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Abstract

Missing values are ubiquitous in real-world datasets and are known to cause unfair-
ness in a machine learning algorithm’s decision-making process. However, there
has been limited work that aims to mitigate the unfairness associated with missing
data imputation. In this paper, we first derive a positive information-theoretic lower
bound for the imputation fairness when using ground-truth conditional distribution
for missing data imputation. Furthermore, we propose a novel missing data impu-
tation model, known as fairness-aware imputation GAN (FIGAN), which provides
accurate imputations while achieving imputation fairness. Through experiments,
we illustrate that FIGAN can significantly improve imputation fairness, compared
to the existing imputation methods. At the same time, FIGAN can also achieve
competitive imputation accuracy.

1 Introduction

Missing values frequently occur in real-world datasets. While it has been well known that the absence
of values will harm the performance of downstream predictions, recent works have connected the
missing data with discrimination of decisions made by the downstream machine learning algorithms
[Martínez-Plumed et al., 2019, Wang and Singh, 2021, Jeong et al., 2022, Zhang and Long, 2021b].

Investigations on the discrimination of algorithm’s decisions, namely algorithmic fairness, have been
at the center of the trustworthiness of artificial intelligence. Despite that there have been many works
that aim to improve the fairness of a prediction model, there have been limited solutions that address
the fairness concerns raised by the missing data. In the presence of missing data, two classical
solutions are: (1) drop the samples that contain missing values. (2) impute the missing values. To the
best of our knowledge, there has not been any work that aims to improve fairness when one adopts an
imputation model to handle the missing values. In addition, there has not been any work that provides
theoretical analysis on the fairness of imputation models.

In this paper, we first provide a theoretical analysis of imputation models that are correctly specified, in
terms of the imputation fairness risk [Zhang and Long, 2021b]. In a more general setting, we propose
fairness-aware imputation GAN (FIGAN), a GAN-based imputation model that can effectively control
imputation unfairness. Through experiments, we illustrate the outstanding performance of FIGAN on
both synthetic and real datasets.

1.1 Related works

Algorithmic fairness focuses on the existence of discrimination during the decision-making process
of a machine learning algorithm. The existing work can be divided into group fairness [Feldman et al.,
2015, Kamiran and Calders, 2009, Kamishima et al., 2011] and individual fairness [Dwork et al.,
2012]. Group fairness emphasizes that members from different sensitive groups should be treated
similarly by the algorithm, while individual fairness emphasizes that similar individuals should be
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treated similarly. In this work, we focus on the group fairness of the missing data imputation methods.
We adopt the imputation fairness defined in Zhang and Long [2021b] as our fairness notion.

Recently, a line of research studied the relationship between missing data and algorithmic fairness.
Martínez-Plumed et al. [2019] analyzed different causes of missing values, and empirically discovered
that missing values may harm the fairness of the downstream prediction tasks. Following this idea,
Wang and Singh [2021] conducted more extensive empirical evaluations and demonstrated that
applying reweighting techniques can help mitigate the unfairness of the downstream tasks. Goel
et al. [2021] established a causal framework to analyze the effect of missing data on the fairness of
downstream tasks. Later on, Jeong et al. [2022] proposes a tree-based method for fair prediction
in the presence of missing data, which does not require any missing data imputation. Zhang and
Long [2021a] provided the first known theoretical results on fairness guarantee in the analysis
of incomplete data. However, as arguably the most popular approach for handling missing data,
missing data imputation has not been well-studied in terms of algorithmic fairness. To the best of
our knowledge, the only work that studies the fairness of imputation methods is Zhang and Long
[2021b], in which the authors assessed the fairness properties of popular imputation models through
extensive numerical experiments. In this paper, we are among the first to consider the problem of
improving the fairness of missing data imputation and propose a novel imputation method that can
yield accurate imputation while guaranteeing imputation fairness.

