General Framework for Self-Supervised Model Priming for
Parameter-Efficient Fine-tuning

Anonymous ACL submission

Abstract

Parameter-efficient methods (like Prompt or
Adapters) for adapting pre-trained language
models to downstream tasks have been pop-
ular recently. However, hindrances still prevent
these methods from reaching their full poten-
tial. For example, two significant challenges
are few-shot adaptation and cross-task gener-
alization ability. To tackle these issues, we
propose a general framework to enhance the
few-shot adaptation and cross-domain gener-
alization ability of parameter-efficient meth-
ods. In our framework, we prime the self-
supervised model for parameter-efficient meth-
ods to rapidly adapt to various downstream
few-shot tasks. To evaluate the authentic gen-
eralization ability of these parameter-efficient
methods, we conduct experiments on a few-
shot cross-domain benchmark containing 160
diverse NLP tasks. The experiment result re-
veals that priming by tuning PLM only with ex-
tra training tasks leads to the best performance.
Also, we perform a comprehensive analysis of
various parameter-efficient methods under few-
shot cross-domain scenarios.

1 Introduction

In recent years, pre-trained language models
(PLMs) in natural language processing (NLP) are
blooming everywhere (Devlin et al., 2018; Lewis
et al., 2019; Raffel et al., 2019; Brown et al., 2020).
However, not only the number of PLMs but also
their size is rapidly growing, making it harder to
perform full fine-tuning. To address the issue, tons
of parameter-efficient fine-tuning methods have
bubbled up, such as adapters (Houlsby et al., 2019;
Pfeiffer et al., 2020; Zaken et al., 2021; Fu et al.,
2022), or prompts (Lester et al., 2021; Li and Liang,
2021).

These innovative methods have made it equitable
for researchers with insufficient resources. Also,
Gu et al. (2021) demonstrated that prompt tuning
is able to compete with fine-tuning when down-
stream data is sufficient, whereas it fails to compete

Traditional Parameter-
Efficient Fine-tuning

Our Framework

Downstream
et Tunable Element

\

Downstream
Tunable Element

Fine-tune . .

1 Priming

tunable element

Downstream
Tunable Element

Fine-tune
tunable element

[] Train tasks
[] Test tasks

Figure 1: We propose a general framework to improve
the performance of parameter-efficient fine-tuning. We
prime the self-supervised model with training tasks for
parameter-efficient methods.

equally under few-shot scenarios. Gu et al. (2021)
pioneers the way of hybrid prompt pre-training, us-
ing both hard and soft prompts, which enables the
prompts to match the performance of fine-tuning
under few-shot settings, whereas other types of pre-
training methods remain unexplored. Huang et al.
(2022) proposed the method which applies meta-
learning to pre-trained soft prompts under few-shot
settings. However, they only apply pre-training
in the Sentiment Analysis (SA) task, which lacks
a comprehensive and general view from a higher
level. On the other hand, Vu et al. (2022) indicates
that pre-training prompts on source tasks can sig-
nificantly boost the performance on target tasks.

Houlsby et al. (2019) empirically shows that
adapters can achieve comparable performance by
fine-tuning the entire model. However, Wang et al.
(2022a) showed that there is still a significant per-
formance gap compared to fully fine-tuning when
only a handful of data is available. There are also
several studies on improving the few-shot perfor-

mance of adapters. Wang et al. (2022a) uses self-
training to leverage large amounts of unlabeled
data and successfully boosts the performance on six
NLU tasks. Wang et al. (2022b) takes inspiration
from the mixture-of-experts models and proposes a
new mechanism of stochastic routing to a mixture
of adapters. Previous research significantly im-
proves few-shot performance in specific domains,
but the ability to generalize to cross-domain re-
mains unexplored.

Since existing self-supervised models are not
tailored for cross-domain parameter-efficient fine-
tuning, we propose a general framework to tackle
the issue. The concept is shown in Fig. 1. We
prime the self-supervised model with extra few-
shot training tasks for parameter-efficient methods
to rapidly adapt to various downstream few-shot
tasks. After priming with extra few-shot training
tasks, we can bridge the gap between the PLM
and parameter-efficient methods like adapter and
prompt, enabling them to fit the downstream tasks
better.

On top of that, we conduct comprehensive exper-
iments over adapters and prompt tuning, the two
well-known parameter-efficient training methods.
Our experiments include combinations of multi-
task learning and meta-learning on adapters and
soft prompts. Specifically, we choose (Ye et al.,
2021), an NLP few-shot gym aiming at building
few-shot learners who can generalize across diverse
NLP tasks. In addition, we analyze the experiment
results from different aspects and provide inclusive
insight into these parameter-efficient training meth-
ods. The experiment result reveals that priming by
tuning only PLM with extra training tasks leads to
the best performance.

2 Related Work

2.1 Adapter

Adapters are lightweight modules introduced for
the transformer architecture. It was first proposed
by Houlsby et al. (2019) and soon became popular
in NLP with several variants. Instead of fine-tuning
the entire model, Adapters add extra trainable pa-
rameters and freeze the original PLM. In this work,
we mainly adopt AdapterBias (Fu et al., 2022),
which obtains comparable performance against
Houlsby et al. (2019) while adding much fewer
parameters to the model.

