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ABSTRACT

Knowledge Distillation (KD) has been extensively studied as a means to enhance
the performance of smaller models in Convolutional Neural Networks (CNNs).
Recently, the Vision Transformer (ViT) has demonstrated remarkable success in
various computer vision tasks, leading to an increased demand for KD in ViT.
However, while logit-based KD has been applied to ViT, other feature-based KD
methods for CNNs cannot be directly implemented due to the significant structure
gap. In this paper, we conduct an analysis of the properties of different feature layers
in ViT to identify a method for feature-based ViT distillation. Our findings reveal
that both shallow and deep layers in ViT are equally important for distillation and
require distinct distillation strategies. Based on these guidelines, we propose our
feature-based method ViTKD, which mimics the shallow layers and generates the
deep layer in the teacher. VITKD leads to consistent and significant improvements
in the students. On ImageNet-1K, we achieve performance boosts of 1.64% for
DeiT-Tiny, 1.40% for DeiT-Small, and 1.70% for DeiT-Base. Downstream tasks
also demonstrate the superiority of ViTKD. Additionally, VITKD and logit-based
KD are complementary and can be applied together directly, further enhancing the
student’s performance. Specifically, DeiT-Tiny, Small, and Base achieve accuracies
of 77.78%, 83.59%, and 85.41%, respectively, using this combined approach.

1 INTRODUCTION

Knowledge Distillation (KD) (Hinton et al., 2015) utilizes the output of the teacher model as soft labels
to supervise the student model, bringing the lightweight models impressive improvements without
extra costs for inference. It has been consistently explored for Convolutional Neural Network (CNN)
models and applied to many vision tasks successfully, including image classification (Chen et al.,
2021; Lin et al., 2022; Yang et al., 2020; Zhao et al., 2022; Zhou et al., 2020), object detection (Cao
etal., 2022; Li et al., 2022a; Wang et al., 2022; Yang et al., 2022b; Zheng et al., 2022), and semantic
segmentation (He et al., 2019; Liu et al., 2019; Shu et al., 2021; Yang et al., 2022a).

Recently, Vision Transformer (ViT) (Dosovitskiy et al., 2021) has achieved great success in image
classification and inspired various transformers (Han et al., 2021; Liu et al., 2021; Touvron et al.,
2021b; Yuan et al., 2021). Similar to CNN models, the ViT models generally need more parameters to
achieve better performance, making them harder to be deployed. Therefore, boosting the performance
of small ViT models using KD is of great value. In this study, we explore how to apply KD to
ViT-based models. One straightforward approach would be to transfer the KD methods used for
CNNs to ViTs. In fact, some fundamental distillation works (Hinton et al., 2015; Romero et al., 2015)
are structure-independent. For example, the logit-based distillation directly utilizes the model’s final
logit, enabling it to be used for both CNNs and ViTs. This has been confirmed by DeiT (Touvron
etal., 2021a) and TinyViT (Wu et al., 2022).

However, most of the KD methods beyond logit-based distillation are specifically designed for
CNN-based models and rely on intermediate features. Due to the vast architectural differences
between CNNs and ViTs, these methods are not applicable to ViT-based models. While recent work
MiniViT (Zhang et al., 2022) has employed self-attention distillation and hidden-state distillation for
vision transformers with various stages, such as Swin-Transformer (Liu et al., 2021), it is still not
viable for models with multiple encoder layers like ViT (Dosovitskiy et al., 2021).
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Table 1: The distillation results of existing feature-based KD methods, including recent MGD and
classical FitNet on the last layer, the last 6 layers, and all the 12 layers.

Distillation setting T: DeiT Small, S: DeiT Tiny
Top-1 Acc. (%) Top-5 Acc. (%)
baseline 74.42 92.29
MGD (Yang et al., 2022c) 74.46 (+0.04) 92.28(-0.01)

Last layer (FitNet (Romero et al., 2015)) 73.36 (-1.06) 91.88 (-0.41)
Last 6 layers (FitNet (Romero et al., 2015)) 73.76 (-0.66) 92.01 (-0.18)
All 12 layers (FitNet (Romero et al., 2015)) 74.24 (-0.18) 92.23 (-0.06)

layer 0 layer 1 layer 5 layer 6 layer 10 layer 11

layer 0 layer 1 layer 5 layer 6 layer 10 layer 11

Figure 1: DeiT-Tiny’s (upper) and DeiT-Small’s (under) attention maps from shallow to deep layers.
The X-axis and Y-axis mean the key and query tokens, respectively. The attention maps are obtained
by softmax and reflects the response between the query and key tokens. The color is brighter with a
larger response between the query and key tokens.

