

et al., 2024), as the model may generate user de-654

mands (during benchmark curation) and synthesis655

evaluation questions (when evaluating a generated656

table against the ground truth) that are similar to657

its training data, potentially leading to inflated per-658

formance in table generation. A data provenance659

check (Longpre et al., 2024) can be further imple-660

mented to address this issue. Second, the bench-661

mark and evaluation process may inherit the in-662

ternal knowledge or semantic distribution biases663

of GPT-4o, which could skew the evaluation of664

other LLMs and reduce the generalizability of our665

findings. Lastly, a minor issue is scalability, as cu-666

rating larger datasets using a proprietary model can667

be resource-intensive and may limit accessibility668

when extending our framework to other literature669

or domains. Future work can explore the use of670

open-source LLMs to replicate the entire process671

for convenient adaptation to other tabular datasets.672

Ethics Statement673

The ARXIVDIGESTABLES (Newman et al., 2024)674

dataset used in our work is shared under the Open675

Data Commons License, which grants us access676

to it and allows us to improve and redistribute it677

for research purposes. Regarding language models,678

we access all open-source LMs via the Hugging679

Face Hub (Wolf et al., 2020) and proprietary GPT680

models through their official API1. The number of681

these models, if available, is marked in Table 2. All682

associated licenses for these models permit user683

access for research purposes, and we commit to684

following all terms of use.685

When prompting GPT-4o to generate user de-686

mands and synthetic QA questions, we explicitly687

state in the prompt that the LLM should not gen-688

erate any content that contains personal privacy vi-689

olations, promotes violence, racial discrimination,690

1https://platform.openai.com/

hate speech, sexual, or self-harm contents. We also 691

manually inspect a random sample of 100 data en- 692

tries generated by GPT-4o for offensive content, 693

and none are detected. Therefore, we believe that 694

our dataset is safe and will not yield any negative 695

or harmful impact. 696

Our human annotations are conducted by recruit- 697

ing five graduate-level students who have sufficient 698

experience in data collection for training large lan- 699

guage models. They are proficient in English, pri- 700

marily from Asia, and are paid above the minimum 701

wage in their local jurisdictions. They receive thor- 702

ough training on the task and are reminded to have 703

a clear understanding of the task instructions be- 704

fore proceeding to annotation. The high level of 705

inter-agreement also confirms the quality of our 706

annotation. The expert annotators have agreed to 707

participate as their contribution to the paper with- 708

out receiving any compensation. 709
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Appendices1033

A Implementation Details 1034

In this section, we provide additional implemen- 1035

tation details about our benchmark curation and 1036

evaluation pipeline, including the prompt we used 1037

and the models we accessed. 1038

A.1 Prompts Used 1039

We first introduce the prompt used to construct 1040

the ARXIV2TABLE benchmark, as explained in 1041

Section 4. The main step involves prompting LLM 1042

is to collect user demands that describe the pur- 1043

pose of creating the table while remaining contex- 1044

tually self-contained and not revealing the actual 1045

schema or values of the table. We use the following 1046

prompt to instruct GPT-4o in generating these user 1047

demands. 1048

Given a literature review table, along 1049

with its caption, you are tasked with 1050

writing a user demand or intention for 1051

the creator of this table. The user 1052

demand should be written as though 1053

you are instructing an AI system to 1054

generate the table. Avoid directly 1055

mentioning column names in the table 1056

itself, but instead, focus on explaining 1057

why the table is needed and what 1058

information it should contain. You may 1059

include a description of the table’s 1060

structure, whether it requires detailed 1061

or summarized columns. Additionally, 1062

infer the user’s intentions from the 1063

titles of the papers the table will 1064

include. Limit each user demand to 1-2 1065

sentences. Examples of good user demands 1066

are: I need a table that outlines how 1067

each study conceptualizes the problem, 1068

categorizes the task, describes the 1069

data analyzed, and summarizes the main 1070

findings. The table should have detailed 1071

columns for each of these aspects. 1072

Generate a detailed table comparing 1073

the theoretical background, research 1074

methodology, and key results of these 1075

papers. You can use several columns 1076

to capture these aspects for each 1077

paper. I want to create a table that 1078

summarizes the datasets used to evaluate 1079

different GNN models, focusing on the 1080

common features and characteristics 1081

found across the papers listed below. 1082

The table should have concise columns to 1083
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highlight these dataset attributes. Now,1084

