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Abstract
Parameter-efficient methods (like Prompt or001
Adapters) for adapting pre-trained language002
models to downstream tasks have been pop-003
ular recently. However, hindrances still prevent004
these methods from reaching their full poten-005
tial. For example, two significant challenges006
are few-shot adaptation and cross-task gener-007
alization ability. To tackle these issues, we008
propose a general framework to enhance the009
few-shot adaptation and cross-domain gener-010
alization ability of parameter-efficient meth-011
ods. In our framework, we prime the self-012
supervised model for parameter-efficient meth-013
ods to rapidly adapt to various downstream014
few-shot tasks. To evaluate the authentic gen-015
eralization ability of these parameter-efficient016
methods, we conduct experiments on a few-017
shot cross-domain benchmark containing 160018
diverse NLP tasks. The experiment result re-019
veals that priming by tuning PLM only with ex-020
tra training tasks leads to the best performance.021
Also, we perform a comprehensive analysis of022
various parameter-efficient methods under few-023
shot cross-domain scenarios.024

1 Introduction025

In recent years, pre-trained language models026

(PLMs) in natural language processing (NLP) are027

blooming everywhere (Devlin et al., 2018; Lewis028

et al., 2019; Raffel et al., 2019; Brown et al., 2020).029

However, not only the number of PLMs but also030

their size is rapidly growing, making it harder to031

perform full fine-tuning. To address the issue, tons032

of parameter-efficient fine-tuning methods have033

bubbled up, such as adapters (Houlsby et al., 2019;034

Pfeiffer et al., 2020; Zaken et al., 2021; Fu et al.,035

2022), or prompts (Lester et al., 2021; Li and Liang,036

2021).037

These innovative methods have made it equitable038

for researchers with insufficient resources. Also,039

Gu et al. (2021) demonstrated that prompt tuning040

is able to compete with fine-tuning when down-041

stream data is sufficient, whereas it fails to compete042

Figure 1: We propose a general framework to improve
the performance of parameter-efficient fine-tuning. We
prime the self-supervised model with training tasks for
parameter-efficient methods.

equally under few-shot scenarios. Gu et al. (2021) 043

pioneers the way of hybrid prompt pre-training, us- 044

ing both hard and soft prompts, which enables the 045

prompts to match the performance of fine-tuning 046

under few-shot settings, whereas other types of pre- 047

training methods remain unexplored. Huang et al. 048

(2022) proposed the method which applies meta- 049

learning to pre-trained soft prompts under few-shot 050

settings. However, they only apply pre-training 051

in the Sentiment Analysis (SA) task, which lacks 052

a comprehensive and general view from a higher 053

level. On the other hand, Vu et al. (2022) indicates 054

that pre-training prompts on source tasks can sig- 055

nificantly boost the performance on target tasks. 056

057

Houlsby et al. (2019) empirically shows that 058

adapters can achieve comparable performance by 059

fine-tuning the entire model. However, Wang et al. 060

(2022a) showed that there is still a significant per- 061

formance gap compared to fully fine-tuning when 062

only a handful of data is available. There are also 063

several studies on improving the few-shot perfor- 064
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mance of adapters. Wang et al. (2022a) uses self-065