There is a large body of literature on missing data imputation. Classical imputation approaches
include using mean values of observed data, chained equations [Van Buuren and Oudshoorn, 1999],
matrix completion [Mazumder et al., 2010] and EM algorithm [Dempster et al., 1977]. With the
recent development of machine learning, tree-based methods [Stekhoven and Bühlmann, 2012],
optimal transport [Muzellec et al., 2020] and deep-learning-based methods [Yoon et al., 2018, Dai
et al., 2021, Li et al., 2019, Bansal et al., 2021, Tashiro et al., 2021, You et al., 2020] are adopted
for imputations. Our proposed imputation model is based on the Generative Adversarial Networks
(GAN) [Goodfellow et al., 2020]. While there has been recent work on developing GAN models for
fair data generation [Xu et al., 2018, 2019b,a], to the best of our knowledge, our work proposes the
first known fairness-aware imputation model that leverages the power of GAN.

2 Preliminaries

2.1 Problem setup

We consider the problem of imputing missing values in dataset X = {Xi}ni=1 ∈ Rn×p. Each
sample Xi = {Xi1, . . . ,Xip} is associated with a sensitive attribute A = {Ai}ni=1 (Figure 1).
Without loss of generality, we assume that there are two sensitive groups, that is, Ai ∈ {0, 1}.
We divide the features into two groups: X = Xmiss ∪Xobs (Figure 1), where Xmiss = (Xmiss

ij )

denotes the subset of features that have missing values, and Xobs = (Xobs
ij ) denotes the subset

of features that are fully observed. We define a missing data indicator M = (mij) ∈ {0, 1}n×p

where mij = 1{Xij is missing}. In addition, we define Mi = 1{Xi has missing value} (Figure 1).
The missing data patterns can be classified into three mechanisms: missing completely at random
(MCAR), missing at random (MAR) and missing not at random (MNAR) [Little and Rubin, 2019].
Data are said to be MCAR if the missingness is independent of both observed and missing values, i.e.,
M ⊥ X; Data are said to be MAR if the missingness only depends on observed values; Data that are
not MCAR or MAR are said to be MNAR, i.e., M ̸⊥ Xmiss. We further denote the imputation model
of interest by X̂ = fimp(X

obs, A). A popular and useful metric that evaluates the performance of an
imputation model is the mean squared imputation error (MSIE):

MSIE(fimp) =

∑
(i,j)

(
X̂ij(fimp)−Xij

)2

mij∑
(i,j) mij

(1)

To assess the fairness of an imputation model, we define the MSIE within each sensitive group:
MSIEA=a(fimp) =

∑
(i,j)(X̂

a
ij(fimp) − Xa

ij)
2ma

ij/
∑

(i,j) m
a
ij where Xa = (Xa

ij) denote the
samples within sensitive group A = a. Equipped with these definitions, we formally introduce the
fairness notion for the imputation process.
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Figure 1: Illustration of notations

Definition 2.1 (Imputation Fairness). For a given imputation model fimp, the imputation fairness
risk (IFR) is defined as

IFR(fimp) = |MSIEA=0(fimp)−MSIEA=1(fimp)| (2)

Intuitively, the imputation fairness risk (IFR) measures the difference in imputation error between
groups defined by a sensitive attribute. A perfectly fair imputation should provide equally accurate
imputations for samples from different groups defined by a sensitive attribute.

2.2 A lower bound for IFR: when true imputation model is used

Conceptually, an imputation model learns the distribution of missing data Xmiss, given the observed
information Xobs and A. That is, the imputation model fimp(X

obs, A) approximates the conditional
distribution P(Xmiss|Xobs, A). While the true conditional distribution P(Xmiss|Xobs, A) seems
to be an ideal imputation, we argue that there can be inherent imputation fairness risk associated.
Indeed, in the following theorem, we provide an information-theoretic lower bound of the IFR for
single-pattern missing data (i.e., for each sample, either it is fully observed, or the entire row in Xmiss

will be missing simultaneously), when using the true conditional distribution P(Xmiss|Xobs, A) for
imputation.

Theorem 1. For a dataset that has single-pattern missing data (i.e., mmiss
ij ≡Mi), assume the true

conditional distribution P(Xmiss|Xobs, A) is adopted for imputation, then imputation fairness risk
has the lower bound:

E[IFR(fimp)] ≥
2

K

∣∣∣∑K
j=1

(
EXobs|M=1,A=0σ

2
0,j − EXobs|M=1,A=1σ

2
1,j

)∣∣∣
where K is the number of features that has missing values (i.e., the number of columns in Xmiss),
and

σ2
a,j = V ar(Xmiss

ij |Mi = 1, Ai = a,Xobs)

is the conditional variance of the missing data in the j-th column of Xmiss.