Before developing a new feature-based KD method for ViT, we first conduct simple studies with
two structure-independent methods FitNet (Romero et al., 2015) and MGD (Yang et al., 2022c). We
explored distilling knowledge from the last layer like CNN’s general distillation, the last 6 layers
like PKD (Sun et al., 2019) for BERT’s (Devlin et al., 2019) distillation, and the whole 12 layers
of a teacher model (DeiT-Small) to a student model (DeiT-Tiny). Surprisingly, the results for all
the intuitive feature distillations shown in Tab. | are not satisfactory which consistently degrade
the performance of the student (DeiT-Tiny). Specifically, the Top-1 accuracy of the student is just
73.36% when distilling on the last layer with FitNet. This distillation on the last layer is widely used
for CNN’s distillation, but here it causes a 1.06% accuracy drop. When distilling the whole 12 layers,
the accuracy drop reduces to 0.18%. This preliminary study suggests that distillation on the shallow
layers is as crucial as that on the deep layers in ViT’s distillation.

To gain a better understanding of ViT’s features, we visualize the attention maps of the student and
teacher across various layers, as shown in Fig. 1. For the shallow layers (e.g., layers 0 and 1), both the
student and teacher mainly focus on the diagonal, indicating a self-attention pattern. In contrast, for
the deeper layers (e.g., layers 10 and 11), there is a greater difference between the attention patterns
of the student and teacher. Attention is determined by a few sparse key tokens, and the student and
teacher focus on different tokens. This discrepancy makes it challenging for the student to mimic
the teacher’s final feature directly. Therefore, our findings suggest that different layers may require
different knowledge distillation methods.

Accordingly, we perform a series of controlled experiments to examine the effects of different
distillation methods and different layers. As a consequence, we propose a nontrivial way for feature-
based ViT distillation, named ViTKD. ViTKD treats the shallow and deep layers with different
distillation methods, which is shown in Fig. 2. We conduct extensive experiments to demonstrate
its effectiveness. For instance, we boost the student DeiT-Tiny from 74.42% to 76.06%, DeiT-Small
from 80.55% to 81.95% and DeiT-Base from 81.76% to 83.46% on ImageNet-1K. Besides, all loss
functions in ViTKD are only calculated on feature maps, so it can be easily combined with the
logit-based distillation. With the combination, we can further advance the students’ Top-1 accuracy
to 77.78%, 83.59% and 85.41%. We also demonstrate the models trained with ViTKD are beneficial
to downstream tasks like object detection, human pose estimation and semantic segmentation. In a
nutshell, the contributions of this paper are:
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Figure 2: Illustration of the proposed ViTKD. ViTKD is a feature-based distillation method that
includes shallow layers’ Mimicking and deep layer’s Generation. It can be directly combined with
the output logit-based distillation method together.

* We reveal that the feature-based KD method for CNNss is unsuitable for ViTs. If we align
them directly, it will result in a performance drop. Besides, the distillation on the shallow
layers is also important for ViT, which differs from the conclusion in KD for CNNs.

* We provide an insight that treats different layers with different distillation methods. Based
on this insight, we propose a simple and effective KD method named ViTKD.

* We verify the effectiveness of our method via extensive experiments on ImageNet (Deng
et al., 2009), bringing significant performance gains. In addition, we also demonstrate the e
superiority of the models trained with ViTKD for various downstream tasks on COCO (Lin
et al., 2014) and ADE20K (Zhou et al., 2017).