training to leverage large amounts of unlabeled066

data and successfully boosts the performance on six067

NLU tasks. Wang et al. (2022b) takes inspiration068

from the mixture-of-experts models and proposes a069

new mechanism of stochastic routing to a mixture070

of adapters. Previous research significantly im-071

proves few-shot performance in specific domains,072

but the ability to generalize to cross-domain re-073

mains unexplored.074

Since existing self-supervised models are not075

tailored for cross-domain parameter-efficient fine-076

tuning, we propose a general framework to tackle077

the issue. The concept is shown in Fig. 1. We078

prime the self-supervised model with extra few-079

shot training tasks for parameter-efficient methods080

to rapidly adapt to various downstream few-shot081

tasks. After priming with extra few-shot training082

tasks, we can bridge the gap between the PLM083

and parameter-efficient methods like adapter and084

prompt, enabling them to fit the downstream tasks085

better.086

On top of that, we conduct comprehensive exper-087

iments over adapters and prompt tuning, the two088

well-known parameter-efficient training methods.089

Our experiments include combinations of multi-090

task learning and meta-learning on adapters and091

soft prompts. Specifically, we choose (Ye et al.,092

2021), an NLP few-shot gym aiming at building093

few-shot learners who can generalize across diverse094

NLP tasks. In addition, we analyze the experiment095

results from different aspects and provide inclusive096

insight into these parameter-efficient training meth-097

ods. The experiment result reveals that priming by098

tuning only PLM with extra training tasks leads to099

the best performance.100

2 Related Work101

2.1 Adapter102

Adapters are lightweight modules introduced for103

the transformer architecture. It was first proposed104

by Houlsby et al. (2019) and soon became popular105

in NLP with several variants. Instead of fine-tuning106

the entire model, Adapters add extra trainable pa-107

rameters and freeze the original PLM. In this work,108

we mainly adopt AdapterBias (Fu et al., 2022),109

which obtains comparable performance against110

Houlsby et al. (2019) while adding much fewer111

parameters to the model.112

2.2 Prompt 113

Prompt-based tuning is an innovative method to use 114

the power of PLMs efficiently. Li and Liang (2021) 115

proposed prepending prefix vectors to the input 116

of the transformer, reducing the computation con- 117

sumption to a new level, and realizing the parame- 118

ter efficiency. Han et al. (2021) proposed prompt 119

tuning with rules (PTR). PTR encoded prior hu- 120

man knowledge into prompt tuning by composing 121

sub-prompts into task-specific prompts, reducing 122

the difficulty in designing the template. Pre-trained 123

prompt(PPT) for prompt initialization is proposed 124

by Gu et al. (2021). It shows that without tuning 125

the PLM, it can perform well in downstream tasks 126

when applying pre-trained prompts as downstream 127

initialization. In addition, Gu et al. (2021) further 128

explore their work on large-scale PLM with 11B pa- 129

rameters on few-shot learning. Huang et al. (2022) 130

proposed Meta-learned Prompt Tuning (MetaPT) 131

to further improve PTT (Gu et al., 2021)’s initial- 132

ization by considering latent structure within the 133

pre-trained data. 134

2.3 Adapter mix Prompt 135

The concept of mixing adapters and prompts was 136

proposed by He et al. (2021). They propose Mix- 137

And-Match adapter (MAM Adapter), which fuses 138

the scaled parallel adapter with prefix prompt pro- 139

posed by Li and Liang (2021). In our framework, 140

we also include the concept of mixing adapters and 141

prompts. 142

2.4 Meta Learning 143

Meta-Learning is well-recognized and a systematic 144

pre-training method that enables models to rapidly 145

adapt to different tasks with a small amount of 146

data. Among several Meta Learning algorithms, 147

Model-Agnostic Meta-Learning (MAML) (Finn 148

et al., 2017) has shown its success in many NLP 149

tasks under few-shot settings, which is quite a suit- 150

able algorithm to empower our parameter-efficient 151

methods to reach their full potential. 152

3 Methodology 153

3.1 Framework 154

Our work aims to comprehensively discover and an- 155

alyze the performance of parameter-efficient meth- 156

ods under few-shot scenarios. We propose a gen- 157

eral framework to prime the whole model (may in- 158

clude PLMs or other tunable elements) to adapt to 159
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various domains under few-shot scenarios. We di-160

vide the training pipeline into two parts: Upstream161

Learning Stage and Downstream Fine-Tuning162

Stage. In our work, we adopt MAML(Finn et al.,163

2017) and Multi-task learning(Caruana, 1997) as164

the Learning method in the upstream learning165

stage to train our model, which will be discussed in166

the following sections. In our framework, we tune167

different parameters in different stages. Specifi-168

cally, the parameters tuned in the upstream learn-169

ing stage are called Upstream tunable elements,170

while those tuned in the downstream fine-tuning171

stage are called Downstream tunable elements.172

(a) Upstream: PLM
Downstream: adapter

(b) Upstream: adapter+prompt
Downstream: prompt

Figure 2: Different combinations of tunable elements.
The elements with dotted lines are unused. The green
parts refer to the tunable elements, and the parameters in
Downstream are initialized with the Upstream tunable
elements.

3.2 Upstream Learning Stage173

In Upstream Learning Stage, we aim at training174

the model to a point where downstream tunable ele-175

ments can swiftly adapt to downstream tasks. Tun-176

able elements include PLM, adapter and prompt177

in upstream learning stage. Among these elements,178

in addition to simple combinations like PLM +179

adapter or prompt, we also test some unexplored180

combinations like adapter + prompt and enumer-181

ate every possible combination within our settings.182

Take Fig.2 as example. In the upstream learning183

stage, we can choose from either tuning only one184

element like Fig.2a or tuning multiple elements185

like Fig.2b. However, only one of the adapters186

and prompts can be tuned in the downstream fine-187

tuning stage.188

3.2.1 Meta Learning189

We adopt MAML (Finn et al., 2017) as our learn-190

ing method. Following the algorithm in Finn et al.191

(2017), the parameters in the outer and inner loop 192

are trained separately. Instead of tuning the whole 193

model directly, we choose to update the Upstream 194

tunable elements and Downstream tunable ele- 195

ments, respectively. As shown in Fig. 3 and Alg. 1, 196

we first copy the current model parameters ψ to be 197

the model initialization of the inner loop. Second, 198

we tune the downstream tunable element ψd in the 199

inner loop. Lastly, we compute the loss from the 200

tuned model ψ′
i and training tasks Ti to update ψu. 201

The updated ψu will be part of the model initializa- 202

tion of the next inner loop.

task 1

update

2

3

1

copy

outer loop

task 2

2
trainable
fixed

inner loop
update

inner loop
update

Upstream 
Tunable Elements

Model

Downstream 
Tunable Elements

Model

Downstream 
Tunable Elements

Model

Downstream 
Tunable Elements

Model

Downstream 
Tunable Elements

Model

Figure 3: Training details of Parameter-Efficient
MAML: (1) Copy ψ to be the initialization of the inner
loop. (2) Split ψ into ψd (downstream tunable elements)
and ψ̃d. Fine-tune ψd for every task in T . 3. Split ψ
into ψu (upstream tunable elements) and ψ̃u. Update
ψu in the outer loop.

