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Abstract

Audio deepfakes pose a growing threat, particularly in linguistically diverse and low-resource
settings where existing detection methods often struggle. This work introduces two transfor-
mative contributions to address these challenges. First, we present IndicFake, a pioneering
audio deepfake dataset with over 4.2 million samples (7,350 hours) spanning English and
17 Indian languages across Indo-European, Dravidian, and Sino-Tibetan families. With
minimal overlap (Jaccard similarity: 0.00–0.06) with existing datasets, IndicFake offers an
unparalleled benchmark for multilingual deepfake detection. Second, we propose SAFARI-
LLM (Semantic Acoustic Feature Adaptive Router with Integrated LLM), a novel frame-
work that integrates Whisper’s semantic embeddings and m-HuBERT’s acoustic features
through an adaptive Audio Feature Unification Module (AFUM). Enhanced by LoRA-fine-
tuned LLaMA-7B, SAFARI-LLM achieves unmatched cross-lingual and cross-family gener-
alization. Evaluations across IndicFake, DECRO, and WaveFake datasets demonstrate its
superiority, outperforming 14 state-of-the-art models with standout accuracies of 94.21%
(English-to-Japanese transfer on WaveFake) and 84.48% (English-to-Chinese transfer on
DECRO), alongside robust performance across diverse linguistic contexts. These advance-
ments establish a new standard for reliable, scalable audio deepfake detection. Code and
resources are publicly available at: URL.

1 Introduction

Voice technology has fundamentally changed how we engage with devices and services. Driven by sophis-
ticated speech recognition that converts spoken words into text with remarkable precision, it powers assis-
tants such as Siri, Alexa, and Google Assistant, enabling diverse tasks through simple voice prompts. In
the United States, approximately 128 million people1 use these assistants each month. Meanwhile, smart
speaker adoption has risen by 135% since 2018, highlighting rapid growth in voice-focused technology. Be-
yond convenience, voice interfaces are increasingly vital for security via speaker verification, using unique
vocal features as biometric markers. Financial institutions such as Wells Fargo and Barclays2 now employ
this technology, enabling secure account management via voice commands. Indian Railways has similarly
introduced voice-enabled ticket booking, streamlining travel for millions.

These advancements also present significant risks. A recent report3 indicated nearly 50 million AI-generated
“voice clone” calls spanning 22 official languages during the two months preceding India’s General Elections,
highlighting the growing threat of deepfakes exploiting linguistic diversity. Such deepfakes pose severe
implications, including the potential manipulation of elections, financial fraud, and social engineering attacks.
Moreover, the ability of these deepfake technologies to convincingly replicate individual voices, including
those of public figures, adds layers of complexity to authentication and verification processes, necessitating
urgent advancements in detection technologies. Existing studies explore various deepfake algorithms but real-
world complexities remain underexamined, notably the impact of accent variations, dialectal differences, and
the robustness of models across linguistically diverse settings (Ranjan et al., 2023; 2024).

1http://tinyurl.com/usvoice135
2http://tinyurl.com/barclaysvoice
3https://tinyurl.com/indianelectionas
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Figure 1: Overview of the IndicFake benchmark. SAFARI-LLM integrates language-specific and universal
features for robust detection, addressing linguistic diversity. The IndicFake dataset spans 18 languages across
Indo-European, Dravidian, Sino-Tibetan, and other language families, enabling comprehensive evaluation.
SAFARI-LLM integrates language-specific and universal features for robust detection, addressing linguistic
diversity.

Furthermore, voice-based systems are especially vulnerable in multilingual contexts, where training data pre-
dominantly consists of high-resource languages, leaving low-resource languages less effectively covered. Such
discrepancies in data availability significantly impact the detection efficacy, highlighting an imbalance that
undermines the overall security robustness. These gaps emphasize the urgent need for extensive and repre-
sentative datasets to enable effective training and evaluation of deepfake detection systems in multilingual
and cross-linguistic scenarios.

1.1 Related Work

Over the past decade, numerous voice anti-spoofing datasets have been developed to address deepfake audio
challenges. Benchmark collections like ASVspoof (Wu et al., 2015; Wang et al., 2020; Yamagishi et al., 2021;
Wang et al., 2024) and Audio Deepfake Detection (ADD) (Yi et al., 2022; 2023) spearheaded tasks like
fake audio detection and manipulation region localization. However, these datasets generally feature English
samples with limited noise and codec variations (Reimao & Tzerpos, 2019; Frank & Schönherr, 2021; Ma
et al., 2022), reducing their effectiveness in diverse acoustic scenarios. Datasets such as MLAAD (Müller
et al., 2024) and DECRO (Ba et al., 2023) expand linguistic coverage but lack partial fakes (Yi et al., 2022).
Efforts like HABLA (Tamayo Flórez et al., 2023), ILLUSION (Thakral et al., 2025), CVoiceFake (Li et al.,
2024), and VoiceWukong (Yan et al., 2024) broaden non-English contexts. Yet, no dataset comprehensively
offers extensive multilingual coverage, advanced generation methods, and real-world variability (Table 1).

Algorithmically, early approaches employed handcrafted features—phase (Xiao et al., 2015), magnitude
(Tian et al., 2016), and pitch (Korshunov & Marcel, 2016)—or deep learning models using raw waveforms
or extracted representations (Kawa et al., 2023; Tak et al., 2021; Jung et al., 2022). Although effective on
standardized benchmarks, English-trained models falter in multilingual (Korshunov & Marcel, 2016; Müller
et al., 2022) or accented scenarios (Ranjan et al., 2024), emphasizing the need for cross-lingual methods
(Ba et al., 2023). Challenges such as partial-truth detection, explainability, and noise robustness (Ranjan
et al., 2023) highlight the urgency for comprehensive datasets and unified architectures for reliable real-world
deepfake detection.

1.2 Problem Formulation and Research Contributions

The multilingual audio deepfake detection problem involves classifying an audio sample X ∈ RT (where
T is the temporal dimension) as real (y = 0) or fake (y = 1) across languages l ∈ L = {l1, l2, . . . , lM }
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Table 1: Summarizing the key statistics of the proposed IndicFake dataset and its comparison with existing
speech deepfake datasets. IndicFake is the largest among all the existing datasets and covers 18 languages
of the Southeast Asian region.

Dataset Year Language Indic Languages Spoofed Methods # Total Samples
ASVspoof 2015 (Wu et al., 2015) 2015 English ✗ 10 246,500
ASVspoof 2019-LA (Wang et al., 2020) 2019 English ✗ 19 130,378
FoR (Reimao & Tzerpos, 2019) 2019 English ✗ 7 87,285
ASVspoof 2021-LA (Yamagishi et al., 2021) 2021 English ✗ 19 148,148
ASVspoof 2021-DF (Yamagishi et al., 2021) 2021 English ✗ 100+ 572,616
WaveFake (Frank & Schönherr, 2021) 2021 English, Japanese ✗ 7 117,985
ADD2022 -LF (Yi et al., 2022) 2022 Chinese ✗ Unknown 389,419
Latin American (Tamayo Flórez et al., 2023) 2022 Spanish ✗ 6 58,000
CFAD (Ma et al., 2022) 2023 Chinese ✗ 12 231,600
DECRO (Ba et al., 2023) 2024 English, Chinese ✗ 10 118,381
MLAAD (Müller et al., 2024) 2024 38 Languages ✓(Hindi, Bangla) 26 82,000
ASVspoof5 (Wang et al., 2024) 2024 English ✗ 32 1,211,186
Speech-Forensics (Ji et al., 2024) 2024 English ✗ - 7,362
IndicFake (Proposed) 2025 18 Languages ✓ 4 4,222,759

and generation methods m ∈ M . Linguistic diversity introduces complexity, as languages exhibit distinct
phonetic, acoustic, and prosodic characteristics. Additionally, varied synthesis methods produce unique
artifacts, complicating detection in real-world scenarios.

The objective is to minimize the binary cross-entropy loss:

min
θ

L(θ) = − 1
N

N∑
i=1

[yi log(fθ(Xi)) + (1 − yi) log(1 − fθ(Xi))] (1)

where fθ is the detection model parameterized by θ, and N is the number of training samples. However,
the assumption that training and testing data share the same distribution often fails in multilingual set-
tings, where models trained on one language must generalize to others with differing acoustic and linguistic
properties. This paper addresses three key research questions to tackle these challenges:

RQ1 (Cross-Lingual Generalization): Can a model trained on language la detect deepfakes in language
lb (fθ : X(la) → y(lb))?
This question evaluates whether models can generalize across languages with distinct phonetic inventories,
prosodic patterns, and acoustic traits. Success in this task requires learning language-agnostic features,
enabling practical deployment where labeled data for every language is unavailable.

RQ2 (Cross-Language Family Generalization): Can a model trained on language family Fa detect
deepfakes in family Fb (fθ : X(Fa) → y(Fb))?
This extends RQ1 to more diverse linguistic structures, such as Indo-European versus Dravidian families,
which differ in phonological systems, word order, and consonant-vowel patterns. This is critical for regions
like India, where multiple language families coexist. Success indicates the model captures universal deepfake
artifacts across fundamentally different linguistic domains.

RQ3 (Impact of Model Architecture): How do architectural choices and input representations R ∈
{Rraw, Rspec, Rdual} affect detection performance (fθ,R : X → y)?
This investigates the role of raw waveforms (Rraw), spectral features (Rspec), and dual-stream representations
(Rdual) in multilingual detection. It also explores how transformer-based encoders, attention mechanisms,
and feature fusion impact robustness. Optimal performance requires co-designing architectures with input
representations to capture both temporal and frequency-domain cues.

We address these research questions with two primary contributions, significantly advancing multilingual
audio deepfake detection:

• IndicFake Dataset: We introduce a multilingual audio deepfake dataset with over 4 million samples
across 18 languages from Indo-European, Dravidian, and Sino-Tibetan families. Unlike existing
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datasets that primarily focus on English or have limited multilingual settings, IndicFake enables
robust evaluation of cross-lingual and cross-family generalization (RQ1, RQ2). It includes authentic
and synthetic audio from state-of-the-art text-to-speech systems, reflecting diverse speakers, acoustic
conditions, and generation methods.

• SAFARI-LLM Architecture: We propose a novel detection framework combining dual-stream
semantic (Whisper) and acoustic (m-HuBERT) encoders via an Audio Feature Unification Module
(AFUM). Designed for RQ3, SAFARI-LLM uses LoRA-based fine-tuning and dynamic routing to
adaptively integrate semantic and acoustic features, enhancing generalization across languages and
generation methods.

• SAFARI-LLM achieves 94.21% accuracy in English-to-Japanese transfer on WaveFake, 84.48% in
English-to-Chinese transfer on DECRO, and balanced performance across IndicFake’s diverse lan-
guage families, demonstrating its effectiveness in addressing real-world multilingual deepfake detec-
tion challenges.

2 Proposed IndicFake Dataset

Deepfake detection systems predominantly trained on English audio data struggle when applied to non-
English scenarios, emphasizing a critical gap in existing multilingual datasets (Wang et al., 2020; Yamagishi
et al., 2021; Yi et al., 2022; 2023). To bridge this gap, we introduce IndicFake, an extensive multilingual
dataset explicitly designed to enhance robust cross-lingual deepfake detection. IndicFake comprises over
4 million audio samples, covering English and 17 Indian languages from three major language families:
Indo-Aryan, Dravidian, and Sino-Tibetan, as detailed in Table 2. The dataset uniquely integrates authentic
speech recordings alongside synthetic audio generated by advanced text-to-speech (TTS) models, offering
comprehensive coverage of linguistic nuances and acoustic variations.

2.1 Dataset Construction

Creating a multilingual speech dataset for Indian languages is challenging due to the extensive diversity in
scripts, phonetic inventories, and prosodic structures. For instance, even languages within the same family,
such as Hindi and Marathi, share scripts (Devanagari), whereas languages like Bengali and Punjabi utilize
entirely different writing systems (Eastern Nagari and Gurmukhi, respectively). Similarly, the Dravidian lan-
guages (Kannada, Malayalam, Tamil, Telugu) each possess distinctive scripts, and Sino-Tibetan languages
(Manipuri, Boro) frequently adopt multiple scripts (e.g., Eastern Nagari, Devanagari). Recognizing this
complexity, our dataset construction approach involves two distinct steps: systematic collection of authen-
tic speech from diverse linguistic and script backgrounds, and the generation of synthetic speech samples
capturing a wide range of tonal and phonetic characteristics.

Real Data Collection: IndicFake primarily derives its authentic audio samples from the comprehensive
Dhwani corpus (Javed et al., 2022), an extensive resource encompassing 40 Indian languages, curated from
publicly available YouTube content. From this corpus, we carefully selected 17 languages representing key
linguistic families—Indo-European (Assamese, Bangla, Marathi, Oriya, Punjabi, Rajasthani, Maithili, Do-
gri, Urdu, Gujarati, Hindi), