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Abstract

Natural language processing (NLP) models001
trained on people-generated data can be unreli-002
able because, without any constraints, they can003
learn from spurious correlations or propagate004
dangerous biases about personal identities.005
We hypothesize that enriching models with006
speaker information in a controlled, educated007
way can guide them to pick up on relevant in-008
ductive biases. For the speaker-driven task of009
predicting code-switching points in English–010
Spanish bilingual dialogues, we show that011
adding sociolinguistically-grounded speaker012
features as prepended prompts significantly013
helps to improve accuracy. We find that by014
adding influential phrases to the input, speaker-015
informed models learn useful and explainable016
linguistic information. To our knowledge, we017
are the first to incorporate speaker character-018
istics in the code-switching setup, and more019
generally, take a step towards developing trans-020
parent models that control for biases in person-021
centric tasks.022

1 Introduction023

Imbalanced datasets, flawed annotation schemes,024

and even model architectures themselves can all025

cause neural models to encode and propagate bi-026

ases (Sun et al., 2019; Field et al., 2021). These027

biases can be social, linguistic, or a mix of both, re-028

sulting in models that are brittle and offensive in the029

presence of racial or gender attributes (Kiritchenko030

and Mohammad, 2018; Nozza et al., 2021), unsuit-031

able for processing mixed-language text or dialect032

variations (Sap et al., 2019; Kumar et al., 2021;033

Winata et al., 2021), or ones that can miscommuni-034

cate intents in translation setups. Contextualizing035

models in social factors is important for preventing036

these issues and building more socially intelligent037

and culturally sensitive NLP technologies (Hovy038

and Yang, 2021).039

We hypothesize that grounding models in040

speaker information can help them learn more041

useful inductive biases, thereby improving per- 042

formance on person-oriented classification tasks. 043

We test this hypothesis on the task of code-switch 044

(language change) prediction in a multilingual di- 045

alogue, which is inherently linguistically and so- 046

cially driven (Li, 2013). Prior approaches to pre- 047

dicting code-switching consider only shallow lin- 048

guistic context (Doğruöz et al., 2021). As we show 049

in our experiments, using a standard Transformer- 050

based classifier (Conneau et al., 2020) trained with 051

only linguistic context results in sub-optimal and 052

unstable models. 053

We then ground the models in relevant social 054

factors, such as age, native language, and language- 055

mixing preference of the interlocutors, via text- 056

based speaker descriptions or prompts (cf. Zhong 057

et al., 2021; Wei et al., 2021). We find that prepend- 058

ing speaker prompts to dialogue contexts improves 059

performance significantly, and leads to more stable 060

generalizations. Our prompts are different from the 061

embedding-based “personas” of Li et al. (2016) and 062

the synthesized descriptions from Persona-Chat 063

(Zhang et al., 2018), capturing fine-grained theoret- 064

ically grounded social and linguistic properties of 065

speakers, as opposed to simple likes or dislikes. 066

To analyze the inductive biases that the models 067

learn, we use SelfExplain (Rajagopal et al., 2021)— 068

an interpretable text classification model highlight- 069

ing key phrases in the input text. We propose a 070

new method for aggregating the interpretations pro- 071

duced by SelfExplain, which helps us to explain 072

model predictions and align them with sociolin- 073

guistic literature. 074

We motivate our study of predicting code- 075

switching in §2, and describe the task and inter- 076

pretable neural text classification models in §3. Af- 077

ter outlining important ethical considerations in §4, 078

we detail our experiments (§5) and results (§6), and 079

provide an analysis of speaker-aware model gener- 080

alizations that are grounded in prior psycholinguis- 081

tic research on code-switching (§7). 082
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2 Motivation083

Our overarching goal is to develop a general and084

theoretically-informed methodology to ground neu-085

ral models in a social context, because a wide array086

of person-centric classification tasks, such as senti-087

ment prediction or hate speech detection, can fail088

without proper social contextualization (Sap et al.,089

2019; Kiritchenko and Mohammad, 2018; Hovy090

and Yang, 2021). We choose a speaker-driven task091

that is ethically safer to experiment with (see a de-092

tailed discussion in §4): predicting code-switching093

in human–human dialogues.094

Code-switching is the alternation between lan-095

guages within and between utterances.1 It is096

a language- and speaker-driven phenomenon,097

reflecting speaker identities and relationships098

between them, in addition to their linguistic099

backgrounds, preferences and topical constraints100

(Beatty-Martínez et al., 2020). Prior sociolinguistic101

work established the importance of speaker con-102

text for code-switching, and existing multilingual103

models—trained with only monolingual linguistic104

context—are not speaker-grounded nor well-suited105

for dealing with mixed-language data, leaving gaps106

which we begin to address.107

Figure 1 provides a key motivating example of108

how global speaker features of two bilingual con-109

versational participants influence their local speech110

production. Blue, whose native language is Span-111

ish, begins speaking in Spanish, while Green re-112

sponds in English. Following Green’s clarification113

question about the actor The Rock, Green begins114

in English, but will accommodate Blue (Ahn et al.,115

2020; Beatty-Martínez et al., 2020) to reply with116

el actor (Spanish), motivating the need for social117

context when processing mixed-language data.118

3 Methodology119

In this section we introduce the task of predicting120

code-switching points and describe the base model121

for it, with a self-explainable architecture as its122

backbone. We then describe how we incorporate123

speaker-grounding prompts into the model.124

3.1 Task Definition125

Let di = [w1, w2, . . . , wu] be an utterance (string126

of tokens) in the full dialogue D. Given a con-127

text window of size h, a model processes a lo-128

cal dialogue context: [di−h, . . . , di−1, d
′
i], where129

1See Appendix A.1 for a detailed example of code-
switched dialogue.

But they [actors] are very serious 
for those movies

Z

🇨🇺

🤖
Multilingual 
Transformer

If you’re a good actor you can    
do it! Look at The Rock. 👧

🇬🇧
👵

Is ___   
Spanish? 