203

Algorithm 1 Parameter-Efficient MAML
1: T = {T1, T2, ...}: A set of training tasks
2: α, β: Outer lr, Inner lr
3: θ: PLM parameters
4: {ϕ1, ϕ2, ...}: Tunable elements
5: ψ = [θ;ϕ1;ϕ2; ...]: All parameters of the model
6:
7: Randomly initialize {ϕ1, ϕ2, ...}
8:
9: while not done do
10: for Ti ∈ T do
11: Split ψ into two parts, ψd and ψ̃d // ψd is tunable in inner loop
12: Evaluate∇ψdLTi (fψ) with respect to K samples
13: Compute adapted parameters with gradient
14: descent: ψ′

d,i = ψd − β∇ψdLTi (fψ)
15: ψ′

i = [ψ′
d,i; ψ̃d]

16: end for
17: Split ψ into two parts, ψu and ψ̃u // ψu is tunable in outer loop
18: ψ′

u = ψu − α∇ψu
∑

Ti∼p(T )
LTi (fψ′

i
)

19: ψ ← [ψ′
u; ψ̃u]

20: end while
21: return ψ
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3.2.2 Multi-task Learning204

Multi-task Learning (Caruana, 1997) aims to learn205

multiple different tasks simultaneously while maxi-206

mizing performance on all of them. The model may207

be able to learn cross-tasks knowledge beneficial208

to generalization. In our framework, we tune the209

upstream tunable elements on training tasks in the210

upstream learning stage and evaluate the few-shot211

ability of the model on testing tasks. For the up-212

stream and downstream tunable elements, we can213

take Fig.2a for example. In the upstream learning214

stage, we tune the PLM among different training215

tasks, while we tune adapters on testing tasks re-216

spectively in the downstream stage.217

3.3 Downstream Fine-Tuning Stage218

Since the backbone of our work is to explore the219

few-shot ability of parameter-efficient methods,220

only prompt and adapter are tunable in down-221

stream stage. In Downstream Fine-Tuning Stage,222

we aim at swiftly adapting the upstream parameters223

to downstream tasks. In this way, we can evalu-224

ate the ability of parameter-efficient methods under225

few-shot scenarios.226

3.4 Specific Methods227

The combinations in our experiments include some228

existing methods, like Meta-Adapters (Bansal et al.,229

2022). Moreover, we also propose two new ap-230

proaches, Meta-Prompt and Adapter-mix-Prompt,231

to further explore the potential of priming the232

model. In fact, the aforementioned methods can233

all be considered the specific cases of our unified234

framework.235

3.4.1 Training the Initialization236

In Sec. 3.2 we mention that both adapters and237

prompt are available options of the upstream tun-238

able elements. If we freeze the parameters of239

PLM and only train the adapters/prompts in both240

the upstream and downstream stages, we are actu-241

ally training the initialization of adapters/prompts.242

Huang et al. (2022); Hou et al. (2022) apply243

meta-learning to train a better initialization of soft244

prompts for downstream tasks, which can be re-245

garded as one of the combinations in our frame-246

work.247

3.4.2 Meta-Adapters248

Instead of fine-tuning the whole model, Bansal249

et al. (2022) proposed Meta-Adapters to reduce250

the number of tunable parameters. They insert251

meta-adapters in addition to regular adapters in the 252

transformer blocks and keep the PLM frozen to 253

reduce trainable parameters. Since meta-adapters 254

are just extra adapters with different placements, 255

we can view Meta-Adapters as a special case of 256

our framework, where two kinds of adapters (meta- 257

adapters and regular adapters) are trained in the 258

upstream learning stage and only regular adapters 259

are tunable in the downstream fine-tuning stage. 260

We also consider the case that only meta-adapters 261

are tunable in the upstream stage. 262

3.4.3 Meta-Prompt 263

Inspired by Bansal et al. (2022), we propose Meta- 264

Prompt, a newly designed method aiming at im- 265

proving the performance of regular prompt tuning. 266

Fig. 4 illustrates how Meta-Prompt works. We 267

concatenate the original input text (yellow blocks) 268

with the regular prompt (green blocks) and another 269

meta prompt (pink blocks). In the upstream learn- 270

ing stage, we can choose to tune both prompts 271

(meta-prompt and regular prompt) or tune the meta- 272

prompt only, while the meta-prompt remains fixed 273

in the downstream fine-tuning stage. Similar to 274

Meta-Adapters, Meta-Prompt is also considered 275

one of the combinations in our framework. 276

Figure 4: Meta prompt

3.4.4 Adapter mix Prompt 277

In our framework, adapters and prompts are consid- 278

ered two independent tunable elements. The soft 279

prompt tokens (Lester et al., 2021) are prepended to 280

the original input, and the adapters (Fu et al., 2022) 281

are inserted in the transformer blocks (Vaswani 282

et al., 2017). Therefore, it is viable for us to com- 283

bine them in a single model. Under this setting, 284

we can either tune adapters or prompt in the down- 285

stream stage. Although the concept seems to be 286

similar to He et al. (2021), the implementation 287

varies widely in practice. He et al. (2021) directly 288

fine-tunes the adapters and prompt, while differ- 289

ent components are trained in the upstream and 290

downstream stages respectively. 291
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4 Experiment292