2 RELATED WORK

2.1 VISION TRANSFORMER

Vision Transformer was proposed by (Dosovitskiy et al., 2021) for image classification. It applies the
self-attention (Vaswani et al., 2017) architecture to computer vision tasks successfully. DeiT (Touvron
et al., 2021a) explores the training setting and introduces logit-based distillation to ViT with another
distillation token. CaiT (Touvron et al., 2021b) modifies the architecture and obtains a deeper model
with vision transformer. T2T-ViT (Yuan et al., 2021) helps each token to get a better local feature.
Swin Transformer (Liu et al., 2021) utilizes shifted windows to brings greater efficiency by limiting
self-attention computation. Vision Transformer has also been applied to other downstream tasks,
such as object detection (Li et al., 2022b; Liu et al., 2021) and semantic segmentation (Bao et al.,
2022; Xie et al., 2021). However, such models consume many resources for inferring and need to be
improved for better application.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is a method to improve a compact model without extra time cost for
inference. It was proposed by Hinton et al. (Hinton et al., 2015), which uses the teacher’s output to
guide the students. The following works can be divided into the logit-based methods and feature-
based methods according to the distillation areas. WSLD (Zhou et al., 2020) analyzes soft labels
from a perspective of bias-variance trade-off and distributes different weights for different samples.
DKD (Zhao et al., 2022) decouple the logit according to the target class. SRRL (Yang et al., 2020)
utilize the teacher’s linear layer to help the student to get better features and logit. NKD (Yang et al.,
2023) decomposes and normalizes classic KD, achieving state-of-the-art performance.
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Feature-based KD methods calculate the distillation loss on the feature maps. FitNet (Romero et al.,
2015) distills on the intermediate feature directly. RKD (Park et al., 2019) transfers the relation from
the teacher’s feature maps. CRD (Tian et al., 2019) introduces contrastive method for feature KD.
KR (Chen et al., 2021) distills the knowledge from the teacher’s multi-level features. MGD (Yang
et al., 2022c) forces the student to generate the teacher’s feature instead of mimicking. However,
these feature-based methods are designed for CNNs.

3 METHODOLOGY

In this paper, we analyze the difference between ViT’s different layers and treat them with different
distillation methods. Specifically, for the shallow layers with a small difference, we force such
layers to mimic the teacher’s corresponding layers, learning how to focus on the tokens themselves.
While for the deep layers with a big gap between student and teacher, which have stronger semantic
information, we force the student to generate the teacher’s feature instead of mimicking directly.

3.1 MIMICKING FOR SHALLOW LAYERS

As Fig. | shows, the student and teacher’s shallow layers have similar attention. Besides, the attention
appears mainly on the diagonal. So we force the student to mimic teacher’s feature of the first two
layers. The analysis of the choice for the shallow layers is in Sec. 5.2. For each sample, we can
denote student’s and teacher’s feature as F° € RN*Ps and FT' € RV*P7 respectively. For the
mimicking method on shallow layers, we utilize a linear layer to align the embedding dimension of
the student’s Dg and the teacher’s Dp. The mimicking loss for shallow layers’ distillation is as:

N Dr

Lo =3 S (FE — fe(FS)iy)”, M

i=1 j=1

where fc(+) is a linear layer to reshape the F* to the same dimension as 2. N, Dr denote the
number of patch tokens and the embedding dimension of the teacher’s feature.

3.2 GENERATION FOR DEEP LAYERS

For the deep layers, the student’s and teacher’s features become much more different and mimicking
method fails on it, as shown in Tab. 1. So we try to utilize student’s last feature to generate the
teacher’s last feature, avoiding mimicking directly. The analysis of the choice for the deep layers is in
Sec. 5.2. The last feature has the best representation of the original input image. Such feature tokens
already contain the information of adjacent tokens to a certain extent. Therefore, we can use partial
tokens to generate the complete feature map. This way aims at generating the teacher’s feature by
student’s masked feature, which can help the student achieve a better representation.

We first also use a linear layer to align the student’s and teacher’s feature embedding dimensions.
Then, we set a random mask Mask € RY*! and use the learnable masked tokens to replace the
student’s original feature tokens:

7S5 _ masked token, ifr; <A @)
© " \original token, Otherwise,
1, ifr; <X
Mask; =<’ o 3
@8 {O7 Otherwise, )

where r; is a random number uniformly distributed in [0, 1] and ¢ € [0, N — 1] is the coordinates of
the tokens dimension. A\ controls the masked ratio. The masked token is the parameter to learn and
will be updated during training.