2.2 Prompt

Prompt-based tuning is an innovative method to use
the power of PLMs efficiently. Li and Liang (2021)
proposed prepending prefix vectors to the input
of the transformer, reducing the computation con-
sumption to a new level, and realizing the parame-
ter efficiency. Han et al. (2021) proposed prompt
tuning with rules (PTR). PTR encoded prior hu-
man knowledge into prompt tuning by composing
sub-prompts into task-specific prompts, reducing
the difficulty in designing the template. Pre-trained
prompt(PPT) for prompt initialization is proposed
by Gu et al. (2021). It shows that without tuning
the PLM, it can perform well in downstream tasks
when applying pre-trained prompts as downstream
initialization. In addition, Gu et al. (2021) further
explore their work on large-scale PLM with 11B pa-
rameters on few-shot learning. Huang et al. (2022)
proposed Meta-learned Prompt Tuning (MetaPT)
to further improve PTT (Gu et al., 2021)’s initial-
ization by considering latent structure within the
pre-trained data.

2.3 Adapter mix Prompt

The concept of mixing adapters and prompts was
proposed by He et al. (2021). They propose Mix-
And-Match adapter (MAM Adapter), which fuses
the scaled parallel adapter with prefix prompt pro-
posed by Li and Liang (2021). In our framework,
we also include the concept of mixing adapters and
prompts.

2.4 Meta Learning

Meta-Learning is well-recognized and a systematic
pre-training method that enables models to rapidly
adapt to different tasks with a small amount of
data. Among several Meta Learning algorithms,
Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) has shown its success in many NLP
tasks under few-shot settings, which is quite a suit-
able algorithm to empower our parameter-efficient
methods to reach their full potential.

3 Methodology

3.1 Framework

Our work aims to comprehensively discover and an-
alyze the performance of parameter-efficient meth-
ods under few-shot scenarios. We propose a gen-
eral framework to prime the whole model (may in-
clude PLMs or other tunable elements) to adapt to

various domains under few-shot scenarios. We di-
vide the training pipeline into two parts: Upstream
Learning Stage and Downstream Fine-Tuning
Stage. In our work, we adopt MAML(Finn et al.,
2017) and Multi-task learning(Caruana, 1997) as
the Learning method in the upstream learning
stage to train our model, which will be discussed in
the following sections. In our framework, we tune
different parameters in different stages. Specifi-
cally, the parameters tuned in the upstream learn-
ing stage are called Upstream tunable elements,
while those tuned in the downstream fine-tuning
stage are called Downstream tunable elements.

PLM PLM
Upstream Upstream
L
Initialize Initialize
PLM PLM
Downstream Downstream
L

(a) Upstream: PLM
Downstream: adapter

(b) Upstream: adapter+prompt
Downstream: prompt

Figure 2: Different combinations of tunable elements.
The elements with dotted lines are unused. The green
parts refer to the tunable elements, and the parameters in
Downstream are initialized with the Upstream tunable
elements.

3.2 Upstream Learning Stage

In Upstream Learning Stage, we aim at training
the model to a point where downstream tunable ele-
ments can swiftly adapt to downstream tasks. Tun-
able elements include PLM, adapter and prompt
in upstream learning stage. Among these elements,
in addition to simple combinations like PLM +
adapter or prompt, we also test some unexplored
combinations like adapter + prompt and enumer-
ate every possible combination within our settings.

Take Fig.2 as example. In the upstream learning
stage, we can choose from either tuning only one
element like Fig.2a or tuning multiple elements
like Fig.2b. However, only one of the adapters
and prompts can be tuned in the downstream fine-
tuning stage.

3.2.1 Meta Learning

We adopt MAML (Finn et al., 2017) as our learn-
ing method. Following the algorithm in Finn et al.

(2017), the parameters in the outer and inner loop
are trained separately. Instead of tuning the whole
model directly, we choose to update the Upstream
tunable elements and Downstream tunable ele-
ments, respectively. As shown in Fig. 3 and Alg. 1,
we first copy the current model parameters 1) to be
the model initialization of the inner loop. Second,
we tune the downstream tunable element 14 in the
inner loop. Lastly, we compute the loss from the
tuned model wg and training tasks 7; to update 1.
The updated 1, will be part of the model initializa-
tion of the next inner loop.

outer loop

® update 1,

inner loop
update 1y

Upstream
Tunable Elements|

b
®

copy ¥

Downstream
Tunable Elements

inner loop

update 1y
O trainable ¢ 1
@ fixed ! Downstream 1
! Tunable Elements|| !
Figure 3: Training details of Parameter-Efficient

MAML: (1) Copy % to be the initialization of the inner
loop. (2) Split ¢ into 1»4 (downstream tunable elements)
and ¢~d- Fine-tune 14 for every task in 7. 3. Split ¢
into v, (upstream tunable elements) and ¢~u Update
1), in the outer loop.

Algorithm 1 Parameter-Efficient MAML

1: T = {T1,T»,...}: Asetof training tasks

2: a, B: Outer Ir, Inner Ir

3: 4: PLM parameters

4: {¢1, p2, ...}: Tunable elements

5: ¢ = [0; ¢1; ¢2; ...]: All parameters of the model

6:

7: Randomly initialize {$1, ¢2, ...}

8:

9: while not done do

10: for T; € T do B

11: Split ¢ into two parts, 14 and 4 // 1) 4 is tunable in inner loop
12: Evaluate V., , L, (fy) with respect to K samples
13: Compute adapted parameters with gradient

14: descent: 97 ; =ta = BVy, Lr; (fy)

15: d’: = ["/J,/iyﬁ'l/)d]

16: end for

17: Split 1 into two parts, 1., and 1)y,
18: o, =vu —aVy, Y,
190 o« [9]

20: end while

21: return ¢

// 14, is tunable in outer loop

Ty ~p(T) L:Ti (qu’)

3.2.2 Multi-task Learning

Multi-task Learning (Caruana, 1997) aims to learn
multiple different tasks simultaneously while maxi-
mizing performance on all of them. The model may
be able to learn cross-tasks knowledge beneficial
to generalization. In our framework, we tune the
upstream tunable elements on training tasks in the
upstream learning stage and evaluate the few-shot
ability of the model on testing tasks. For the up-
stream and downstream tunable elements, we can
take Fig.2a for example. In the upstream learning
stage, we tune the PLM among different training
tasks, while we tune adapters on testing tasks re-
spectively in the downstream stage.