4.1 DataSet293

We choose CrossFit Challenge (Ye et al., 2021)294

as our benchmark, which provides 160 different295

few-shot tasks with unified text-to-text format gath-296

ered from existing open-access datasets. For the297

tasks split, which implies the components of Train,298

Dev, and Test tasks, we select random split in Ye299

et al. (2021) to be the task split setting in our work.300

These tasks come from various domains, including301

Classification, Question Answering, Conditional302

Generation, and others. More explicit explanations303

of tasks can be found in Ye et al. (2021). Each304

few-shot classification or regression task contains305

16 examples per class, and other types of tasks306

contain 32 examples. Briefly speaking, CrossFit307

Challenge is able to evaluate the authentic few-shot308

generalization ability of models.309

In our experiment, we find that performance di-310

rectly fine-tuning BART(Lewis et al., 2019) is aw-311

ful in "freebase_qa," whose performance is nearly312

0, leading to a lousy evaluation when we calcu-313

late relative gain since it will be huge. Because314

the lousy evaluation strongly influences our follow-315

ing assessment on all tasks, we decide to eliminate316

the results of freebase_qa when we calculate the317

model’s average performance. However, to main-318

tain the completeness of our experiment, we put319

all the original data in Table 2 and Table 3 in Ap-320

pendix.321

4.2 Setup322

4.2.1 Tunable elements323

To maintain the integrity of our experiment, we324

list all possible combinations, as shown in Table 1325

in Appendix, and conduct experiments each by326

each to explore the impacts of different compo-327

nents. The experiment setup mainly follows Ye328

et al. (2021). Specifically, the tunable parameters329

in the upstream stage and downstream stage are dif-330

ferent. In the upstream stage, we can tune prompt,331

adapter, meta-adapter, meta-prompt, and PLM, but332

we can only tune prompt or adapters in the down-333

stream stage. Figure 2 shows two examples of334

different combinations.335

Adapter336

In this work, we mainly adopt AdapterBias (Fu337

et al., 2022) as our adapter module. AdapterBias338

adds a token-dependent shift to the hidden output339

of transformer layers, parameterized by only a vec- 340

tor and a linear layer. Compared with the original 341

adapter design (Houlsby et al., 2019), the train- 342

able parameters are further reduced while obtaining 343

comparable performance. 344

Prompt 345

Prompt is one of our tunable elements. In our set- 346

tings, we applied prompt tuning proposed by Lester 347

et al. (2021), which concatenates tunable tokens be- 348

fore the input sentence and ask the PLM to generate 349

corresponding output text. Following Lester et al. 350

(2021), we set the prompt length to 100 tokens. 351

Meta-Adapter 352

Bansal et al. (2022) inserts meta-adapters before 353

and after the regular adapters to make the pre- 354

trained model a better few-shot learner. Meta- 355

adapters have the same architecture as the regular 356

adapters (Houlsby et al., 2019), but only the regular 357

adapters are fine-tuned in the downstream stage. 358

4.2.2 Hyperparameters 359

Our hyperparameters settings follow Ye et al. 360

(2021); Lester et al. (2021). The PLM we adopt 361

is BART-base (Lewis et al., 2019) from Hugging- 362

face (Wolf et al., 2019). The prompt length in our 363

main experiment is 100. In our implementation of 364

Meta Learning, the optimizer in the outer loop is 365

AdamW with 0.01 weight decay excluding bias and 366

Layernorm terms, while the optimizer in the inner 367

loop is SGD. We set the outer model, prompt, and 368

adapter learning rate to be 8e−5, 8e−3 and 1e−5 369

respectively; the inner learning rate is 0.025 and 370

0.001 for prompt and adapter, respectively. The 371

epoch is set to 80, the train batch size is 1, and 372

the inner batch size is 4 or 8 depending on GPU 373

memory consumption. On the other hand, in our 374

implementation of Multi-task learning, the opti- 375

mizer is AdamW with 0.01 weight decay excluding 376

bias and Layernorm terms. The learning rate for 377

PLM, prompt, and adapter is 3e−5. The epoch is 378

set to 10, and the train batch size is 32. 379

4.3 Metrics 380

For the evaluation metric, we also follow Ye et al. 381

(2021), adopting Average Relative Gain (ARG) 382

as the index of performance on each task. To de- 383

pict our model’s capability of generalization more 384

precisely, we take Relative Gain Standard Devi- 385

ation (RGSTD) into account, which is the stan- 386

dard deviation of relative gains among different 387
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tasks. Comparably, RGSTD can better represent388