(Code-Switched) 

(2) Ours:   
speaker-aware

Yes, because  
Blue prefers  

Spanish; 
INTJ. (“uh”)

No, because  
 previous two 
utterances are      

in English  
 ✅❌

Pero son muy serios para 
esas películas

 The Rock?

 Uh, the

(1) Baseline:   
speaker-agnostic

•

•

Figure 1: We use a Transformer-based model to pre-
dict language switches in dialogues and identify phrase-
level features guiding predictions. Here, both speakers
are bilingual, but Blue’s native language is Spanish and
Green’s native language is English. They have unique
social factors (such as age). The dialogue structure re-
flects speaker identities and relationships: Green will
switch to Spanish with el actor, accommodating Blue’s
language preference. Using only dialogue context, the
baseline (1) fails to pick up on this, while our speaker-
aware model (2) successfully predicts a code-switch
and identifies useful linguistic cues.

d′i := [w1, w2, . . . , wb], b ∈ {1, 2, . . . , u}. In other 130

words, we take the prefix of the current utterance 131

di up to an index b. Each word wj in the dialogue 132

has a language tag lj associated with it. For the 133

given dialogue context D up to boundary-word wb, 134

a model must predict whether the language of the 135

next word after wb will be code-switched (1), or 136

the same (0). In our setup, a code-switch occurs 137

between two consecutive words wb, wb+1 if the lan- 138

guage of wb is in English and the language of wb+1 139

is in Spanish (or vice versa). In particular, a word 140

with an ambiguous language, such as the proper 141

noun Maria, cannot be a switch point; only words 142

with unambiguous language tags are switched. 143

Speaker-Aware Grounding Each utterance in 144

the dialogue context has a speaker associated with 145

it. Let the set of all speakers in the dialogue con- 146

text be S = {s1, s2, s3, . . . , sM}. We define a 147

speaker-aware prompt P = {p1, p2, p3, . . . , pK} 148
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Prompt Speaker Description Example

List ASH is first speaker, older, female, from Spanish speaking country, between English and
Spanish prefers both, rarely switches languages.
JAC is second speaker, older, male, from Spanish speaking country, between English and
Spanish prefers both, never switches languages.

Sentence ASH is a middle-aged woman from a Spanish speaking country. Between English and
Spanish she prefers both, and she rarely switches languages. ASH speaks first.
JAC is a middle-aged man from a Spanish speaking country. Between English and
Spanish he prefers both, and he never switches languages. JAC speaks second.

Partner ASH, JAC are all middle-aged from a Spanish speaking country. Between English and
Spanish they prefer both.
ASH is a woman and rarely switches languages. JAC is a man and never switches
languages. ASH speaks first.

Table 1: Examples of prompts for two speakers ID’d ASH and JAC, structured in the three different formats: List,
Sentence, and Partner. We prepend these prompts to dialogue context D to train our speaker-grounded models. All
prompts cover attribute set A consisting of age, gender, country of origin, language preference, code-switching
preference, and speaker order in the global dialogue context. Sentence and List prompts are similar in that they
describe speakers separately; Sentence prompts are more prose-like. Partner prompts first highlight similarities
between speakers, capturing speaker entrainment features, before describing unique features of each speaker.

as a concatenation of K strings pi, each describing149

an attribute of a speaker in the dialogue. Together,150

P describes the unique attributes of all M speakers151

in the dialogue context.152

Our proposed speaker-guided models take as153

input P · D = [p1, . . . , pK , di−w, . . . , d
′
i], the con-154

catenation of prompts and dialogue context. We155

encode the inputs with a multilingual Transformer-156

based architecture (Devlin et al., 2018; Conneau157

et al., 2020) before using a linear layer to predict158

the presence or absence of a code-switch.159

3.2 Generating Speaker Prompts160

We incorporate global information about each161

speaker in a dialogue using different prompt styles,162

generating a prompt P for a given dialogue context163

D. In theory, these prompts have the potential to164

change the model’s priors by contextualizing dia-165

logue with speaker information and should be more166

useful for predicting upcoming language switches.167

We consider two aspects when designing prompts.168

Content The prompt describes all speakers S169

in the dialogue using a set of speaker attributes170

A = {a1, a2, . . . , aT }. To create a description171

Pm for speaker sm ∈ S, we combine phrases172

psm1
, psm2

, . . . , psmT
, such that each phrase cor-173

responds to exactly one attribute. As Table 1 indi-174

cates, we use speaker IDs to tie a speaker to her175

description, and all prompts cover the full set of176

attributes, A, for all speakers in D.177

Form We consider three prompt forms: List, Sen-178

tence, and Partner. The prompt form determines 179

both the resulting structure of prompt string P and 180

the way we combine local attribute phrases pj to 181

generate a speaker description Pi. Table 1 provides 182

concrete examples of List, Sentence, and Partner 183

prompts for a pair of speakers. 184

List & Sentence List and Sentence prompts do 185

not explicitly relate speakers to each other: the final 186

prompt P = {P1, . . . , Pm, . . . , PM} concatenates 187

individual speaker prompts Pi. List forms combine 188

all attributes in a speaker description Pm with com- 189

mas, while Sentence forms are more prose-like. 190

Partner According to prior work (Bawa et al.,
2020; Ahn et al., 2020; Myslín and Levy, 2015),
speaker entrainment or accommodation influences
code-switching behavior. Thus, we created Partner
prompts to explicitly highlight relationships be-
tween speakers. We hypothesize these are more
useful than the List and Sentence forms, from
which the model must implicitly learn speaker re-
lationships. Partner prompts include an initial Pi

containing attribute qualities shared by all speak-
ers:

