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ABSTRACT

Backdoor attacks in federated learning (FL) have garnered significant attention
due to their destructive potential. Current advanced backdoor defense strategies
typically involve calculating predefined metrics related to local models and mod-
ifying the server’s aggregation rule accordingly. However, these metrics may ex-
hibit biases due to the inclusion of malicious models in the calculation, leading
to defense failures. To address this issue, we propose a novel backdoor defense
method in FL named Surrogate Data-guided Aggregation (SuDA). SuDA indepen-
dently evaluates local models using surrogate data, thereby mitigating the influ-
ence of malicious models. Specifically, it constructs a surrogate dataset composed
of pure noise, which is shared between the server and clients. By leveraging this
shared surrogate data, clients train their models using both the shared and local
data, while the server reconstructs potential triggers for each local model to iden-
tify backdoors, facilitating the filtering of backdoored models before aggregation.
To ensure the generalizability of local models across both local and surrogate data,
SuDA aligns local data with surrogate data in the representation space, supported
by theoretical analysis. Comprehensive experiments demonstrate the substantial
superiority of SuDA over previous works.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017; Kairouz et al., 2021) is a powerful learning scheme
enabling multiple clients to train a global model collaboratively, without leaking their private infor-
mation. This decentralized nature provides significant advantages over traditional centralized learn-
ing, particularly in applications where data privacy is a concern, such as recommendation (Isinkaye
et al., 2015; Wu et al., 2021), computer vision (LeCun et al., 1998; Zhu et al., 2020), and health-
care (Xu et al., 2021; Yuan et al., 2020). Although significant progress has been made, FL is still
vulnerable to various security threats, such as adversarial attacks. Therefore, how to enable FL to be
adversarially robust remains an open question.

This paper focuses on a particular adversarial attack named backdoor attack (Chen et al., 2017; Gu
et al., 2019; Liao et al., 2018), which is recognized to be very harmful in FL (Bhagoji et al., 2019;
Bagdasaryan et al., 2020; Wang et al., 2020a). In general, backdoor attackers manipulate training
data on clients, sending local models trained on such tampered data to the server to pollute the
global model. Then, after awakening some trigger embeds (i.e., the backdoor) on new inputs, the
global model will predict the designated targets given by attackers. For example, an attacker can
make the global model predict a specific label (e.g., classify blue trucks as birds) when seeing a
particular triggered input (e.g., an image of a blue truck with a particular pattern). The backdoor
attack is among the most lethal ways of poisoning (Biggio et al., 2012; Liu et al., 2018) and model
stealing (Tramèr et al., 2016; Juuti et al., 2019), posing a great threat to the robustness of real-world
FL systems. Hence, it is essential to investigate effective methods for backdoor defense in FL.

Many efforts have been devoted to backdoor defense in FL, where advanced methods mainly focus
on the correlation between client models, detecting attacks by analyzing some predefined metrics
related to the models themselves, such as Euclidean distance (Blanchard et al., 2017; Pillutla et al.,
2022), mean value (Yin et al., 2018), cosine similarity (Fung et al., 2018; Nguyen et al., 2022),
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Figure 1: Illustration of SuDA. The SuDA workflow involves introducing a surrogate dataset consist-
ing of pure Gaussian noise and independently evaluating local models. SuDA utilizes this surrogate
data to reconstruct potential triggers for each local model, identifying models with abnormally small
triggers as malicious. The identified malicious models are then filtered out before aggregation. This
metric is independent of the local models, thus mitigating the influence of a large proportion of ma-
licious clients.

and norm bounds (Sun et al., 2019; Panda et al., 2022). However, since malicious models are
also involved in the calculation of these metrics, these methods may yield tainted metrics and fail
to achieve effective defense. For example, in scenarios where the proportion of malicious clients
is significant, these majority-based defense methods may erroneously categorize and exclude the
models of the minority benign clients as attackers, thus rendering poor defense performances.

To address the tainted metric issue, a straightforward approach is to design a metric that indepen-
dently evaluates each local model. To this end, we propose Surrogate Data-guided Aggregation
(SuDA), a novel backdoor defense method that independently evaluates local models using surro-
gate data. Overall, SuDA provides a surrogate dataset to the server, thereby allowing the model’s
performance on the surrogate data to become an effective metric that is independent of local mod-
els and mitigating the influence of malicious models. SuDA shares the surrogate dataset across the
server and clients, thus clients can train local models with both the local and shared data. To protect
privacy, it is often impractical to generate surrogate data that matches the distribution of training
data. Therefore, this surrogate dataset is synthesized from pure Gaussian noise data containing no
private information from clients (thus without privacy leakages). Leveraging the shared surrogate
data, SuDA reconstructs potential triggers for each local model and identifies backdoors based on
the size of potential triggers. Consequently, the identified backdoored models can be filtered out
before aggregation.

However, simply adding the pure noise data to the training process can potentially impact the per-
formance of local models on the natural data. This is because the original natural data and the noise
data have different distributions. To ensure the generalizability of models trained on noise, inspired
by the joint distribution alignment (Long et al., 2017), we calibrate the feature distributions of natu-
ral data and noise data. Consequently, the noise dataset can represent the training data, enabling the
identification of malicious models. We theoretically analyze the relationship between the model’s
generalization performance and the distribution shift. By completing this task, the noise dataset will
not hurt the model training of honest clients while helping the server filter out attackers. The overall
framework is depicted in Figure 1. Our comprehensive experiments demonstrate SuDA’s stronger
defense capabilities compared to previous works.
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Our main contributions can be summarized as follows:

• We point out that metrics used for backdoor defense can be tainted by malicious models,
leading to the failure of existing approaches.

• We propose a Surrogate Data-guided Aggregation (SuDA) to independently evaluate local
models using surrogate data, shedding light on backdoor defense. Specifically, SuDA in-
troduces a surrogate dataset containing pure noise and reconstructs potential triggers with
Eq. 4 to identify malicious models.( Section 4)

• Comprehensive experiments on three computer vision datasets demonstrate the effective-
ness of SuDA, as shown in Tables 1 and 2. We empirically prove that the proposed metric,
which is independent of local models, can help the server accurately filter out malicious
models. ( Section 5)

2 RELATED WORK

Due to space constraints, we provide an overview of the most relevant works in this section, while a
more comprehensive discussion and literature review are available in Appendix B.

Existing FL backdoor defense strategies mainly identify attackers by analyzing specific predefined
metrics associated with the models. Blanchard et al. (2017) select model update(s) with the mini-
mum squared distance to the updates of other clients. Coordinate-wise median (Yin et al., 2018) se-
lects the median element coordinate-wise among the model updates of clients. Norm clipping (Sun
et al., 2019) clips model updates whose norm exceeds a specific threshold. RFA (Pillutla et al.,
2022) replaces the weighted arithmetic mean in FedAvg with a weighted geometric median, which
is computed using the smoothed Weiszfeld’s algorithm. FLAME (Nguyen et al., 2022) eliminates
backdoors by injecting noise into the model and employs HDBSCAN clustering and model weight
clipping to reduce the required noise. These methods include malicious models in the computation,
making it difficult to handle situations where attackers have a large amount of data. Therefore, we
propose SuDA, which independently evaluates local models without requiring additional data. Our
evaluation includes comparisons to six commonly used defense algorithms and demonstrates the
stronger capabilities of SuDA against backdoor attacks.

3 PRELIMINARIES

To begin with, we introduce the necessary backgrounds about federated learning ( Section 3.1),
backdoor attack ( Section 3.2), and domain adaptation ( Section 3.3).

3.1 FEDERATED LEARNING

The federated learning (FL) process is executed by a set of clients in synchronous update rounds, and
the server aggregates the local model updates of selected clients in each round to update the global
model. Formally, FL aims to minimize a global objective function: minw F (w) :=

∑K
k=1 pkFk(w),

where K is the number of all clients, pk ≥ 0 is the weight of k-th client, and Fk is the local objective
function: Fk(w) := E(x,y)∼Dk(x,y)ℓ(f(x;w), y). We denote Dk(x, y) as the data distribution in the
k-th client, ℓ(·, ·) as the loss function such as cross-entropy, and f as the classifier which consist of
a feature extractor ϕ and a predictor ρ, i.e., f = ρ ◦ ϕ.

At each communication round t, the server uniformly selects a subset of clients St from the federated
system and sends them the current global model Gt. The each selected client k performs E epochs
local updates to get a new local model Lt

k by training on their private datasets:
Lt
k,j+1 = Lt

k,j − ηk,j∇Fk

(
Lt
k,j

)
, j ∈ {0, 1, · · · , E − 1}, (1)

where ηk,j represents the learning rate, and Lt
k,j represents the model after j-th updates, i.e., Lt

k,0 =

Gt and Lt
k,E = Lt

k. Then, all selected clients send the local models back to the server, and the server
aggregates these models to produce a global model. Typically, the aggregation is performed using
the following sample-based weighting manner (McMahan et al., 2017):

Gt+1 =
∑
k∈St

nk∑
i∈St ni

Lt
k, (2)
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where nk is the number of training samples on the k-th clients. In federated learning, data distribu-
tions typically vary with clients, which is known as the Non-IID federated learning setting, posing a
client drift challenge.

3.2 BACKDOOR ATTACKS

Backdoor attacks aim to manipulate local models to fit both the main task and the backdoor task si-
multaneously, inducing the global model to behave normally on untampered data samples while
achieving a high attack success rate on backdoored data samples. We consider the strong at-
tacker (Bagdasaryan et al., 2020) who can fully control the compromised client, including the private
local data and the model training process. When there are multiple attackers, we assume they can
collude with each other and share the same target. As discussed in Sun et al. (2019), the participating
patterns of attackers can be divided into the fixed frequency attack, where the attacker periodically
participates in the FL round, and the random sampling attack, where the attacker can only perform
attacks during the FL rounds in which they are selected. We consider the random sampling case in
this paper since this setting is more common in real-life scenarios. The backdoor can also be divided
into the semantic backdoor (Bagdasaryan et al., 2020; Wang et al., 2020a), which denotes samples
that share the same semantic property, and the trigger-based backdoor (Xie et al., 2020), which de-
notes samples that contain a specific “trigger”. Here we consider the trigger-based backdoor attacks
following previous works (Xie et al., 2020; Zhang et al., 2022). Furthermore, we form the backdoor
task by conducting model replacement attacks introduced in Bagdasaryan et al. (2020).