the cross-task generalization ability. In a nutshell,389

ARG and RGSTD are both considered while eval-390

uating the authentic few-shot ability of different391

baselines.392

4.4 Main Result393

The complete result can be found at Table 2 and394

Table 3 in Appendix. To better visualize the ex-395

periment result, we provide a scatter graph version396

to help understanding at Fig 5. From the scatter397

graph, we can simply compare the few-shot ability398

between different combinations.399

Generally speaking, the combinations located at400

the bottom right corner are those with extraordi-401

nary few-shot ability since they have higher ARG402

and lower RGSTD simultaneously. On the other403

hand, the combinations located at the upper left cor-404

ner show less generalization ability and robustness405

under few-shot scenarios.406

Next, we use abbreviations to substitute the com-407

plete name of each combination for simplicity. For408

learning methods, we use Meta to represent Meta409

learning and Multi to represent Multi-task learn-410

ing. For tunable elements, we use M to represent411

PLM, A to represent adapter, P to represent prompt,412

MA to represent meta-adapter and MP to represent413

meta-prompt.414

To be more concise, we differentiate learning415

methods and downstream tunable elements by416

marker types. All combinations using MAML as417

their learning methods are squares, whereas those418

using Multi-task learning are circles. Also, all com-419

binations with prompt as their downstream tunable420

elements are hollow, whereas those with adapters421

are solid. The parameter-efficient FT baselines of422

directly fine-tuning are in the shape of a star.423

Lastly, we can simply summarize the result here424

and leave the detailed analysis to the next sec-425

tions. Most points are on the right of the parameter-426

efficient FT baseline (blue stars) while some points427

even surpass the BART-FT baseline (ARG=0.0).428

Thus, it is obvious that our framework significantly429

enhances the performance of traditional parameter-430

efficient fine-tuning.431

5 Analysis432

5.1 Learning methods433

In our work, MAML and Multi-task learning are434

two available learning methods. In Fig. 5, the col-435

ors stand for different combinations of upstream436
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Figure 5: Experiment Result: The picture illustrates the
performance of each combination. Generally speaking,
points located at the bottom right side perform the best.
All combinations using MAML as their learning meth-
ods are squares, while those using Multi-task learning
are circles. All combinations with prompt as their down-
stream tunable elements are hollow, while those with
adapters are solid.

and downstream tunable elements. If we observe 437

the points having the same color, we can find that 438

circles mostly locate on the right side of squares, 439

which implies that Multi-task learning surpasses 440

MAML in most cases. However, if we analyze the 441

results from other aspects, these two learning meth- 442

ods exhibit opposite trends. In the case prompt serv- 443

ing as the downstream element, from Fig. 6(a)(c), 444

we can easily tell MAML produces a more stable 445

result among different upstream tunable elements. 446

On the contrary, in the case adapter serving as the 447

downstream element, two learning methods pro- 448

duce similar results. In a nutshell, when it comes to 449

stability, MAML takes the lead by a small margin. 450

5.2 Upstream tunable elements 451

To better formulate the impact of different factors, 452

we divide all combinations into four groups by 453

their learning method and downstream tunable el- 454

ements. In each group, the learning method and 455

downstream tunable elements are set to be consis- 456

tent. After taking a careful look at Fig. 6 and Fig. 5, 457

we can reach the following conclusions: 458
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5.2.1 What benefit parameter-efficient tuning459

