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ABSTRACT

Electroencephalography (EEG) provides millisecond-level temporal resolution
but suffers from poor spatial precision, whereas functional magnetic resonance
imaging (fMRI) offers fine-grained spatial detail at the expense of cost and la-
tency. Leveraging their complementarity, an emerging direction is to synthesize
fMRI from EEG, enriching EEG with spatial information while retaining its effi-
ciency. However, existing EEG to fMRI generation methods often lack designs to
preserve information completeness and neglect neurophysiological priors, leading
to reconstructions that may appear plausible but fail to ensure neuroscientific va-
lidity. We introduce NeuroCycle, a cyclic EEG—fMRI generation framework that
enforces information completeness and neuroscientific plausibility. It incorporates
two neurophysiological priors: (i) a Cross-Modal ROI-wise Structural Module
that aligns fMRI embeddings with EEG-derived correlation patterns to preserve
regional organization, and (ii) an R2E Physiological Connectivity Guidance Mod-
ule that supervises covariance matrices via Riemannian-to-Euclidean mapping to
maintain functional connectivity. The bidirectional cycle (EEG—fMRI—EEG)
further enforces information completeness and cross-modal alignment, ensuring
that synthesized fMRI retains key neural information. Experiments on NODDI
and Oddball datasets show consistent improvements over state-of-the-art base-
lines, producing sharper voxel-wise fMRI with richer neural information, pre-
served connectivity, and stronger cross-modal alignment.

1 INTRODUCTION

Electroencephalography (EEG) is one of the most widely used modalities for non-invasive brain sig-
nal acquisition due to its high temporal resolution, low cost, and accessibility |Gevins et al.| (1995).
It has been extensively applied in clinical monitoring and neuromodulation. However, EEG suffers
from inherently limited spatial precision, which restricts its effectiveness in tasks requiring fine-
grained localization, such as precise diagnosis and prediction of neurological disorders [Srinivasan
(1999). In contrast, functional magnetic resonance imaging (fMRI) provides stable observations of
brain states with high spatial resolution, making it particularly powerful for brain region localization
and disease prediction. Yet, the acquisition of fMRI is expensive, relies on bulky equipment, and
is constrained by low temporal resolution, preventing its deployment in real-time monitoring and
large-scale clinical scenarios Menon & Goodyear| (2001). In this context, EEG and fMRI provide
complementary advantages across temporal and spatial dimensions Huster et al.|(2012); Mulert et al.
(2004). Both originate from the same underlying neural activity: EEG captures neuronal electrical
discharges, while fMRI reflects the hemodynamic response. Based on this complementarity, an
important research question naturally arises: Can we synthesize spatially fine-grained fMRI repre-
sentations solely from EEG data, thereby retaining the efficiency and affordability of EEG while
overcoming its spatial limitations?

This question has attracted increasing attention, and several pioneering studies follow a com-
mon pipeline that encodes EEG signals into embeddings and subsequently generates fMRI rep-
resentations through transformer- or GAN-based frameworks (e.g., NT-ViT |Lanzino et al.| (2024)),
E2fGAN |Roos et al.| (2025))). However, existing methods face critical limitations (Figure Eka)).
First, existing methods generally lack explicit modeling and supervision of neurophysiological pri-
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Figure 1: Traditional one-way EEG—fMRI generation (a) overlooks physiological priors and loses
information completeness, whereas our cyclic framework (b) integrates connectivity priors and cycle
consistency to preserve neural information and enhance biological plausibility.

ors, such as brain ROI-level organization and functional connectivity, making it difficult to ensure
that the generated fMRI representations preserve complete and physiologically consistent informa-
tion aligned with EEG data, thereby limiting their neuroscientific interpretability. Second, most
approaches adopt a unidirectional EEG — fMRI mapping, neglecting the preservation of complete
neurophysiological information. As a result, the synthesized fMRI may appear visually plausible
but fail to guarantee that it faithfully retains the essential statistical characteristics embedded in
EEG signals, which undermines its clinical utility and downstream applicability. Moreover, current
methods fall short in capturing cross-modal consistency, limiting their ability to uncover and exploit
the deep physiological coupling between EEG and fMRI.