The proof of the theorem is provided in Appendix A.1. Our results imply that even if the ground truth
conditional distribution is used for imputation, there exists a positive information-theoretic lower
bound for the imputation fairness risk. In practice, the true conditional distribution is not accessible.
However, it is possible to correctly specify the conditional distribution model (e.g., gaussian, uniform,
etc.) and construct an unbiased estimate of the distribution. Consider a general case where the true
conditional distribution is parameterized by P(Xmiss|Xobs, A) = fimp(θ,X

obs, A). We consider
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the family of imputation models that are correctly-specified: {fimp(θ̂,X
obs, A)}θ̂∈Θ. Similar to

Theorem 1, one can derive information lower bound for these correctly-specified imputation models.
The lower bound will not only include the conditional variance V ar(Xmiss

ij |Mi = 1, Ai = a,Xobs),
but also the bias of the parameter estimate θ̂. A detailed analysis is provided in the Appendix A.1.

3 Fairness-awared Imputation GAN (FIGAN)

In Section 2, we have provided discussions on the imputation fairness risk of those correctly-specified
imputation models. In general, however, one may not have much information to construct a correctly-
specified parametric imputation model. As an alternative solution, state-of-the-art deep learning
models are adopted to construct non-parametric imputation models. Following this idea, in this paper,
we propose a fairness-aware imputation model based on generative adversarial networks (GAN). The
original GAN [Goodfellow et al., 2020] learns the underlying distribution of a given dataset and
artificially generates fake data that are similar to the original data.

We proposed Fairness-aware Imputation GAN (FIGAN) in Algorithm 1, which consists of two neural
networks: generator G and discriminator D. Figure 2 shows the FIGAN’s framework. At a high level,
the generator G uses observed information of a sample, Xobs, sensitive attribute A and random noise
z to impute the missing values Xmiss. The discriminator D learns to discriminate the imputed data
X̂miss from the ground truth Xmiss. To control the imputation fairness risk, a fairness regularization
is imposed into the training objective function. For the discriminator D, it is trained by minimizing
the loss function

LD = E[log(D(Xmiss))] + E[log(1−D(G(Xobs, A, z)))] (3)

The generator G is trained by minimizing the loss function

LG = E[log(D(G(Xobs, A, z)))] + λaccMSIE(G) + λfairIFR(G) (4)

in which λacc and λfair are tunable hyper-parameters. The first term in LG forces the generator G to
produce imputed values that can "fool" the discriminator D, and the second term forces to produce
accurate imputations, the third term regularizes the model to have small imputation fairness risk.

Algorithm 1 Training Fairness-aware Imputation GAN (FIGAN)

Input: Complete cases (see definition in Figure 1) Xcc = Xobs
cc ∪Xmiss

cc , sensitive attribute Acc,
number of iteration EPOCHS.
Output: Fairness-aware Imputation GAN (i.e., G and D).

for t in {1, . . . ,EPOCHS} do
(1) Sample the noise z ∼ N (0, I).

(2) Impute the missing values via X̂miss
cc = G(Xobs

cc , Acc, z).

(3) Forward the imputed values X̂miss
cc and true missing values Xmiss

cc into discriminator D.

(4) Update the discriminator using LD (3): θ(t+1)
D ← Adam(θ

(t)
D ,∇LD)

(5) Update the generator using LG (4): θ(t+1)
G ← Adam(θ

(t)
G ,∇LG)

end for

Noticed that the loss function LD contains the ground truth value Xmiss, FIGAN will be trained
on complete cases (Figure 1) in which the ground truth values Xmiss are known. Specifically, for
each complete case, we can generate the imputed values using fully observed features Xobs and train
FIGAN using Xmiss and G(Xobs, A, z)).

4 Empirical Results

In this section, we study the imputation performance of proposed FIGAN and 5 other existing methods
on both synthetic and real datasets: MICE [Van Buuren and Oudshoorn, 1999], Misforest [Stekhoven
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and Bühlmann, 2012], SoftImpute [Mazumder et al., 2010], Sinkhorn [Muzellec et al., 2020] and
Gain [Yoon et al., 2018]. We illustrate that FIGAN is capable of achieving decent imputation accuracy
while providing fairer imputation results.