the most460

To compare the combinations of tuning only PLM461

with traditional parameter-efficient fine-tuning, we462

can take a look at gray points (FT_P & FT_A)463

and orange points (Meta_M_P & Meta_M_A &464

Multi_M_P & Multi_M_A) in Fig. 6, and in ev-465

ery group, orange points take a great lead to gray466

points. Also, we can tell that the orange points467

perform well in different groups, for almost all or-468

ange points are comparable to BART-FT baseline469

(ARG=0.0). Tuning only PLM in the upstream470

stage does help the tunable elements to reach the471

best performance in downstream tasks. The im-472

provement is evident regardless of learning meth-473

ods and downstream tunable elements, which is474

beyond our expectations, since tuning different el-475

ements at different stages is not always the most476

common approach. From our perspective, tuning477

PLM in the upstream stage manages to alleviate478

the issue that PLM is not optimized for parameter-479

efficient methods. However, unlike tuning only480

PLM in the upstream stage, tuning PLM with other481

tunable elements simultaneously fails to maintain482

exceptional in the adapter’s case (Fig. 6 (b)(d)).483

The actual reason may need further research to484

fully unveil.485

For the implementation detail, it is worth men-486

tioning that for the case tuning only PLM in the up-487

stream stage, parameter-efficient elements(adapters488

or prompts) are initialized but remain frozen un-489

til entering the downstream stage. In other words,490

the PLM is actually fitting a random initialized491

parameter-efficient element in the Multi-task learn-492

ing case and fitting a few-shot tuned parameter-493

efficient element in MAML case.494

5.2.2 Tuning prompt in the upstream stage495

helps496

To compare the combinations of directly fine-497

tuning and tuning parameter-efficient elements in498

both upstream and downstream stages, we can in-499

spect the dynamic between blue points (Meta_P_P500

& Meta_A_A & Multi_P_P & Multi_A_A) and501

gray points (FT_P & FT_A) in Fig 6. The conclu-502

sion is that tuning prompts in the upstream stage503

does help prompts to fit the downstream tasks bet-504

ter while in adapters case the impact is reversed.505

It seems that prompts can transfer across different506

tasks better than adapters.507

5.2.3 Tuning elements with their meta 508

counterparts doesn’t fit better 509

To evaluate whether tuning adapter or prompt with 510

their meta counterparts in the upstream learning 511

stage help fitting downstream tasks, we can put at- 512

tention to red points (Meta_MP_P & Meta_MA_A 513

& Multi_MP_P & Multi_MA_A) and purple 514

points (Meta_MP+P_P & Meta_MA+A_A & 515

Multi_MP+P_P & Multi_MA+A_A) in Fig 6. We 516

can see almost all red points located near purple 517

points, which means tuning adapters or prompts 518

with their meta counterpart doesn’t bring much im- 519

provement. 520

5.2.4 Meta-adapters do help adapter to fit 521

better 522

To evaluate whether meta-adapter or meta- 523

prompt help adapter or prompt to fit downstream 524

tasks better, We can take a look at the dy- 525

namic between red (Meta_MP_P & Meta_MA_A 526

& Multi_MP_P & Multi_MA_A) & purple 527

points (Meta_MP+P_P & Meta_MA+A_A & 528

Multi_MP+P_P & Multi_MA+A_A) and blue 529

points(Meta_P_P & Meta_A_A & Multi_P_P & 530

Multi_A_A). We can easily get to the conclusion 531

that Meta-adapters do help adapters (Fig. 6 (b)(d)) 532

to fit the downstream tasks better while meta- 533

prompt fails to bring the same level improvement 534

(Fig. 6 (a)(c)). The design of meta-prompt can be 535

further explored by future research. 536

5.2.5 Tuning adapter & prompt at the same 537

time 538

To evaluate the performance of tuning adapter 539

& prompt at the same time in the up- 540

stream learning stage, we can focus on brown 541

points (Meta_M+A+P_P & Meta_M+A+P_A 542

& Multi_M+A+P_P & Multi_M+A+P_A) and 543

pink points (Meta_A+P_P & Meta_A+P_A & 544

Multi_A+P_P & Multi_A+P_A) in Fig. 6. When 545

comparing these points with gray points (FT_P 546

& FT_A), we can tell the improvement is sig- 547

nificant when the downstream tunable element is 548

prompt (Fig. 6 (a)(c)). Nevertheless, it doesn’t help 549

adapters (Fig. 6 (b)(d)) to fit the downstream tasks 550

better as prompts. The latent mechanism can be 551

further studied by future research. 552

5.3 Downstream tunable elements 553

In our setting, prompts and adapters are two avail- 554

able downstream tunable elements. From Fig 5, 555

we can tell prompt beats adapters generally since 556
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(b) MAML & Adapter
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Figure 6: Upstream tunable elements result: In this fig-
ure, we divide all combinations into four groups by their
learning methods and downstream tunable elements. In
each group, the learning methods and downstream tun-
able elements are set to be consistent.

almost all hollow points locate relatively closer to557

the bottom right side (Hollow points are prompt558

and solid points are adapters). However, it’s more559

rigorous to eliminate the impact of learning meth-560

ods and upstream tunable elements. Therefore, we561

only compare those with the same learning method562

and upstream tunable elements. To be more spe-563

cific, we ignore those with their meta counterpart in564

their upstream tunable elements (MP, MA, MP+P,565

MA+A), which are the red & purple points in Fig 6.566

If we do a cross-comparison between the (a)(c)567

and (b)(d) in Fig 6, we can tell that prompt takes568

the lead by a great margin, even in the fine-tuning569

case. The conclusion implies that prompts can fit570

downstream tasks better than adapters in terms of571

generality and stability.572

5.4 Tasks573

In Fig.7, the bar of FT is corresponding to the574

blue solid and hollow stars in Fig. 5, respectively.575

In this section, we regard it as the baseline for576

prompts and adapters, respectively. However, in577

Fig. 5 and Fig. 6, the evaluation metrics are ARG,578

which calculates the average relative gain of each579

task, lacking information on individual tasks. To580

prevent the result severely influenced by a single581

task, we construct Fig.7 to visualize the relative582

improvement of each task.583

The result not only eliminates our potential584

worry but also backs up the validity of our best 585

results. From Fig. 7, we can see in most tasks, our 586

best results – "Only tune PLM" in the upstream 587

learning stage significantly improve the perfor- 588

mance of traditional parameter-efficient fine-tuning 589

regardless of the learning method and parameter- 590

efficient methods.

Figure 7: The performance of "Only Tune PLM" in
prompt over all tasks. The horizontal axis is the name
of the few-shot datasets, and the vertical axis is the
performance.