3.3 Downstream Fine-Tuning Stage

Since the backbone of our work is to explore the
few-shot ability of parameter-efficient methods,
only prompt and adapter are tunable in down-
stream stage. In Downstream Fine-Tuning Stage,
we aim at swiftly adapting the upstream parameters
to downstream tasks. In this way, we can evalu-
ate the ability of parameter-efficient methods under
few-shot scenarios.

3.4 Specific Methods

The combinations in our experiments include some
existing methods, like Meta-Adapters (Bansal et al.,
2022). Moreover, we also propose two new ap-
proaches, Meta-Prompt and Adapter-mix-Prompt,
to further explore the potential of priming the
model. In fact, the aforementioned methods can
all be considered the specific cases of our unified
framework.

3.4.1 Training the Initialization

In Sec. 3.2 we mention that both adapters and
prompt are available options of the upstream tun-
able elements. If we freeze the parameters of
PLM and only train the adapters/prompts in both
the upstream and downstream stages, we are actu-
ally training the initialization of adapters/prompts.
Huang et al. (2022); Hou et al. (2022) apply
meta-learning to train a better initialization of soft
prompts for downstream tasks, which can be re-
garded as one of the combinations in our frame-
work.

3.4.2 Meta-Adapters

Instead of fine-tuning the whole model, Bansal
et al. (2022) proposed Meta-Adapters to reduce
the number of tunable parameters. They insert

meta-adapters in addition to regular adapters in the
transformer blocks and keep the PLM frozen to
reduce trainable parameters. Since meta-adapters
are just extra adapters with different placements,
we can view Meta-Adapters as a special case of
our framework, where two kinds of adapters (meta-
adapters and regular adapters) are trained in the
upstream learning stage and only regular adapters
are tunable in the downstream fine-tuning stage.
We also consider the case that only meta-adapters
are tunable in the upstream stage.

3.4.3 Meta-Prompt

Inspired by Bansal et al. (2022), we propose Meta-
Prompt, a newly designed method aiming at im-
proving the performance of regular prompt tuning.
Fig. 4 illustrates how Meta-Prompt works. We
concatenate the original input text (yellow blocks)
with the regular prompt (green blocks) and another
meta prompt (pink blocks). In the upstream learn-
ing stage, we can choose to tune both prompts
(meta-prompt and regular prompt) or tune the meta-
prompt only, while the meta-prompt remains fixed
in the downstream fine-tuning stage. Similar to
Meta-Adapters, Meta-Prompt is also considered
one of the combinations in our framework.

s N
O Original input
Encoder O Prompt
O Meta prompt
o %

Figure 4: Meta prompt

3.44 Adapter mix Prompt

In our framework, adapters and prompts are consid-
ered two independent tunable elements. The soft
prompt tokens (Lester et al., 2021) are prepended to
the original input, and the adapters (Fu et al., 2022)
are inserted in the transformer blocks (Vaswani
et al., 2017). Therefore, it is viable for us to com-
bine them in a single model. Under this setting,
we can either tune adapters or prompt in the down-
stream stage. Although the concept seems to be
similar to He et al. (2021), the implementation
varies widely in practice. He et al. (2021) directly
fine-tunes the adapters and prompt, while differ-
ent components are trained in the upstream and
downstream stages respectively.

4 Experiment

4.1 DataSet

We choose CrossFit Challenge (Ye et al., 2021)
as our benchmark, which provides 160 different
few-shot tasks with unified text-to-text format gath-
ered from existing open-access datasets. For the
tasks split, which implies the components of Train,
Dev, and Test tasks, we select random split in Ye
et al. (2021) to be the task split setting in our work.
These tasks come from various domains, including
Classification, Question Answering, Conditional
Generation, and others. More explicit explanations
of tasks can be found in Ye et al. (2021). Each
few-shot classification or regression task contains
16 examples per class, and other types of tasks
contain 32 examples. Briefly speaking, CrossFit
Challenge is able to evaluate the authentic few-shot
generalization ability of models.

In our experiment, we find that performance di-
rectly fine-tuning BART(Lewis et al., 2019) is aw-
ful in "freebase_qa," whose performance is nearly
0, leading to a lousy evaluation when we calcu-
late relative gain since it will be huge. Because
the lousy evaluation strongly influences our follow-
ing assessment on all tasks, we decide to eliminate
the results of freebase_qa when we calculate the
model’s average performance. However, to main-
tain the completeness of our experiment, we put
all the original data in Table 2 and Table 3 in Ap-
pendix.

4.2 Setup

4.2.1 Tunable elements

To maintain the integrity of our experiment, we
list all possible combinations, as shown in Table 1
in Appendix, and conduct experiments each by
each to explore the impacts of different compo-
nents. The experiment setup mainly follows Ye
et al. (2021). Specifically, the tunable parameters
in the upstream stage and downstream stage are dif-
ferent. In the upstream stage, we can tune prompt,
adapter, meta-adapter, meta-prompt, and PLM, but
we can only tune prompt or adapters in the down-
stream stage. Figure 2 shows two examples of
different combinations.

Adapter

In this work, we mainly adopt AdapterBias (Fu
et al., 2022) as our adapter module. AdapterBias
adds a token-dependent shift to the hidden output

of transformer layers, parameterized by only a vec-
tor and a linear layer. Compared with the original
adapter design (Houlsby et al., 2019), the train-
able parameters are further reduced while obtaining
comparable performance.