Pi :=
{
paj |aj = vk,∀s ∈ S

}
,

where aj ∈ A and vk is a value taken on by at- 191

tribute aj . As an example, all speakers may pre- 192

fer Spanish, so Pi will contain an attribute string 193

pi capturing this. The final partner prompt is 194

Ppartner = {Pi, P1, P2, . . . , PM}, where speaker- 195

specific descriptions P1, P2, . . . , PM , highlight 196

unique values of each speaker. 197
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We prepend prompts P to dialogue context D198

using [EOS] tokens for separation.199

3.3 Interpretable Text Classification200

Our proposed setup takes as input the dialogue con-201

text and a prepended speaker prompt. To explain202

predictions of the baseline and our speaker-aware203

setups, we use SelfExplain (Rajagopal et al., 2021),204

a framework for interpreting text-based deep learn-205

ing classifiers using phrases from the input. Self-206

Explain incorporates a Locally Interpretable Layer207

(LIL) and a Globally Interpretable Layer (GIL).208

GIL retrieves the top-k relevant phrases in the train-209

ing set for the given instance, while LIL ranks local210

phrases within the input according to their influence211

on the final prediction. Using a local classification212

layer, LIL quantifies the effects that subtracting a213

local phrase representation from the full sentence214

have on the resulting prediction. We exclusively215

use LIL to highlight phrases in the speaker prompts216

and dialogues to identify both social factors and217

linguistic context influential to models; through218

post-hoc analysis, we can reveal whether these fea-219

tures can be corroborated with prior literature or220

indicate a model’s reliance on spurious confounds.221

Figure 4 illustrates our full proposed model with222

two classification heads: one for prediction and one223

for interpretation. §7.1 describes our method for224

scoring phrases according to their influence on the225

final prediction. These phrase scores are essential226

for our analysis.227

4 Ethical Considerations228

Data Privacy In line with prior behavioral stud-229

ies, our work illustrates that sociolinguistic cues230

are essential for predicting code-switching points.231

Deployable speaker-informed models must pro-232

tect the identity and privacy of users through tech-233

niques such as federated machine learning: deploy-234

ing local models to end-users without sending any235

user information back to the cloud (Konečný et al.,236

2016). Local models and data should be encrypted237

to prevent breaches and tampering with algorithms,238

as well as possible reconstruction of training data239

(Hitaj et al., 2017; Carlini et al., 2019; Zhang et al.,240

2020). A deployed system should only collect and241

access information if the user agrees to it. All242

conversational participants voluntarily shared the243

information we use to develop our models.244

Moreover, this research is important to conduct245

because there is good reason to believe that hu-246

man users react positively to appropriately adap- 247

tive technologies (Branigan et al., 2010). Specif- 248

ically, initial experiments indicate that users rate 249

dialogue systems that incorporate code-switching 250

higher than ones that do not (or that do it less natu- 251

rally) (Ahn et al., 2020; Bawa et al., 2020). A clas- 252

sifier, such as the one we explore in this work, can 253

be very useful for developing such a naturalistic di- 254

alogue system. Different regions and cultures have 255

varying opinions of code-switching. It is important 256

to understand these before building an application 257

for a new language pair (Doğruöz et al., 2021). 258

5 Experimental Setup 259

5.1 Dialogue Data 260

Our task requires a dataset which not only has nat- 261

ural, mixed-language dialogue, but includes also 262

information about its speakers. We use the Bangor 263

Miami (Deuchar et al., 2014) dataset (BM) con- 264

taining 56 transcribed dialogues in mixed English 265

and Spanish. Moreover, language IDs are provided 266

for every token. The dataset includes a question- 267

naire of self-reported information about each con- 268

versational participant; this includes macro-social 269

features such as age, gender, and country of ori- 270

gin, as well as language preferences and speaker- 271

provided linguistic ability. We identify each coun- 272

try according to the primary language (English, 273

Spanish, or neither) spoken in the country and bin 274

age features into four comparative groups ranging 275

from youngest to oldest. An order feature indicates 276

which speaker spoke first, second, etc. in the global 277

dialogue context. These six features define our 278

attribute set A. 279

5.2 Code-switching Dataset Creation 280

For each dialogue in BM, we extract all existing 281

code-switch points; for a given switched word, we 282

retain all left-most context in its containing utter- 283

ance and vary the number of prior utterances that 284

are included as context between 1, 2, 3, and 5. To 285

generate negative examples, we select monolingual 286

utterances by sampling from a binomial distribu- 287

tion with p = 0.75. For each retained utterance, we 288

randomly choose three potential switch points (ex- 289

tracting leftmost context in the same way), result- 290

ing in a dataset that is approximately 25% switched. 291

Creating Splits Most speakers participate in 292

only one of the 56 dialogues in the corpus. To 293

help ensure the model sees new dialogue context in 294
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training and testing time, we split the train, valida-295

tion, and test splits by conversation in a 60:20:20296

ratio. For each dialogue, we compute the multilin-297

guality index (M-Index) (Barnett et al., 2000), a298

measure between 0 and 1 indicating the mixedness299

in the text: 0 is monolingual text, while 1 is a code-300

switch at every word. We stratify the conversations301

by the M-Index and code-switching labels to en-302

force a more balanced distribution of monolingual303

to mixed-language conversations.304

We down-sample monolingual examples to bal-305

ance training and validation splits and report results306

on unbalanced validation and test sets. Table 2307

shows the proportions of code-switched examples.308

Our final balanced training and validation splits309

have about 14,000 and 3,000 examples, while the310

unbalanced validation and test sets have approxi-311

mately 7,000 and 9,000 examples, respectively.312

Marking Dialogue Turns The baseline setup313

does not incorporate speaker cues. Instead we use314

[EOT] and [EOU] tokens at the end of each utter-315

ance to signify end-of-turn and end-of-utterance,316

respectively. Given two consecutive utterances, an317

[EOT] signifies a change in speakers, while [EOU]318

indicates no change. In the speaker-informed319

setup, unique speaker IDs distinguish utterances320

from each speaker, and we prepend informative321

prompts characterizing the conversational partici-322

pant(s). Prompts include user-reported metadata of323

personal preferences and characteristics. We use324

three prompt templates, as detailed in Section 3.325

5.3 Training Details326

We use XLM-RoBERTa (XLMR) (Conneau et al.,327

2020) to encode the text and jointly fine-tune328

XLMR on the code-switch prediction task. As a329

baseline, we use an XLMR model without prompt330

inputs P . Our speaker-prompted models, SP-331

XLMR, are trained by prepending speaker prompts332

to the dialogue context. The small size of our333

dataset results in higher variability in performance;334

thus, we train 10 models, each on a different335

seed, per prompt type, resulting in 30 speaker-336

prompted models and 10 baseline models. We refer337

to speaker-prompted models as SP-XLMR and to the338

Set Validation Test
Balanced 0.500 0.500
Unbalanced 0.250 0.252

Table 2: Proportion of code-switched examples in the
balanced and unbalanced validation and test splits.