To address these challenges, we propose a cyclic cross-modal EEG—fMRI generation framework
(Figure [T|b)) that integrates neurophysiological priors to ensure both information completeness
and neuroscientific plausibility. First, we incorporate neurophysiological priors through two ded-
icated modules: the Cross-Modal ROI-wise Structural Module, which aligns EEG-derived correla-
tion patterns with reconstructed fMRI ROI embeddings to preserve regional organization, and the
R2E Physiological Connectivity Guidance Module, which supervises EEG covariance matrices via
Riemannian-to-Euclidean mapping to maintain functional connectivity consistency. Second, unlike
unidirectional EEG — fMRI mappings that risk losing essential neural information, we introduce
a pathway that regenerates EEG from the synthesized fMRI, thereby forming a cyclic bidirectional
framework (EEG — fMRI — EEG) based on flow matching to guarantee that essential neural in-
formation is fully preserved. This cyclic constraint strengthens semantic alignment between modal-
ities, ensuring that the generated fMRI captures both plausible spatial patterns and key neural signal
statistics. Together, these innovations provide a principled framework for cross-modal brain signal
generation, enhancing both neuroscientific interpretability and potential clinical utility.

In summary, our main contributions are threefold: (1) We propose the first cycle-based EEG—MRI
bidirectional generation framework via Flow Matching, which preserves the full and reversible neu-
rophysiological details embedded in fMRI, thereby ensuring information completeness and modal-
ity alignment. (2) We incorporate neurophysiological priors through two modules: A Cross-Modal
ROI-wise Structural Module that enforces consistency between EEG-derived connectivity patterns
and reconstructed fMRI ROI embeddings, preserving brain regional organization; An R2E Physio-
logical Connectivity Guidance Module that aligns EEG-derived and reconstructed EEG covariance
matrices by mapping them from the Riemannian manifold to the Euclidean tangent space, enhanc-
ing functional connectivity interpretability and indirectly improving the physiological information
integrity preserved in the reconstructed fMRI. (3) We validate the framework on NODDI |Deligianni
et al.| (20165 2014) and Oddball Walz et al.| (2013 [2014} 2015) datasets, achieving superior fMRI
reconstruction performance in preserving neural information and cross-modal consistency.

2 RELATED WORK

Early EEG-to-fMRI synthesis studies applied convolutional, graph-attentional, transformer, and ad-
versarial designs to directly generate voxel-wise fMRI. CNN-TC [Liu & Sajda) (2019)) used CNN-
based transcoding but struggled with long-range dependencies. CNN-TAG |Calhas & Henriques
(2022) introduced graph attention over electrodes. NT-ViT |Lanzino et al.| (2024) employed self-
attention for temporal—spectral relations. E2fGAN/E2fNet [Roos et al.| (2025) enhanced robustness
under noise and shifts. Despite architectural diversity, these approaches are largely data-driven map-
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Figure 2: Overview of the proposed cyclic EEG-fMRI generation framework. EEG signals are
mapped to fMRI via Flow Matching and back-translated to EEG for cycle consistency. Two guidance
modules enhance neurophysiological plausibility: (A) Cross-Modal ROI-wise Structural Module for
preserving ROI-level organization across modalities; (B) R2E Physiological Connectivity Guidance
for functional connectivity alignment.

pings that do not enforce information integrity or neurophysiological constraints (e.g., connectivity
priors), which may limit information completeness and biological plausibility in the synthesized
volumes.

Distinct from the above voxel-wise setting, NeuroBOLT |L1 et al.|(2024) performs ROI-level time-
series synthesis in resting state via multi-dimensional feature mapping that fuses spatiotemporal and
multi-scale spectral embeddings. While effective for parcellation-based dynamics and network anal-
ysis, its outputs are parcellation signals rather than 3D volumes, thereby discarding intra-ROI het-
erogeneity and precluding fine-grained spatial localization. In contrast, our NeuroCycle introduces
a cyclic pathway (EEG — fMRI — EEG) to guarantee information completeness, while integrating
neurophysiological priors to produce biologically constrained voxel-wise reconstructions that move
beyond coarse ROI dynamics reconstruction.