591

6 Conclusion 592

In this paper, we propose a general framework 593

to prime the self-supervised model for parameter- 594

efficient methods to rapidly adapt to various down- 595

stream few-shot tasks. Among several combina- 596

tions of learning methods and tunable elements, our 597

experiment result shows that tuning only PLM in 598

the upstream stage does enhance the performance 599

of parameter-efficient methods adapting to few- 600

shot downstream tasks by a great margin. Apart 601

from this, the experiment reveals that prompts gen- 602

erally fit various downstream few-shot tasks better 603

than adapters. Lastly, we find out that applying 604

MAML as the learning method produces a more 605

stable result while Multi-task Learning produces 606

extreme value more easily. 607
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7 Appendix723

7.1 Combination724

Learning
Methods

Upstream
Tunable Elements

Downstream
Tunable Elements

Abbreviation

MAML

prompt prompt Meta_P_P
adapter adapter Meta_A_A
model prompt Meta_M_P
model adapter Meta_M_A
model+prompt prompt Meta_M+P_P
model+adapter adapter Meta_M+A_A
meta-prompt prompt Meta_MP_P
meta-adapter adapter Meta_MA_A
meta-prompt+prompt prompt Meta_MP+P_P
meta-adapter+adapter adapter Meta_MA+A_A
model+adapter+prompt prompt Meta_M+A+P_P
model+adapter+prompt adapter Meta_M+A+P_A
adapter+prompt prompt Meta_A+P_P
adapter+prompt adapter Meta_A+P_A

Multitask

prompt prompt Multi_P_P
adapter adapter Multi_A_A
model prompt Multi_M_P
model adapter Multi_M_A
model+prompt prompt Multi_M+P_P
model+adapter adapter Multi_M+A_A
meta-prompt prompt Multi_MP_P
meta-adapter adapter Multi_MA_A
meta-prompt+prompt prompt Multi_MP+P_P
meta-adapter+adapter adapter Multi_MA+A_A
model+adapter+prompt prompt Multi_M+A+P_P
model+adapter+prompt adapter Multi_M+A+P_A
adapter+prompt prompt Multi_A+P+P
adapter+prompt adapter Multi_A+P_A

Table 1: Experiment Combinations

Figure 8: Average performance of prompt tokens length
(20/100) in all tasks

7.1.1 Prompt725

From Fig. 8, we notice that the performance of 100726

tokens slightly outperforms that of 20 tokens, and727

this verifies the suggestion in (Lester et al., 2021),728

which shows that 100-tokens is more fitful for729

model size around 108 than 20-tokens. However, in730

Fig. 8, we can also find in some tasks, the average731

performance of 20 tokens is better or close to 100732

tokens, like ai2_arc, ethos-sexual_orientation, glue- 733

qnli, glue-rte, quoref, race-high, and superglue- 734

rte. We can find that these tasks are in one of 735

the following categories: MQA(Multiple-choice 736

Question Answering), NLI(Natural Language Infer- 737

ence), or simple classification tasks. Thus, as Liu 738

et al. (2021) reveals, shorter prompt token length 739

can perform well in these simple tasks, and longer 740

prompt token length is more fitful for those chal- 741

lenging tasks. 742
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7.2 Exeperiment Result
7.2.1 MAML

Learning Method Baseline MAML
Downstream prompt adapter

Upstream prompt model
model +
prompt

meta_prompt
meta_prompt +

prompt

model +
adapter +
prompt

adapter +
prompt

adapter model
model +
adapter

meta_adapter
meta_adapter +

adapter

model +
adapter +
prompt

adapter +
prompt

ag_news 0.86 0.86 0.63 0.56 0.85 0.85 0.83 0.84 0.69 0.53 0.61 0.85 0.78 0.02 0.07
ai2_arc 0.23 0.29 0.25 0.30 0.24 0.26 0.25 0.27 0.21 0.24 0.25 0.20 0.23 0.24 0.22

amazon_polarity 0.91 0.89 0.90 0.92 0.82 0.88 0.91 0.90 0.85 0.57 0.75 0.77 0.89 0.61 0.84
blimp-sentential_negation_npi_licensor_present 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 0.60 0.56 0.53 0.52 0.56 0.93 0.51

blimp-sentential_negation_npi_scope 0.93 0.57 1.00 0.66 0.59 0.74 1.00 0.76 0.51 0.51 0.52 0.51 0.55 0.52 0.53
circa 0.45 0.17 0.20 0.21 0.14 0.06 0.20 0.07 0.02 0.10 0.04 0.13 0.09 0.00 0.13

crawl_domain 0.33 0.43 0.20 0.18 0.41 0.40 0.20 0.44 0.23 0.27 0.26 0.19 0.23 0.11 0.29
ethos-disability 0.72 0.81 0.71 0.70 0.59 0.74 0.79 0.72 0.51 0.25 0.31 0.69 0.67 0.32 0.51

ethos-sexual_orientation 0.64 0.47 0.60 0.63 0.46 0.57 0.72 0.68 0.50 0.31 0.29 0.48 0.49 0.51 0.40
freebase_qa 0.00 0.01 0.02 0.03 0.00 0.03 0.04 0.01 0.01 0.06 0.06 0.00 0.01 0.03 0.03