non-speaker baseline as simply XLMR. All models 339

are trained using AdamW optimizers with a weight 340

decay of 1e−3 for a maximum of 10 epochs. SP- 341

XLMR models are trained with a learning rate of 342

5e−5 and XLMR models use a learning rate of 1e−5. 343

To refer to a particular speaker-prompted model, 344

we use a combination of prompt form and context 345

size, for example, LIST-5. 346

We report accuracy, F1, precision, and recall on 347

the unbalanced validation and test sets. 348

6 Evaluation 349

Speaker prompts significantly improve code- 350

switch prediction. Table 3 includes average ac- 351

curacy and F1 of XLMR, LIST, SENTENCE, and 352

PARTNER models, across all context windows and 353

seeds on the unbalanced validation and test sets. 354

Each value is an average of 40 models. Adding 355

prompt features boosts accuracy upwards of 5- 356

8% and F1 by 4-5 points compared to XLMR; 357

XLMR does not even surpass the majority base- 358

line in accuracy. Based on validation set results, 359

partner features are most helpful, confirming our 360

sociolinguistically-driven hypothesis (see Section 361

3.2) Moreover, the standard deviation of XLMR 362

accuracy is more than twice as large (3.66 on val- 363

idation and 2.95 on test) as that of any speaker- 364

prompted model, suggesting that explicit speaker 365

information guides models to pick up on relevant 366

inductive biases. 367

We see similar trends, regarding accuracy, F1, 368

and standard deviation, in Table 4, which includes 369

results for SP-XLMR and XLMR across the different 370

context windows; each SP-XLMR and XLMR value 371

is an average of 30 and 10 models, respectively. 372

Larger context windows are helpful for both model 373

types. Tables 6 and 7 include precision and recall 374

scores for each prompt type and context window; 375

in general, speaker-prompted models have upwards 376

of 10 points higher precision than baseline XLMR, 377

indicating that speaker information helps to identify 378

valid switch points. 379

7 Explaining Performance Gaps 380

Compared to baseline models, speaker models not 381

only attain higher accuracy and F1 scores, but they 382

also have a much smaller standard deviation in 383

scores. For these experiments, we seek to explain 384

our findings using the important phrases identified 385

by LIL. Within a speaker prompt P , each speaker 386

characteristic maps to its own phrase (i.e., from an 387
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Validation Test
Model Acc. (%) F1 Acc. (%) F1

Majority 75.0 – 74.8 –
Minority 25.0 29.4 25.2 29.6
XLMR 70.3 ±3.66 57.3 72.0 ±2.95 59.1

List 77.6 ±1.68 61.5 79.7 ±1.13 63.2
Sentence 78.1 ±1.60 61.8 79.5 ±1.31 63.0
Partner 78.3 ±1.58 62.1 79.4 ±1.50 62.2

Table 3: Average accuracy and F1 scores of prompt
models and XLM-R on validation and test sets. There
are N=40 models for all setups. Majority and Minority
baselines are included for comparison. Bold scores in-
dicate the best performance on the split. All results are
significant (p < 0.0001) by Mann-Whitney U Tests.