4.1 Synthetic datasets

We generate the synthetic dataset via a time-series model. In particular, Xi+1 = 0.1Xi + ϵi+1

with ϵi ∼ N (0, 1) being independent white noise. We set the sample size n = 1000, number
of features p = 25. We artificially generate missing values for 4 features, under three missing
mechanisms: logit(P(Mi = 1)) = 0.7; MAR, logit(P(Mi = 1)) = 0.1EempiricalX

obs; MNAR,
logit(P(Mi = 1)) = 0.1EempiricalX

miss. The results are summarized into Table 1.

Imputation model MICE Missforest SoftImpute OptimalTransport Gain FIGAN (ours)

MCAR MSIE 0.440 0.244 0.220 0.240 0.506 0.163
Fairness 0.017 0.012 0.011 0.010 0.195 0.006

MAR MSIE 0.439 0.244 0.220 0.240 0.504 0.157
Fairness 0.015 0.012 0.011 0.011 0.191 0.007

MNAR MSIE 0.440 0.243 0.220 0.240 0.507 0.165
Fairness 0.016 0.010 0.010 0.010 0.195 0.009

Table 1: MSIE and fairness risk of different imputation models on synthetic datasets. The mean values over 50
repeats are reported.

The results in Table 1 show that FIGAN has the smallest imputation fairness and smallest MSIE
simultaneously. This outperformance demonstrates FIGAN’s potential to provide accurate and fair
imputations in practice.

4.2 Real datasets

To study the performance of FIGAN in practice, we conduct experiments on two real-world datasets,
COMPAS [Northpointe, 2010] and ADNI. In both experiments, to assess the MSIE, we will artificially
generate missing values, and compare the imputed values with the ground truth values. More details
of the datasets and experiment setup can be found in the Appendix A.2.

COMPAS recidivism dataset:

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) [Northpointe,
2010] dataset contains records of defendants from Broward County from 2013 and 2014. In our
analysis, gender is treated as the sensitive attribute, and we only extract and use 12 non-categorical
features in our experiments. We generate missing values under three missing mechanisms: MCAR,
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logit(P(Mi = 1)) = 0.7; MAR, logit(P(Mi = 1)) = 3+0.4EempiricalX
obs; MNAR, logit(P(Mi =

1)) = −2EempiricalX
miss. The results are summarized in Table 2. From the table, we observe

that FIGAN consistently has significantly lower imputation fairness risks, compared to all the other
imputation methods. In addition, FIGAN also achieves comparable, if not the best, MSIE in the
experiment.

Imputation model MICE Missforest SoftImpute OptimalTransport Gain FIGAN (ours)

MCAR MSIE 0.778 0.908 0.748 0.861 1.261 0.734
Fairness 0.069 0.186 0.076 0.065 0.097 0.022

COMPAS MAR MSIE 0.799 0.938 0.895 0.891 1.267 0.752
Fairness 0.087 0.192 0.098 0.100 0.089 0.018

MNAR MSIE 0.850 1.318 0.639 1.429 1.457 0.810
Fairness 0.071 0.045 0.073 0.122 0.091 0.015

MCAR MSIE 0.254 0.774 0.432 1.039 1.488 0.390
Fairness 0.172 0.226 0.172 0.166 0.437 0.053

ADNI MAR MSIE 0.248 0.808 0.430 1.047 1.582 0.150
Fairness 0.137 0.224 0.181 0.132 0.289 0.049

MNAR MSIE 0.252 0.989 0.432 1.022 1.420 0.259
Fairness 0.101 0.231 0.204 0.201 0.257 0.053

Table 2: MSIE and fairness risk of different imputation models on COMPAS and ADNI datasets. The mean
values over 50 repeats are reported.