Finally, we use the new masked feature ]:"Z-S to generate the teacher’s full feature through a generative
block G, which can be formulated as follows:

G(F%) — FT. 4)
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For the generative block G, we apply a convolutional projector, which includes two 3 x3 conventional
layers and one activation layer Re LU . Finally, we only calculate the loss of the masked tokens. For
the generation method for deep layer, we design the distillation loss Ly, as:

N D
Loen = > Mask;(FEL, — G(FE))”. 5)

i=1 j=1

3.3 VITKD

Combing the distillation on shallow (first two) and deep (last) layers, we propose ViTKD, as shown
in Fig. 2. When the number of the student’s and teacher’s layers is different, we also pick the first
two and last layers for distillation. To sum up, we train the student model with the total loss:

L= Lo +aly + ﬁ'CQSTM (6)

where L,,; is the original loss for the models. « and /3 are two hyper-parameters.

4 EXPERIMENT

4.1 SETTINGS

Datasets. We explore ViTKD on ImageNet-1K (Deng et al., 2009), which contains 1000 categories.
We use 1.2 million images for training and 50k images to evaluate the performance. For downstream
tasks, we evaluate our model on COCO (Lin et al., 2014) and ADE20K (Zhou et al., 2017).

Implementation details. ViTKD uses « and 3 to balance the distillation loss in Eq. 6. Another
hyper-parameter A is used to adjust the masked ratio for deep layer distillation in Eq. 2. We adopt the
hyper-parameters {o = 3 x 1075, 3 = 3 x 107¢, X\ = 0.5} for all the experiments. Besides, to keep
the model to be the same for the feature and logit distillation, we remove the extra distillation token
which is used for logit distillation in DeiT. The image resolution for all the experiments is 224 x224.
The experiments are conducted on 8 Nvidia 3090 GPUs with MMClassification (Contributors, 2020a)
in Pytorch (Paszke et al., 2019). Unless specified, we evaluate the model with the last epoch.
The training setting follows DeiT (Touvron et al., 2021a) , which is trained with Mixup, Cutmix,
RandAugment and Erasing. We use Adamw as the optimizer with 1024 batch size. The learning rate
with warm up decays as cosine. We take larger DeiT (Touvron et al., 2021a) and DeiT III (Touvron
et al., 2022) models as the teacher to distill lighter DeiT models. The DeiT teacher is trained from
scratch on ImageNet-1K, and DeiT III teacher is pre-trained on ImageNet-21K. More results and
analyses are shown in Appendix. A.

4.2 MAIN RESULTS

Our ViTKD can bring ViT-liked models better performance via feature distillation. To prove this, we
first conduct experiments with different teacher-student distillation pairs on ImageNet, as shown in
Tab. 2. We compare our ViTKD with two other methods, including FitNet (Romero et al., 2015) and
recent MGD (Yang et al., 2022c¢). To further show the effectiveness of our ViTKD, we also compare
it with original KD (Hinton et al., 2015) and Hard KD (Touvron et al., 2021a) from DeiT. As shown
in Tab. 2, ViTKD surpasses other feature-based methods significantly and brings remarkable accuracy
gains, e.g., the DeiT III-Small (Touvron et al., 2022) teacher boosts the student’s Top-1 accuracy
from 74.42% to 76.06%. Besides, VITKD brings comparable improvements as DeiT’s Hard KD and
even surpasses the classic KD method. Comparing the results between different teachers, we find
the student achieves better performance with a stronger teacher, e.g., the student DeiT-Tiny achieves
75.40% and 76.06% Top-1 accuracy with the DeiT-Small and DeiT III-Small teacher, respectively.

We also conduct experiments with more and larger models to show the generalization of ViTKD, as
shown in Tab. 3. For larger models such as Swin-T (Liu et al., 2021), DeiT-S and DeiT-B, ViTKD
can also bring them significant improvements, helping it to achieve 81.70%, 81.95% and 83.46%,
respectively. Besides, VITKD is a feature-based method and can be combined with other logit-based
methods to further improve the student. This is also one of the feature-based methods’ advantages.
Therefore, we try to add the state-of-the-art logit-based method NKD (Yang et al., 2023) to ViTKD,
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Table 2: We reproduce the results of DeiT with MMClassification on ImageNet-1K. * indicates
the teacher is pre-trained on ImageNet-21K. We compare with two other feature-based distillation
methods that can be applied to ViTs.