3 METHOD

3.1 OVERVIEW

The overall framework of the EEG—MRI Cyclic Generation Model is illustrated in Figure 2] For
the EEG modality, the data of a subject with C'electrodes is denoted as X6 = (x1, 29, ...,2¢) €
REXT  where z; € R” represents the temporal signal of the i-th electrode and T is the length of
the time window. For the fMRI modality, the volumetric data at a single time point is represented
as XTMEL ¢ RVaxVuxVz where V,, V), V, denote the voxel dimensions along the three spatial
axes. Our objective is to reconstruct fMRI signals XIMRI from EEG inputs X ¢ that not only

appear realistic, but also faithfully preserve physiological structures and contain complete neural
information compared to ground-truth fMRI X7MEI " To achieve this, we design a cyclic mapping

of EEG — fMRI — EEG. In this cycle, the reconstructed EEG XBEG jg compared against the
ground-truth EEG X #F¢ to provide additional supervision. This cyclic constraint ensures that the



Under review as a conference paper at ICLR 2026

generated fMRI retains sufficient information to regenerate the original EEG, thereby guaranteeing
both the information integrity of the reconstructed fMRI and the cross-modal consistency between
EEG and fMRI.

To extract spectral information, the input raw EEG signal X”F¢ is transformed into a Mel-
spectrogram representation, following the same preprocessing strategy adopted in |Lanzino et al.
(2024). This produces X f;,fcc € REXFXT with F denoting the number of Mel frequency bands.
Subsequently, electrodes are projected to atlas-defined cortical regions, and ROI-level spectral fea-
tures are aggregated as X PG ¢ RNroixEXT We then input X ZFC into the EEG ROI encoder

Erpg to obtain ROI-level latent embeddings ZZF¢ € RN 4 where d is the embedding dimen-
sion. These ROI embeddings are concatenated and projected through a projection layer to derive
a compact global representation ZFF%_ The global embedding ZZF¢ is then fed into the EEG-
to-fMRI (E2F) flow matching module F'r_, r to predict the corresponding fMRI global embedding

Z EJ; MRI This embedding is further decoded by decoder D M R1 to reconstruct the volumetric fMRI
data X/MPRI Next, the reconstructed fMRI X/MB7 is encoded by the fMRI encoder E gy into

its ROI-level embedding Zf 01\14 BRI ¢ RNroixd Thig embedding is then fed into the proposed Cross-
Modal ROI-wise Structural Module, which enforces that the fMRI ROI embeddings preserve the
connectivity relationship inferred from EEG, thereby maintaining functional connectivity patterns
that reflect structural organization and ensuring consistency across modalities. Then, following the

procedure described above, a compact global representation obtained Z g MRI i mapped to the EEG
embedding space through the fMRI-to-EEG (F2E) flow matching module Fr_,g. The resulting
representation is then passed into the EEG decoder Dg g to generate the reconstructed raw EEG
signal XEBEG ¢ RCXT  The reconstructed EEG X FFC together with the ground-truth EEG X FEC
are fed into the proposed R2E Physiological Connectivity Guidance Module, which maps EEG-
derived ROI-level functional connectivity matrices from the Riemannian manifold to the Euclidean
tangent space and enforces agreement between the reconstructed and ground-truth EEG connectivity
by minimizing their tangent-space discrepancy, thereby ensuring that the generated EEG preserves
physiological connectivity relationships and, in turn, enhancing the information integrity of the gen-
erated fMRI.

3.2 ROI ENCODER AND BIDIRECTIONAL CROSS-MODAL FLOW MATCHING MODULE

To bridge the heterogeneous representations of EEG and fMRI, we design ROI-based encoders
that project both modalities into a shared latent space while preserving global and regional brain
dynamics, followed by bidirectional flow matching modules learning consistent cross-modal trans-
formations. The module design is illustrated in Figure 3]

The raw EEG signal XFF6 ¢ RE*T s first transformed into a Mel-spectrogram representation
XEEG € RO*FXT 1o incorporate spectral information. To aggregate electrode-level features into
anatomically meaningful regions, we apply a predefined electrode-to-ROI mapping MggG—ro1,
where each electrode contributes to a cortical ROI according to a distance-based weighting be-
tween the electrode location and the ROI center in the atlas Babiloni et al.| (2004). Let p. € R?
denote the spatial coordinate of the c-th electrode, and ¢, € R3 denote the center coordinate
of the r-th ROL The distance between electrode ¢ and ROI r is d., = ||pc. — ¢r||2. We de-
fine the unnormalized weight as the inverse distance w., = ﬁ, where ¢ is a small con-

stant to avoid division by zero. After normalization across all electrodes, the final weight is
We,r

ey = wo—=t—0:. Given the Mel-spectrogram representation of EEG signals X5, the ROI-

level EEG scp:elctraf features for ROI r are obtained as a weighted combination of electrode features:
XEEG [ 1] =9 ae, ST XEEG[c, f,t], where f = 1,..., F indexes Mel frequency bands.