glue-cola 0.09 0.04 0.05 0.06 0.05 0.06 0.04 0.05 -0.06 0.00 0.00 0.04 0.02 0.00 0.01
glue-qnli 0.61 0.53 0.71 0.67 0.56 0.53 0.71 0.57 0.50 0.62 0.62 0.52 0.55 0.69 0.50

hatexplain 0.42 0.38 0.48 0.44 0.39 0.39 0.45 0.40 0.20 0.30 0.13 0.38 0.29 0.03 0.25
quoref 0.29 0.33 0.31 0.25 0.29 0.36 0.31 0.38 0.29 0.41 0.39 0.27 0.28 0.28 0.34

race-high 0.24 0.27 0.30 0.30 0.24 0.26 0.31 0.26 0.19 0.31 0.31 0.16 0.23 0.31 0.25
superglue-rte 0.50 0.54 0.61 0.56 0.56 0.57 0.61 0.54 0.54 0.55 0.55 0.54 0.53 0.58 0.53

tweet_eval-irony 0.57 0.57 0.56 0.55 0.53 0.56 0.55 0.57 0.53 0.42 0.35 0.54 0.30 0.14 0.34
wiki_split 0.80 0.80 0.80 0.77 0.78 0.80 0.79 0.80 0.80 0.72 0.75 0.77 0.78 0.00 0.77

yelp_polarity 0.62 0.88 0.92 0.92 0.73 0.82 0.92 0.79 0.07 0.17 0.35 0.83 0.13 0.16 0.20

Table 2: MAML

7.2.2 Multitask
Learning Method Baseline Multi-task

Downstream prompt adapter

Upstream prompt model
model +
prompt

meta_prompt
meta_prompt +

prompt

model +
adapter +
prompt

adapter +
prompt

adapter model
model +
adapter

meta_adapter
meta_adapter +

adapter

model +
adapter +
prompt

adapter +
prompt

ag_news 0.86 0.81 0.84 0.84 0.84 0.84 0.83 0.82 0.21 0.25 0.38 0.84 0.64 0.11 0.32
ai2_arc 0.23 0.25 0.27 0.29 0.23 0.25 0.27 0.26 0.24 0.26 0.26 0.23 0.22 0.26 0.23

amazon_polarity 0.91 0.88 0.93 0.93 0.75 0.80 0.93 0.87 0.63 0.56 0.44 0.86 0.88 0.62 0.92
blimp-sentential_negation_npi_licensor_present 1.00 0.96 1.00 1.00 0.99 0.99 1.00 0.96 0.57 0.98 0.99 0.55 0.74 1.00 0.57

blimp-sentential_negation_npi_scope 0.93 0.52 1.00 1.00 0.53 0.72 1.00 0.63 0.52 0.58 0.59 0.52 0.57 0.55 0.53
circa 0.45 0.08 0.22 0.19 0.15 0.11 0.14 0.07 0.02 0.03 0.02 0.08 0.12 0.00 0.10

crawl_domain 0.33 0.41 0.25 0.26 0.41 0.43 0.29 0.39 0.27 0.25 0.20 0.18 0.27 0.17 0.30
ethos-disability 0.72 0.65 0.77 0.77 0.57 0.65 0.73 0.67 0.60 0.64 0.64 0.59 0.60 0.46 0.49

ethos-sexual_orientation 0.64 0.54 0.64 0.65 0.47 0.61 0.63 0.54 0.50 0.50 0.51 0.47 0.46 0.49 0.55
freebase_qa 0.00 0.04 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.05 0.06 0.00 0.02 0.06 0.01

glue-cola 0.09 0.08 0.06 0.07 0.00 0.02 0.03 0.06 -0.05 -0.05 -0.05 -0.01 0.01 0.00 0.03
glue-qnli 0.61 0.55 0.69 0.69 0.54 0.56 0.72 0.55 0.51 0.66 0.67 0.53 0.52 0.71 0.53

hatexplain 0.42 0.39 0.44 0.42 0.40 0.41 0.46 0.39 0.14 0.35 0.36 0.37 0.28 0.12 0.25
quoref 0.29 0.34 0.38 0.39 0.28 0.28 0.36 0.32 0.30 0.41 0.41 0.31 0.28 0.39 0.32

race-high 0.24 0.24 0.33 0.33 0.24 0.24 0.33 0.24 0.21 0.33 0.33 0.23 0.25 0.34 0.23
superglue-rte 0.50 0.54 0.60 0.60 0.54 0.53 0.58 0.54 0.52 0.60 0.59 0.53 0.52 0.64 0.59

tweet_eval-irony 0.57 0.57 0.54 0.55 0.53 0.56 0.59 0.57 0.57 0.48 0.40 0.54 0.49 0.49 0.54
wiki_split 0.80 0.80 0.81 0.80 0.81 0.80 0.80 0.80 0.74 0.67 0.67 0.79 0.75 0.64 0.78

yelp_polarity 0.62 0.51 0.93 0.94 0.38 0.15 0.94 0.86 0.01 0.48 0.30 0.86 0.02 0.38 0.04

Table 3: Multitask
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