write a user demand for the table below.1085

The caption of the table is “<CAPTION>”.1086

The table looks like this:1087

<TABLE>1088

The following papers are included in the1089

table:1090

<PAPER-1> . . . <PAPER-N>1091

Write the user demand for this table. Do1092

not include the column names in the user1093

demand. Write a concise and clear user1094

demand covering the function, topic, and1095

structure of the table with one or two1096

sentences. The user demand is:1097

Then, for synthesizing QA pairs from a table,1098

we use the following prompt to guide GPT-4o in1099

generating some QA pairs with answers:1100

You will evaluate the quality of a1101

generated table by comparing it against1102

a ground-truth table. The goal is1103

to assess whether the generated table1104

correctly retains the schema, individual1105

values, and pairwise relationships. This1106

is achieved by generating targeted1107

QA pairs based on the ground-truth1108

table and answering them using the1109

generated table. Step 1: QA Pair1110

Generation Based on the Ground-Truth1111

Table Generate binary (Yes/No) QA pairs1112

focusing on three aspects: Schema1113

QA Pairs: Check whether a specific1114

column from the ground-truth table1115

appears in the generated table schema.1116

Example: Is Dataset included in the1117

table schema? Unary Value QA Pairs:1118

Check whether a specific cell value1119

from the ground-truth table is present1120

in the generated table. Example: Is1121

CL, TL the loss function for paper1122

CN-LexNet? Pairwise Value QA Pairs:1123

Check whether a relationship between1124

two values remains consistent in the1125

generated table. Example: Is ResNet-v21126

using more evaluation metrics than GAN?1127

For Schema and Unary Value, generate1128

a QA pair for every column and every1129

cell, respectively. For Pairwise Value,1130

randomly sample 10 pairs per table and1131

construct the corresponding QA pairs.1132

Step 2: Answering QA Pairs Using the1133

Generated Table After generating the QA1134

pairs, answer them using the generated 1135

table. Provide only "yes" or "no" 1136

responses: If the information is present 1137

in the generated table, respond with 1138

"yes." If the information is missing or 1139

different, respond with "no." Your task 1140

is to generate the QA pairs based on the 1141

ground-truth table and then answer them 1142

based on the generated table. Now, begin 1143

by generating the QA pairs. 1144

The distribution of number of papers per table 1145

in ARXIV2TABLE is shown in Figure 6. 1146

A.2 Evaluation Implementations 1147

We access all open-source LLMs via the Hugging 1148

Face library (Wolf et al., 2020). The models used 1149

are meta-llama/Llama-3.3-70B-Instruct, 1150

mistralai/Mistral-Large-Instruct-2411, 1151

and deepseek-ai/DeepSeek-V3. 1152

For GPT models, we access them via 1153

the official OpenAI Batch API2. The mod- 1154

els used are gpt-4o-mini-2024-07-18 and 1155

gpt-4o-2024-08-06. 1156

Note that the DeepSeek model family has a con- 1157

text window limit of 64K tokens, whereas the oth- 1158

ers have a limit of 128K tokens. The generation 1159

temperature is set to 0.5 for all experiments. All 1160

experiments are repeated twice and the average 1161

performance is reported. 1162

B Method Efficiency Evaluations 1163

In addition to the empirical evaluation of the gen- 1164

erated tables in Table 2, we also compare the ef- 1165

ficiency of different methods based on their gen- 1166

eration success rate and the average number of 1167

tokens used per table. The generation success rate 1168

refers to the average proportion of tables success- 1169

fully generated within the context window limit of 1170

each backbone model. The statistics are reported 1171

in Table 4. Our observations indicate that while all 1172

baseline methods encounter issues with the context 1173

window limit, our schema induction method effec- 1174

tively mitigates this problem. Furthermore, our 1175

method achieves comparable token usage while 1176

delivering superior performance, highlighting its 1177

advantage. 1178

C Annotation Details 1179

To ensure the high quality of our human annota- 1180

tions, we implement strict quality control measures. 1181

2https://platform.openai.com/docs/guides/batch
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Method GSR #Tokens

Method 1 48.19% 128K
Method 2 98.23% 167K
Method 3 99.71% 110K
Ours 100.0% 118K

Table 4: Comparison of the efficiency of different meth-
ods. GSR stands for generation success rate.
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Figure 6: Distribution of number of papers in each table.