spec
These sequences, together with fMRI ROI representations, are encoded by modality-specific
VAE-style encoders. Each encoder Eggg and FEpyr; outputs ROI-level Gaussian parameters:
(LEES log o 5FF9), (™R Tog o>™R1). ROI-level latent variables are sampled via the reparam-
eterization trick: 2z}t = pi + oms © €, € ~ N(0,I), where m € {EEG, fMRI} denotes the
modality.

To obtain a compact whole-brain representation, all ROI embeddings are first concatenated and
then projected through a transformation function f,;. This projected feature vector parameterizes
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Figure 3: Tllustration of the ROI Encoder and Bidirectional E2F/F2E Flowing Matching Module

a global Gaussian distribution: (ug", log 0g2 ") = fproj(Concat(2/7)), from which the global latent
variable is sampled via the reparameterization trick: zg" = " + 0" ©€, €~ N(0,1), where
m € {EEG, fMRI} denotes the modality.

On top of these latent encodings, two flow matching modules are introduced: E2F flow matching
module F'r_,r maps EEG latent variables into the fMRI space, while F2E flow matching module
Fr_, g maps fMRI latents into the EEG space. Given a source latent zs and a target latent z;, the flow

predicts 2, = F(z,) and is trained with the mean-squared error 1oss Lgn(2s, 2¢) = |F(2s) — 2|2
The bidirectional flow losses are:
LET = |Fpop(£59) — sPN3, LE7F = | Fpop(P™) — 8590 ()

To regularize the latent space and stabilize training, KL divergence regularization is applied to both
global and ROI-level distributions:

= L&k + Lrorke = Dxu(q(zg" | X™) | N(0,1)) + Die(q(z5 | X™) [N(0,1)). (2)
The overall KL loss is then: L = £EES 4 £IMRL

Moreover, to explicitly align regional representations across modalities, we introduce an ROI-level
correspondence loss Lror.align, Which enforces regional consistency between EEG and fMRI ROI
embeddings. This loss minimizes the distance between paired EEG-fMRI ROI embeddings while
contrasting against embeddings from other ROIs based on a contrastive InfoNCE objective. Simi-
larly, global alignment between EEG and fMRI pairs latents is also encouraged. The two losses are
defined as:

i NZ expIm(EES MR ) (im0
ROLalign = align = — log
AT Nyor Z s exp(sim(zfFG, ZMRE) /7y 7 TR > exp(s1m(zEEG /)
3)
where 25 and z[){R' denote the d-dimensional embeddings of ROI 7, sim(-, -) is the cosine simi-

larity, and 7 is a temperature parameter.

Finally, the modality-specific decoders take the EEG and fMRI latents as input to reconstruct the

original signals, X™Rl — Divri(F—r(2579)), XFEC = Depo(Frop(2 2MR1)), with recon-

struction losses is defined as the mean squared error (MSE) between the predicted and ground-truth
signals:

Ll =

recon |

~ X™|2, m e {EEG, /MRI}. 4)

The overall training objective of this module is :

L= X (LETF + LE7) + AkLLrL + Aatign Latign + AROL-align CROL-align + Arecon (Lo + Lo ) -

4)
This formulation links EEG and fMRI latent spaces through reversible flow mappings, while re-
construction and regularization terms preserve both global and regional fidelity, thereby enhancing
cross-modal consistency.

3.3 CROSS-MODAL ROI-WISE STRUCTURAL MODULE

To ensure that the reconstructed fMRI preserves realistic regional structural organization, we intro-
duce an ROI-level structural constraint for fMRI data in Cross-Modal ROI-wise Structural Module,
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denoted as Lrorsuuet- This constraint leverages functional connectivity (FC) estimated from ground-
truth EEG to regulate the pairwise relationships among fMRI ROI embeddings. Since FC reflects
the strength of statistical dependencies between brain regions |Rojas et al.| (2018)); Bijsterbosch et al.
(2018), ROI embeddings with strong EEG-derived connectivity are expected to exhibit stronger
associations and thus should lie closer in the fMRI embedding space, whereas those with weak con-
nectivity should remain farther apart. In this way, the constraint enforces cross-modal consistency
while grounding the embedding geometry in neurophysiological plausibility.

Section [3.2] we compute the functional connectivity matrix W € RNrorxNeol by first estimating the
covariance across ROI time series and then normalizing each entry to obtain the Pearson correlation

between ROI 7 and ROI /. The resulting normalized connectivity matrix is defined as: Wm/ =
W, .

T

S Wi which serves as a structural prior over brain ROI interactions.
i<j VVisd

Formallven the ROI-level EEG signals obtained from the electrode-to-ROI mapping described in
3.2

For the fMRI side, let ZfMRl = {;MRI} kot =, IMRE & R denote the ROI-level embeddings pro-
duced by the fMRI encoder. We then define the pairwise squared distance between ROI embeddings:
D, s = || z™MRI_ ;BRI 2 The ROI-wise structural constraint is formulated as the weighted average
of these distances: 1

EROI»struct = 3 Z Wr,r’ D’I‘,T’7 (6)

Npairs r<r
where Npairs = Nror(Nror — 1)/2 is the number of ROI pairs.

By constraining fMRI ROI-wise relationships based on EEG-derived connectivity, this module trans-
fers brain structural information across modalities and encourages fMRI reconstructions that are
more consistent with underlying neurophysiology.

3.4 R2E PHYSIOLOGICAL CONNECTIVITY GUIDANCE MODULE

To ensure that the generated fMRI retains information sufficient for reconstructing neurophysio-
logically plausible EEG, we constrain the EEG covariance connectivity of the EEG reconstructed
from generated fMRI to match that of ground-truth EEG on the SPD manifold S;*. Let XE5C
and EEES denote the ROI-level EEG covariance matrices computed from ground-truth EEG and
from the EEG reconstructed from generated fMRI, respectively (both estimated with an OAS-type
shrinkage estimator; the electrode-to-ROI operator M is given in Sec.[3.3). A technical difficulty is
that such covariance-based connectivity matrices live on the non-Euclidean manifold of symmetric
positive-definite (SPD) matrices, where naive Euclidean losses are geometrically inappropriate and
often numerically unstable. Following the recent Riemannian-to-Euclidean (R2E) strategy Mellot
et al.| (2024)); Collas et al.[(2025), we enforce positive-definiteness and stability via symmetrization,
shrinkage, and eigenvalue clamping:

L 3EZ4+ET), T (Q-NE+ALA€(0,1), A« max(Ae).

We then adopt the Log—Euclidean (LE) framework, which diffeomorphically maps Sj+ to the vector
space of symmetric matrices Sym(d) via the matrix logarithm; using the Frobenius norm in the
log-domain yields the LE distance: dig(21,%3) = || log(21) — log(X2)||r. Our EEG covariance
consistency loss is therefore:

Eeeg-cov = H IOg(EgES) - log(zgl%(}) HQF (7)

This geometry-aware loss is applied end-to-end through the fMRI — EEG path, thereby indirectly
supervising the generated fMRI to preserve essential covariance connectivity structure.

3.5 TRAINING STRATEGY

To achieve stable cross-modal generation, we adopt a two-stage training strategy. In the first stage,
we independently train the EEG — fMRI and fMRI — EEG pathways with reconstruction and align-
ment losses, ensuring modality-faithful encoders/decoders (Eggg, Favris DegG, Divri) and stable
bidirectional flow modules (Fg_, r, F'r— g) without cycle constraints and Lror.struct and Leeg-cov-

In the second stage, we introduce cycle pathway (EEG—fMRI—EEG) to enforce reversibility of
cross-modal mappings. By requiring the reconstructed EEG signals to remain consistent with their
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ground truth, the cycle loss preserves shared neural information and indirectly enhances the integrity
of reconstructed fMRI. The overall training objective at stage two combines all losses:

Lol =Aim (Lo 4+ LET7F) + Mk (Lo + Lrotkr) + Aatign (Latign + Lrotatign) + Arecon (Linees + Licon

+ )\eeg—covﬂeeg—cov + )\ROI—structEROI—struct-

(®)

Here, L, denotes the flow matching loss, Lk and Lrorky are global and ROI-level KL loss, Lyjign
and Lroraign enforce cross-modal alignment at global and ROI levels, Li.con terms regularize the
fidelity of fMRI/EEG reconstructions, Lecg.cov €nforces EEG functional connectivity consistency in
the Riemannian space, Lropsuuct transfers EEG-derived structural priors to fMRI ROI embeddings.
The coefficients A\ balance the contributions of different objectives.

This staged training strategy first stabilizes the cross-modal mappings by learning modality-
preserving encoders, decoders, and flow modules, and then progressively incorporates structural
priors and cycle-consistency constraints, thereby enabling the generation of fMRI that are not only
neurobiologically faithful, but also preserve more complete neural information from EEG.

4 EXPERIMENT

4.1 SETTINGS

Datasets

We conduct experiments on two public EEG—fMRI datasets, NODDI |Deligianni et al.[(2016; 2014)
and Oddball |Walz et al.| (2013; 2014} |2015)), both providing synchronized multimodal recordings
from healthy adults. The NODDI dataset contains simultaneous resting-state EEG-fMRI recordings
from 15 subjects (originally 17). EEG signals were acquired using a 64-channel cap to capture
millisecond-level neural dynamics, while the corresponding fMRI data were collected with a clinical
1.5T scanner. The Oddball dataset consists of recordings from 17 subjects performing auditory and
visual oddball tasks. Here, EEG signals were recorded across 43 channels with high-frequency
sampling to capture attentional modulations, and fMRI data were obtained using a 3T scanner to
measure task-related hemodynamic responses.

Comparison Methods

We compare our method against six representative baselines: CNN-TC [Liu & Sajdal (2019),
CNN-TAG |Calhas & Henriques| (2022), NT-ViT [Lanzino et al.| (2024), E2fNet |[Roos et al.| (2025)),
E2fGAN |Roos et al.| (2025), and Spec2VolCAMU He et al.| (2025)), providing a diverse set of ap-
proaches for EEG-to-fMRI generation.

Experimental Setups

We conduct experiments on two public EEG—fMRI datasets, NODDI and Oddball. NODDI [Zhang
et al.|(2012) comprises 15 subjects with 63-channel EEG recorded at 512 Hz over 2.16 s (1106 time
points) paired with fMRI volumes of size 30x64x64, yielding about 4,500 samples. Oddball |Calhas
& Henriques| (2022) includes 17 subjects with 34-channel EEG (512 Hz, 2.0 s; 1024 time points)
paired with fMRI volumes of size 32x64x64, totaling around 17,340 samples. Raw EEG signals are
transformed into Mel spectrograms using 7,,¢;s=16 and hop length of 16 samples, resulting in input
sizes of [63, 16, 70] for NODDI and [34, 16, 65] for Oddball. To establish cross-modal correspon-
dence, all fMRI volumes are parcellated using the Harvard—Oxford cortical atlas |Craddock et al.
(2012), and EEG electrodes are aligned to cortical regions via a fixed Biosemi64-to-ROI mapping
matrix.

We report results under two validation settings: fixed split and leave-one-subject-out (LOSO) in
Table (1) Fixed split. Following prior work [Lanzino et al.[ (2024), we adopt the split where
a subset of subjects is used as the test set (NODDI: 2 subjects; Oddball: 4 subjects) and each
experiment is repeated three times with different random seeds, and we report the mean + standard
deviation. (2) LOSO. To assess cross-subject generalization, we further conduct leave-one-subject-
out (LOSO) cross-validation. In each fold, one subject is held out for testing while the remaining
subjects are used for training. The final performance is obtained by averaging across all folds and
reporting the corresponding standard deviations.