Prompt

Prompt is one of our tunable elements. In our set-
tings, we applied prompt tuning proposed by Lester
et al. (2021), which concatenates tunable tokens be-
fore the input sentence and ask the PLM to generate
corresponding output text. Following Lester et al.
(2021), we set the prompt length to 100 tokens.

Meta-Adapter

Bansal et al. (2022) inserts meta-adapters before
and after the regular adapters to make the pre-
trained model a better few-shot learner. Meta-
adapters have the same architecture as the regular
adapters (Houlsby et al., 2019), but only the regular
adapters are fine-tuned in the downstream stage.

4.2.2 Hyperparameters

Our hyperparameters settings follow Ye et al.
(2021); Lester et al. (2021). The PLM we adopt
is BART-base (Lewis et al., 2019) from Hugging-
face (Wolf et al., 2019). The prompt length in our
main experiment is 100. In our implementation of
Meta Learning, the optimizer in the outer loop is
AdamW with 0.01 weight decay excluding bias and
Layernorm terms, while the optimizer in the inner
loop is SGD. We set the outer model, prompt, and
adapter learning rate to be 8¢=>,8¢ =3 and le™
respectively; the inner learning rate is 0.025 and
0.001 for prompt and adapter, respectively. The
epoch is set to 80, the train batch size is 1, and
the inner batch size is 4 or 8 depending on GPU
memory consumption. On the other hand, in our
implementation of Multi-task learning, the opti-
mizer is AdamW with 0.01 weight decay excluding
bias and Layernorm terms. The learning rate for
PLM, prompt, and adapter is 3e~>. The epoch is
set to 10, and the train batch size is 32.

4.3 Maetrics

For the evaluation metric, we also follow Ye et al.
(2021), adopting Average Relative Gain (ARG)
as the index of performance on each task. To de-
pict our model’s capability of generalization more
precisely, we take Relative Gain Standard Devi-
ation (RGSTD) into account, which is the stan-
dard deviation of relative gains among different

tasks. Comparably, RGSTD can better represent
the cross-task generalization ability. In a nutshell,
ARG and RGSTD are both considered while eval-
uating the authentic few-shot ability of different
baselines.

4.4 Main Result

The complete result can be found at Table 2 and
Table 3 in Appendix. To better visualize the ex-
periment result, we provide a scatter graph version
to help understanding at Fig 5. From the scatter
graph, we can simply compare the few-shot ability
between different combinations.

Generally speaking, the combinations located at
the bottom right corner are those with extraordi-
nary few-shot ability since they have higher ARG
and lower RGSTD simultaneously. On the other
hand, the combinations located at the upper left cor-
ner show less generalization ability and robustness
under few-shot scenarios.

Next, we use abbreviations to substitute the com-
plete name of each combination for simplicity. For
learning methods, we use Meta to represent Meta
learning and Multi to represent Multi-task learn-
ing. For tunable elements, we use M to represent
PLM, A to represent adapter, P to represent prompt,
MA to represent meta-adapter and MP to represent
meta-prompt.

To be more concise, we differentiate learning
methods and downstream tunable elements by
marker types. All combinations using MAML as
their learning methods are squares, whereas those
using Multi-task learning are circles. Also, all com-
binations with prompt as their downstream tunable
elements are hollow, whereas those with adapters
are solid. The parameter-efficient FT baselines of
directly fine-tuning are in the shape of a star.

Lastly, we can simply summarize the result here
and leave the detailed analysis to the next sec-
tions. Most points are on the right of the parameter-
efficient FT baseline (blue stars) while some points
even surpass the BART-FT baseline (ARG=0.0).
Thus, it is obvious that our framework significantly
enhances the performance of traditional parameter-
efficient fine-tuning.

5 Analysis

5.1 Learning methods

In our work, MAML and Multi-task learning are
two available learning methods. In Fig. 5, the col-
ors stand for different combinations of upstream

0.50

Meta_P_P Multi_P_P

m Meta A A e MultiAA
Meta_M_P Multi_M_P
em Meta_M_A e MultiM_A
0.45 = Meta_M+P_P Multi_M+P_P
m Meta_ M+A_A e MultiM+A A
N ‘ Meta_MP_P Multi_MP_P
. Meta_MA_A Multi_MA_A
Meta_MP+P_P Multi_MP+P_P
0.40 = Meta MA+A A o Multi MA+A A
b] Meta_M+A+P_P Multi_M+A+P_p
n = = Meta_M+A+P_A e Multi M+A+P_A
% O Meta A+P_P o Multi_A+P_P
Og3s m Meta A+P_A o Multi_A+P_A
g FT_P FT_A
=]
©
& " °

o
[
o

“=0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
Average Relative Gain

Figure 5: Experiment Result: The picture illustrates the
performance of each combination. Generally speaking,
points located at the bottom right side perform the best.
All combinations using MAML as their learning meth-
ods are squares, while those using Multi-task learning
are circles. All combinations with prompt as their down-
stream tunable elements are hollow, while those with
adapters are solid.

and downstream tunable elements. If we observe
the points having the same color, we can find that
circles mostly locate on the right side of squares,
which implies that Multi-task learning surpasses
MAML in most cases. However, if we analyze the
results from other aspects, these two learning meth-
ods exhibit opposite trends. In the case prompt serv-
ing as the downstream element, from Fig. 6(a)(c),
we can easily tell MAML produces a more stable
result among different upstream tunable elements.
On the contrary, in the case adapter serving as the
downstream element, two learning methods pro-
duce similar results. In a nutshell, when it comes to
stability, MAML takes the lead by a small margin.