First, we select only postgraduate students with1182

research experience in computer science to ensure1183

they are familiar with relevant topics. All selected1184

annotators undergo qualification rounds, and we1185

invite only those who demonstrate satisfactory per-1186

formance to serve as our main annotators.1187

For each task, we provide workers with com-1188

prehensive task explanations in layman’s terms to1189

enhance their understanding. Additionally, we of-1190

fer detailed definitions and multiple examples for1191

each choice to help annotators make informed de-1192

cisions. Each entry requires the worker to provide1193

a binary vote on whether the paper should be ex-1194

cluded or not. Our annotation interface is shown in1195

Figure 7.1196

To ensure comprehension, we require annotators1197

to confirm that they have thoroughly read the in-1198

structions by ticking a checkbox before starting the1199

annotation task. We also manually monitor the per-1200

formance of annotators throughout the annotation1201

process and provide feedback based on common1202

errors. Spammers or underperforming workers are1203

disqualified. As described in Section 4.2, the inter-1204

annotator agreement supports the quality of our1205

collected annotations.1206

D Case Studies1207

Table 5 presents randomly sampled examples of1208

original table captions alongside their improved1209

user demands, demonstrating how refining vague1210

captions enhances specificity and ensures more1211

structured table generation. The findings highlight1212

that well-defined user demands help capture key1213

aspects of table construction, leading to more infor-1214

mative and targeted tabular representations. 1215

Table 6 illustrates schema, unary value, and 1216

pairwise value questions designed to assess the 1217

quality of generated tables, ensuring alignment 1218

with ground-truth information. The results reveal 1219

that this QA-based evaluation effectively quanti- 1220

fies schema retention, individual value accuracy, 1221

and consistency in relationships, providing a struc- 1222

tured approach for benchmarking table generation 1223

models. 1224
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Original Table Caption User Demand

Comparison of Trajectory and Path
Planing Approach

Generate a table that compares different trajectory and path planning approaches, focusing
on their collision avoidance techniques, benefits, limitations, and applicable scenarios. The
table should include detailed columns to capture these aspects for each method mentioned
in the relevant papers.

Publications with deep-learning fo-
cused sampling methods. We cluster
the papers based on the space the sam-
ple through and how the samples are
evaluated. Some approaches further
consider an optional refinement stage.

Create a table that categorizes publications focused on deep-learning-based sampling
methods for grasp detection, organizing them by the space in which samples are generated,
the evaluation criteria used, and whether a refinement stage is included. The table should
provide a comprehensive yet concise overview of the methodological variations and
enhancements across different papers.

Categorization of textual explanation
methods.

Create a table that categorizes the methods used for providing textual explanations in visual
question answering systems, focusing on the types of texts generated and the reasoning
processes employed. The table should use succinct columns to differentiate between these
methodological aspects for each paper.

Metadata of the three benchmarks that
we focus on. XSumSota is a com-
bined benchmark of cite:1400aac and
cite:d420ef8 for summaries generated
by the state-of-the-art summarization
models.

Create a table that details the metadata for three summarization benchmarks, focusing
on the composition of annotators, the dataset sizes for validation and testing, and the
distribution of positive and negative evaluations. The table should provide a comprehensive
comparison across these aspects for each benchmark.

Review of open access ground-based
forest datasets

Create a table that reviews various open-access forest datasets, focusing on the publication
and data recording years, types of data collected, and their applicability to specific forestry-
related tasks. The table should offer a concise summary of each dataset’s attributes,
including the number of classification categories and geographical location.

Comparison of existing consistency-
type models.

Create a table that compares different models focusing on their purpose, the trajectory they
follow, the main objects they equate, and their methodological approach. The table should
provide detailed insights into how each model addresses consistency issues, drawing from
specified papers.

Table 5: Randomly sampled examples of the original captions and their corresponding improved user demands.
Most captions are relatively short and may be vague without the full table’s content.

Schema Unary Value Pairwise Value

Is Dataset included in the table schema? Is CL, TL the loss function for paper CN-
LexNet?

Is ResNet-v2 using more evaluation met-
rics than GAN?

Is Model Architecture included in the table
schema?

Is GPT-4o the model used for multimodal
understanding?

Does GPT-4o have a larger parameter size
than LLaMA-2?

Is Training Dataset included in the table
schema?

Is ImageNet the dataset used for training
ResNet?

Is ResNet trained on more samples than
EfficientNet?

Is Performance Metric included in the ta-
ble schema?

Is BLEU-4 the evaluation metric for MT-
BERT?

Does BERT outperform LSTM on BLEU-
4 score?

Is Activation Function included in the table
schema?

Is ReLU the activation function used in
Transformer?

Is GELU smoother than ReLU in function
continuity?

Is Optimization Algorithm included in the
table schema?

Is Adam the optimizer used for training
BERT?

Does Adam converge faster than SGD for
BERT training?

Is Pretraining Task included in the table
schema?

Is Masked Language Modeling the pre-
training task for BERT?

Does BERT use a more complex pretrain-
ing strategy than GPT?

Is Hyperparameter included in the table
schema?

Is the learning rate set to 0.001 for training
ViT?

Does ViT use a higher learning rate than
ResNet?

Is Hardware Accelerator included in the
table schema?

Is TPU used for training T5? Do TPUs provide faster training than
GPUs for T5?

Table 6: Randomly sampled examples of schema, unary value, and pairwise value questions used to evaluate the
quality of generated tables. Each row contains three related questions derived from the same table.
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Figure 7: The annotation interface we used for collecting the gold labels for distractor papers.
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