English-speaking country); in the dialogue, we ex-388

tract 5-gram phrases using a sliding window. In the389

sections below, we detail our approach to scoring390

phrase influence and explain our analyses of key391

dialogue and speaker features.392

7.1 Computing Phrase Relevance393

Our goals are to (a) identify phrases in the input394

whose removal will change the resulting model pre-395

diction and (b) identify phrases which contribute396

high confidence to the resulting model prediction.397

Let F be the full textual input consisting of sole di-398

alogue context or dialogue context prepended with399

prompts, while ZF is the softmax output from our400

classifier. Let j be the index of the class predicted401

from the full input. LIL inputs ZF along with a se-402

ries of masks each corresponding to a local phrase403

in either the dialogue or the speaker prompt. Let nt404

be a local phrase, such that nt is either a speaker405

phrase pi or an n-gram in an utterance di ∈ D.406

Using LIL, we quantify the effect of removing the407

representation of phrase nt from the representation408

of F by comparing the activation differences of409

Znt and Zf at index j, and we analyze the result-410

ing sign and magnitude to address goals (a) and (b),411

respectively:412

C :=

{
1 argmaxZnt = j
−1 argmaxZnt 6= j

(1)413

414

r(nt) = C |zntj − zFj | (2)415

where zntj and zFj are the softmax scores of416

the phrase-ablated sentence and the full sentence,417

respectively, at index j, and r(nt) is the relevance418

score of nt. As Equations 1 and 2 indicate, we419

analyze a local phrase’s score as follows:420

1. Sign A positive sign (C = 1) indicates that 421

the representation without nt does not change 422

the resulting prediction. A negative score 423

indicates a more influential phrase because 424

its ablation results in a different prediction 425

(C = −1). 426

2. Magnitude Magnitude corresponds to the 427

weight of the contribution of a particular 428

phrase. If the activation difference is high in 429

magnitude, then nt strongly influences the re- 430

sulting prediction. Magnitudes near 0 indicate 431

a non-influential phrase. 432

Our scoring approach differs slightly from the 433

original implementation (see Appendix A.2). 434

7.2 Analyzing Dialogue Phrases 435

Given a context size, the dialogue phrase masks are 436

identical for SP-XLMR and XLMR; thus, we di- 437

rectly compare which phrases are most informative 438

in the presence and absence of speaker features. We 439

consider only phrases which are influential enough 440

to change a given model’s prediction after their rep- 441

resentations are subtracted from the full-sentence 442

representations (phrases with a negative score). 443

Setting context size to 5, we identify examples 444

from the validation set for which the majority of SP- 445

XLMR models (out of 30) predicted correctly and 446

the majority of XLMR models (out of 10) predicted 447

incorrectly. Nearly 95% of such examples are not 448

switched, indicating that added speaker informa- 449

tion helps improve model precision. We sample a 450

portion of these instances for our analysis. 451

For a given validation set example and model 452

setup, we track all influential phrases and count the 453

number of models for which each phrase is influ- 454

ential. To account for phrase interactions, we track 455

the agreement on co-occurring pairs and trios of 456

important phrases. We compare only top-10 influ- 457

ential phrases. We hypothesize speaker models (1) 458

exhibit more phrase agreements compared to base- 459

line models and (2) use more helpful and relevant 460

linguistic features for code-switch prediction. 461

Most speaker models agree on similar groups 462

of phrases. Figure 2 indicates that the majority 463

of speaker-prompted models (out of 30) tend to 464

agree on the top-10 important phrase groupings, es- 465

pecially across single and pairwise groupings. The 466

speaker models likely pick up on similar inductive 467

biases, as revealed through the higher feature agree- 468

ment among these models. Only around 38-40% of 469

baseline models tend to agree on which phrases are 470
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Validation Test
SP-XLMR XLM-R SP-XLMR XLM-R

Ctx Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1
1 76.9 ±1.96 60.5 66.4 ±2.84 54.0 78.8 ±1.54 60.7 69.5 ±2.75 56.5
2 77.9 ±1.10 61.5 70.3 ±3.27 57.2 79.6 ±1.13 62.9 71.8 ±2.23 58.7
3 78.6 ±1.17 62.2 71.4 ±1.92 58.2 80.0 ±0.96 63.6 72.4 ±2.31 59.8
5 78.7 ±1.56 63.1 73.1 ±2.74 59.8 79.7 ±1.34 63.9 74.2 ±2.39 61.2

Table 4: Average Accuracy and F1 of prompt models and baseline XLM-R on validation and test sets, for N=30
SP-XLMR models and N=10 XLMR models. All results are significant (p < 0.0001) by Mann Whitney U Tests.

most important, potentially explaining the higher471

standard deviation in results among the baseline472

models compared to the speaker models.473

Speaker models make better use of language in-474

formation On monolingual (negative) examples,475

both speaker-prompted and baseline models tend476

to look at a majority of monolingual phrases in the477

same languages (English or Spanish), and these478

phrases are mainly located in the first quarter of to-479

kens preceding the switch point. However, speaker480

models successfully predict many of these nega-481

tive examples correctly, unlike baselines. In many482

cases, the speaker models have additional access to483

global speaker properties of the current speaker –484

for example, never switches languages – and this485

may also influence them to make the correct pre-486

diction given prior linguistic context. Even when487

baseline models have strong evidence for predict-488

ing no code-switch (i.e., ranking only monolingual489

phrases as important), they tend to misuse this his-490

tory and randomly predict code-switches.491

 

0 10 20 30 40 50 60

Single

Pair

Trio

% of Models That Agree on Top-10 Phrases 

Ph
ra

se
 G

ro
uu

pi
ng

SP-XLMR-5
XLMR-5

**
**

**
**

**
**

Figure 2: Each bar indicates the average percent and
standard deviation of XLMR (dashed green, N=10)
and SP-XLMR (green, N=30) models that agree on
the top-10 phrases. We consider single phrases, as well
as pairs and trios of phrases. There is significantly
less agreement (p < 0.0001) among XLMR models as
compared to SP-XLMR, potentially accounting for the
higher standard deviation in XLMR models’ scores.

On code-switched examples, speaker models 492

continue to favor phrases that are nearest to the 493

switchpoint, while baseline models are sensitive 494

to phrases in early and late dialogue context. Us- 495

ing phrases closer to switch points may give better 496

structural context from which to predict a switch. 497

In several cases, speaker models correctly predict 498

an English-to-Spanish switch and rank prior Span- 499

ish phrases as influential, while baseline models 500

highly rank English phrases and predict no switch. 501

We see a similar pattern in Spanish-to-English 502

switches. Speaker information may help models 503

learn, linguistically, what it means to code-switch. 504

7.3 Analyzing Speaker Phrases 505

Linguistic preference features are most influ- 506

ential across model setups. For all speaker- 507

prompted models, speakers’ language preferences 508

are the most influential on the resulting predic- 509

tions. Country of origin information is helpful, 510

too, but may be misleading: speakers may immi- 511

grate from a Spanish country but grow up speaking 512

English; in such cases, the language information 513

likely helps disambiguate any confusions. Follow- 514

ing these linguistic features are relational features 515

(speaker order) in the dialogue, and less often, age 516

features, especially in partner models. Gender is 517

almost never influential. Our findings confirm prior 518

work in sociolinguistics, which states that individ- 519

ual macro-social features rarely influence resulting 520

dialogues; instead, cultural identities and social re- 521

lations to larger groups are more important (Eckert, 522

2012; Ochs, 1992). Macro-social attributes may 523

be influential in partner models because these ex- 524

plicitly access relationships between speakers; the 525

“participant constellation” influences how speaker 526

express themselves and modulate social distance 527

(Giles and Baker, 2008; Myslín and Levy, 2015). 528

Ablating Features All speaker prompts contain 529

the 6 defined attributes A (Section 5.1). Us- 530

ing the best-performing setups on the validation 531
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set, namely Partner and Sentence models with 5532

prior utterances for context, we identify influential533

speaker attributes using a leave-one-out-approach534

to mask out each attribute ai ∈ A. For each at-535

tribute, we train 10 ablated models and evaluate on536

the validation set. Note that this is different from537

the phrase ablations using LIL because we finetune538

the XLM-R encoder during the training process; in539

this setup, the ablated feature information is never540

backpropagated to update the encoder weights.541

The results of these experiments (see Appendix542

A.3) give some evidence that language preference,543

mixing, and age information have statistically sig-544

nificant effects on the performance of Partner-5545

models, but this does not hold for the Sentence-5546

models. We have strong evidence to believe that547

these speaker attributes have more complex un-548

derlying relationships and leave the exploration of549

these multi-feature interactions for future work.550

8 Related Work551

Our use of prompts2 is similar to Zhong et al.552

(2021) and Wei et al. (2021), who rely on prompts553

to put models in different states for different tasks.554

Speaker Personas Open-domain dialogue agents555

which act according to a persona are more natu-556

ral and engaging than the non-personalized base-557

lines (Li et al., 2016); these personas can be short,558

superficial descriptions generated through crowd-559

sourcing (Zhang et al., 2018), gathered from Red-560

dit (Mazaré et al., 2018), or self-learned (inferred)561

from dialogue context (Madotto et al., 2019; Cheng562

et al., 2019). These works, however, primarily eval-563

uate dialogue content and only in one language564

(English) instead of analyzing how speaker proper-565

ties influence the downstream dialogue structure.566

Addressing Model Bias Prior works for miti-567

gating social biases feature adversarial learning568

(Pryzant et al., 2018; Elazar and Goldberg, 2018),569

counterfactual data augmentation (Zmigrod et al.,570

2019; Kaushik et al., 2020) or dataset balanc-571

ing (Zhao et al., 2017), and more recently, us-572

ing an interpretability-driven approach to uncover573

and controllably demote hidden biases (Han and574

Tsvetkov, 2021). Techniques for adapting to lin-575

guistic variants and mixed-language data include576

adversarial learning to pick up on key linguistic577

cues (Kumar et al., 2021), augmenting datasets578

with synthetic text (Winata et al., 2019) or ex-579

2Our prompts are data-dependent and fixed, and thus rather
unrelated to the prompt tuning literature (Liu et al., 2021).

amples of variants that models underperform on 580

(Chopra et al., 2021), discriminative learning (Go- 581

nen and Goldberg, 2018), and transfer learning with 582

morphological cues (Aguilar and Solorio, 2019). 583

Codeswitch Prediction The first work in code- 584

switch prediction (Solorio and Liu, 2008) uses 585

Naive Bayes (NB) on lexical and syntactic fea- 586

tures of shallow word context before switch bound- 587

aries. They run experiments on a small, self- 588

collected dataset of English-Spanish conversations. 589

Another NB approach predicts switch points on 590

Turkish-Dutch social media data (Papalexakis et al., 591

2014), additionally using multi-word expressions 592

and emoticons in their experiments. (Piergallini 593

et al., 2016) extends the techniques of the prior 594

two works to Swahili-English codeswitched data. 595

A fine-grained logistic regression analysis (Myslín 596

and Levy, 2015) goes beyond lexical information 597

to incorporate psycholinguistic properties, such as 598

word accessibility, and includes a binary feature to 599

mark whether or not younger speakers are present. 600

9 Conclusion 601

We presented a methodology that interprets and 602

directly compares sociolinguistic generalizations 603

made by a neural text classifier. To the best of 604

our knowledge, this is the first work that incorpo- 605

rates sociolinguistically-grounded social factors for 606

predicting code-switch points. We demonstrated 607

that our speaker-aware models can better leverage 608

mixed-language linguistic cues, compared to a text- 609

only baseline: specifically, we showed performance 610

gains of up to 7% in accuracy and 5 points in F1 611

scores on an imbalanced code-switching dataset. 612

In the future, we plan to explore whether such 613

speaker prompting can help models learn better in- 614

ductive biases in other person-centered tasks, e.g., 615

coreference resolution (especially for datasets ex- 616

plicitly testing gender biases) or sentiment analy- 617

sis. Using techniques such as data augmentation, 618

we will explicitly guide models away from biases 619

learned during the training phase. Moreover, we 620

will move from static to dynamic personas that 621

are reflective of local dialogue context. Speaker- 622

grounded models must be carefully engineered to 623

protect user privacy, using proxies for personal in- 624

formation and keeping private information away 625

from shared resources. With ethical considerations 626

in mind, our work advances the state-of-the-art in 627

building more adaptable and person-aware NLP 628

technologies. 629
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A. Seza Doğruöz, Sunayana Sitaram, Barbara E. Bul- 693
lock, and Almeida Jacqueline Toribio. 2021. A sur- 694
vey of code-switching: Linguistic and social per- 695
spectives for language technologies. In Proceed- 696
ings of the 59th Annual Meeting of the Association 697
for Computational Linguistics and the 11th Interna- 698
tional Joint Conference on Natural Language Pro- 699
cessing (Volume 1: Long Papers), pages 1654–1666, 700
Online. Association for Computational Linguistics. 701

Penelope Eckert. 2012. Three waves of variation study: 702
The emergence of meaning in the study of sociolin- 703
guistic variation. Annual review of Anthropology, 704
41:87–100. 705

Yanai Elazar and Yoav Goldberg. 2018. Adversarial 706
removal of demographic attributes from text data. In 707
Proc. EMNLP. 708

Anjalie Field, Su Lin Blodgett, Zeerak Waseem, and 709
Yulia Tsvetkov. 2021. A survey of race, racism, and 710
anti-racism in NLP. In Proceedings of the 59th An- 711
nual Meeting of the Association for Computational 712
Linguistics and the 11th International Joint Confer- 713
ence on Natural Language Processing (Volume 1: 714
Long Papers), pages 1905–1925, Online. Associa- 715
tion for Computational Linguistics. 716

Howard Giles and Susan C Baker. 2008. Communica- 717
tion accommodation theory. The international ency- 718
clopedia of communication. 719

Hila Gonen and Yoav Goldberg. 2018. Language 720
modeling for code-switching: Evaluation, integra- 721
tion of monolingual data, and discriminative train- 722
ing. CoRR, abs/1810.11895. 723

Xiaochuang Han and Yulia Tsvetkov. 2021. Influence 724
tuning: Demoting spurious correlations via instance 725
attribution and instance-driven updates. 726

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez- 727
Cruz. 2017. Deep models under the gan: informa- 728
tion leakage from collaborative deep learning. In 729
Proceedings of the 2017 ACM SIGSAC Conference 730
on Computer and Communications Security, pages 731
603–618. 732

Dirk Hovy and Diyi Yang. 2021. The importance of 733
modeling social factors of language: Theory and 734
practice. In Proceedings of the 2021 Conference of 735
the North American Chapter of the Association for 736
Computational Linguistics: Human Language Tech- 737
nologies, pages 588–602. 738

Divyansh Kaushik, Eduard Hovy, and Zachary Chase 739
Lipton. 2020. Learning the difference that makes a 740
difference with counterfactually-augmented data. In 741
Proc. ICLR. 742

9

http://arxiv.org/abs/1909.05158
http://arxiv.org/abs/1909.05158
http://arxiv.org/abs/1909.05158
http://arxiv.org/abs/1909.05158
http://arxiv.org/abs/1909.05158
https://doi.org/10.1145/3392846
https://doi.org/10.1145/3392846
https://doi.org/10.1145/3392846
https://doi.org/10.1145/3392846
https://doi.org/10.1145/3392846
https://doi.org/10.3389/fpsyg.2020.01699
https://doi.org/10.3389/fpsyg.2020.01699
https://doi.org/10.3389/fpsyg.2020.01699
https://doi.org/10.18653/v1/N19-1284
https://doi.org/10.18653/v1/N19-1284
https://doi.org/10.18653/v1/N19-1284
https://doi.org/10.18653/v1/N19-1284
https://doi.org/10.18653/v1/N19-1284
http://arxiv.org/abs/2111.01231
http://arxiv.org/abs/2111.01231
http://arxiv.org/abs/2111.01231
http://arxiv.org/abs/2111.01231
http://arxiv.org/abs/2111.01231
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.149
https://doi.org/10.18653/v1/2021.acl-long.149
https://doi.org/10.18653/v1/2021.acl-long.149
http://arxiv.org/abs/1810.11895
http://arxiv.org/abs/1810.11895
http://arxiv.org/abs/1810.11895
http://arxiv.org/abs/1810.11895
http://arxiv.org/abs/1810.11895
http://arxiv.org/abs/1810.11895
http://arxiv.org/abs/1810.11895
http://arxiv.org/abs/2110.03212
http://arxiv.org/abs/2110.03212
http://arxiv.org/abs/2110.03212
http://arxiv.org/abs/2110.03212
http://arxiv.org/abs/2110.03212


Svetlana Kiritchenko and Saif M. Mohammad. 2018.743
Examining gender and race bias in two hundred sen-744
timent analysis systems.745

Jakub Konečný, H. Brendan McMahan, Daniel Ram-746
age, and Peter Richtárik. 2016. Federated optimiza-747
tion: Distributed machine learning for on-device in-748
telligence. CoRR, abs/1610.02527.749

Sachin Kumar, Shuly Wintner, Noah A. Smith, and Yu-750
lia Tsvetkov. 2021. Topics to avoid: Demoting la-751
tent confounds in text classification.752

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-753
ithourakis, Jianfeng Gao, and Bill Dolan. 2016. A754
persona-based neural conversation model. In Pro-755
ceedings of the 54th Annual Meeting of the Associa-756
tion for Computational Linguistics (Volume 1: Long757
Papers), pages 994–1003, Berlin, Germany. Associ-758
ation for Computational Linguistics.759

Wei Li. 2013. Codeswitching. In The Oxford Hand-760
book of Chinese Linguistics.761

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,762
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-763
train, prompt, and predict: A systematic survey of764
prompting methods in natural language processing.765
arXiv preprint arXiv:2107.13586.766

Andrea Madotto, Zhaojiang Lin, Chien-Sheng Wu, and767
Pascale Fung. 2019. Personalizing dialogue agents768
via meta-learning. In Proceedings of the 57th An-769
nual Meeting of the Association for Computational770
Linguistics, pages 5454–5459, Florence, Italy. Asso-771
ciation for Computational Linguistics.772

Pierre-Emmanuel Mazaré, Samuel Humeau, Martin773
Raison, and Antoine Bordes. 2018. Training mil-774
lions of personalized dialogue agents. In Proceed-775
ings of the 2018 Conference on Empirical Methods776
in Natural Language Processing, pages 2775–2779,777
Brussels, Belgium. Association for Computational778
Linguistics.779

Mark Myslín and Roger Levy. 2015. Codeswitching780
and predictability of meaning in discourse. Lan-781
guage, 91.782

Debora Nozza, Federico Bianchi, and Dirk Hovy. 2021.783
Honest: Measuring hurtful sentence completion in784
language models. In Proceedings of the 2021 Con-785
ference of the North American Chapter of the Asso-786
ciation for Computational Linguistics: Human Lan-787
guage Technologies, pages 2398–2406.788

Eleanor Ochs. 1992. 14 indexing gender. Rethinking789
context: Language as an interactive phenomenon,790
11(11):335.791

Evangelos Papalexakis, Dong Nguyen, and A Seza792
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A Appendix870

A.1 Code-Switching Example871

Figure 3 provides a key motivating example of872

how global speaker features of two conversational873

participants, ID’d RIC and SEB, influence their874

local speech production. RIC was raised in the875

United States and knows Spanish, while SEB is876

from a Spanish-speaking country and has a strong877

grasp of English. For most of the dialogue, RIC878

speaks English, unless he is specifically accommo-879

dating to seb, as we see in the very first example880

utterance. RIC demonstrates more intrasentential881

(within-utterance) switches, often switching back882

to English, which corresponds to his preference for883

English (Beatty-Martínez et al., 2020). SEB accom-884

modates to RIC by responding in English with Yeah,885

she knows about it?, but, similarly to RIC, relies on886

Spanish to express vocabulary or phrases that are887

more complex for him (i.e., foreseeing the future).888

 * About what happened in reality with,  
this guy, uh, who foresees the future. 

*… these types of movies confuse me. But … 

* is a … it was a documentary.  

Eh eh esa clase de películas me confunden. Pero* like I  
watch them with my girlfriend and she explains. RIC

Yeah? She knows about it? SEB

She’s good with it. RIC

I have seen the… this es un…  
ese un era un documental*. SEB

De lo que paso en realidad con, this 
guy, uh, el que adivina el futuro* SEB

SEBI prefer English. 
 I can also hold a 
conversation in   

Spanish.