5.2 Upstream tunable elements

To better formulate the impact of different factors,
we divide all combinations into four groups by
their learning method and downstream tunable el-
ements. In each group, the learning method and
downstream tunable elements are set to be consis-
tent. After taking a careful look at Fig. 6 and Fig. 5,
we can reach the following conclusions:

5.2.1 What benefit parameter-efficient tuning
the most

To compare the combinations of tuning only PLM
with traditional parameter-efficient fine-tuning, we
can take a look at gray points (FT_P & FT_A)
and orange points Meta_M_P & Meta_M_A &
Multi_M_P & Multi_M_A) in Fig. 6, and in ev-
ery group, orange points take a great lead to gray
points. Also, we can tell that the orange points
perform well in different groups, for almost all or-
ange points are comparable to BART-FT baseline
(ARG=0.0). Tuning only PLM in the upstream
stage does help the tunable elements to reach the
best performance in downstream tasks. The im-
provement is evident regardless of learning meth-
ods and downstream tunable elements, which is
beyond our expectations, since tuning different el-
ements at different stages is not always the most
common approach. From our perspective, tuning
PLM in the upstream stage manages to alleviate
the issue that PLM is not optimized for parameter-
efficient methods. However, unlike tuning only
PLM in the upstream stage, tuning PLM with other
tunable elements simultaneously fails to maintain
exceptional in the adapter’s case (Fig. 6 (b)(d)).
The actual reason may need further research to
fully unveil.

For the implementation detail, it is worth men-
tioning that for the case tuning only PLM in the up-
stream stage, parameter-efficient elements(adapters
or prompts) are initialized but remain frozen un-
til entering the downstream stage. In other words,
the PLM is actually fitting a random initialized
parameter-efficient element in the Multi-task learn-
ing case and fitting a few-shot tuned parameter-
efficient element in MAML case.

5.2.2 Tuning prompt in the upstream stage
helps

To compare the combinations of directly fine-
tuning and tuning parameter-efficient elements in
both upstream and downstream stages, we can in-
spect the dynamic between blue points (Meta_P_P
& Meta_ A_A & Multi_P_P & Multi_A_A) and
gray points (FT_P & FT_A) in Fig 6. The conclu-
sion is that tuning prompts in the upstream stage
does help prompts to fit the downstream tasks bet-
ter while in adapters case the impact is reversed.
It seems that prompts can transfer across different
tasks better than adapters.

5.2.3 Tuning elements with their meta
counterparts doesn’t fit better

To evaluate whether tuning adapter or prompt with
their meta counterparts in the upstream learning
stage help fitting downstream tasks, we can put at-
tention to red points (Meta_MP_P & Meta_ MA_A
& Multi_MP_P & Multi_MA_A) and purple
points (Meta_MP+P_P & Meta MA+A_A &
Multi MP+P_P & Multi_MA+A_A) in Fig 6. We
can see almost all red points located near purple
points, which means tuning adapters or prompts
with their meta counterpart doesn’t bring much im-
provement.

5.2.4 Meta-adapters do help adapter to fit

better

To evaluate whether meta-adapter or meta-
prompt help adapter or prompt to fit downstream
tasks better, We can take a look at the dy-
namic between red (Meta_MP_P & Meta_ MA_A
& Multi MP_P & Multi_MA_A) & purple
points (Meta_MP+P_P & Meta MA+A_A &
Multi MP+P_P & Multi_MA+A_A) and blue
points(Meta_P_P & Meta_A_A & Multi_P_P &
Multi_A_A). We can easily get to the conclusion
that Meta-adapters do help adapters (Fig. 6 (b)(d))
to fit the downstream tasks better while meta-
prompt fails to bring the same level improvement
(Fig. 6 (a)(c)). The design of meta-prompt can be
further explored by future research.

5.2.5 Tuning adapter & prompt at the same
time

To evaluate the performance of tuning adapter
& prompt at the same time in the up-
stream learning stage, we can focus on brown
points (Meta_M+A+P_P & Meta_ M+A+P_A
& Multi M+A+P_P & Multi_M+A+P_A) and
pink points (Meta_A+P_P & Meta_A+P_A &
Multi_A+P_P & Multi_A+P_A) in Fig. 6. When
comparing these points with gray points (FT_P
& FT_A), we can tell the improvement is sig-
nificant when the downstream tunable element is
prompt (Fig. 6 (a)(c)). Nevertheless, it doesn’t help
adapters (Fig. 6 (b)(d)) to fit the downstream tasks
better as prompts. The latent mechanism can be
further studied by future research.

5.3 Downstream tunable elements

In our setting, prompts and adapters are two avail-
able downstream tunable elements. From Fig 5,
we can tell prompt beats adapters generally since

(a) MAML & Prompt (b) MAML & Adapter

® Meta P P ® Meta A A
0.45 Meta_M_P 0.45 Meta_M_A
e Meta M+P_P - ° e Meta M+A_A
® Meta MP_P ° e Meta MA A
0.40 ® Meta MP+P_P 0.40 ® Meta MA+A A
a ® Meta M+A+PP | ® o Meta M+A+P_A
G035 Meta_A+P_P 5035 . Meta_A+P_A
2 e FTP 2 o FTA
0.30 0.30
L]
L]
0.25 o 025
°
0.20 0.20

-0.5 -04 -03 -02 -0.1 0.0 0.1 -0.5 -04 -03 -0.2 -0.1 0.0 0.1
ARG ARG

() Multi & Prompt (d) Multi & Adapter

e Multi PP

Multi_M_P .
0.4 ® Multi M+P_P 045 .
® Multi_MP_P .
0.40 ® Multi MP+P_P 0.40
: Lo | g - s
$035 - $0.35 . Multi_M_A
2 o FTP 2 A
® MultiM+A A
0.30 . 0.30 g o MultiMAA
o . o Multi_MA+A_A
® Multi_M+A+P_A
0.25 . > 0.25 Multi_A+P_A
) e FTA
0. 0.20

-0.5 -04 -03 -02 -01 0.0 0.1 .5 -04 -03 -02 -01 0.0 0.1
ARG ARG

Figure 6: Upstream tunable elements result: In this fig-
ure, we divide all combinations into four groups by their
learning methods and downstream tunable elements. In
each group, the learning methods and downstream tun-
able elements are set to be consistent.

almost all hollow points locate relatively closer to
the bottom right side (Hollow points are prompt
and solid points are adapters). However, it’s more
rigorous to eliminate the impact of learning meth-
ods and upstream tunable elements. Therefore, we
only compare those with the same learning method
and upstream tunable elements. To be more spe-
cific, we ignore those with their meta counterpart in
their upstream tunable elements (MP, MA, MP+P,
MA+A), which are the red & purple points in Fig 6.

If we do a cross-comparison between the (a)(c)
and (b)(d) in Fig 6, we can tell that prompt takes
the lead by a great margin, even in the fine-tuning
case. The conclusion implies that prompts can fit
downstream tasks better than adapters in terms of
generality and stability.

5.4 Tasks

In Fig.7, the bar of FT is corresponding to the
blue solid and hollow stars in Fig. 5, respectively.
In this section, we regard it as the baseline for
prompts and adapters, respectively. However, in
Fig. 5 and Fig. 6, the evaluation metrics are ARG,
which calculates the average relative gain of each
task, lacking information on individual tasks. To
prevent the result severely influenced by a single
task, we construct Fig.7 to visualize the relative
improvement of each task.

The result not only eliminates our potential

worry but also backs up the validity of our best
results. From Fig. 7, we can see in most tasks, our
best results — "Only tune PLM" in the upstream
learning stage significantly improve the perfor-
mance of traditional parameter-efficient fine-tuning
regardless of the learning method and parameter-
efficient methods.

Prompt
Multitask
MAML
- T

-
Y —

ethos-disability |
I

ethos-sexual_orientation

circa

crawl_domain

auore
race-high [y

ai2_arc
glue-cola}
glue-qnli g
superglue-rte

hatexplain [y
Wiki_s it
Yelp_polarity e —

Performance
a0 s
—
amazon_polarity [y

tweet_eval-iron

- _licensor_present

blimp-..._npi_scope |y

blimp-

Adapter
Multitask
MAML

__Na

Performance

—
—
—_—
—
—
e
—
—

-
Y —

ag_news
ai2_arc
circa
glue-cola

glue-gnli |
hatexplain
quoref
race-high
wiki_split

_
velp_polarity | .

.._npi_scope
crawl_domain
superglue-rte

=
amazon_polarity | |

ethos-disability
tweet_eval-iron

..._licensor_present

blimp-.
ethos-sexual_orientation

blimp-

Figure 7: The performance of "Only Tune PLM" in
prompt over all tasks. The horizontal axis is the name
of the few-shot datasets, and the vertical axis is the
performance.

6 Conclusion

In this paper, we propose a general framework
to prime the self-supervised model for parameter-
efficient methods to rapidly adapt to various down-
stream few-shot tasks. Among several combina-
tions of learning methods and tunable elements, our
experiment result shows that tuning only PLM in
the upstream stage does enhance the performance
of parameter-efficient methods adapting to few-
shot downstream tasks by a great margin. Apart
from this, the experiment reveals that prompts gen-
erally fit various downstream few-shot tasks better
than adapters. Lastly, we find out that applying
MAML as the learning method produces a more
stable result while Multi-task Learning produces
extreme value more easily.

References

Trapit Bansal, Salaheddin Alzubi, Tong Wang, Jay-
Yoon Lee, and Andrew McCallum. 2022. Meta-
adapters: Parameter efficient few-shot fine-tuning
through meta-learning. In First Conference on Auto-
mated Machine Learning (Main Track).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Rich Caruana. 1997. Multitask learning: A knowledge-
based source of inductive bias.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks.

Chin-Lun Fu, Zih-Ching Chen, Yun-Ru Lee, and Hung-
yi Lee. 2022. Adapterbias: Parameter-efficient token-
dependent representation shift for adapters in nlp
tasks. arXiv preprint arXiv:2205.00305.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. Ptr: Prompt tuning with rules
for text classification.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.

Yutai Hou, Hongyuan Dong, Xinghao Wang, Bohan Li,
and Wanxiang Che. 2022. MetaPrompting: Learn-
ing to learn better prompts. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 3251-3262, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Yukun Huang, Kun Qian, and Zhou Yu. 2022. Learn-
ing a better initialization for soft prompts via meta-
learning.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. CoRR, abs/1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021. P-
tuning v2: Prompt tuning can be comparable to fine-
tuning universally across scales and tasks.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5039-5059, Dublin, Ireland. Association
for Computational Linguistics.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Awadallah, and Jianfeng Gao.
2022a. List: Lite prompted self-training makes
parameter-efficient few-shot learners. In Findings
of the Association for Computational Linguistics:
NAACL 2022, pages 2262-2281.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. 2022b. Adamix: Mixture-of-adapter for
parameter-efficient tuning of large language models.
arXiv preprint arXiv:2205.12410.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.
CrossFit: A few-shot learning challenge for cross-
task generalization in NLP. pages 7163-7189.