)
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Dataset NODDI | Oddball

Method Validation |  RMSE | SSIM PSNR+ | RMSE SSIM PSNR 1
CNN-TC|Liu & Sajdal(2019) Fixed 0.46 £ 0.08 0.449 +£ 0.060 \ 0.86 4 0.03 0.189 + 0.038 \
CNN-TAG|Calhas & Henriques|(2022) Fixed 0.40 £ 0.02 0.462 +£ 0.020 \ 0.70 £ 0.09 0.200 £ 0.017 \
NT-ViT|Lanzino et al.|[(2024) Fixed 0.07 4 0.01 0.6024 0.005 23.104 1.24 0.08+ 0.012 0.65140.012 21.9441.217
E2fNet|Roos et al.|(2025) Fixed 0.17 £ 0.003 0.617 + 0.003 15.39 +0.153 0.12 £ 0.003 0.64 £ 0.042 18.42 4+ 0.220
E2fGAN|Roos et al.|(2025) Fixed 0.15 £ 0.021 0.549 + 0.084 16.48 + 0.963 0.09 £ 0.01 0.575 + 0.056 20.92 4+ 0.972
Spec2VolCAMU He et al.|{(2025) Fixed 0.096 + 0.01 0.686 + 0.051 20.35 4 0.836 0.09 £ 0.03 0.712 4+ 0.083 21.21 4+ 3.00
NeuroCycle (ours) Fixed 0.0694-0.004 0.7161-0.015 23.2240.473 0.0604-0.008 0.8964-0.038 24.431+0.934
NT-ViT|Lanzino et al.|(2024) LOSO 0.0804-0.01 0.5814-0.048 21.9441.056 0.0704-0.01 0.63310.064 23.10£1.351
E2fNet|Roos et al.|(2025) LOSO 0.1024 0.02 0.609+ 0.062 19.82+ 1.451 0.13+ 0.03 0.626+ 0.053 17.73+ 1.825
Spec2VolCAMU He et al.{(2025) LOSO 0.088 + 0.02 0.698 + 0.068 21.11 & 1.956 0.074 £ 0.01 0.7424 0.052 22,61+ 1.373
NeuroCycle (ours) LOSO 0.065 £ 0.009 0.715 £ 0.046 23.74 + 1.31 0.061 + 0.01 0.894 + 0.053 24.29 + 1.182

Table 1: Quantitative comparison on NODDI and Oddball datasets using RMSE, SSIM, and PSNR.
Bold numbers indicate the best performance, and underlined numbers denote the second best.
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Figure 4: Three-view slices (axial, coronal, sagittal) visualization of reconstructed fMRI on NODDI
and Oddball datasets.

We train the model in two stages. In the first stage, the EEG—fMRI and fMRI—EEG pathways are
optimized independently for 50 epochs using Adam (Ir = 0.0001, batch size = 64). In the second
stage, we introduce cycle consistency and connectivity constraints, and continue training for 150
epochs with the same learning rate 0.0001. All experiments are implemented in PyTorch and run on
a single NVIDIA RTX 4090 GPU.

Training and Evaluation Metrics

To assess the quality of the reconstructed fMRI volumes, we employ three standard image-level
evaluation metrics: Root Mean Squared Error (RMSE), Structural Similarity Index (SSIM), and
Peak Signal-to-Noise Ratio (PSNR). All metrics are computed in the voxel space on a per-sample
basis and averaged over the test set.

4.2 RESULTS AND ANALYSIS

As shown in Table [T} our proposed framework (NeuroCycle) achieves the best performance on
both NODDI and Oddball datasets across all metrics (RMSE, SSIM, and PSNR), consistently out-
performing previous baselines. In particular, NeuroCycle reduces reconstruction error while sub-
stantially improving structural similarity and signal-to-noise ratio. Furthermore, as shown in the
three-view slices (axial, coronal, sagittal) in Figure |4} our method preserves more structural and
physiological details, yielding clearer and sharper reconstructions that are closer to the ground truth
compared with competing approaches.

4.3 ABLATION STUDY

We design three ablation settings to examine the role of each component: (i) w/o Cycle, removing
fMRI—EEG pathway and cycle loss, leaving only a unidirectional EEG—fMRI mapping; (ii) w/o
R2E-PCG, excluding the R2E functional connectivity guidance; and (iii) w/o CM-RS, removing
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Dataset | NODDI | Oddball

Method \ Metric | RMSE]  SSIMT PSNRT | RMSE] SSIM{ PSNR?
w/o Cycle 0.13 0.51 19.56 0.12 0.769 23.14
w/o R2E-PCG 0.097 0.64 20.22 0.074 0.836 24.28
w/o CM-RS 0.082 0.68 21.62 0.083 0.818 24.67
NeuroCycle (ours) ‘ 0.068 0.715 23.31 ‘ 0.061 0.894 25.28