Teacher Type Student Top-1 Accuracy Top-5 Accuracy
baseline Deil-Tiny 74.42 92.29
logit KD 75.01 (+0.59) 92.52
DeiT-Small Hard KD 75.10 (+0.68) 92.55
(80.69) FitNet 73.36 (-1.06) 91.88
feature MGD 74.46 (+0.04) 92.28
ViTKD (Ours) 75.40 (+0.98) 92.66
baseline DeiT-Tiny 74.42 92.29
logit KD 76.01 (+1.59) 93.26
DeiT III-Small* g Hard KD 76.08 (+1.66) 93.30
(82.76) FitNet 73.72 (-0.70) 91.88
feature MGD 74.53 (+0.07) 92.28
ViTKD (Ours) 76.06 (+1.64) 93.16

Table 3: Results of distilling more and larger Table 4: The downstream tasks results with ViTKD.
models on ImageNet-1K. * indicates the teacher

is pre-trained on ImageNet-21K. Dataset Motric DTS 7 ViTKD
ImageNet Top-1 Acc. | 80.55 81.95 (+1.40)
Teacher Student | Baseline | + ViTKD APPor 45.07  46.28 (+1.21)
Swin-B* Swin-T| 87.78 |81.70 (+0.52) COCO AP™ask | 40 14 41.05 (+0.91)
DeiT III-B* | DeiT-S | 80.55 |81.95 (+1.40) APpPose 71.80  72.80 (+1.00)
DeiT III-L* | DeiT-B | 8/.76 |83.46 (+1.70) ADE20K mIOU 42.96 4494 (+1.98)

as shown in Fig. 3. In this way, different students all get another significant accuracy improvement,
e.g., the student DeiT-Small gets another 1.64% gains and achieves 83.59% Top-1 accuracy with a
DeiT III-Base teacher. Surprisingly, the student DeiT-Small is just trained on ImageNet-1K, but its
performance surpasses DeiT III-Small’s 82.76%, which needs to be pre-trained on ImageNet-21K.

4.3 DOWNSTREAM TASKS

©
>

The model trained with ViTKD achieves significant im-

provements for classification. To further evaluate the ef- e
fectiveness of the model with ViTKD, we try to apply — * el Th
it to various downstream tasks. For object detection on S P 8346

<)
N
*

COCO (Lin et al., 2014), we use Mask-RCNN (He et al.,
2017) as the detector and follow the setting from ViT-
Det (Li et al., 2022b) on detectron2 (Wu et al., 2019). For

Top-1 Accuracy(%
©
3

pose estimation, we use ViTPose (Xu et al., 2022) for the sl
17 body key points. For segmentation on ADE20K (Zhou ”/'Z?/"
et al., 2017), we use UPerNet (Xiao et al., 2018) and train 614 -~ DeiT + VITKD + logit_kd
it on MMSegmentation (Contributors, 2020b). -+ ';e: +VITKD
74 74.42 el
As the results in Tab. 4, DeiT-Small trained with ViTKD DeiT-Tiny DeiT-Small DeiTBase

model

brings the detector 1.21 Box mAP and 0.91 Mask mAP

gains. For human pose estimation, ViTKD brings 1.00  Figure 3: Results of combing ViTKD
AP gains. For segmentation, ViTKD boosts the mloU ith logit-based KD on ImageNet-1K.
performance from 42.96 to 44.94. The results demon- The teacher for DeiT-T, S and B is DeiT
strate the model trained with ViTKD has not only better |J]-S, B, and L, respectively. The teach-
performance for classification but also stronger semantic  ers are pre-trained on ImageNet-21K.
information for various downstream tasks.
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Figure 4: Visualization of the average attention map from the DeiT-Tiny (student), DeiT III-Small
(teacher) and DeiT-Tiny after distillation with ViTKD. For a convenient comparison, the two visual-
izations in the second row are both DeiT-Tiny with ViTKD.

layer 11

layer 11

DeiT-Tiny
ViTKD

Table 5: The effects of distillation on different layers. Table 6: Ablation study results of the losses
of shallow layers’ Mimicking and deep layer’s