3.3 DOMAIN ADAPTATION

The core challenge in domain adaptation is how to address the impact of the inconsistency between
the distribution of training data and testing data (Pan & Yang, 2010), referred to as the source domain
and the target domain. Distribution shift can be classified according to the components that cause
the shift into covariate shift (Pan et al., 2010; Ben-David et al., 2010), conditional shift (Zhang et al.,
2013; Gong et al., 2016), and dataset shift (Quinonero-Candela et al., 2008; Long et al., 2013; Zhang
et al., 2020), corresponding shifts for D(x), D(x|y) and D(x, y) respectively.

A commonly used and effective method for reducing the impact of distribution shift is to use a fea-
ture extractor ϕ to extract similar feature distributions from the source distributionDS and the target
distribution DT (Ganin et al., 2016; Zhao et al., 2019; Long et al., 2017). Specifically, the feature
extractor ϕ minimizes the distribution discrepancy for three types of distribution shift with the mea-
surement d respectively (Ganin et al., 2016; Gong et al., 2016): the marginal distribution discrepancy
d(DS(ϕ(x)),DT (ϕ(x))), the conditional distribution discrepancy d(DS(ϕ(x)|y),DT (ϕ(x)|y)) and
the joint distribution discrepancy d(DS(ϕ(x), y),DT (ϕ(x), y)). In this paper, we need to consider
the most challenging dataset shift and minimize the joint distribution discrepancy. We regard the
surrogate dataset as the source domain and the original local dataset as the target domain.

4 SURROGATE DATA-GUIDED AGGREGATION STRATEGY

This section proposes a novel Surrogate Data-guided Aggregation (SuDA) approach to defend
against backdoor attacks in FL by introducing a special surrogate dataset containing pure noise
to assist the server in identifying and filtering out malicious models.

4.1 OVERVIEW OF SUDA

In the proposed SuDA framework, the server crafts a surrogate dataset that consists of pure Gaus-
sian noise generated by an untrained Style-GAN (Karras et al., 2019). Then all clients receive the
surrogate dataset and train local models with the objective Eq. 7. Thereby, the server can utilize the
shared surrogate data to reconstruct potential triggers for each local model independently with the
objective Eq. 4 and identify malicious models based on the size of potential triggers. Different from
previous methods, this metric is independent of local models and impervious to variations in the at-
tacker’s ratio. Therefore, SuDA demonstrates better defensive performance when the proportion of
malicious clients is significant. The overall procedure of SuDA coupled with FedAvg is illustrated
in Appendix D. For the client, SuDA only modifies its training data and objective function, whereas
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for the server, SuDA only introduces additional model filtering steps based on the surrogate dataset.
Therefore, SuDA can be combined with most federated learning algorithms, including FedAvg, Fed-
Prox (Li et al., 2020) and FedNova (Wang et al., 2020c). Note that malicious attackers may reject
to follow the proposed protocol. Therefore, we consider several different adaptive attackers and
empirically prove that SuDA can effectively defend against malicious clients under adaptive attack
scenarios in Section 5.

4.2 RECONSTRUCT POTENTIAL TRIGGER

The failure of existing methods can be mainly attributed to the tainted metrics used for filtering
out malicious models. Specifically, existing methods for defending against backdoor attacks in
FL focus on studying the attributes of the received client models themselves, such as taking the
mean or median of the model parameters (Yin et al., 2018), filtering out outliers based on squared-
distance of updates (Blanchard et al., 2017), and clipping updates with excessive norms (Sun et al.,
2019). Consequently, these methods encounter a dilemma when the proportion of malicious clients
is significant: these metrics will become unreliable and render poor defense performances.

A more direct approach to backdoor defense is to independently evaluate each local model. Drawing
inspiration from the insights presented in the centralized setting (Wang et al., 2019), our objective
is to reconstruct potential triggers from the model. By perturbing the input pixels, we can manip-
ulate the model’s output for a given input sample. Specifically, consider a model that has been
compromised with a trigger targeting a specific label Yt. Note that the trigger should be reasonably
small, otherwise it will be easily detected. For any arbitrary inputs, regardless of their true label Yi,
we can observe that the minimum perturbation required to classify all inputs as the target label is
significantly smaller than the perturbation needed to transform the inputs to any non-target label.
Observation 4.1. If there is a trigger with a target label Yt, then the minimum perturbation required
to classify all inputs as the target label should be significantly smaller than the perturbation needed
to transform the inputs to any non-target label: P∀→t << mini,i̸=t P∀→i.

Based on the observation above, we can treat each label as a potential target label and calculate
the minimum potential trigger required to misclassify samples of other labels into this target label.
Specifically, we represent the process of injecting a trigger into the input x as follows:

xpoison = M ·∆+ (1−M) · x, (3)

where M is a trigger mask with values ranging from 0 to 1, ∆ is a trigger pattern that has the
same dimension as the input image. We use the L1 norm of the mask M to measure the size of
the trigger. Our goal is to find a trigger that can misclassify clean samples to the target label while
being as small as possible. Consequently, we can reconstruct the potential trigger by optimizing the
following objective:

min
M,∆

ℓ (Yt, f(xpoison)) + γ · |M |, (4)

where γ is a parameter that balances the misclassification success rate and the size of the trigger.
In the process of optimization, we dynamically adjust the parameter γ to gradually achieve a more
concise trigger.

Using the optimization objective, we reconstruct the potential trigger for each label. For all potential
triggers obtained, we perform Median Absolute Deviation outlier detection on their L1 norms. If
there is a significantly small outlier, we identify the corresponding label as the attacker’s target label
and recognize the current model as a malicious model; otherwise, we recognize the current model
as a benign model.

In the above method, however, the server needs data to reconstruct potential triggers, which is a
challenge in the federated setting. In order to protect privacy, the client cannot directly share local
training data with the server. Therefore, we propose to construct a surrogate dataset that contains no
private information. The server sends the surrogate dataset to all clients and requires them to train
local models with both the original local data and the shared surrogate data:

F cls
k := E(x,y)∼Dk

ℓ(f(x), y) + E(x,y)∼Dn
ℓ(f(x), y), (5)
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where Dn is the distribution of the surrogate dataset. Since the surrogate data cannot contain any
private information, we propose that the surrogate dataset can be generated using pure Gaussian
noise, such as random noise derived from a randomly initialized StyleGAN (Karras et al., 2019).
The noise data shares the same range of labels as the real data, with each label denoting a different
style of noise. With the surrogate data, the server uniformly selects b samples from the surrogate
dataset each round to reconstruct potential triggers. This objective function is formulated to ensure
that the local client model performs well on both the real and surrogate data, serving as a crucial
reference for the server to detect potential attackers. Given that noise has corresponding labels, we
can preliminarily filter out models with excessively low prediction accuracy on the noise data before
reconstructing potential triggers. This measure aims to prevent attackers from uploading excessively
modified models.

4.3 FEATURE DISTRIBUTION ALIGNMENT

Intuitively, simply adding a surrogate dataset that has a completely different distribution from the
original local data will harm the model’s generalization performance (Frénay & Verleysen, 2013;
Polyzotis et al., 2017). Therefore, inspired by the previous work (Long et al., 2017), which investi-
gates the joint distribution discrepancy, we further introduce feature distribution alignment to enable
the models trained on surrogate data to perform well on the natural distribution.

To effectively represent real data using surrogate data, it is also crucial to align the distribution of
real features with that of surrogate ones. To facilitate the transfer of knowledge from the surrogate
dataset to the real dataset, we draw inspiration from domain adaptation techniques. Specifically, we
consider the surrogate dataset as the source domain and the real dataset as the target domain and
perform domain adaptation to mitigate the generalization risk of the real distribution. By leveraging
the fundamental principles of domain adaptation, we align these two distributions in the feature
space and ensure the good performance of the model trained with surrogate data on real data.

Following the previous works on addressing dataset shift (Long et al., 2013; 2017; Lei et al., 2021),
we minimize the joint distribution discrepancy between real features and surrogate features. Note
that the surrogate dataset is arbitrarily constructed, this allows us to generate appropriate noise data
with the same label distribution as the real data. Consequently, we only need to minimize the
conditional distribution discrepancy rather than the joint distribution discrepancy. In particular, We
propose the objective for the feature distribution alignment:

F da
k := Eyd(Dk(ϕ(x)|y),Dn(ϕ(x)|y)), (6)

where ϕ is the feature extractor that composes the classifier f = ρ◦ϕ,Dk(ϕ(x)|y) andDn(ϕ(x)|y))
represent the conditional feature distributions obtained by the feature extractor ϕ on the real dataset
and the surrogate dataset, respectively. This objective encourages the feature extractor to learn the
same conditional feature distribution from two different data distributions.

Thereafter, we propose the overall objective of clients during local training in the SuDA framework:

FSuDA
k = F cls

k + λF da
k , (7)

where λ is a hyperparameter that governs the trade-off between classification accuracy on training
data and the degree of alignment in feature distribution. SuDA enables the model to accurately clas-
sify real data and noise data, and simultaneously encourages the model to generate similar features
from real data and noise data with the same label, thus achieving good generalization performance
on both distributions. Empirical observations in Figure 8 demonstrate this effect.

To theoretically prove the effectiveness of the proposed feature distribution alignment, we analyze
the relationship between the model’s generalization performance and the distribution shift. Based on
the existing theoretical conclusions, the generalization performance is related to the margin between
samples and the decision boundary. Therefore, we introduce the definition of statistical robustness
between two distributions before stating the theorem, serving as a metric for quantifying the degree
of generalization performance.

Definition 4.2 (Statistical Robustness). We define statistical robustness for a classifier f on a dis-
tribution D according to a distance metric d: SRd(f,D) = E(x,y)∼D inff(x′) ̸=y d (x

′, x), where
classifier f : X → Y predicts class label of an input sample.
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The defined statistical robustness refers to the expected distance from each sample to the closest
adversarial example. Hence, for the model f learned from the source distribution Dn(x, y), we can
quantify the generalization performance on the target distributionD(x, y). To achieve good general-
ization performance, we aim to provide a lower bound on the transferred statistical robustness, i.e.,
E S∼Dn

f←Sub(S)
SRd(f,D), where f ← Sub(S) means the model f is trained on the training set S using

SuDA. To this end, we have the following theorem.
Theorem 4.3. Let f be a neural network,D(x, y) andDn(x, y) are two separable distributions with
identical label distributions, corresponding to the distributions of real data and noise data, respec-
tively. Then, training the model with the proposed objective for the feature distribution alignment,
i.e., Eq. 7 elicits the bounded statistical robustness.