ADNI dataset:

Launched in 2003, the primary goal of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database is to test whether it is possible to measure the progression of mild cognitive impairment and
early Alzheimer’s disease. The database contains patients’ positron emission tomography (PET), serial
magnetic resonance imaging (MRI), other biological markers, and clinical and neuropsychological
assessments. The dataset adopted in this paper contains genomic information of 649 patients, who
potentially have Alzheimer’s disease. Among the 19k features in the original dataset, we only choose
the first 1000 columns from the raw data in experiments. We set race as the sensitive attribute and
artificially generate missing values for the first 10 columns in the dataset. The missing data are
generated under three missing mechanisms: logit(P(Mi = 1)) = 0.5; MAR, logit(P(Mi = 1)) =
0.1EempiricalX

obs; MNAR, logit(P(Mi = 1)) = 0.1EempiricalX
miss.The results are summarized

in Table 2. Similar to the experiments on the COMPAS dataset, from Table 2, we also observe that
FIGAN consistently has significantly lower imputation fairness risk and achieves comparable MSIE
in the experiment.

5 Discussions

In this paper, we study the fairness associated with missing data imputation. We first provide a
theoretical analysis that suggests that there exists inherent imputation unfairness when using the
ground truth conditional distribution of the missing data for imputation. Furthermore, we propose
FIGAN, a GAN-based imputation model that empirically provides accurate and fair imputations.

We believe there is much room remaining for future study. Firstly, there are widely used fairness
notions based on causality, and investigations based on these causal fairness notions could provide
unique insights as well. Secondly, other than GAN, there have been other generative models such as
autoencoders and diffusion models that achieve decent performance in synthetic data generation. We
believe that fair imputation models based on these generative models can be an exciting direction
for future study. Thirdly, theoretical analysis on the fairness of FIGAN could also be insightful, we
expect it to help better understand the intuitions and strategies of improving fairness during missing
data imputation.
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A Appendix

A.1 Theoretical analysis on correctly-specified imputation model

We begin by providing the proof of Theorem 1.

Proof. Taking the expectation of the mean squared imputation error, we have that

E[MSIEA=a(fimp)] = E

[∑
(i,j)(X̂

a
ij −Xa

ij)
2ma

ij∑
(i,j) m

a
ij

]
=

1

K

K∑
j=1

E((X̂miss
ij −Xmiss

ij )2|Mi = 1, Ai = a)

where the second equation holds since all the features in Xmiss are missing simultaneously. By law
of total expectations,

E[MSIEA=a(fimp)] =
1

K

∑K
j=1EXobs|M=1,A=aE((X̂miss

ij −Xmiss
ij )2|Mi = 1, Ai = a,Xobs)

(5)

Since we only have the information about (Xobs, Ai,Mi) during the imputation, the imputed value
X̂miss

ij is independent of the true value Xmiss
ij , conditioned on (Xobs, Ai,Mi). Moreover, since

we are using the true conditional distribution P(Xmiss|Xobs, A), X̂miss
ij has the same conditional

distribution as Xmiss
ij . Hence we have that

EXobsE((X̂miss
ij −Xmiss

ij )2|Mi = 1, Ai = a,Xobs) = 2EXobs|M=1,A=aσ
2
a,j (6)

with σ2
a,j = V ar(Xmiss

ij |Mi = 1, Ai = a,Xobs). Finally, by triangle inequality,

E[IFR(fimp)] = E|MSIEA=0(fimp)−MSIEA=1(fimp)| ≥ |E[MSIEA=0(fimp)]−E[MSIEA=1(fimp)]|
combining equation (5) and (6) into the above expression completes the proof.

Moving one step further, we provide an analysis of the imputation fairness for correctly specified
imputation models.
Theorem 2. For a dataset that has single-pattern missing data (i.e., mmiss

ij ≡ Mi), assume a
correctly specified imputation model fimp(θ̂,X

obs, A) is adopted for imputation, then imputation
fairness risk has the lower bound:

E[IFR(fimp)] ≥
2

K

∣∣∣∑K
j=1

(
EXobs|M=1,A=0σ̃

2
0,j − EXobs|M=1,A=1σ̃

2
1,j

)∣∣∣
where K is the number of features that has missing values (i.e., the number of columns in Xmiss),
and

σ̃2
a,j = V ar(Xmiss

ij |Mi = 1, Ai = a,Xobs) + (θ̂ − θ)E(Xmiss
ij (Xmiss

ij − 2E(Xmiss
ij |Mi = 1, Ai = a,Xobs))

∗
∂fimp(θ,Mi = 1, Ai = 1)/∂θ|θ=θ̂

fimp(θ,Mi = 1, Ai = 1)
|Mi = 1, Ai = a,Xobs) + o(θ̂ − θ)

For consistent estimate θ̂, we have that σ̃2
a,j → σ2

a,j as n→∞.

