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Abstract: We explore how policy input interfaces can facilitate generalization by1

providing intermediate guidance on how to perform manipulation tasks. Existing2

interfaces such as language, goal-image, and trajectory sketches have been shown3

to be helpful, but these representations either do not provide enough context or4

provide over-specified context that yields less robust policies. We propose condi-5

tioning policies on affordances, which capture the pose of the robot at key stages6

of the task. Affordances offer expressive yet lightweight abstractions, are easy for7

users to specify, and facilitate efficient learning by transferring knowledge from8

large internet datasets. Our method, RT-Affordance is a hierarchical model that9

first proposes an affordance plan given the task language, and then conditions the10

policy on this affordance plan to perform manipulation. Our affordance model11

can flexibly bridge diverse sources of supervision, including large web datasets,12

robot trajectories, and cheap-to-collect in-domain datasets, allowing us to learn13

new tasks with minimal effort. We show on a diverse set of novel tasks how RT-14

Affordance exceeds the performance of existing methods by over 50%, and we15

empirically demonstrate that affordances are robust to novel settings.16

Keywords: Manipulation, VLMs, Affordances17

1 Introduction18

Vision-language-action (VLA) models [1, 2], pretrained with large-scale robot data on top of vision-19

language models (VLMs) [3] come with the promise of generalization to new objects, scenes, and20

tasks. However, VLAs are not yet reliable enough to be deployed outside of the narrow lab settings21

on which they are trained. While these shortcomings can be mitigated by expanding the scope and22

diversity of robot datasets, this is highly resource intensive and challenging to scale.23

Alternatively, there are various ways of interfacing with the policy that can potentially facilitate24

generalization by operating in a lower-dimensional and generalizable input-space. Examples of25

these policy interfaces include language specifications [1, 4], goal images [5], goal sketches [6],26

and trajectory sketches [7]. These interfaces introduce mid-level abstractions that can provide in-27

termediate guidance on how to perform the task, and can shield the policy from reasoning in a28

higher dimensional input space — leading to policies that can generalize over these intermediate29

representations. While one of the most common policy interfaces is conditioning on language, in30

practice most robot datasets are labeled with underspecified descriptions of the task. Alternatively,31

goal image-conditioned policies provide detailed spatial context about the final goal configuration32

of the scene. However, goal-images are high-dimensional, which presents learning challenges due33

to over-specification issues [6, 8]. This has lead to exploration of other intermediate representations34

— trajectory or goal sketches [7, 6], or keypoints [9, 10] — that attempt to provide spatial plans for35

the policy. While these spatial plans are informative about how to perform the task, or which point36

on an object to manipulate, they still lack sufficient information for the policy on how to manipulate.37

In this work, we seek a policy interface that provides expressive yet lightweight ab-38

stractions for learning robust manipulation polices. We propose RT-Affordance, which is39

a policy conditioned on both language specifications and visual affordances. The vi-40

sual affordances show the pose of the robot end effector at key stages of the task, vi-41
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sually projected onto the image input of the policy. By conditioning on affordances,42

the robot will have access to precise yet concise guidance on how to manipulate objects.43

VLA Training 

Data

Robot Action Prediction

VQA Spatial Reasoning

Affordance Reasoning

Q: What should the robot do 

to <task>?

A: Δ Translation=[0.4, -1.0, 0.1]

    Δ Rotation=[57, 17, -24]

Q: What is happening in this 

image?

A: A gray donkey walks down 

the street.

Q: What affordance should 

the robot follow to <task>?

A:

A:

Q: Where are the grapes?

Figure 1: Bridging the gap between robot data
and internet data. We propose using affordances as
a means to bridge the gap between robot and web data.

To allow a seamless experience for the hu-44

man user, we employ a hierarchical model that45

only requires task language from the user. The46

model first predicts the affordances given a47

task specification in language, and then lever-48

ages the affordances as an intermediate rep-49

resentation to steer the policy. The initial50

affordance prediction module can be trained51

on existing robot trajectories and web-scale52

datasets labeled with spatial information and53

affordances [11] as well as a small dataset of54

in-domain images with annotated ground truth55

affordances. Predicting affordances serves to56

bridge learning across these diverse sources of57

data (see Figure 1) and by harnessing all of58

these data sources, we can learn novel tasks ef-59

ficiently.60

We perform extensive experiments, where we show that RT-Affordance is effective across a broad61

range of real world tasks, achieving 69% overall success rate compared to 15% success rate for62

language-conditioned policies. We show how combining on web data and cheap-to-collect affor-63

dance images allows us to learn novel tasks without collecting any additional robot demonstrations.64

We also demonstrate that the resulting affordance prediction model is robust to distribution shifts.65

2 RT-A: Affordance-Based Policy Learning66

2.1 Affordance-conditioned policies67

We are given a dataset of robot trajectories D = {l, {(oi, ei, gi, ai)}Ti=0}; each trajectory consists68

of a language instruction l and a sequence of images oi, actions ai, end-effector poses ei and grip-69

per states gi. We learn an affordance-conditioned policy π(a|l, o, q) that generates actions given70

the language instruction l, current image o, and additionally the affordance plan q. We define the71

affordance plan as the sequence of robot end effector poses corresponding to key timesteps in the72

trajectory, q = (et1 , et2 , ..., etn). These timesteps capture critical stages in the task execution, for73

example when the robot is about to come in contact with objects or encounters bottleneck states.74

We can employ a variety of approaches to extract these timesteps. In practice we adopt a simple75

and scalable solution: we define key timesteps as when the gripper state changes from open to close76

(gi−1 > α and gi < α for some constant α) or vice versa from close to open, or the final timestep of77

the trajectory. However, solely conditioning on affordance plans may not reveal full context about78

the task, and we thus opt to condition the policy on both affordance plans and language. This en-79

sures that we retain the full expressiveness of language-conditioned policies, while benefiting from80

the additional context provided by affordance plans.81

We train the affordance-conditioned policy via behavioral cloning and additionally co-train on web82

datasets, in a similar manner as in RT-2. We can represent these affordances either as tokenized83

text values passed as input to the policy, by overlaying them onto the image using a visual opera-84

tor ψ(o, q), following similar techniques in prior work [12, 7]. In our implementation we visually85

project the outline of the robot hand at the poses ei onto the image. See Figure 2 for an illustration.86

We designate unique colors to each of the affordances overlaid onto the image to capture temporal87

ordering. Note that this projection step assumes knowledge of the robot camera intrinsics and ex-88

trinsics which is readily available for many robot platforms. If this information is not available, we89

can opt to condition the policy on the affordance plan directly as tokenized text values.90

2.2 Learning to predict affordances91

We can deploy the affordance-conditioned policy by asking the human user to provide affordance92

plans and language goals to the policy at inference time. We can also learn models to predict93

affordance plans automatically, sidestepping the need for humans to provide affordances at all at94

2



O
v

e
rl

a
y 

o
n

to
 im

a
g

e

Q: What action should the 

robot do to <task>?

Policy action prediction

A: Δ Translation=[0.4, -1.0, 0.1], Δ Rotation=[57, 17, -24]

VLA

Q: What affordance plan 

should the robot follow to 

<task>?

A: 138 29 16 197 31 312 12 49 183 47 94 178 19 10 6 371

VLA

Affordance 

images

Affordance prediction

Web-scale datasets

Robot 

trajectories

Co-training datasets

Figure 2: Model overview. Our hierarchical model first predicts the affordance plan given the task language
and initial image of the task. We co-train the model on web datasets (largest data source), robot trajectories,
and a modest number of cheap-to-collect images labeled with affordances.

test time. We learn an affordance prediction model φ(q|l, o) which predicts the affordance plan95

given the language task instruction l and initial image of the scene o. To train the model we extract96

(o, l, q) tuples from the same robot dataset D used to train π and we also co-train the model with97

web datasets. In some applications, training on these datasets may not yield adequate performance98

and we may seek additional training data to further improve the capabilities of the model. Instead99

of collecting additional demonstrations through expensive robot teleoperation, we can collect a set100

of images with corresponding task labels, ie. Daug = {(oi, li)}ni=0. We can collect hundreds or101

thousands of these images at a fraction of the cost compared to costly teleoperation. After this data102

collection process we can annotate each image with the affordance plan through a posthoc labeling103

procedure efficiently without expensive hardware or teleoperation.104

3 Experiments105

3.1 Experiment implementation106

We use the robot manipulator from RT-1 [13]. The arm is controlled via Cartesian end-effector107

control. Our robot demonstration datasets comprise three phases of data collection: (1) the RT-108

1 dataset [13] which focuses on basic manipulation skills, (2) the MOO dataset [14] which fo-109

cuses on picking diverse objects, and (3) an additional set of trajectories targeting more dex-110

terous tasks. We use the same web datasets from RT-2 for co-training. We adopt PaLM-E111

2 [15, 16] as the underlying model and use the 1-billion parameter variant, unless otherwise noted.112

RT-2 GC-RT-2 RT-A RT-A
(Oracle Aff) (Ours)

Pick dustpan 1/5 1/5 3/5 4/5
Pick kettle 1/5 1/5 4/5 4/5
Pick pot 0/5 1/5 4/5 1/5
Pick box 4/5 1/5 4/5 4/5
Pick headphones 1/5 2/5 4/5 4/5

Average 28% 24% 76% 68%

Table 1: Experimental results on grasping. State-of-the-
art VLAs achieve success rates of under 30%. In contrast
our affordance-conditioned policy paired with oracle human-
provided affordances achieves 76% performance, and 68%
when employing an affordance prediction model.

We train the affordance prediction model113

with the hindsight affordance labels from114

the robot trajectory datasets, in addition115

to a set of ∼750 cheap-to-collect images116

manually annotated with affordance la-117

bels. These images include the tasks and118

objects from our grasping tasks and addi-119

tional tasks beyond grasping which. We120

collect all of these images in approxi-121

mately one hour and dedicate an addi-122

tional two hours annotating them with123

affordance labels afterwards. We then124

train a separate affordance model VLA125

on these images, employing the same 1-126

billion model, trained to predict affor-127

dances from the language task prompt.128

3.2 Learning to grasp novel objects efficiently129

In our first experiment we investigate how affordances facilitate learning to grasp novel objects. We130

design a benchmark of picking diverse household objects, including dustpans, kettles, pots, boxes,131

and headphones. Note that our benchmark focuses on unseen object categories, meaning that they132

are not present in any of our robot trajectory datasets. We run comprehensive evaluations comparing133

our method to prior state-of-the-art approaches, with five rollouts per object category. See Table 1.134

First we compare to RT-2 [1], a state-of-the-art language-conditioned robot policy learning model135

notable for its impressive capabilities in understanding novel semantic concepts and objects. Despite136
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these capabilities, we find that it struggles on our suite of evaluations, achieving an average success137

rate of just 28%. We observe that the policy is generally capable in identifying the correct object on138

the table and reaching the vicinity of the object but is unable to grasp the object at the appropriate139

location. Similar for picking the pot the robot tries to grasp around the base of the pot rather than140

handle. However, it is generally capable of picking boxes. We also tried to prompt the policy141

with specific language instructions indicating how to grasp the object (eg. “pick the dustpan by the142

handle”) but the policy failed to follow these instructions effectively.143

We also evaluate a goal-conditioned variant of RT-2 (GC-RT-2), which replaces language-144

conditioning for image goal-conditioning. We use the larger 24-billion variant PaLM 2 backbone145

to accommodate the additional goal-image passed into the policy. We run evaluations on the same146

objects, and for each episode we manually take a snapshot of the robot having grasped and lifted147

the object in the air at the final goal configuration. We observe an average success rate of just 24%.148

While the goal image conveys the precise pose at which to grasp the object, the policy is unable to149

precisely grasp the object at this pose.150

Next we compare our hindsight affordance model RT-A. We condition the policy with the language151

instruction and visual affordances overlaid on top of the current image. We first evaluate the model152

with oracle affordances, ie. for each trial we manually provide the pregrasp and goal affordance153

poses of the robot. We call this self-baseline of our method RT-A (Oracle Aff). We observe a sig-154

nificant improvement in policy performance, achieving 76% average success. The policy is faithful155

in executing the human provided affordance poses, and failures are only due to small imperfections156

from the robot policy in following the given affordance poses. Again, we highlight that none of157

these object categories are present in the robot trajectory datasets, making this a effective method158

for grasping a broad set of objects.159

RT-2 RT-A RT-A
(Oracle Aff) (Ours)