We provide the proof of Theorem 4.3 in Appendix A.1. Theorem 4.3 shows that the model trained
with the proposed objective can learn to provable generalization performance, which is consistent
with the previous work (Long et al., 2013; 2017) that aligning the joint distribution between the
source and target domains.

5 EXPERIMENTS

The goal of our empirical study is to demonstrate the improved defense capability of SuDA over the
state-of-the-art FL defense methods. We conduct our experiments on image classification tasks over
three datasets: CIFAR-10(Krizhevsky et al., 2009), FMNIST(Xiao et al., 2017) and SVHN(Netzer
et al., 2011). We simulate FL for R rounds among K clients, of which m are corrupted by attackers.
In each round, the server uniformly selects C ·K clients for some C ≤ 1 and sends the global model
to each selected client. The selected clients then perform local training on the received model for
E epochs and send the updates back to the server. The goal of attackers is to make the aggregated
model misclassify samples poisoned by triggers into the target class. For the aggregated model
on the server, we measure three performance metrics: total accuracy, attack success rate and main
accuracy. Total accuracy is computed on the entire test dataset, while attack success rate measures
the proportion of test samples with triggers classified as the target label by the model, and main
accuracy is computed on clean test samples. Our experimental results show that SuDA significantly
outperforms baseline methods in defending against backdoor attacks.

5.1 EXPERIMENT SETUP

Datasets and Models. To evaluate the effectiveness of SuDA, we conduct experiments on three
computer vision datasets including CIFAR-10, FMNIST and SVHN in the FedML framework(He
et al., 2020). We use ResNet-18(He et al., 2016) as the shared global model in FL for all three
datasets. We utilize the partition method Latent Dirichlet Sampling(Hsu et al., 2019) to partition
datasets, generating a local dataset for each client, and using the parameter α to control the degree
of Non-IID. We set α = 1 to simulate the Non-IID setting by default and conduct experiments under
the IID setting in Appendix E.3.

Surrogate Datasets. At the beginning of the training phase, an un-pretrained StyleGAN-v2 (Karras
et al., 2020) is utilized to generate a surrogate dataset without using any training data. The server
samples from various Gaussian distributions, each with the same mean but different standard devia-
tions, to generate noise images with diverse latent styles. Each style corresponds to a distinct class.
Then the generated noise images are distributed to all clients and used together with the original
datasets for local training. The size of the surrogate dataset in our experiments is 2000. We show
the surrogate dataset in Appendix E.4.

Random sampling attack. The attack model considered in our work is the random sampling attack
as discussed in Sun et al. (2019), where the attackers have complete control over a fraction of clients.
In each FL round, the server randomly selects a subset of clients to participate in the training process.
The attackers are only able to affect the training of the global model during the rounds in which they
are selected. The number of selected attackers in each round follows a hypergeometric distribution.

Backdoor tasks. The backdoor task aims to make the global model misclassify backdoored samples
into the target class. Since the server randomly selects clients in each round, multiple attackers may
be chosen during a single round. We assume that attackers can collude and share the same target,
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Table 1: ACC, ASR and MA of defense algorithms on CIFAR-10, FMNIST and SVHN when de-
fending against varying attackers. The poison ratio is 5%.

Atk Num Defense CIFAR-10 FMNIST SVHN

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

0

FedAvg 84.72±0.92 3.26±0.85 84.87±0.84 91.51±0.09 1.77±0.64 91.64±0.10 89.20±0.02 1.12±0.01 89.28±0.02
RFA 84.92±0.95 1.44±0.26 84.99±0.94 91.69±0.02 1.88±0.28 91.85±0.03 89.22±0.02 0.98±0.04 89.27±0.02
Krum 50.24±1.25 3.88±0.91 49.85±1.13 86.69±0.62 3.57±0.77 86.79±0.57 79.65±0.18 1.97±0.74 79.68±0.24

Coomed 83.92±0.84 1.16±0.33 83.94±0.86 91.79±0.02 1.95±0.16 91.88±0.02 88.99±0.06 1.19±0.02 89.07±0.05
Normclip 85.07±0.62 1.38±0.16 85.18±0.60 91.54±0.03 1.68±0.14 91.66±0.04 87.56±0.01 1.46±0.05 87.67±0.01
FLAME 83.39±0.94 1.18±0.19 83.44±1.07 91.04±0.01 1.86±0.09 91.20±0.01 87.11±0.32 1.68±0.23 87.30±0.29
FLTrust 68.30±0.91 2.91±0.78 68.28±0.25 86.58±0.93 1.33±0.62 86.67±0.47 87.90±0.12 1.35±0.06 88.02±0.12

SuDA(ours) 85.73±0.31 1.75±0.40 85.78±0.33 90.09±0.38 1.29±0.74 90.17±0.44 90.78±0.70 1.20±0.39 90.88±0.31

4

FedAvg 76.79±0.81 87.63±0.77 83.40±1.00 83.71±0.03 99.78±0.01 92.09±0.04 81.41±0.42 67.14±0.81 86.66±0.13
RFA 79.38±0.23 76.31±0.58 85.20±0.39 87.41±0.91 22.74±0.50 89.20±0.86 88.99±0.04 5.36±0.48 89.36±0.04
Krum 49.58±0.18 5.50±1.68 49.41±0.67 84.12±0.11 5.30±0.89 84.23±0.98 83.51±0.19 1.26±0.29 83.55±0.22

Coomed 76.75±0.13 58.44±1.48 80.90±0.39 88.93±0.24 5.83±0.44 89.36±0.35 89.04±0.10 3.09±0.20 89.25±0.09
Normclip 79.41±0.20 78.17±0.64 85.41±0.27 88.94±0.36 8.55±0.31 89.58±0.24 87.58±0.03 2.19±0.04 87.7±0.03
FLAME 77.19±1.08 82.65±0.79 83.36±0.41 82.70±0.13 96.68±1.00 90.71±0.09 84.13±0.82 17.29±1.01 85.31±0.79
FLTrust 65.54±0.49 38.99±0.33 67.57±0.72 88.27±1.01 4.97±0.17 88.82±1.33 86.47±0.06 11.34±0.97 87.23±0.12

SuDA(ours) 84.65±0.12 2.38±0.56 84.77±0.43 90.80±0.17 1.20±0.99 90.92±0.16 90.74±0.60 1.22±0.67 90.76±0.38

8

FedAvg 77.86±0.18 88.9±0.22 84.67±0.61 83.27±0.07 99.67±0.06 91.61±0.08 80.79±0.98 66.21±0.60 85.9±0.85
RFA 78.69±0.82 83.42±1.01 85.07±1.11 84.43±0.55 30.17±0.89 86.80±0.05 87.59±0.02 4.65±0.26 87.88±0.03
Krum 50.91±1.03 6.44±1.12 50.79±0.90 81.87±0.32 3.60±0.75 82.00±0.38 80.55±0.34 1.36±0.03 80.55±0.38

Coomed 77.27±0.72 81.88±0.93 83.42±0.41 84.68±0.71 10.17±0.13 85.49±0.09 86.83±0.48 7.05±0.59 87.25±0.41
Normclip 78.85±0.51 83.33±1.27 85.26±0.71 86.90±0.48 7.78±0.51 87.50±0.55 87.34±0.03 5.16±0.20 87.69±0.02
FLAME 76.87±0.31 86.71±1.02 83.38±0.46 82.56±0.04 99.16±0.04 90.78±0.06 80.05±0.23 82.86±0.73 86.63±0.22
FLTrust 68.59±1.15 66.75±0.96 72.88±0.94 74.14±1.60 96.33±1.20 81.25±0.55 81.82±0.20 66.16±0.15 86.95±0.22

SuDA(ours) 84.56±0.65 3.22±0.67 84.73±0.69 90.75±0.10 1.31±0.24 90.79±0.14 90.70±0.40 1.16±0.38 90.73±0.34

12

FedAvg 77.80±1.07 89.64±0.64 84.67±0.77 83.34±0.17 99.64±0.02 91.68±0.20 81.58±0.14 75.29±0.42 87.61±0.11
RFA 77.90±0.69 87.76±0.03 84.61±0.84 81.88±0.59 44.36±0.85 85.32±0.93 86.13±0.23 8.12±0.64 86.64±0.16
Krum 48.03±0.67 8.47±0.96 47.9±0.50 80.02±0.15 10.89±0.49 80.51±0.80 80.74±0.14 2.60±0.05 80.80±0.33

Coomed 77.12±0.79 84.62±0.79 83.49±1.03 83.31±0.06 26.27±0.10 85.34±0.86 86.47±0.43 13.57±0.10 87.39±0.18
Normclip 78.68±0.42 87.91±0.38 85.47±0.55 85.24±0.41 15.08±0.46 86.40±0.65 86.31±0.31 13.39±0.39 87.18±0.18
FLAME 76.92±0.23 88.75±0.83 83.60±0.23 82.45±0.27 99.62±0.01 90.69±0.33 79.48±0.34 86.09±1.18 86.32±0.36
FLTrust 58.65±0.39 78.02±0.69 62.85±0.75 79.04±0.68 98.96±0.44 86.89±0.52 80.90±0.04 78.43±0.18 87.13±0.05

SuDA(ours) 83.89±0.43 3.71±0.57 84.11±0.59 89.75±0.15 1.44±0.80 89.88±0.33 89.79±0.36 1.63±0.11 89.83±0.78

Table 2: Performance of SuDA under changing attack λ on CIFAR-10.

Atk Num Metrics Atk λ

0 0.1 0.5 1 2 5 10 100

4
ACC(%) 85.21±0.78 85.26±0.97 85.09±0.81 85.20±0.55 84.96±0.71 85.21±0.22 85.15±0.98 79.75±0.50
ASR(%) 2.58±0.44 2.21±0.79 2.37±0.47 2.30±0.98 2.14±0.91 2.60±0.94 2.41±0.72 2.30±0.34
MA(%) 85.29±0.60 85.36±0.81 85.14±0.70 85.31±0.19 85.14±0.70 85.36±0.36 85.40±0.51 79.79±0.65

8
ACC(%) 84.35±0.87 85.05±0.68 84.91±0.37 85.25±0.93 85.00±0.96 85.05±0.74 84.72±0.28 72.77±0.23
ASR(%) 2.01±0.60 2.30±0.35 2.20±0.72 2.49±0.62 2.26±0.42 2.36±0.10 2.17±0.76 2.01±0.38
MA(%) 84.49±0.94 85.21±0.44 85.01±0.47 85.42±0.85 85.15±0.84 85.18±0.62 84.90±0.98 72.62±0.62

i.e. all attackers aim to make the global model misclassify backdoored samples into the same target
class. For the CIFAR-10 and FMNIST datasets, attackers aim to misclassify into class ‘2’, and for
the SVHN dataset, attackers aim to misclassify into class ‘5’. In each round, attackers implant the
trigger into partial samples of each class based on the poison ratio, re-label them with the target
class, and then train the local model on the backdoored dataset. The trigger utilized is a white
square measuring 4×4, implanted in the upper-left corner of the poisoned sample. When employing
SuDA for defense, the noise dataset will be combined with the backdoored original local dataset for
training. Attackers further perform model replacement attacks(Bagdasaryan et al., 2020) to generate
malicious local models and send them to the server.

Defense techniques. We conduct FedAvg(McMahan et al., 2017) as the baseline FL aggregation
algorithm. The results using FedProx are reported in Appendix E.2. To demonstrate the effectiveness
of SuDA in defending against backdoor attacks, we consider six commonly used defense techniques:
(i) Krum (Blanchard et al., 2017); (ii) Coordinate-wise median(Coomed) (Yin et al., 2018); (iii)
Norm clipping(Normclip) (Sun et al., 2019); (iv) RFA (Pillutla et al., 2022); (v) FLAME (Nguyen
et al., 2022) and (vi) FLTrust (Cao et al., 2020). The detailed hyper-parameters of these algorithms
are reported in Appendix C.

5.2 EXPERIMENTAL RESULTS

To compare the performance of different defense algorithms, we use three metrics: the average total
accuracy (ACC), the average attack success rate (ASR), and the average accuracy of main tasks
(MA) in the 5 rounds before the model converges. We conduct FL with a maximum of 200 rounds
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Table 3: Results of reconstructing potential triggers without the shared surrogate data.

Atk Num Defense CIFAR-10 FMNIST SVHN

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

4 Noise Recon. 75.05±0.34 74.22±0.04 80.33±0.22 85.52±0.18 19.33±0.12 88.44±0.49 88.26±0.77 4.01±0.62 89.40±0.34
SuDA(ours) 84.65±0.12 2.38±0.56 84.77±0.43 90.80±0.17 1.20±0.99 90.92±0.16 90.74±0.60 1.22±0.67 90.76±0.38

8 Noise Recon. 76.29±0.90 75.49±0.68 81.21±0.38 82.06±0.28 24.40±0.82 85.85±0.76 86.70±0.82 4.91±0.48 86.98±0.22
SuDA(ours) 84.56±0.65 3.22±0.67 84.73±0.69 90.75±0.10 1.31±0.24 90.79±0.14 90.70±0.40 1.16±0.38 90.73±0.34

Figure 2: Potential triggers for the tar-
get label (second column) and non-
target labels (third column) recon-
structed from two different types of poi-
soned data.

(a) L1 Norm (b) Anomaly Index

Figure 3: The changes in the L1 norm and anomaly
index of potential triggers corresponding to target and
non-target labels during the training process.

using the adopted defense algorithm on CIFAR-10, FMNIST and SVHN. There are 50 clients in
total, the number of backdoor attackers can range from 0 to 12, and the poison ratio can range from
1% to 20%, depending on different settings. In each round, the server randomly selects 20 clients
to participate in training and sends them the global model. The selected clients then perform local
training for 1 epoch on the received model and send the locally trained model to the server.

Different Numbers of Attackers. As shown in Table 1, SuDA outperforms other baselines in
almost all scenarios when defending against varying numbers of attackers across the three datasets.
It can be seen that SuDA can improve model performance even without attackers. We conjecture
that this is mainly due to several factors: 1) Adding the surrogate dataset reduces data heterogeneity
between clients and mitigates client drift; 2) Aligning real feature distribution with the shared noise
feature distribution further mitigates client drift; 3) After adding the surrogate dataset, the clients’
training data contains more classes, which can alleviate the negative impact caused by the imbalance
of sample quantities among different classes.

When there are attackers in FL, SuDA’s performance is also superior to other baselines. SuDA
achieves a significantly lower ASR than other baselines while maintaining high model accuracy. In
particular, when the number of attackers is 12, SuDA reduces the ASR by up to 9.45% compared to
the second-ranked method, showing the effectiveness of SuDA in defending against a large number
of malicious attackers. We notice that the MA of SuDA is sometimes slightly lower than the best
result. We speculate that this is mainly because SuDA filters out malicious models before aggre-
gation, reducing the number of models aggregated. Consequently, the aggregated model becomes
more difficult to converge, especially in Non-IID settings.

Reconstruct Potential Triggers. SuDA reconstructs potential triggers by leveraging the shared
surrogate data. Figure 3a shows the L1 norm of potential triggers, and the red dots represent
potential triggers for the target label. It can be seen that the L1 norm of the potential triggers
corresponding to the target label is significantly smaller than that of the triggers corresponding to
non-target labels. Accordingly, we perform Median Absolute Deviation outlier detection on the
L1 norms and filter out triggers with an excessive anomaly index, which is defined as the absolute
deviation of L1 norms divided by MAD. The results in Figure 3b empirically demonstrate that
we can distinguish between target and non-target label triggers using anomaly index. We show the
reconstructed potential triggers for the target label and non-target labels in the second and third
columns of Figure 2, respectively.

9
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Impact of Surrogate Data. To further illustrate the impact of the introduced surrogate dataset, we
conducted experiments without using the surrogate data, instead utilizing completely random noise,
which does not participate in model training, to reconstruct potential triggers. The experimental
results are shown in Table 3. As demonstrated in the table, the performance of using noise data that
does not participate in training is worse than that of using the shared surrogate data. This further
shows that the alignment operation employed by SuDA enables the surrogate data to represent the
real data better, thereby reconstructing the potential triggers more accurately and achieving better
defense performance.

Adaptive Attack Scenario. Note that malicious attackers may reject following the proposed frame-
work and attempt to circumvent SuDA. To further illustrate SuDA’s defensive capabilities, we as-
sume that the attackers have knowledge about SuDA and adopt more specialized attack methods.
Specifically, we consider the following adaptive attack scenario: the attacker changes the alignment
parameter λ used to a different one not used by the benign clients. The experimental results are
shown in Table 2. It can be seen that SuDA still performs relatively well against this adaptive attack,
which demonstrates SuDA’s robust defense capabilities against malicious attackers employing vari-
ous attack methods. We conduct more experiments under adaptive attack scenarios in Appendix E.7.

Extra Time Overhead. In our proposed SuDA, reconstructing potential triggers inevitably intro-
duces additional computational overhead. To minimize the extra time overhead while maintaining
defensive effects, we record the optimized trigger obtained in each round as the initial value for
the next round of optimization, eliminating the need to estimate from scratch. Additionally, we use
early-stop in trigger optimization to reduce time consumption. When rounds surpass 60, early-stop
significantly reduces the extra time overhead. To further reduce time overhead, we also investigate
a more efficient method, SuDA-Efficient. SuDA-Efficient achieves a lower time overhead at the
expense of a slight reduction in defense capability. These strategies make the extra time overhead
of our method acceptable. To demonstrate the trade-off between SuDA’s defensive capability and
time overhead, we conduct experiments to compare SuDA and baseline methods on CIFAR-10. The
experimental results are shown in Table 14, with more detailed information reports in Appendix E.9.

More Experimental Results. In order to further investigate the effectiveness, applicability, and
scalability of SuDA, we conduct more ablation experiments. We investigate the defensive perfor-
mance of SuDA under different poison ratios and the impact of various surrogate data generation
methods on the performance of SuDA. We also conduct ablations on the effect of the size of the
surrogate dataset and the sensitivity of sample number b of the surrogate dataset. We report these
experimental results and more ablation experiments in Appendix E.

5.3 LIMITATIONS

Although our method achieves significant improvement in the experiment, it also introduces addi-
tional communication overhead. To mitigate this overhead, we hope to minimize the noise dataset
as much as possible. However, the size of the noise dataset may also affect the performance of the
client model and the server’s ability to detect backdoor attacks accurately. Therefore, future research
should investigate the optimal size of the noise dataset that strikes a balance between communication
overhead and model performance.

6 CONCLUSION

In this paper, we introduce a generated noise dataset that does not contain real data information into
the defense against backdoor attacks in FL. These surrogate noise data provide a more direct and ac-
curate metric for the server to detect malicious models. Through the conditional feature distribution
alignment on the noise dataset, our proposed SuDA can effectively filter out malicious models on the
server with the assistance of noise data, without affecting the generalization performance of the local
model trained by benign clients. Our empirical results demonstrate that SuDA can effectively defend
against backdoor attacks and improve the performance of aggregated models, especially when the
proportion of malicious clients is significant, providing new insights for defending against attacks in
FL. We hope that our work will inspire further research in developing effective defense mechanisms
for FL and contribute to the broader goal of securing machine learning systems.
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A PROOF

A.1 PROOF FOR THEOREM 4.3

Proof. We decompose the statistical robustness SRd(f,D(x, y)) to three quantities as follows:

SRd(f,D) = (SRd(f,D)− SRd(f,Dn)) + (SRd(f,Dn)− SRd(f, D̃n)) + SRd(f, D̃n), (8)

where D̃n denotes the empirical distribution for the training set sampled from the noise data dis-
tribution Dn. Then based on the linearity of expectation and triangle inequality, we can bound the
transferred statistical robustness as follows:

Ef←DSRd(f,D) ≥Ef←DSRd(f, D̃n)− |Ef←D[SRd(f,Dn)− SRd(f, D̃n)]|
− |Ef←D[SRd(f,D)− SRd(f,Dn)]|,

(9)

where Ef←D denotes E S∼D
f←Nog(S)

for brevity. The three terms above represent the empirical ro-

bustness, the generalization penalty and the distribution shift penalty, respectively. Since our goal
is to bound the transferred statistical robustness, we need to bound both the generalization penalty
and the distribution shift penalty. There are already multiple works (Diochnos et al., 2018; Schmidt
et al., 2018; Montasser et al., 2019) have studied the bound of the generalization penalty. In order to
bound the distribution shift penalty, we introduce the following lemma:

Lemma A.1. Let D and Dn be two distributions with identical label distributions, d(·, ·) be the
Wasserstein distance of two distributions. Then for any classifier f , we have:

|SRd(f,D)− SRd(f,Dn)| ≤ Eyd(D|y,Dn|y). (10)

We prove Lemma A.1 in the follow-up section, i.e., Appendix A.2. With Eq. 9 and Lemma A.1, we
can further bound the transferred statistical robustness as follows:

Ef←DSRd(f,D) ≥Ef←DSRd(f, D̃n)− |Ef←D[SRd(f,Dn)− SRd(f, D̃n)]|
− Eyd(D|y,Dn|y).

(11)

The last term Eyd(D|y,Dn|y) is bounded by the proposed objective, i.e., Eq. 7. Thus, the transferred
statistical robustness is bounded and the proof is complete.

A.2 PROOF FOR LEMMA A.1

Proof. To begin with, since the distance metric d(·, ·) is the Wasserstein distance, we have:

d(D|y,Dn|y) = inf
J∈J (D|y,Dn|y)

E(x,x′)∼Jm (x, x′) , (12)

where J (D|y,Dn|y) is the set of joint distributions. Let J ∗ be the optimal transport between D|y
and Dn|y. Then we have:
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SRd(f,D(x, y)) = E(x,y)∼D inf
f(x′ )̸=y

m (x′, x)

= EyEx∼D|y inf
f(x′ )̸=y

m (x′, x)

= EyE(x,x′′)∼J ∗ inf
f(x′ )̸=y

m (x′, x)

≤ EyE(x,x′′)∼J ∗ inf
f(x′ )̸=y

[m (x′, x′′) +m (x′′, x)]

= EyEx′′∼Dn|y inf
f(x′ )̸=y

m (x′′, x′) + EyE(x,x′′)∼J ∗m (x′′, x)

= E(x′′,y)∼Dn
inf

f(x′ )̸=y
m (x′′, x′) + Eyd (D|y,Dn|y)

= SRd (f,Dn(x, y)) + Eyd (D|y,Dn|y) .

(13)

Similarly, we can also prove that:

SRd(f,Dn(x, y)) ≤ SRd (f,D(x, y)) + Eyd (D|y,Dn|y) . (14)

Now using Eq. 13 and 14 we have:

−Eyd (D|y,Dn|y) ≤ SRd(f,D)− SRd (f,Dn) ≤ Eyd (D|y,Dn|y) . (15)

Thus, we complete the proof.

B MORE RELATED WORK

Federated Learning. FL is first proposed by McMahan et al. (2017) to protect data privacy in
distributed machine learning. Training models within the FL framework can effectively safeguard
privacy, as local data need not be shared. Instead of aggregating local data, the server aggregates
local model updates from selected clients to update the global model in each round. To address spe-
cific problems within FL, various optimization algorithms have been proposed. FedCurv (Shoham
et al., 2019) tackles the catastrophic forgetting problem of FL in the Non-IID case by drawing an
analogy with lifelong learning. FedMA (Wang et al., 2020b) reduces the overall communication
burden by constructing the global model in a layer-wise manner, matching and averaging hidden el-
ements. There are also many algorithms proposed to address the issue of client drift (Li et al., 2020;
Wang et al., 2020c; Karimireddy et al., 2020; Tang et al., 2022), such as FedNova (Wang et al.,
2020c), which utilizes normalized averaging to eliminate objective inconsistency. VHL (Tang et al.,
2022) also introduces surrogate data into FL, but they focus on solving data heterogeneity issues,
while we focus on addressing backdoor attacks.

Backdoor Attack on Federated Learning. The goal of backdoor attacks is to modify the global
model so that it can produce the desired target labels for inputs that possess specific properties (She-
jwalkar et al., 2022). Bagdasaryan et al. (2020) investigates semantic backdoor attacks where the
global model misclassifies input samples with the same semantic property, e.g. misclassifies the
blue truck as a bird, and proposes a model-replacement attack to replace the global model. Bhagoji
et al. (2019) discusses model poisoning attacks launched by a single malicious client. They boost
the malicious updates to overcome the impact of updates from benign clients, and further propose
alternating minimization and estimating benign updates to evade detection in almost every round.
Wang et al. (2020a) proposes a new category of backdoor attacks called edge-case backdoors, and
explains how these edge-case backdoors can lead to detection failures. Zhang et al. (2022) inserts
more durable backdoors into FL systems by attacking parameters that are changed less in magni-
tude during training. Different from these works that only consider the centralized backdoor attack
on FL, Xie et al. (2020) investigates the distributed backdoor attack (DBA), which decomposes a
global trigger pattern into separate local patterns and embeds them into the training set of different
adversarial parties respectively.
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Robust Federated Learning. The goal of robust federated learning is to mitigate the impact of
specific attacks during training. Blanchard et al. (2017) select model update(s) with the minimum
squared distance to the updates of other clients. Coordinate-wise median (Yin et al., 2018) selects
the median element coordinate-wise among the model updates of clients. Norm clipping (Sun et al.,
2019) clips model updates whose norm exceeds a specific threshold. RFA (Pillutla et al., 2022)
replaces the weighted arithmetic mean in FedAvg with a weighted geometric median, which is com-
puted using the smoothed Weiszfeld’s algorithm. FLTrust (Cao et al., 2020) mitigates the impact
of backdoors by training models on the server-side with the additional root dataset, performing
similarity checks based on the trained model and received local models. FLAME (Nguyen et al.,
2022) eliminates backdoors by injecting noise into the model and employs HDBSCAN clustering
and model weight clipping to reduce the required noise. FoolsGold (Fung et al., 2018) sums up
the historical update vectors and calculates the cosine similarity between all participants to assign a
global learning rate to each party. By giving lower learning rates to similar update vectors, Fools-
Gold defends against label flipping and centralized backdoor attacks. SparseFed (Panda et al., 2022)
utilizes global model top-k sparse updates and client-level gradient clipping to mitigate the impact of
poisoning attacks. Our evaluation includes comparisons to six commonly used defense algorithms
and demonstrates the stronger capabilities of SuDA against backdoor attacks.

C IMPLEMENTATION DETAILS

Model replacement attack: We form the backdoor task by conducting model replacement at-
tacks (Bagdasaryan et al., 2020). In particular, the attacker trains the local model on the backdoored
dataset and gets a backdoored model X . The attacker can arbitrarily manipulate the learning rate or
training epochs to maximize the attack success rate on the backdoored data. In order to substitute
the new global Gt+1 with the backdoored model X , the attacker scales up the weights of X before
sending it to the server:

Lt
atk = γ(X −Gt) +Gt,

where γ is the scaling factor for the balance between attack capability and stealthiness. The scale
factor we used is m

na
, where m is the number of clients participating in aggregation each round and

na is the number of attackers, which is consistent with previous outstanding works (Bagdasaryan
et al., 2020; Wang et al., 2020a).

Krum and Multi-Krum (Blanchard et al., 2017): Given n clients, Krum aims to defend against a
maximum of f attackers. In each round r, the server receives n updates (V r

1 , · · · , V r
n ). For each

update V r
i , we denote i → j as the set of n − f − 2 closest updates to V r

i . Then the score for
each client i is defined as the sum of squared distances between Vi and each update Vj in the set
i → j: score(i) =

∑
i→j ∥Vi − Vj∥2. Krum then selects Vkrum = Vi∗ with the lowest score

score(i∗) ≤ score(i) for all i, and updates the global model as wr+1 = wr − Vkrum. While
Multi-Krum selects m ∈ {1, · · · , n} updates V ∗1 , · · · , V ∗m with the lowest scores, and calculates
their average 1

m

∑
i V
∗
i to replace Vkrum. In our experiments, we apply f = 6 for both Krum and

Multi-Krum and set m = 8 for Multi-Krum.

Coordinate-wise median (Yin et al., 2018): Given the set of updates (V r
1 , · · · , V r

n ) in each round,
Coomed aggregates the updates: V

r
= Coomed{V r

i : i ∈ [n]}, where the jth coordinate of V
r

is given by V
r
(j) = med{V r

i (j) : i ∈ [n]}. Here, the function med represents the 1-dimensional
median, and [n] = {1, · · · , n}.
Norm clipping (Sun et al., 2019): Due to the assumption that adversarial attacks can potentially
generate updates with large norms, Normclip simply clips model updates whose norm exceeds a
specific threshold M :

wr
k =

wr
k

max(1, ∥wr
k∥2/M)

.

In our experiments, we set the threshold M = 200.

RFA (Pillutla et al., 2022): RFA replaces the weighted arithmetic mean utilized in FedAvg with a
weighted geometric median:

argmin
v

∑
i

αi∥v − wi∥,
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which is computed using the smoothed Weiszfeld’s algorithm. The weight αi is set to the proportion
of training samples in the client αi =

ni∑
j∈Sr nj

, where Sr is the subset of selected clients at round
r. For iteration budget R and the parameter ν in the smoothed Weiszfeld’s algorithm, we set R = 4
and ν = 10−5.

FLAME (Nguyen et al., 2022): FLAME eliminates backdoors by injecting noise into the model
and employs HDBSCAN clustering and model weight clipping to reduce the required noise. In our
experiments, we set min cluster size to (C ·K)/2+1 and min samples to 1, which is consistent with
the original paper.

FLTrust (Nguyen et al., 2022): FLTrust mitigates the impact of backdoors by training models on
the server-side with the root dataset, performing similarity checks based on the trained model and
received local models. We randomly collected 100 samples from the test set as the root dataset.

SuDA: SuDA generates the surrogate noise dataset using an un-pretrained StyleGAN-v2 (Karras
et al., 2020). Clients then proceed to train local models with the SuDA objective parameter λ set
to 1, and the batch size is set to 128 for both real data and noise data. Then the server receives
local models and reconstructs potential triggers. The sample number b is set to 128. During the
trigger optimization process, we gradually increase λ to obtain as concise a trigger as possible while
ensuring that the misclassification accuracy of the first term in Eq. 4 is greater than 98%. We set the
number of noise samples b used for reconstructing potential triggers to a fixed value of 128 for all
experiments.

For all experiments, the learning rates are set to 0.01 and the learning rate decay is set to 0.992
per round. We employ momentum-SGD as optimizers, with momentum of 0.9 and weight decay of
0.0001. The degree of Non-IID local data distribution on the client is set to α = 1. Our experiments
were conducted on Ubuntu 20.04 LTS, Intel(R) Xeon(R) Platinum 8255C CPU, and 3090 GPU.

D ALGORITHM

In SuDA, the server generates the surrogate noise dataset at the beginning of the training phase and
distributes the noise data to all clients. The clients proceed to train their respective local models
using both the original dataset and the noise dataset, and send the trained local models back to
the server. To effectively identify and mitigate backdoor attackers, the server reconstructs potential
triggers for each local model, leveraging the presence of the noise data. We summarize the overall
training procedure of SuDA in Algorithm 1.

In previous methods, malicious models are also involved in the calculation of these metrics, thus
may yield tainted metrics and fail to achieve effective defense. For example, Krum (Blanchard
et al., 2017) calculates the sum of the squared distances between each client model and the other
client models as its score, and aggregates several models with the lowest scores. However, when
the majority are attackers, the score of the malicious model may be relatively lower, leading the
server to aggregate malicious models and resulting in defense failure. The proposed method aims to
defend against backdoor attacks by designing a metric that will not be tainted by malicious models.
To this end, we propose a metric that performs individual evaluation for each local model using
surrogate data. This individual evaluation approach renders the metric impervious to variations in
the attacker’s ratio.

E MORE EXPERIMENTAL RESULTS

E.1 DIFFERENT DATASETS AND RATIO

As shown in Tables 4 and 6, we conduct experiments on 3 datasets with different poison ratios, rang-
ing from 1% to 20%. The number of attackers is 4. It can be seen that SuDA can effectively defend
against backdoor attacks under different poison ratios. Note that although the accuracy of Normclip
is sometimes slightly higher than SuDA, its Atk Rate is much higher in comparison. This is mainly
because Normclip aggregates all clipped local models, which helps with model convergence but
does not completely eliminate the negative impact caused by attackers. On the other hand, SuDA
directly filters out malicious models by leveraging the surrogate dataset and does not select them
in the aggregation process. Although this leads to a decrease in the number of clients participating
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Algorithm 1 Surrogate Data-guided Aggregation Strategy (SuDA)

Input: local epochs E, client number K, maximum round R, initial parameter w0

Output: global parameter w
Initialization: Server generates the surrogate noise dataset D̃, and distributes the initial model
w0 and D̃ to all clients.

Server:
for each round r ∈ {0, 1, · · · , R} do

Uniformly selects a subset of clients Sr ⊆ {1, · · · ,K}
Sends the global model wr to all selected clients k ∈ Sr
for each client k ∈ Sr in parallel do
wr

k ← ClientTraining(k,wr)
end for
Wr ← {wr

k|k ∈ Sr}
//Accuracy test
Wr

1 ← AccFilter(Wr, D̃)
//Potential Trigger Construction
T r ← TriggerConstr(Wr

1 , D̃)
//Outlier Detection
Wr

2 ←MAD(T r)
//Aggregation
wr+1 ←

∑
pkw

r
k, w

r
k ∈ Wr

2
end for

Benign Client:
for each epoch e ∈ {0, · · · , E − 1} do
wr

k,e+1 ← wr
k,e − ηk,e∇FSuDA

k

(
wr

k,e

)
end for
Return wr

k to sever

Compromised Client:
Injects the backdoor into the local dataset
for each epoch e ∈ {0, · · · , E − 1} do
wr

k,e+1 ← wr
k,e − ηk,e∇FSuDA

k

(
wr

k,e

)
end for
wr

atk ← γ(wr
k − wr) + wr

Return wr
atk to sever

in server aggregation, making it more challenging to converge, SuDA still achieves a significantly
lower Atk Rate than Normclip while maintaining comparable Acc and Main Acc.

E.2 EXPERIMENTS WITH FEDPROX

FedProx (Li et al., 2020) is one of the more common training methods than FedAvg when extreme
heterogeneity exists in the client data. Therefore, we conduct experiments with FedProx on CIFAR-
10 in the Non-IID setting. We set the Non-IID degree control parameter α = 1 and the poison ratio
is 5%. The experimental results are shown in Table 5. It can be seen that SuDA is easy to integrate
with FedProx and performs well against backdoor attacks.

E.3 PERFORMANCE IN THE IID SETTING

To further demonstrate the applicability of SuDA, we compared the performance of defense meth-
ods on 3 datasets in the IID setting. We set the Non-IID degree control parameter α = 100 to
simulate the IID setting. The experimental results are shown in Tables 7. It can be seen that SuDA
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Table 4: ACC, ASR and MA of defense algorithms on the dataset CIFAR-10 with different poison
ratios.

Poison Ratio Defense 4 attackers 8 attackers 12 attackers

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

1%

FedAvg 81.12 2.41 81.21 84.43 2.41 84.51 84.97 2.76 85.07
RFA 84.62 1.55 84.72 85.37 1.77 85.47 85.13 1.79 85.22
Krum 49.58 5.5 49.41 51.53 1.86 51.16 52.09 3.88 51.87

MultiKrum 80.5 3.24 80.67 80.49 2.3 80.66 80.49 1.53 80.5
Coomed 83.76 1.42 83.73 83.51 1.29 83.49 83.49 1.42 83.57
Normclip 85.29 1.53 85.26 85.41 1.46 85.45 85.3 1.77 85.41

SuDA(ours) 85.59 1.2 85.71 84.89 1.27 85.03 85.14 1.35 85.18

5%

FedAvg 76.79 87.63 83.4 77.86 88.9 84.67 77.8 89.64 84.67
RFA 79.38 76.31 85.2 78.69 83.42 85.07 77.9 87.76 84.61
Krum 49.58 5.5 49.41 50.91 6.44 50.79 48.03 8.47 47.9

MultiKrum 80.5 3.24 80.67 78.73 6.28 79 76.99 10.98 77.72
Coomed 76.75 58.44 80.9 77.27 81.88 83.42 77.12 84.62 83.49
Normclip 79.41 78.17 85.41 78.85 83.33 85.26 78.68 87.91 85.47

SuDA(ours) 85.2 2.3 85.31 85.25 2.49 85.42 84.68 2.87 84.9

10%

FedAvg 76.62 92.21 83.61 78.09 87.93 84.94 77.88 91.84 84.94
RFA 78.44 84.71 84.95 78.09 88.96 84.94 78.18 91.31 85.22
Krum 49.58 5.5 49.41 51.89 3.83 51.55 51.64 2.03 51.28

MultiKrum 80.5 3.24 80.67 79.18 3 79.26 74.45 50.3 77.79
Coomed 77.51 81.64 83.67 76.74 86.9 83.28 77.11 88.99 83.85
Normclip 79.04 86.05 85.7 78.58 87.52 85.35 78.55 90.61 85.55

SuDA(ours) 85.38 2.06 85.52 85.07 2.03 85.2 84.79 2.03 84.87

20%

FedAvg 73.65 91.92 80.34 78.21 90.72 85.23 76.86 92.58 83.89
RFA 76.47 87.71 83.08 77.83 85.65 84.39 75.62 85.46 82.01
Krum 49.58 5.5 49.41 52.07 2.3 51.63 46.69 3.2 46.5

MultiKrum 80.5 3.24 80.67 79.27 1.6 79.36 75.14 68.37 79.98
Coomed 77.03 86.31 83.54 76.65 88.77 83.31 76.87 89.84 83.68
Normclip 78.62 88.81 85.49 78.7 89.05 85.62 78.32 91 85.37

SuDA(ours) 85.53 2.01 85.71 84.92 1.51 84.97 84.28 2.01 84.42

Table 5: Performance of different defense algorithms with FedProx on CIFAR-10.

Defense Atk Num = 0 Atk Num = 4 Atk Num = 8 Atk Num = 12

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

FedAvg 84.92 1.97 85.03 75.47 89.56 82.13 77.61 88.9 84.39 78.34 88.9 85.21
RFA 84.27 2.23 84.4 79.46 77.67 85.36 78.71 83.26 85.08 77.78 88.07 84.5
Krum 54.54 2.82 54.25 54.64 4.34 54.51 53.53 6.44 53.45 53.41 8.17 53.38

MultiKrum 80.71 1.73 80.84 79.58 2.03 79.66 78.87 2.22 79.04 78.21 28.44 80.23
Coomed 84.04 1.44 84.06 78.14 65.96 82.96 77.38 81.71 83.49 77.18 85.41 83.61
Normclip 84.71 1.42 84.72 78.71 77.19 84.55 78.29 83.35 84.65 78.3 86.82 84.96

SuDA(ours) 86.08 1.53 86.17 85.42 1.82 85.51 84.48 1.99 84.61 84.67 2.1 84.79

can still effectively defend against backdoor attacks in the IID setting and preserve high accuracy
simultaneously.

E.4 SURROGATE DATASET GENERATION

To further investigate the effect of different surrogate datasets, we employ two additional generated
datasets to replace the original surrogate dataset produced by StyleGAN. These two datasets include
one generated by a simple CNN and another generated by upsampling pure Gaussian noise. In our
data generation methods, we sample noise from various Gaussian distributions, each with the same
mean but different standard deviations, to generate noise with diverse latent styles that correspond
to distinct classes. Given that datasets CIFAR-10, FMNIST and SVHN each consist of 10 classes,
the surrogate dataset also comprises 10 classes. The size of the surrogate dataset is 2000 in our
experiments, which is a small proportion of the utilized datasets, i.e., 3.33% for CIFAR-10, 2.86%
for FMNIST, and 0.33% for SVHN. We show the generated surrogate datasets as Figures 4, 5 and
6. We also conduct ablations on the sensitivity of the size of the surrogate dataset and report results
in Table 10.

For the dataset generated by the simple CNN, we first sample 64-dimensional noises. These noises
are then fed into a CNN composed of 4 transpose convolutional layers and 3 convolutional layers.
The CNN model processes the input and produces noise data of size 32× 32. We employ 10 CNNs
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Table 6: ACC, ASR and MA of defense algorithms on CIFAR-10, FMNIST and SVHN with differ-
ent poison ratios.

Poison Ratio Defense CIFAR-10 FMNIST SVHN

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

1%

FedAvg 81.12 2.41 81.21 90.5 8.57 91.21 87.66 2.92 87.79
RFA 84.62 1.55 84.72 91.49 1.9 91.59 89.25 1.23 89.32
Krum 49.58 5.5 49.41 84.12 5.3 84.23 83.51 1.26 83.55

MultiKrum 80.5 3.24 80.67 91.23 1.99 91.36 86.47 1.37 86.53
Coomed 83.76 1.42 83.73 92 1.77 92.17 89.16 1.28 89.23
Normclip 85.29 1.53 85.26 91.67 1.6 91.83 87.74 1.46 87.82

SuDA(ours) 85.59 1.2 85.71 91.36 1.6 91.43 90.45 0.99 90.52

5%

FedAvg 76.79 87.63 83.4 83.71 99.78 92.09 81.41 67.14 86.66
RFA 79.38 76.31 85.2 87.41 22.74 89.2 88.99 5.36 89.36
Krum 49.58 5.5 49.41 84.12 5.3 84.23 83.51 1.26 83.55

MultiKrum 80.5 3.24 80.67 91.23 1.99 91.36 86.47 1.37 86.53
Coomed 76.75 58.44 80.9 88.93 5.83 89.36 89.04 3.09 89.25
Normclip 79.41 78.17 85.41 88.94 8.55 89.58 87.58 2.19 87.7

SuDA(ours) 85.2 2.3 85.31 91.46 1.44 91.55 90.72 1 90.75

10%

FedAvg 76.62 92.21 83.61 83.46 99.75 91.82 79.6 89.29 86.72
RFA 78.44 84.71 84.95 85.4 28.68 87.63 87.34 10.51 88.05
Krum 49.58 5.5 49.41 84.12 5.3 84.23 83.51 1.26 83.55

MultiKrum 80.5 3.24 80.67 91.23 1.99 91.36 86.47 1.37 86.53
Coomed 77.51 81.64 83.67 87.42 11.29 88.27 87.96 13.88 88.93
Normclip 79.04 86.05 85.7 86.83 12.93 87.77 87.3 5.74 87.69

SuDA(ours) 85.38 2.06 85.52 91.32 1.57 91.37 90.6 0.82 90.67

20%

FedAvg 73.65 91.92 80.34 83.19 99.78 91.53 78.39 95.28 85.95
RFA 76.47 87.71 83.08 80.03 34.62 82.38 84.08 35.51 86.73
Krum 49.58 5.5 49.41 84.12 5.3 84.23 83.51 1.26 83.55

MultiKrum 80.5 3.24 80.67 91.23 1.99 91.36 86.47 1.37 86.53
Coomed 77.03 86.31 83.54 85.88 21.77 87.49 85.84 17.67 87.08
Normclip 78.62 88.81 85.49 84.91 18.92 86.32 84.42 22.04 86.01

SuDA(ours) 85.53 2.01 85.71 90.91 1.64 90.95 91 0.76 91.05

Figure 4: Surrogate dataset generated by the StyleGAN.

with distinct initial weights to generate the noise data that have enough diversity as the dataset of 10
classes.

For the dataset generated by upsampling the pure Gaussian noise, noise points are initially sampled
to form an image of size 8× 8. Subsequently, upsampling is employed to transform the image into
a larger size of 32× 32. This upsampling process enables the generation of noise images with some
low-level features, thereby enabling the model to learn basic feature distributions from them.

As shown in Table 8, surrogate datasets generated by these two methods can also provide powerful
defense capabilities to the server, which further demonstrates the applicability and relevance of
SuDA.
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Table 7: Performance of defense algorithms on CIFAR-10, FMNIST and SVHN when defending
against varying attackers in the IID setting.

Atk Num Defense CIFAR-10 FMNIST SVHN

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

0

FedAvg 79 2.32 78.89 91.99 1.86 92.09 87.63 1.54 87.99
RFA 78.65 2.34 78.55 91.51 1.97 91.61 87.49 1.48 87.81
Krum 61.73 7.39 61.62 87.2 2.17 87.19 79.89 3.05 80.27

MultiKrum 76.49 2.21 76.37 90.7 1.99 90.78 85.62 2.17 85.94
Coomed 78.35 2.14 78.2 92.01 1.79 92.09 87.56 1.55 87.76
Normclip 77 2.47 76.87 91.65 1.84 91.7 82.6 2.52 82.78

SuDA(ours) 78.98 1.46 78.8 90.97 1.55 91 86.44 1.01 86.5

4

FedAvg 74.32 62.6 78.46 83.81 95.65 91.84 80.08 97.08 87.99
RFA 74.86 60.96 78.89 88.71 19.6 90.32 80.21 96.68 88.1
Krum 58.42 6.38 58.37 87.52 2.63 87.47 81.11 2.66 81.44

MultiKrum 76.13 2.55 76.11 90.77 2.25 90.89 85.63 1.8 85.98
Coomed 76.82 31.82 78.63 89.44 19.03 90.82 79.37 73.9 85.11
Normclip 73.15 59.03 76.86 89.89 5.3 90.27 82.63 3 82.84

SuDA(ours) 78.57 1.75 78.37 91.33 1.64 91.41 85.91 1.06 86.05

8

FedAvg 73.38 77.93 78.76 83.58 98.24 91.83 79.7 98.85 87.73
RFA 73.52 76.79 78.83 86.74 29.45 89.08 79.67 98.88 87.71
Krum 59.75 6.09 59.73 85.88 2.74 86.03 80 4.25 81.44

MultiKrum 76.12 4.16 76.1 90.91 2.54 91.04 85.01 5.43 85.67
Coomed 73.29 73.28 78.28 86.76 31.88 89.3 79.77 98.43 87.77
Normclip 71.93 73.48 76.78 87.81 19.36 89.3 82.51 3.23 82.71

SuDA(ours) 78.32 2.19 78.21 90.68 2.02 90.87 84.48 1.18 84.64

12

FedAvg 73.21 81.77 78.94 83.63 99.07 91.95 79.82 99.55 87.94
RFA 72.95 81.2 78.63 84.16 59.6 89.01 79.57 99.49 87.65
Krum 60.76 7.41 60.73 86.4 4.16 86.48 76.34 64.06 81.04

MultiKrum 76.14 5.29 76.25 89.88 5.41 90.22 77.72 96.6 85.35
Coomed 73.24 80.08 78.83 84.42 56.46 89.03 79.59 99.33 87.66
Normclip 71.49 79.38 76.87 85.03 52.32 89.27 82.28 3.92 82.52

SuDA(ours) 77.55 2.41 77.38 90.06 3.13 90.19 85.19 1.61 85.35

Figure 5: Surrogate dataset generated by the simple CNN.

E.5 DIFFERENT GLOBAL MODEL

We investigate the sensitivity of SuDA to various shared global models. In particular, we conduct
experiments on CIFAR-10 to compare the performance of SuDA with different defense algorithms
on a range of models, including ResNet-10, ResNet-34 (He et al., 2016), VGG-9 and VGG-19 (Si-
monyan & Zisserman, 2014). The results presented in Table 9 demonstrate the effectiveness of
SuDA across models of varying capacities.
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Figure 6: Surrogate dataset generated by upsampling the pure Gaussian noise.

Table 8: Results of SuDA with different generated noise datasets on CIFAR-10, FMNIST and
SVHN.

Atk Num Defense CIFAR-10 FMNIST SVHN

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

0

FedAvg 84.72 3.26 84.87 91.51 1.77 91.64 89.2 1.12 89.28
SuDA 86.29 1.33 86.28 91.2 1.38 91.26 90.32 0.82 90.39

SuDA Gaus 84.61 1.66 84.71 91.09 1.71 91.21 90.09 0.83 90.15
SuDA CNN 84.01 1.51 84.02 90.78 1.71 90.91 89.97 1.25 90.05

4

FedAvg 76.79 87.63 83.4 83.71 99.78 92.09 81.41 67.14 86.66
SuDA 85.2 2.3 85.31 91.46 1.44 91.55 90.72 1 90.75

SuDA Gaus 81.67 2.43 81.82 90.49 1.9 90.62 90.88 0.85 90.95
SuDA CNN 81.82 2.87 81.88 90.31 2.03 90.37 89.18 1.4 89.27

8

FedAvg 77.86 88.9 84.67 83.27 99.67 91.61 80.79 66.21 85.9
SuDA 85.25 2.49 85.42 90.79 1.82 90.89 90.68 0.88 90.72

SuDA Gaus 83.16 1.46 83.22 90.84 1.88 90.97 89.74 3.18 89.9
SuDA CNN 80.47 1.6 80.49 90.37 1.55 90.45 89.68 3.36 89.87

12

FedAvg 77.8 89.64 84.67 83.34 99.64 91.68 81.58 75.29 87.61
SuDA 84.68 2.87 84.9 87.29 3.07 87.38 89.48 1.44 89.52

SuDA Gaus 84.41 2.23 84.49 85.54 3.37 85.64 87.19 3.8 87.41
SuDA CNN 80.97 2.67 80.96 85.99 6.31 86.37 85.45 4.56 85.71

E.6 DIFFERENT HYPERPARAMETER λ

We adjust the align weight λ in the SuDA objective FSuDA
k from 0.1 to 5 on CIFAR-10 to examine

the sensitivity of SuDA to λ. The results in Table 15 demonstrate that SuDA is not sensitive to the
align weight λ, and it can achieve good performance within a wide range of λ.

E.7 MORE ADAPTIVE ATTACK SCENARIOS

In Table 2, we show the results of SuDA against the adaptive attack scenario: the attacker changes
the alignment parameter λ used to a different one not used by the benign clients. Empirical results
show that SuDA still performs relatively well against such an adaptive attack. We also consider the
performance of SuDA under another adaptive attack scenario: the attackers divide their poisoned
dataset into poisoned and benign parts, and only align the surrogate samples with the data within the
benign parts. The experimental results are shown in Tables 16 and 17. It can be seen that although
SuDA’s performance is slightly worse under this adaptive attack, it is still better than other defense
methods.

To further demonstrate the effectiveness of the proposed method, we consider stronger attackers,
pixel-level triggers (Doan et al., 2021) and distributed backdoor attacks (DBA) (Xie et al., 2020).
The experimental results in Table 12 show that SuDA can effectively defend against these attacks.
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Table 9: Performance of different defense algorithms on different models on CIFAR-10.

Defense ResNet-10 ResNet-34 VGG-9 VGG-19

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

FedAvg 72.07 85.32 78.09 73.36 88.13 79.69 45 8.57 44.87 45.33 9.42 45.28
RFA 76.68 73.75 82 76.88 71.42 82.09 45.53 6.09 45.22 41.53 7.19 41.44
Krum 53.44 6.33 53.36 43.42 7.63 43.24 26 29.21 26.39 18.44 45.17 19.01

MultiKrum 75.04 2.47 75 80.46 3.33 80.59 43.04 6.95 42.82 43.7 10.13 43.62
Coomed 76.18 62.25 80.49 79.11 65.28 84 32.2 5.98 32.1 23.37 3.2 23.34
Normclip 75.13 66 79.7 78.39 77.12 84.19 45.96 4.64 45.57 42.55 7.08 42.46

SuDA(ours) 80.28 1.73 80.46 86.53 1.71 86.91 56.63 1.58 56.95 55.1 2.52 55.91

Table 10: Results of SuDA with different surrogate dataset size.

Defense Metric Surrogate Dataset Size

500 1000 2000 3000 4000 6000 8000

SuDA
ACC(%) 87.74 87.89 87.67 87.26 86.69 87.75 87.61
ASR(%) 1.6 3.22 2.23 1.18 3.17 2.23 3.26
MA(%) 87.84 88.01 87.88 87.27 86.89 87.87 87.81

Table 11: Results of SuDA with different noise sample number.

