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Abstract

To improve the performance of deep learning, mixup has been proposed to force
the neural networks favoring simple linear behaviors in-between training samples.
Performing mixup for transfer learning with pre-trained models however is not that
simple, a high capacity pre-trained model with a large fully-connected (FC) layer
could easily overfit to the target dataset even with samples-to-labels mixed up. In
this work, we propose SMILE— Sample-to-feature Mixup for EffIcient Transfer
LEarning. With mixed images as inputs, SMILE regularizes the outputs of CNN
feature extractors to learn from the mixed feature vectors of inputs, in addition
to the mixed labels. SMILE incorporates a mean teacher to provide the surrogate
"ground truth" for mixed feature vectors. Extensive experiments have been done to
verify the performance improvement made by SMILE, in comparisons with a wide
spectrum of transfer learning algorithms, including fine-tuning, L2-SP, DELTA,
BSS, RIFLE, Co-Tuning and RegSL, even with mixup strategies combined.

1 Introduction

Mixup [1] is an effective strategy for improve generalization performance of DNN , where the
objective is to have DNNs in the learning procedure favor the linear behaviors in-between training
samples. To achieve the goal, the mixup strategy picks up multiple images from the training set,
mixes the samples and labels proportionally to generate a new pair of sample and label for data
augmentation. The regularization effects brought by mixup could help control the complexity of
DNN models [2, 3] while largely improving the robustness and generalization performance [4].

As a kind of data augmentation, mixup is naturally expected to be more essential when training data
are insufficient. However, we surprisingly find the contrary in the scenario of deep transfer learning:
when fine-tuning a pre-trained model with a few target examples, mixup improves the performance
with reduced margins or even downgrades the performance when the target dataset is small. See
Figure 1 for detailed results. Considering the strong capacity of pre-trained models and the limited
training dataset, our research yields the concern that, can fine-tuning with pre-trained models overfit
to the mixed-up samples and labels?
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Figure 1: Performance comparison between the L2 regularization and mixup for fine-tuning an
ImageNet pre-trained model (left) and training from scratch (right). To simulate scenarios with
limited target datasets, we randomly select 50 classes from two transfer learning benchmarks, which
are CUB-200-2011 and Stanford-Cars. As seen, Mixup brings remarkable improvements if training
from scratch (right), but this does not apply to transfer learning (left).

Our Observations We find fine-tuning with high capacity pre-trained models CAN overfit to the
mixup samples/labels. From mixup, we simply derive a linear interpolation (IL) loss to measure the
error of linear interpolation between a pair of samples (x1, y1) and (x2, y2) for the model f(·),

IL(f) = Eλ[∥f(λx1 + (1− λ)x2)− (λf(x1) + (1− λ)f(x2))∥22] , (1)
where a lower linear interpolation loss indicates stronger linear behaviors in-between the samples and
usually better generalization performance [4]. Our experiments however find that fine-tuning with
mixup could obtain a low interpolation loss in the training set while suffering a high interpolation loss
in the test set (≥25% higher interpolation loss on the testing set than the one on training set, please see
also in Section 4). This observation indicates that the linear behaviors gained by vanilla mixup could
not well generalize to the testing dataset and overfit to the mixup samples/labels from the training
dataset. These inaccurately interpolated deep features may help less or even harm the learning of the
target task. Thus, our research intends to study a way to make mixup strategies generalizable in deep
transfer learning settings while significantly improving the performance of DNNs.

Our Work To achieve the above goal, in this work, we propose SMILE—Sample-to-feature Mixup
strategies for Efficient Transfer Learning. One of the major challenges lies in that, unlike the vanilla
mixup, there are actually no ground-truth labels for mixed features. To tackle this problem, we
introduce two kinds of pseudo feature labels, by deeply exploiting the generalizability of the pre-
trained model. Specifically, given two samples drawn from the target domain as the input, SMILE first
linearly combines two samples proportionally and sends the mixed-up sample to the target model.
Then, the following two regularizers are employed on the mixed output.

• Mixup on target deep features. It constrains the Euclidean distance between the output of
target model’s CNN feature extractor and a mixed-up feature vector (i.e., linear combination
of a mean teacher model’s outputs for the two samples).

• Mixup on adapted source labels. An additional FC classifier for the target network to adapt
the target dataset but in the source label domain. It is regularized to learn from the linear
combination of classification results given by the teacher classifier.

We carry out extensive experiments using a wide range of source and target datasets. Results show
that SMILE can outperform a number of state-of-the-art baseline algorithms including L2-SP [5],
DELTA [6], BSS [7], RIFLE [8], Co-Tuning [9] and RegSL [10] with/without vanilla mixup strategies.

2 Related work

The related works to this study include [11, 12] for mixup strategies and [6–9] for transfer learning
through regularizing feature space. We here particularly focus on the discussion on the manifold
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Figure 2: The Architecture of SMILE: Deep Transfer Learning with Sample-to-feature Mixup.

mixup strategy [11] and CutMix [12]. Compared to the feature-to-label mixup used in [11], SMILE
proposed to a sample-to-feature strategy. Though MixCut [12] also uses sample-to-feature mixup to
spatially fuse multiple images into one to form new feature maps accordingly, SMILE regularizes the
CNN feature extractor to learn from a surrogate of “fine-tuned” feature vectors of mixed-up images
even when the CNN has not yet been well-tuned in the target domain. Similar ideas have been studied
in [13], where authors proposed MixSKD as an alternative approach to the sample-to-feature mixup.
Please note that the arXiv version of [13] first appeared in August 2022, while an earlier version [14]
of our work was put on arXiv at March 2021.

3 Experiments

We first present the experiment results based on Image Classification tasks on three popular object
recognition datasets: CUB-200-2011 [17], Stanford Cars [18] and FGVC-Aircraft [19], which are
intensively used in state-of-the-art transfer learning literatures [7–9]. Each of these datasets contains
about 6k - 8k training samples. We use ImageNet [20] pre-trained ResNet-50 [21] as the source
model. For each dataset, we create four random subsets with different number of categories and
training examples.

To further confirm the performance improvement by SMILE is independent with the choice of pre-
trained datasets and model architectures, we conduct additional experiments comparing our method
with competitive baselines. Specifically, we use the Places365 [22] pre-trained ResNet-50 to perform
fine-tuning on MIT-Indoors-67 [23], which is a scene classification task. We also evaluate our
method on a more powerful model EfficientNet-B4 [24] designed by NAS over a large scale dataset
Food-101 [25]. The descriptions about these benchmarks are summarized in Table 1.

SMILE is compared against multiple state-of-the-art fine-tuning algorithms including L2 [15], L2-
SP [5], DELTA [6], BSS [7], RIFLE [8], Co-Tuning [9], RegSL [10] and Mixup [1]. As observed
in Table 2 and 3, our proposed SMILE achieves remarkable improvements to vanilla fine-tuning on
three standard benchmarks, and outperforms all state-of-the-art methods. As the number of training

Table 1: Characteristics of the target tasks.
target dataset task category source task architecture # training # classes

CUB-200-2011 Object Recognition ImageNet ResNet-50 5,994 200
Stanford-Cars Object Recognition ImageNet ResNet-50 8,144 196
FGVC-Aircraft Object Recognition ImageNet ResNet-50 6,677 100
MIT-Indoor-67 Scene Classification Places365 ResNet-50 5,356 76
Food-101 Object Recognition ImageNet EfficientNet-B4 75,000 101
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Table 2: Comparison of top-1 accuracy (%) on transfer learning benchmarks. The notation C:X/N:Y
refers to using Y examples from X selected categories.

Dataset Method Dataset

C:25%/N:400 C:25%/N:800 C:All/N:15% C:All/N:100%

CUB-200-2011

L2 [15] 55.59±1.02 74.85±0.12 44.70±0.17 80.64±0.30
Mixup [16] 52.39±0.68 73.02±0.11 44.27±0.31 81.86±0.20
L2-SP [5] 54.38±0.32 73.90±0.22 45.30±0.23 81.58±0.10
DELTA [6] 58.15±0.26 75.84±0.08 47.88±0.15 82.21±0.15
BSS [7] 54.99±0.73 74.14±0.34 46.41±0.09 81.10±0.04
RIFLE [8] 53.68±0.89 73.05±1.09 44.13±0.38 81.94±0.06
Co-Tuning [9] 57.98±0.08 75.11±0.47 49.98±0.23 82.60±0.03
RegSL [10] 57.62±0.88 75.51±0.44 46.92±0.28 80.20±0.17
SMILE 62.13±0.55 77.27±0.35 51.73±0.04 83.62±0.07

Stanford-Cars

L2 [15] 61.17±0.36 82.73±0.59 43.01±0.53 90.14±0.12
Mixup [16] 60.25±0.68 83.60±0.02 45.73±0.15 91.51±0.18
L2-SP [5] 61.00±0.28 82.05±0.05 44.12±0.33 90.61±0.12
DELTA [6] 62.05±0.13 82.1±0.44 43.27±0.27 90.86±0.08
BSS [7] 64.97±0.69 83.81±0.39 47.45±0.23 91.14±0.04
RIFLE [8] 62.85±0.22 83.57±0.43 43.61±0.07 91.08±0.12
Co-Tuning [9] 66.05±0.41 81.05±0.39 44.29±0.42 91.19±0.11
RegSL [10] 60.12±0.63 82.91±0.08 42.52±0.37 91.02±0.05
SMILE 65.17±1.11 85.90±0.16 50.93±0.17 92.21±0.05