https://openreview.net/forum?id=BCGNf-prLg5
https://openreview.net/forum?id=BCGNf-prLg5
https://openreview.net/forum?id=BCGNf-prLg5
https://openreview.net/forum?id=BCGNf-prLg5
https://openreview.net/forum?id=BCGNf-prLg5
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1703.03400
https://doi.org/10.48550/ARXIV.1703.03400
https://doi.org/10.48550/ARXIV.1703.03400
https://doi.org/10.48550/ARXIV.2109.04332
https://doi.org/10.48550/ARXIV.2109.04332
https://doi.org/10.48550/ARXIV.2109.04332
https://doi.org/10.48550/ARXIV.2105.11259
https://doi.org/10.48550/ARXIV.2105.11259
https://doi.org/10.48550/ARXIV.2105.11259
https://doi.org/10.48550/ARXIV.2110.04366
https://doi.org/10.48550/ARXIV.2110.04366
https://doi.org/10.48550/ARXIV.2110.04366
https://aclanthology.org/2022.coling-1.287
https://aclanthology.org/2022.coling-1.287
https://aclanthology.org/2022.coling-1.287
https://doi.org/10.48550/ARXIV.2205.12471
https://doi.org/10.48550/ARXIV.2205.12471
https://doi.org/10.48550/ARXIV.2205.12471
https://doi.org/10.48550/ARXIV.2205.12471
https://doi.org/10.48550/ARXIV.2205.12471
https://doi.org/10.48550/ARXIV.2104.08691
https://doi.org/10.48550/ARXIV.2104.08691
https://doi.org/10.48550/ARXIV.2104.08691
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.48550/ARXIV.2101.00190
https://doi.org/10.48550/ARXIV.2101.00190
https://doi.org/10.48550/ARXIV.2101.00190
https://doi.org/10.48550/ARXIV.2110.07602
https://doi.org/10.48550/ARXIV.2110.07602
https://doi.org/10.48550/ARXIV.2110.07602
https://doi.org/10.48550/ARXIV.2110.07602
https://doi.org/10.48550/ARXIV.2110.07602
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2022.acl-long.346
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

7 Appendix

7.1 Combination

Learning Upstream Downstream Abbreviation

Methods Tunable Elements Tunable Elements
prompt prompt Meta_P_P
adapter adapter Meta_A_A
model prompt Meta_M_P
model adapter Meta_M_A
model+prompt prompt Meta_M+P_P
model+adapter adapter Meta_M+A_A
meta-prompt prompt Meta_MP_P

MAML meta-adapter adapter Meta_ MA_A
meta-prompt+prompt prompt Meta_MP+P_P
meta-adapter+adapter adapter Meta_MA+A_A
model+adapter+prompt | prompt Meta_M+A+P_P
model+adapter+prompt | adapter Meta_M+A+P_A
adapter+prompt prompt Meta_A+P_P
adapter+prompt adapter Meta_A+P_A
prompt prompt Multi_P_P
adapter adapter Multi_A_A
model prompt Multi_M_P
model adapter Multi M_A
model+prompt prompt Multi_M+P_P
model+adapter adapter Multi_M+A_A

. meta-prompt rompt Multi_MP_P

Multitask meta—lz:dapt[e)r 1;dapt[e)r Multi_MA_A
meta-prompt+prompt prompt Multi_MP+P_P
meta-adapter+adapter adapter Multi_MA+A_A
model+adapter+prompt | prompt Multi_M+A+P_P
model+adapter+prompt | adapter Multi_M+A+P_A
adapter+prompt prompt Multi_A+P+P
adapter+prompt adapter Multi_A+P_A

Table 1: Experiment Combinations

Task Performance

20 tokens
W 100 tokens

4
Dataset name

Performance

Figure 8: Average performance of prompt tokens length
(20/100) in all tasks

7.1.1 Prompt

From Fig. 8, we notice that the performance of 100
tokens slightly outperforms that of 20 tokens, and
this verifies the suggestion in (Lester et al., 2021),
which shows that 100-tokens is more fitful for
model size around 10® than 20-tokens. However, in
Fig. 8, we can also find in some tasks, the average
performance of 20 tokens is better or close to 100

tokens, like ai2_arc, ethos-sexual_orientation, glue-
gnli, glue-rte, quoref, race-high, and superglue-
rte. We can find that these tasks are in one of
the following categories: MQA(Multiple-choice
Question Answering), NLI(Natural Language Infer-
ence), or simple classification tasks. Thus, as Liu
et al. (2021) reveals, shorter prompt token length
can perform well in these simple tasks, and longer
prompt token length is more fitful for those chal-
lenging tasks.

7.2 Exeperiment Result

7.2.1 MAML

Learning Method Baseline MAML
Downstream prompt adapter
model + model +
Upstream prompt | model model + meta_prompt | MCAPIOMPI | apter 4 adapter + adapter | model model + meta_adapter meta_adapter + adapter + adapter +
prompt prompt prompt adapter adapter prompt
prompt prompt
ag_news 0.86 0.86 0.63 0.56 0.85 0.85 0.83 0.84 0.69 0.53 0.61 0.85 0.78 0.02 0.07
ai2_arc 023 0.29 0.25 0.30 0.24 0.26 0.25 0.27 0.21 0.24 0.25 0.20 0.23 0.24 0.22
amazon_polarity 091 0.89 0.90 0.92 0.82 0.88 091 0.90 0.85 0.57 0.75 0.77 0.89 0.61 0.84
blimp-sentential_negation_npi_licensor_present 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 0.60 0.56 0.53 0.52 0.56 0.93 0.51
blimp-sentential_negation_npi_scope 0.93 0.57 1.00 0.66 0.59 0.74 1.00 0.76 0.51 0.51 0.52 0.51 0.55 0.52 0.53
circa 0.45 0.17 0.20 0.21 0.14 0.06 0.20 0.07 0.02 0.10 0.04 0.13 0.09 0.00 0.13
crawl_domain 0.33 0.43 0.20 0.18 0.41 0.40 0.20 0.44 0.23 0.27 0.26 0.19 0.23 0.11 0.29
ethos-disability 0.72 0.81 0.71 0.70 0.59 0.74 0.79 0.72 0.51 0.25 0.31 0.69 0.67 0.32 0.51
ethos-sexual_orientation 0.64 0.47 0.60 0.63 0.46 0.57 0.72 0.68 0.50 0.31 0.29 0.48 0.49 0.51 0.40
freebase_qa 0.00 0.01 0.02 0.03 0.00 0.03 0.04 0.01 0.01 0.06 0.06 0.00 0.01 0.03 0.03
glue-cola 0.09 0.04 0.05 0.06 0.05 0.06 0.04 0.05 -0.06 0.00 0.00 0.04 0.02 0.00 0.01
glue-gnli 0.61 0.53 0.71 0.67 0.56 0.53 0.71 0.57 0.50 0.62 0.62 0.52 0.55 0.69 0.50
i 0.42 0.38 0.48 0.44 0.39 0.39 0.45 0.40 0.20 0.30 0.13 0.38 0.29 0.03 0.25
quoref 0.29 0.33 0.31 0.25 0.29 0.36 0.31 0.38 0.29 0.41 0.39 0.27 0.28 0.28 0.34
race-high 0.24 0.27 0.30 0.30 0.24 0.26 0.31 0.26 0.19 0.31 0.31 0.16 0.23 0.31 0.25
superglue-rte 0.50 0.54 0.61 0.56 0.56 0.57 0.61 0.54 0.54 0.55 0.55 0.54 0.53 0.58 0.53
tweet_eval-irony 0.57 0.57 0.56 0.55 0.53 0.56 0.55 0.57 0.53 0.42 0.35 0.54 0.30 0.14 0.34
wiki_split 0.80 0.80 0.80 0.77 0.78 0.80 0.79 0.80 0.80 0.72 0.75 0.77 0.78 0.00 0.77
yelp_polarity 0.62 0.88 0.92 0.92 0.73 0.82 0.92 0.79 0.07 0.17 0.35 0.83 0.13 0.16 0.20
Table 2: MAML
.
7.2.2 Multitask
Learning Method Baseline Multi-task
Downstream prompt adapter
model + model +
Upstream prompt | model | ™9 | neta prompt | MEE-PIOMPUE | bter 4 | A9 ter | model | ™9 | meta_adapter | M-I e 4 | AdaDter +
prompt prompt prompt adapter adapter prompt
prompt prompt
ag_news 0.86 0.81 0.84 0.84 0.84 0.84 0.83 0.82 0.21 0.25 0.38 0.84 0.64 0.11 0.32
ai2_arc 0.23 0.25 0.27 0.29 0.23 0.25 0.27 0.26 0.24 0.26 0.26 0.23 0.22 0.26 0.23
amazon_polarity 0.91 0.88 0.93 0.93 0.75 0.80 0.93 0.87 0.63 0.56 0.44 0.86 0.88 0.62 0.92
blimp-sentential_negation_npi_licensor_present 1.00 0.96 1.00 1.00 0.99 0.99 1.00 0.96 0.57 0.98 0.99 0.55 0.74 1.00 0.57
blimp-sentential_negation_npi_scope 0.93 0.52 1.00 1.00 0.53 0.72 1.00 0.63 0.52 0.58 0.59 0.52 0.57 0.55 0.53
circa 0.45 0.08 0.22 0.19 0.15 0.11 0.14 0.07 0.02 0.03 0.02 0.08 0.12 0.00 0.10
crawl_domain 0.33 0.41 0.25 0.26 0.41 0.43 0.29 0.39 0.27 0.25 0.20 0.18 0.27 0.17 0.30
ethos-disability 0.72 0.65 0.77 0.77 0.57 0.65 0.73 0.67 0.60 0.64 0.64 0.59 0.60 0.46 0.49
ethos-sexual_orientation 0.64 0.54 0.64 0.65 0.47 0.61 0.63 0.54 0.50 0.50 0.51 0.47 0.46 0.49 0.55
freebase_qa 0.00 0.04 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.05 0.06 0.00 0.02 0.06 0.01
glue-cola 0.09 0.08 0.06 0.07 0.00 0.02 0.03 0.06 -0.05 -0.05 -0.05 -0.01 0.01 0.00 0.03
glue-gnli 0.61 0.55 0.69 0.69 0.54 0.56 0.72 0.55 0.51 0.66 0.67 0.53 0.52 0.71 0.53
i 0.42 0.39 0.44 0.42 0.40 0.41 0.46 0.39 0.14 0.35 0.36 0.37 0.28 0.12 0.25
quoref 0.29 0.34 0.38 0.39 0.28 0.28 0.36 0.32 0.30 0.41 0.41 0.31 0.28 0.39 0.32
race-high 0.24 0.24 0.33 0.33 0.24 0.24 0.33 0.24 0.21 0.33 0.33 0.23 0.25 0.34 0.23
superglue-rte 0.50 0.54 0.60 0.60 0.54 0.53 0.58 0.54 0.52 0.60 0.59 0.53 0.52 0.64 0.59
tweet_eval-irony 0.57 0.57 0.54 0.55 0.53 0.56 0.59 0.57 0.57 0.48 0.40 0.54 0.49 0.49 0.54
wiki_split 0.80 0.80 0.81 0.80 0.81 0.80 0.80 0.80 0.74 0.67 0.67 0.79 0.75 0.64 0.78
yelp_polarity 0.62 0.51 0.93 0.94 0.38 0.15 0.94 0.86 0.01 0.48 0.30 0.86 0.02 0.38 0.04

Table 3: Multitask

11