Defense Metric Noise Sample Num b

64 128 256 512 1024

SuDA
ACC(%) 87.31 87.67 87.7 87.54 87.24
ASR(%) 1.92 2.23 2.89 1.9 2.69
MA(%) 87.42 87.88 87.83 87.69 87.49

(a) Stripe (b) Cross (c) 4×4 Square (d) 8×8 Square (e) 12×12 Square

Figure 7: Different Trigger Patterns

This is intuitive because these attacks do not fundamentally change how the triggers are injected,
allowing SuDA to reconstruct the triggers through optimization.

E.8 DIFFERENT TRIGGER PATTERNS

We investigate the defensive capabilities of SuDA against different trigger patterns. As shown in
Figure 7, we investigate two additional, more complex triggers, as well as larger-sized triggers. The
experimental results are shown in Table 13. It can be seen that SuDA performs well against two
more complex triggers, ’Stripe’ and ’Cross’. When defending against large triggers, SuDA still
performs well in defending against triggers with a size of 10, but if the triggers continue to increase
in size, the defense performance will decrease.

E.9 EXTRA TIME OVERHEAD

In order to minimize the extra time overhead caused by reconstructing potential triggers, we record
the optimized trigger obtained in each round as the initial value for the next round of optimization,
thus eliminating the need to start the estimation from scratch in each round. At the same time,
we use early-stop during trigger optimization, which greatly reduces the time overhead after the
60th round. To further reduce time overhead, we also investigate a more efficient method, SuDA-
Efficient. SuDA-Efficient does not reconstruct potential triggers for each label of each local model
sequentially; instead, it first aggregates all local models, reconstructs potential triggers for the ag-
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Table 12: Results of stronger attackers.

Defense CIFAR-10 FMNIST

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

Replacement Attack 84.65 2.38 84.77 90.80 1.20 90.92
Pixel-level Triggers Attack 84.17 3.57 84.40 90.54 1.18 90.80

DBA 84.92 2.29 85.39 90.29 1.34 90.62

Table 13: Results of SuDA with different Trigger Patterns.

Defense Metric Stripe Cross Square Size

4 6 8 10 12 14

SuDA
ACC(%) 84.80 84.95 84.65 83.84 83.43 83.96 82.13 77.15
ASR(%) 1.09 2.52 2.38 1.22 6.22 2.61 15.32 89.07
MA(%) 84.91 85.10 84.77 83.94 84.17 84.64 83.97 83.92

Table 14: Comparison of extra time overhead between SuDA and baseline methods

Defense sec per Round ACC(%) ASR(%) MA(%)

FedAvg 28.67 76.79 87.63 83.40
RFA 28.84 79.38 76.31 85.20
Krum 30.90 49.58 5.50 49.41

Coomed 29.15 76.75 58.44 80.90
Normclip 32.08 79.41 78.17 85.41
FLAME 33.13 77.19 82.65 83.36
FLTrust 34.50 65.54 38.99 67.57

SuDA(ours) 61.71 84.65 2.38 84.77
SuDA-Efficient(ours) 38.42 82.78 8.22 83.35

Table 15: Performance of SuDA on CIFAR-10 for varying align parameter λ.

λ
Atk Num = 0 Atk Num = 4 Atk Num = 8 Atk Num = 12

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

λ = 0.1 83.94 2.76 84.03 83.11 2.93 83.23 82.84 2.01 82.94 82.22 2.85 82.34
λ = 0.2 84.45 2.25 84.56 83.66 3.09 83.82 83.33 2.23 83.44 83.01 3.24 83.16
λ = 0.5 85.96 1.86 85.98 84.68 2.57 84.8 84.24 2.27 84.39 84.08 3.05 84.25
λ = 1 86.29 1.33 86.28 85.2 2.3 85.31 85.25 2.49 85.42 84.68 2.87 84.9
λ = 2 88.12 1.67 88.32 85.71 1.61 85.74 85.51 2.37 85.66 85.37 2.24 85.46
λ = 5 88.58 1.82 88.73 85.87 2.12 86.06 85.87 1.46 85.98 86.22 1.49 86.37

gregated model, and checks whether the target label exists. When the target label is detected, it
then reconstructs potential triggers for that label in each local model, filtering out malicious clients.
When K clients are involved in the aggregation, SuDA-Efficient can reduce the extra time overhead
by up to K times.

We conduct experiments to compare SuDA and baseline methods on CIFAR-10. The experimental
results are shown in Table 14. From the table, we can see that SuDA achieves excellent defense
performance, while keeping the time overhead acceptable. SuDA-Efficient further reduces the time
overhead and still maintains good defense performance compared to other baseline methods.

E.10 MORE ABLATION EXPERIMENTS

To further demonstrate the effectiveness of SuDA, we conduct more ablation experiments on CIFAR-
10. We consider a new scenario: a total of 50 clients, all participating in aggregation each round.
Tables 18 and 19 show the performance of different defense algorithms under large attacker ratios
and large poison ratios respectively, which further underscore the robust effectiveness of SuDA in
diverse settings.

In Table 11, we conduct ablations on the sensitivity of b mentioned in Section 4.2. We can see that
b has a limited impact on the performance. In Table 10, we investigate the effect of the size of the
surrogate dataset on the performance. We can see that the size of the surrogate dataset has a limited
impact on the performance. Even when the surrogate dataset size is only 500, the proposed method
still demonstrates excellent performance.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 16: Performance of SuDA under the adaptive attack when defending against varying attackers.

Atk Num Defense CIFAR-10 FMNIST SVHN

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

0 SuDA 86.29 1.33 86.28 91.2 1.38 91.26 90.32 0.82 90.39
SuDA Adapt 86.29 1.33 86.28 91.2 1.38 91.26 90.32 0.82 90.39

4 SuDA 85.2 2.3 85.31 91.46 1.44 91.55 90.72 1 90.75
SuDA Adapt 84.28 2.41 84.4 90.22 1.57 90.33 91.12 0.89 91.19

8 SuDA 85.25 2.49 85.42 90.79 1.82 90.89 90.68 0.88 90.72
SuDA Adapt 84.93 2.52 85.02 90.83 1.9 90.87 90.58 1.17 90.65

12 SuDA 84.68 2.87 84.9 87.29 3.07 87.38 89.48 1.44 89.52
SuDA Adapt 84.22 2.97 84.44 87.1 3.24 87.19 89.88 1.69 89.95

Table 17: Performance of SuDA under the adaptive attack with different poison ratios.

Poison Ratio Defense CIFAR-10 FMNIST SVHN

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

1% SuDA 85.59 1.2 85.71 91.36 1.6 91.43 90.45 0.99 90.52
SuDA Adapt 85.59 1.2 85.71 91.16 1.6 91.24 90.71 0.99 90.78

5% SuDA 85.2 2.3 85.31 91.46 1.44 91.55 90.72 1 90.75
SuDA Adapt 84.28 2.41 84.4 90.22 1.57 90.33 91.12 0.89 91.19

10% SuDA 85.38 2.06 85.52 91.32 1.57 91.37 90.6 0.82 90.67
SuDA Adapt 85.18 2.96 85.32 91.41 1.46 91.47 90.63 1.01 90.72

20% SuDA 85.53 2.01 85.71 90.91 1.64 90.95 91 0.76 91.05
SuDA Adapt 85.78 2.34 85.85 91.38 1.71 91.43 90.55 0.82 90.58

Table 18: Performance of different defense algorithms under large attacker ratios.

Defense Atk Num = 0 Atk Num = 10 Atk Num = 20 Atk Num = 30

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

FedAvg 89.35 0.67 89.5 79.46 97.23 87.17 81.61 94.82 89.3 81.99 96.92 89.94
RFA 87.51 1.16 87.56 80.83 81.25 87.24 80.4 86.75 87.23 79.67 91.88 86.91

MultiKrum 88.33 1.22 88.4 88.32 1.35 88.47 80.35 88.31 87.3 81.03 97.01 88.88
Coomed 87.91 0.96 87.91 81.41 89.1 88.57 80.94 91.51 88.27 80.64 95.46 88.3
Normclip 79.71 1 79.65 73.8 83.57 79.77 73.16 87.8 79.43 73.26 89.8 79.68

SuDA(ours) 89.74 0.94 89.78 88.85 1.24 88.92 87.67 2.23 87.88 85.13 3.46 85.38

Table 19: Performance of different defense algorithms under large poison ratios.

Defense Poison Ratio = 20% Poison Ratio = 40% Poison Ratio = 60% Poison Ratio = 80%

ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%) ACC(%) ASR(%) MA(%)

FedAvg 81.1 99.25 89.16 80.48 99.75 88.53 79.05 99.69 86.95 76.92 99.78 84.62
RFA 79.44 89.51 86.71 78.12 88.55 85.07 75.95 92.21 83.03 74.95 85.54 81.54

MultiKrum 80.36 99.47 88.37 79.9 99.75 87.9 77.88 99.69 85.67 74.92 99.78 82.42
Coomed 80.28 98.04 88.15 79.67 99.32 87.6 78.29 99.78 86.13 75.01 99.75 82.51
Normclip 71.92 92.34 78.45 69.27 93.13 75.62 66.38 93.55 72.48 61.66 93.79 67.31

SuDA(ours) 84.78 4.34 85.09 84.9 4.58 85.16 85.02 3.92 85.23 84.8 4.4 85.09

(a) FedAvg w/o SuDA (b) SuDA (server) (c) SuDA (client)

Figure 8: The visualization of the feature distribution of FedAvg with (without) SuDA, at the 199-
th communication round. The dots represent real data, the triangles represent noise data, the stars
represent backdoored data, and different colors indicate different classes.
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F VISUALIZATION OF FEATURE DISTRIBUTION

We exploit t-SNE (Van der Maaten & Hinton, 2008) to visualize the feature distribution, further
illustrating how SuDA utilizes the noise dataset to help servers defend against backdoor attacks.
Specifically, we demonstrate the feature distributions of FedAvg with (without) SuDA on the test
data for 199 rounds, showcasing their respective generalization capabilities. Figure 8a shows the
feature distribution of FedAvg at round 199. It can be observed that FedAvg brings the features
from the same class closer together, thereby enabling the classification of different class samples.
Meanwhile, the features of samples implanted with triggers are also be clustered, causing the model
to misclassify them as the target class. Figures 8b and 8c represent the feature distributions of SuDA
for 199 rounds. The poisoned samples are also correctly clustered together with samples of the same
class.
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