Proof. From the proof of Theorem 1, we know that

E[MSIEA=a(fimp)] =
1

K

∑K
j=1EXobs|M=1,A=aE((X̂miss

ij −Xmiss
ij )2|Mi = 1, Ai = a,Xobs)

In addition, the imputed value X̂miss
ij is independent of the true value Xmiss

ij , conditioned on
(Xobs, Ai,Mi). We have that

EXobsE((X̂miss
ij −Xmiss

ij )2|Mi = 1, Ai = a,Xobs)

=EXobs [E((X̂miss
ij )2|Mi = 1, Ai = a,Xobs) + E((Xmiss

ij )2|Mi = 1, Ai = a,Xobs)

−2E(X̂miss
ij |Mi = 1, Ai = a,Xobs)E(Xmiss

ij |Mi = 1, Ai = a,Xobs)]
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For correctly-specified imputation model fimp(θ̂,X
obs, A), applying the Taylor expansion yields:

E(X̂miss
ij |Mi = 1, Ai = a,Xobs) = E(Xmiss

ij |Mi = 1, Ai = a,Xobs)

+(θ̂ − θ)E(Xmiss
ij

∂fimp(θ,Mi = 1, Ai = 1)/∂θ|θ=θ̂

fimp(θ,Mi = 1, Ai = 1)
|Mi = 1, Ai = a,Xobs) + o(θ̂ − θ)

and

E((X̂miss
ij )2|Mi = 1, Ai = a,Xobs) = E((Xmiss

ij )2|Mi = 1, Ai = a,Xobs)

+(θ̂ − θ)E((Xmiss
ij )2

∂fimp(θ,Mi = 1, Ai = 1)/∂θ|θ=θ̂

fimp(θ,Mi = 1, Ai = 1)
|Mi = 1, Ai = a,Xobs) + o(θ̂ − θ)

combine together above three equations, we have that

EXobsE((X̂miss
ij −Xmiss

ij )2|Mi = 1, Ai = a,Xobs) = 2EXobs|M=1,A=aσ
2
a,j

+EXobs(θ̂ − θ)E(Xmiss
ij (Xmiss

ij − 2E(Xmiss
ij |Mi = 1, Ai = a,Xobs))

∗
∂fimp(θ,Mi = 1, Ai = 1)/∂θ|θ=θ̂

fimp(θ,Mi = 1, Ai = 1)
|Mi = 1, Ai = a,Xobs) + o(θ̂ − θ)

(7)

Finally, by triangle inequality,

E[IFR(fimp)] ≥ |E[MSIEA=0(fimp)]− E[MSIEA=1(fimp)]|

combining equation (5) and (7) into the above expression completes the proof.

From Theorem 2, we know that the bias of the parameter estimator θ̂ will influence the lower bound
of the imputation fairness.

A.2 Experiment details

In this section, we provide details of the experiments in Section 4. In our experiments,
FIGAN is implemented in Pytorch (version 3.6.9). MICE and MissForest are run using
(sklearn.impute.IterativeImputer), Sinkhorn (Optimal Transport) is run using the original au-
thor’s code, SoftImpute and Gain are implemented in Python. In terms of the model architecture, three
fully-connected layers are adopted with Tanh activations in the generator G, three fully-connected
layers layers are adopted with ReLU activations in the dsicriminator D. FIGAN is trained with
epochs = 50, batch size = 16, learning rate = 0.001, λacc = 1.

For the synthetic data experiments, we choose the features at j-th columns with j ∈
[2, 4, 7, 9, 12, 14, 17, 19] to have missing data, simultaneously. We generate the sensitive attribute A
by Ai = 2 ∗ 1{mean(Xi) ≥ 0} − 1. For the COMPAS dataset, we take all the 12 non-categorical
features, and generate missing values on age, prior crime counts and other 4 features. After prepro-
cessing, there are 5479 male and 1326 female recorded. For ADNI dataset, there are 643 white and 6
black patients. The influence of such significant imbalance is reflected by the values of IFR in Table
2.
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