Place apple into pot 0/5 4/5 3/5
Place peach onto plate 1/5 4/5 4/5
Place bell pepper into basket 0/5 3/5 4/5
Place eggplant into box 0/5 2/5 3/5
Close the cubby 0/5 4/5 4/5
Turn sink faucet 0/5 4/5 3/5

Average 3% 70% 70%

Table 2: Beyond grasping. RT-A is applicable to a broad
set of tasks and outperforms RT-2 by a wide margin.

Finally we compare to the full hierarchi-160

cal variant of our method in which we pre-161

dict affordance plans before conditioning162

the policy on these plans (RT-A). We see163

an average performance of 68%, which is164

close to the performance of the policy con-165

ditioned on oracle affordances. Compared166

to the oracle affordance self-baseline we167

see similar performance across all object168

categories except picking the pot.169

3.3 Beyond object picking170

We demonstrate that these findings are not exclusive to grasping tasks but can be extended to a range171

of manipulation tasks. We compare RT-A to the next best baseline from the previous experiments,172

the language-conditioned RT-2 model, on an additional set of manipulation tasks. We consider tasks173

involving placing objects into receptacles and articulated manipulation. Again, we highlight that174

these tasks are unseen in the robot trajectory datasets. See Table 2 for results. Surprisingly, the RT-2175

baseline performs quite poorly in this setting achieving only 3% success rate. With RT-A we see176

a significant improvement of performance, with 70% success rate using our affordance prediction177

model. These results show that affordances are a flexible form of task specification that can describe178

a broad set of tasks. In cases where the user provides oracle affordances at evaluation, we can179

solve novel tasks without any additional data, and training our affordance prediction model to infer180

affordances automatically only incurs a small budget to collect and annotate images.181

See Appendix sections B and C for additional experiments and section D for related work.182

4 Conclusion183

We have presented RT-Affordance, a hierarchical method that uses affordances as an intermediate184

representation for policies. We have shown empirically that affordance-conditioned policies can185

perform a wide range of novel tasks without requiring additional human demonstrations. In the186

future, we are interested in exploring the complementary strengths of different policy interfaces and187

combining their capabilities into a single model that can share knowledge across interfaces.188
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Appendix362

A Model Inference363

Our model inference procedure is as follows. We are given the initial image of the scene oinit and364

a natural language task instruction l. We can either prompt a human or the affordance prediction365

model φ(q|l, oinit) to provide the affordance plan q. Then we can prompt the policy π(a|l, ψ(o, q))366

with the language instruction and affordance plan to execute the task. We can optionally replan367

updated affordance plans at fixed or adaptive intervals to handle novel scenarios that arise during the368

execution of the policy369

B Robustness to out of distribution factors370

Next, we perform an analysis of the affordance prediction model. In order for the affordance predic-371

tion model to be useful it needs to be robust to a wide range of out-of-distribution (OOD) settings.372

To better understand this, we perform a comprehensive evaluation on the grasping tasks from Table 1373

comparing the following settings:374

• In-distribution: evaluating the model under the same distribution it was trained on. ie.375

same object instances, same camera view, and same environment background.376

• OOD: novel objects: evaluating the model with novel object instances on which it was not377

trained on.378

• OOD: novel camera view: evaluating the model with images taken with significant camera379

shift.380

• OOD: novel background: evaluating the model with novel object textures.381
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Figure 3: Evaluation of the affordance prediction model on out of distribution scenarios. We perform a
comprehensive evaluation of the affordance prediction model on in-distribution and out-of-distribution (OOD)
and observe a graceful degradation of performance in OOD settings.

We perform a comprehensive offline evaluation over hundreds of test images, where for each image382

we assess whether the model’s predicted affordance would result in a successful grasp, assuming that383
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In distribution OOD: novel object instances OOD: camera view OOD: environment background

Figure 4: Robustness to out of distribution factors We show examples of successful and incorrect pre-
dictions of our affordance prediction model across in-distribution and out-of-distribution settings. Successful
predictions are highlighted in green and incorrect predictions are highlighted in red.

the policy can follow the given affordances perfectly. We report the results in Figure 3. First, we384

see that the affordance prediction model is general capable in in-distribution settings, with 77% of385

trials classified as success. Across the OOD settings model performance degrades gracefully, falling386

no more than 10% compared to the in-distribution setting. Some factors affect model performance387

more than others. With novel camera views the performance is nearly identical at 77%, and with388

novel backgrounds performance only falls at 3% on average. However with novel object instances389

the performance drops the most, especially for grasping novel instances of kettles and boxes. We390

provide illustrative examples in Figure 4.391

C Ablation study392

We perform an ablation study on our affordance prediction model, where we study the impact of393

different data sources on the model. Our model is trained on the full data mixture including (1)394

robot trajectories, (2) web datasets, and (3) the 750 additional augmented affordance images we395

collected. We perform ablations where we (a) exclude the augmented data (No aug data) and396

(b) exclude web datasets (No web data). We compare these settings on the same in-distribution397

evaluation suite outlined in Section B, and we report results in Table 3. We see that removing these398

sources of data leads to a large drop in performance. We hypothesize that large web datasets play an399

important role for training robust models, and that our augmented data is needed to train performant400

models for specific downstream tasks.401

Ours No aug data No web data

Pick dustpan 74% 20% 3%
Pick kettle 75% 30% 10%
Pick pot 90% 10% 14%
Pick box 89% 33% 11%
Pick headphones 55% 28% 16%

Average 77% 24% 11%
Table 3: Ablation study. We perform an ablation study of our affordance prediction model the same in-
distribution evaluations as Figure 3. We find that removing the augmented dataset of affordance images sig-
nificantly diminishes performance, and removing web datasets for co-training diminishes performance even
further.

D Related Work402

Prior works have studied how multi-task robot manipulation policies can be conditioned on various403

types of representations and interfaces to perform different manipulation skills. Popular interfaces404

have included one-hot task vectors [17], latent skill or task embeddings [18, 19, 20], templated405

or natural language [21, 13, 22, 23, 24], object-centric representations [25, 14, 26, 10], trajecto-406

ries [7, 27], goal images or sketches [28, 29, 6, 30, 5, 31, 32], and videos [33, 34, 35]. Our method407
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leverages affordances represented visually or textually as an interface, which strikes a balance be-408

tween flexibility, expressivity, and data efficiency.409

Affordances for robot manipulation. Affordances [36] and grasp pose predictions have been410

heavily leveraged in robotics research for motion planning, grasping, and hierarchical control.411

Modern data-driven methods [37, 38] build upon prior works which leverage optimization-based412

approaches, and achieve performant grasp pose prediction capabilities given large-scale grasping413

datasets [39] and point-cloud [40] or geometry based inductive biases [41]. More recently, robot414

manipulation systems propose combining vision-language models (VLMs) with affordance or415

grasp prediction models and downstream control policies [42, 43, 44, 45]. In contrast, our method416

RT-Affordance does not rely on large-scale offline grasp pose specific datasets, 3D point clouds at417

training or test time, or simulation-based geometric planning.418

419

Learning pre-trained representations from non-action data. Similar to trends seen in420

scaling up VLMs [46], there has also been exploration in robotics on adapting large-scale internet421

data for improving perception and reasoning capabilities [16] which are important for downstream422

robot policy learning, particularly with the usage of vision-language-action (VLA) models [1].423

Non-robotics interaction datasets have been particularly of interest, due to the substantial cost of424

real-world robotics action data such as teleoperated expert demonstrations [47, 48]; representation425

learning methods which learn affordance prediction from internet data and human videos [49, 11]426

have been proposed [50, 51, 52]. Most similar to our method is RoboPoint [9], which proposes427

fine-tuning a VLM to predict points which represent spatial affordances by leveraging procedural428

3D scene generation in simulation. Our method RT-Affordance also studies predicting spatial429

affordances, but proposes a more descriptive affordance representation beyond a single point, and430

also does not require large-scale simulated scene generation.431
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