Table 2: Ablation study on NODDI and Oddball datasets. Results show that removing any compo-
nent leads to performance degradation, confirming the complementary contributions of all three.
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Figure 5: Visualization of reconstructed EEG versus ground truth (GT) EEG within the proposed
EEG—fMRI—EEG cyclic generation framework. (a) ROI-wise functional connectivity matrices
of GT and reconstructed EEG for Subject 46. (b) Band power comparison (d, 0, «, 3, ) across
channels 3 and 7 for Subject 46, showing consistency between GT and reconstructed EEG. (c) To-
pographic maps of two major frequency bands (beta and delta) for Subject 46, where reconstructed
patterns closely resemble GT spatial distributions. (d) Mel-spectrogram comparison.

the cross-modal ROI-wise structural constraint. Table |Z| summarizes the overall ablation results by
sequentially removing each of the three proposed components. We observe consistent performance
drops across fMRI quality metrics, demonstrating that every module contributes to the overall effec-
tiveness of our framework.

To intuitively demonstrate the effect of the cycle supervision, we examine the reconstructed EEG
from four complementary perspectives—structural connectivity, spectral fidelity, spatial topogra-
phy, and the Mel-spectrogram [Nuwer] (1988)); [Deligianni et al] (2014). Representative results for
Subject 46 in the NODDI dataset are visualized in Fig.[5] First, we assessed structural consistency
at the connectivity level. As shown in Fig. [5(a), the correlation matrix of the reconstructed EEG
preserves ROI-wise connectivity patterns comparable to those of the ground truth, indicating that
the cyclic pathway enforces meaningful structural organization. Second, we examined frequency
fidelity. As shown in Fig. [5[b), the band power distributions on channels Fpl and P4 demonstrate
that the reconstructed EEG maintains the characteristic spectral profile across —y bands, supporting
the preservation of frequency-specific information. Third, we analyzed spatial distributions in terms
of topographic activity. As shown in Fig. [5|c), the reconstructed signals recover coherent patterns
in the major frequency band: 5 and ¢ bands, which align with ground-truth spatial maps. And as
shown in Fig.[5(d), the reconstructed EEG Mel-spectrogram preserves the dominant low-frequency
components as well as the overall temporal modulation patterns.

These analyses together demonstrate that the EEG reconstructed from the generated fMRI preserves
the characteristic features of the original EEG across connectivity, spectral, and spatial dimensions.
This indicates that cycle supervision indirectly enforces the generated fMRI to retain complete neu-
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ral information, thereby providing strong evidence for the effectiveness and rationality of the pro-
posed framework in improving fMRI generation quality.

5 CONCLUSION

In this work, we proposed a cyclic EEG-fMRI generation framework that integrates neurophysio-
logical priors to ensure information completeness and neuroscientific plausibility. The Cross-Modal
ROI-wise Structural Module preserves ROI-level organization, and the R2E Physiological Connec-
tivity Guidance Module enforces functional connectivity consistency. The cyclic bidirectional de-
sign further guarantees preservation of essential neural information. Experiments on two public
datasets demonstrate superior fMRI reconstruction with richer neural information and improved
cross-modal consistency, providing a principled approach for interpretable and clinically relevant
brain signal generation.
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A APPENDIX

A.1 LLM USAGE

Large Language Models (LLMs) were used to support the preparation of this manuscript. In par-
ticular, an LLM was employed to assist with refining the paper, focusing on improving readabil-
ity, polishing grammar, and ensuring clarity and conciseness. The model also provided alternative
phrasings and stylistic adjustments to better align with academic writing conventions.

The LLM was not involved in research ideation, methodological design, experimental implementa-
tion, or result analysis. All scientific contributions including conceptual development, data process-
ing, model design, and evaluation were carried out exclusively by the authors. The role of the LLM
was limited to linguistic refinement and presentation quality.

The authors take full responsibility for the manuscript’s scientific content, including any portions of
text that were edited or polished using the LLM. Care has been taken to ensure that the use of the
LLM adheres to ethical standards and does not introduce plagiarism or scientific misconduct.
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