RIC

I prefer Spanish, 
but I am a skilled 
English speaker.

Figure 3: A dialogue between two speakers, whose
IDs are RIC and SEB. RIC and SEB typically switch to
to the languages they prefer: English and Spanish, re-
spectively. RIC and SEB also mix languages to accom-
modate each other, demonstrating the need for speaker
awareness in code-switched language processing.

A.2 Scoring Phrase Relevance889

Note that the original implementation scored890

phrases using the raw softmax difference to reflect891

the contribution of each phrase. To further distin-892

guish the predictive power of various local phrases, 893

we give meaning to the sign of a score. This dis- 894

ambiguates edge cases such as the following: (1) 895

the softmax score of the predicted class zF = 0.6 896

and the phrase-ablated sentence yields a softmax 897

score, zA = 0.4 (2) or, we have the scenario that 898

zF ′ = 0.9 and zA′ = 0.7; in both scenarios, sub- 899

traction yields zF ′ − zA′ = 0.2, thus, the purported 900

relevance of the ablated phrases is the same. How- 901

ever, we would like to distinguish that in case 1), 902

the ablated phrase causes an overall change in pre- 903

diction, unlike case 2), and thus, the case 1) phrase 904

would be more relevant than the case 2) phrase. 905

A.3 Speaker Ablation Results 906

Partner-5 Sentence-5
Feature Acc. (%) F1 Acc. (%) F1

Full 78.9 ± 1.23 62.9 78.2 ± 1.86 63.2
Language *76.9 ±1.82 62.7 77.7 ±1.84 62.9
Mixing *77.8 ±1.34 63.2 78.9 ±1.72 63.6
Country 79.0 ±1.54 63.5 78.4 ±1.60 63.2
Order 78.9 ±1.75 63.1 78.4 ±1.30 63.2

Gender 78.0 ±1.90 63.0 77.6 ±2.12 62.7
Age *77.5 ±1.09 62.6 79.1 ±1.80 63.4

Table 5: Average accuracy and F1 scores of speaker-
ablated Partner-5 and Sentence-5 models on the vali-
dation set. N=10 for both setups. Full (non-ablated)
models are included for comparison. Starred results are
significant (p < 0.05) by Mann-Whitney U Tests.
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Model Type Context Acc. (%) F1 Recall Precision
Majority - 75.0 – – –
List 1 75.9 ± 1.390 60.1 72.3 51.5
List 2 77.4 ± 0.932 60.9 70.4 53.8
List 3 78.3 ± 1.191 62.0 71.0 55.3
List 5 78.9 ± 1.418 63.1 72.1 56.4
Partner 1 77.4 ± 2.301 61.1 70.6 54.1
Partner 2 78.3 ± 0.966 61.8 70.4 55.2
Partner 3 78.7 ± 0.982 62.6 71.2 55.9
Partner 5 78.8 ± 1.228 62.9 71.7 56.2
Sentence 1 77.5 ± 1.667 60.5 68.9 54.2
Sentence 2 77.9 ± 1.210 61.6 71.0 54.6
Sentence 3 78.2 ± 1.255 62.1 69.5 56.3
Sentence 5 78.2 ± 1.863 63.2 74.5 55.1
XLMR 1 66.4 ± 2.836 54.0 78.9 41.3
XLMR 2 70.3 ± 3.269 57.2 79.0 45.2
XLMR 3 71.4 ± 1.916 58.2 79.6 46.0
XLMR 5 73.1 ± 2.739 59.8 79.9 48.0

Table 6: Performance of all models on the validation set (25.0% code-switched). Each value is an average of
N=10 models.

Model Type Context Acc. (%) F1 Recall Precision
Majority - 74.8 – – –
List 1 78.9 ± 1.247 61.4 66.7 57.2
List 2 79.7 ± 1.063 63.0 68.5 58.4
List 3 80.0 ± 0.769 64.0 70.4 58.8
List 5 80.2 ± 0.919 64.3 70.9 59.0
Partner 1 78.5 ± 1.966 59.8 63.5 57.0
Partner 2 79.4 ± 1.120 62.4 67.8 58.1
Partner 3 80.0 ± 0.927 63.5 69.0 58.9
Partner 5 79.5 ± 1.268 62.9 69.2 58.1
Sentence 1 79.0 ± 1.260 60.9 65.9 57.5
Sentence 2 79.6 ± 1.095 63.4 70.4 57.9
Sentence 3 80.0 ± 1.021 63.4 69.4 58.6
Sentence 5 79.4 ± 1.602 64.4 74.2 57.3
XLMR 1 69.5 ± 2.755 56.5 78.7 44.3
XLMR 2 71.8 ± 2.231 58.7 79.7 46.7
XLMR 3 72.4 ± 2.312 59.8 81.3 47.4
XLMR 5 74.2 ± 2.394 61.2 80.9 49.5

Table 7: Performance of all models on the test set (25.2% code-switched). Each value is an average of N=10
models.
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[SEB] Which one was 
the Rock? 

[JAC] The, uh, el [EOS]

SEB, JAC Speaker 
Prompts XLM-R  

Encoder

Which one was 

the Rock? 

The, uh, el

Dialogue 
Phrase Masks

SEB prefers 
Spanish

JAC is a man 

…

Prompt 
Phrase Masks

Locally 
Interpretable 
Layer (LIL)

Linear

Phrase 
ablations Linear Switch  

languages?

Switch  
languages?

Figure 4: Architecture diagram of our proposed speaker-prompted code-switch prediction models. The input to
the model is the dialogue context (gray) with descriptions of each speaker (blue) prepended to the dialogues. We
encode the input using XLM-R (dark green) and use a linear layer (purple, top) to predict whether to code-switch or
not. The encoded sentence, along with phrase masks, is passed to the Locally Interpretable Layer (LIL) (Rajagopal
et al., 2021); using phrase ablation, LIL highlights influential phrases in the input by comparing local predictions to
the full-sentence prediction. Baseline models follow a similar setup, but without any input from speaker prompts.
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