Generation. * means the teacher is pre-trained
La}(/)ers Top—17 SA gi (%) on ImageNet-21K.
0,1 75.12
shallow 5,6 75.01 Losses DeiT-Tiny (Student)
0,1,6 75.14 Ly - v -
0,1,2,3,4,5,6 75.16 Lgen - - v v
deep 11 74.72 DeiT-S (T) |74.42[75.12 74.72 75.40
10,11 74.70 DeiT III-S* (T) | 74.42 | 75.31 74.79 76.06

5 ANALYSES

5.1 STUDENT’S ATTENTION AFTER DISTILLATION

ViTKD combines mimicking and generation methods for different layers for ViT-based models. In
this subsection, we present a visualization and comparison of the average attention maps from the
teacher, student, and student with ViTKD to explore how ViTKD influences the student, as shown
in Fig. 4. Comparing the attention maps between the original student and teacher, we observe a
significant and much smaller difference in the deep and shallow layers, respectively. After distillation
with ViTKD, the student’s shallow layers have attention maps similar to those of the teacher. However,
for the deep layer, as described in Sec.1, the significant gap between the attention maps of the teacher
and student makes it difficult for the student to mimic the teacher directly. ViTKD forces the learnable
masked tokens to be similar to those of the teacher, instead of using the original tokens of the student.
As aresult, after our VITKD’s generation, the student’s deep features are still dissimilar to those of the
teacher. However, ViTKD helps the student generate the teacher’s features with its random masked
tokens, resulting in the student’s deep layer having stronger semantic information. We demonstrate
this by using the deep layer for downstream tasks in Sec. 4.3, including detection, human pose
estimation, and segmentation.

5.2 DIFFERENT LAYERS FOR DISTILLATION

As shown in Fig. 1, the attention distributions of the middle layers are also similar to that of shallow
layers. Accordingly, we first explore the effects of distillation on such layers in Tab. 5. In general,
distillation on either the shallow or middle layers can benefit the student. Besides comparing the
improvements from different layers, we find that the knowledge from the shallow layers is much more
helpful than that from the middle layer for distillation. Furthermore, when distilling the whole first
seven layers together, the accuracy improvement is just 0.04% above the first two layers. Considering
the trade-offs between time consumption and performance, we choose the first two layers for shallow
distillation eventually. While for the deep layer’s distillation, calculating distillation loss on the last
layer takes less time but brings more improvement.
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Table 7: The comparisons of different generative blocks for deep layer’s distillation on ImageNet-1K.
* indicates the model is pre-trained on ImageNet-21K.

Teacher DeiT-Small (80.69) DeiT HI-Small* (82.76)
Student DeiT-Tiny (74.42) DeiT-Tiny (74.42)
Cross-attention 73.77 (-0.65) 73.98 (-0.44)
Generation Self-attention 74.61 (+0.19) 74.65 (+0.23)
Conv. projector 74.72 (+0.30) 74.79 (+0.37)

Table 8: The comparisons of different alignments for shallow layers’ distillation on ImageNet-1K.

Teacher DeiT III-S* (82.76) DeiT-B (81.76)

Student DeiT-T (74.42) DeiT-T (74.42)

Mimicking Linear layer 75.31 (+0.89) 75.15 (+0.73)
Correlation matrix 74.94 (+0.52) 75.01 (+0.59)

5.3 EFFECTS OF SHALLOW AND DEEP LAYERS’ LOSSES

As described in the method, we distill the shallow layers and deep layers by mimicking and generation,
respectively. In this subsection, we conduct experiments of Mimicking loss L;, and Generation loss
Lgen to investigate their influences on the student with DeiT-Tiny. As shown in Tab. 6, both the
knowledge from shallow and deep layers are helpful for the student. When just applying a single
loss, the £;,- on shallow layers benefits the student much more than L., on the deep layer. This
phenomenon shows that incipient attention knowledge really matters for ViT’s feature distillation,
which is completely different from the CNN-based model’s feature distillation. Furthermore, these
two losses are complementary to each other. For example, when combing £;, and L., together, the
student with a DeiT III-Small teacher achieve 76.06% Top-1 Accuracy, which is much higher than
just applying £;,.’s 75.31% and Lg.,,’s 74.79%.

5.4 DIFFERENT GENERATIVE BLOCK FOR DEEP LAYER’S DISTILLATION

For generation, we randomly mask the student’s tokens and utilize a generative block to restore the
feature. In this section, we discuss the effects of different generative blocks, including cross-attention
block (Chen et al., 2022b), self-attention block (He et al., 2022), and convolutional projector (Yang
et al., 2022c). We use two teachers to distill the student DeiT-Tiny on ImageNet-1K. As our results
shown in Tab. 7, the cross-attention blocks impair the student’s performance noticeably. Instead, the
self-attention and convolutional block can improve the accuracy of the student. The largest gains are
obtained by using the convolutional projector as the generative block.

5.5 DIFFERENT ALIGNMENTS FOR SHALLOW LAYERS’ DISTILLATION

When using mimicking, we align the embedding dimensions of the student and the teacher by a linear
layer. Here we try another alignment way called correlation matrix to describe the response among
different tokens and force the student to learn the correlation matrix of the teacher’s features. In this
case, we do not need the adaption layer to align the embedding dimension. The correlation matrix
can be calculated as:

FFIr
VD '

where F € RY*P denotes the student or teacher’s feature. D is their embedding dimension and 7'r
denotes transposition, so F Tr ¢ RPXN Tn this case, the student’s and teacher’s relation matrices
have the same shape M € RY*" and describe the response between different tokens.

M= @)

We pick the first two layers for distillation by mimicking in Tab. 8. Both alignments for transferring
the knowledge from the shallow layer by directly mimicking make great progress. Mimicking by
‘linear layer’ performs better than the ‘correlation matrix’ way. When the teacher performs better, the
‘linear layer’ way benefits the student much more than the ‘correlation matrix’ way.
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Table 9: Different modules for shallow layers. Table 10: Sensitivity study of hyper-parameter A,
the masked ratio in deep layer’s distillation.

Teacher | DeiT-S (80.69) DeiT III-S (82.76)
MHA 75.06 75.02 A baseline 0 0.3 0.5 0.7 09
FFN 75.12 75.31 Acc. 74.42 7577 75.86 76.06 75.94 75.83
® Baseline * DeiT-Tiny + ViTKD ® Baseline * DeiT-Tiny + ViTKD
76.5 76.15 76.5
76.05 76.06 76.07 76.03 7507 76.06 76.03 7608 76.01
.. 760 —_—— T . 760 ——————————
g 755 % 755
< <
T 750 - 75.0
% 74.42 74.42 74.42 74.42 74.42 % 74.42 74.42 74.42 74.42 74.42
RZE —eo —o—0o—o T s ——eo —o—0o—o
74-0 74.0
2 3 4 5 6 2 3 4 5 6
ax 10"-5 B x 10"-6
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Figure 5: The sensitivity study of hyper-parameters « (a) and 3 (b).

5.6 DIFFERENT MODULES FOR DISTILLATION

ViTs are built by stacking several encoder layers. Each encoder layer consists of a multi-head
attention (MHA) module and a feed-forward network (FFN) module. We further conduct experiments
on the shallow layers of the student DeiT-tiny to explore how to choose the modules for distillation.
The results in Tab. 9 demonstrate that distilling on the MHA-out or FFN-out feature both benefit the
student and the knowledge from FFN-out feature is better than that from MHA-out feature.

5.7 SENSITIVITY STUDY OF HYPER-PARAMETERS

In this paper, we use two hyper-parameters « and /3 in Eq. 6 to balance the shallow layer’s distillation
loss £y, and the deep layer’s distillation loss £ ., respectively. To explore the sensitivity of the hyper-
parameters, we conduct experiments by adopting DeiT III-Small to distill DeiT-Tiny on ImageNet-1K.
As shown in Fig. 5a and Fig. 5b, ViTKD is not sensitive to « or  which is just used for balancing
the distillation loss. Specifically, when « varies from 2 to 6, the student’s worst accuracy is 76.03%,
which is just 0.12% lower than the highest accuracy. Besides, it is still 1.61% higher than the baseline
model, demonstrating our ViTKD is not sensitive to the hyper-parameters for loss scale. As for the
masked ratio X in Eq. 2, it is used to control the ratio of masked tokens. We conduct experiments to
explore it, as shown in Tab. 10. When A is 0, it means there are no masked tokens and the performance
is poor. When it is too large, e.g., 0.9, the left tokens are too poor to generate the teacher’s feature
and the performance is also affected. Besides, A is applied just for deep distillation. So the influence
of ViTKD is limited. The lowest performance is still 1.35% higher than the baseline.

6 CONCLUSION

In this paper, we propose a feature-based distillation method for ViT-based models. We point out
that distillation on the shallow layers is also important for ViTs and different layers need different
distillation methods. Based on this insight, we propose a simple and effective method ViTKD, which
includes the distillation on shallow layers via mimicking and deep layers via generation. ViTKD
brings the student significant improvements on the image classification task and also benefits the
downstream tasks. Besides, ViTKD is truly a feature-based method and can be easily combined with
other logit-based methods to further improve the student’s performance. ViTKD attempts to apply
feature-based KD for ViTs. We believe the insight that treating different layers with different methods
can still be further explored and be extended to other tasks.
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Table 11: The distillation results of applying different methods to different layers.

Methods Layers Top-1 Acc. (%)
baseline - 74.42
shallow 75.31
Mimicking deep 73.72
shallow + deep 74.65
shallow 74.69
Generation deep 74.79
shallow + deep 75.02
ViTKD shallow + deep 76.06

Table 12: The comparisons of more methods on ImageNet-1k. The student model is DeiT-Small.

Methods Type Top-1 Acc. (%)
DearKD (Chen et al., 2022a) feature + logit 81.5
Manifold (Hao et al., 2022) feature + logit 82.2
ViTKD feature 82.0
ViTKD + logit-kd feature + logit 83.6

A APPENDIX

A.1 DIFFERENT METHODS FOR DIFFERENT LAYERS

Our ViTKD applies mimicking way to shallow layers and generation way to deep layer, respectively.
Here we try to apply the mimicking or generation way to the shallow and deep layers together. As
shown in Tab. 11, both mimicking and generation ways bring the student limited improvements. Our
ViTKD achieves significant results and boosts the student from 74.42% to 76.06%.

A.2 COMPARISON WITH MORE METHODS

We also compare our ViTKD with more methods which include both feature and logits distillation
for ViT-liked models, as shown in Tab. 12. Our ViTKD achieves comparable results via feature
distillation. When combining the logit-based kd together, the performance gets another significant
improvement. The results demonstrate our ViTKD surpasses other methods in a fair setting.

A.3 DOWNSTREAM TASKS OF LARGER MODELS

In Sec. 4.3, we report the downstream results of DeiT-Small. Here we add the object detection results
of a larger model DeiT-Base with our distillation method, as shown in Tab. 13. The student also
achieves consistent improvements and can be further improved with logit-based KD together.

A.4 TIME CoOST OF VITKD

We report the time for a training epoch on 8 Nvidia 3090 GPUs in Tab. 14. We test DeiT-Tiny with
a DeiT-Small teacher. The logit-based method also needs to obtain intermediate features before
final logits. Therefore, it’s reasonable to utilize features and logits together for distillation. For both
settings, VITKD’s time consumption is similar to the logit-based method.

Table 13: The downstream tasks of larger models.

Methods Model Type COCO Det mAP

baseline DeiT-B - 47.23

VIiTKD DeiT-B feature 48.13
ViTKD + logit-kd | DeiT-B  feature + logit 48.83
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Table 14: The downstream tasks of larger models.

Methods Type Time (min)  Top-1 Acc. (%)
NKD logit 7.6 75.48
ViTKD feature 7.8 75.40
ViTKD + NKD | feature + logit 7.9 76.18

Table 15: The average results of VITKD. The teacher is DeiT-Small, and the student is DeiT-Tiny.

Times 1 2 3 Average Standard Deviation
Top-1 Acc. (%) | 76.06 | 76.10 | 76.08 76.08 0.016

A.5 STANDARD DEVIATION OF THE EXPERIMENTS
As shown in Fig. 5, we take the sensitivity study of two hyper-parameters. Among the experiments,

the best performance is 76.15%, and the worst is 75.97%, which is still 1.55% higher than the baseline.
Here we run our experiment another two times to show the error bars in Tab. 15.
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