FGVC-Aircraft

L2 [15] 59.63±1.11 79.57±0.18 51.13±0.45 88.27±0.51
Mixup [16] 65.20±0.80 84.53±0.62 54.42±0.55 89.33±0.17
L2-SP [5] 54.70±0.73 76.13±0.82 48.85±0.70 87.97±0.66
DELTA [6] 53.47±0.24 71.73±1.02 51.05±0.38 88.92±0.25
BSS [7] 61.40±1.13 81.47±0.24 52.61±0.11 88.47±0.16
RIFLE [8] 60.97±0.49 79.87±0.38 52.13±0.31 89.45±0.44
Co-Tuning [9] 62.98±0.72 80.03±0.04 52.05±0.43 88.19±0.33
RegSL [10] 61.87±0.37 79.40±0.92 51.64±0.43 88.87±0.26
SMILE 68.40±0.33 84.57±0.29 60.04±0.33 90.16±0.15

Table 3: Comparison of top-1 accuracy (%) with different transfer learning algorithms on more task
types and architectures.

Dataset Method Sampling Rates

30% 50% 100%

MIT-Indoor-67

L2 [15] 78.68±0.20 80.80±0.18 82.00±0.21
Mixup [16] 77.44±0.44 80.28±0.28 82.87±0.50
DELTA [6] 80.80±0.22 82.80±0.25 83.67±0.18
BSS [7] 78.23±0.50 80.35±0.28 82.15±0.22
RIFLE [8] 76.76±0.08 78.71±0.33 81.78±0.07
SMILE 82.00±0.14 83.54±0.20 85.37±0.16

Food-101

L2 [15] 80.25±0.28 83.43±0.15 86.77±0.03
Mixup [16] 82.63±0.11 84.93±0.06 87.82±0.06
DELTA [6] 81.38±0.08 84.07±0.06 87.34±0.07
BSS [7] 81.13±0.04 83.96±0.09 87.33±0.03
RIFLE [8] 81.13±0.04 83.82±0.02 87.29±0.11
SMILE 82.84±0.16 85.25±0.09 88.20±0.10

4



Table 4: Feature-IL and Label-IL for different fine-tuning methods over the training (sampling the
CUB-200-2011 training set by 30%) and testing dataset. Lower is better. Add. Data refers to
involving the remaining 70% training examples for fine-tuning. However, the interpolation loss for
the training set is still calculated on the original 30%.

Method Label-IL Feature-IL

Train Test Train Test

Finetune 1.80 1.92 1.92 1.93
Finetune + Add. Data 1.85 1.88 1.58 1.63
Finetune + MXP 1.65 2.00 1.98 2.02
SMILE 1.75 1.82 1.48 1.53

examples becomes smaller, our method yields more significant benefits, e.g. SMILE outperforms
vanilla fine-tuning by more than 8% on FGVC-Aircraft when 15% training samples are used.

4 Linear Interpolation Effects and Generalization

We use Eq 1 to measure Label-IL using the classifier outputs and Feature-IL using the last hidden
layer of ResNet-50 for different transfer learning methods, with CUB-200-2011 (with 30% sampling
rates) as the training set for all methods. Several arguments can be deduced from results in Table 4.

(1) More Data, Better Generalization, and Lower Label-IL and Feature-IL. There is no doubt
to assume that, in practice, a model trained with more data should enjoy better generalization
performance. In addition to improve the testing accuracy , we find that, when we involve additional
training samples, both Label-IL and Feature-IL would be lower on the testing sets, compared to
vanilla fine-tuning.

(2 Fine-tuning with vanilla mixup is NOT generalizable even in the label space, due to the lack of
linear interpolation in feature spaces. As shown in Table 4, although Label-IL of the vanilla mixup
is significantly lower on the training set than other methods, its Label-IL is high on the testing set
(not generalizable). Furthermore, compared to other methods on both training/testing sets (even
Fine-tuning on the testing set), Feature-IL of the vanilla mixup is high, i.e., poor linear interpolation
in feature spaces.

(3) Sample-to-Feature Mixup could ensure the generalizability of mixup effects in the label space, as
SMILE is with low Feature-IL and Label-IL on both training and testing sets. While SMILE achieves
the lowest Feature-IL on both training and testing datasets, it also achieves the lowest testing Label-IL.
The comparisons with vanilla mixup suggest that doing mixup in the label space is just not enough
for fine-tuning.

These arguments solidify our motivation of sample-to-feature mixup for fine-tuning.3

5 Conclusion

In this work, we figure out the difficulty of applying mixup in transfer learning, and introduce SMILE—
Sample-to-feature Mixup strategies for Efficient Transfer Learning. Beyond a direct combination
of fine-tuning and mixup, SMILE pursues generalizable linear behaviors through both features of
the target domain and the label space of the source domain. We conduct extensive experiments
using a wide spectrum of target datasets. Results show that SMILE can significantly promote the
effectiveness of fine-tuning and outperform various competitive fine-tuning algorithms. Ablation
studies and empirical discussions further backup our design intuition and purposes.

3Note that the over-fitting of linear behaviors may not be directly calibrated with training/test accuracy as
there exists other factors influence the accuracy, e.g. mixup also benefits from the effect of label smoothing [26].
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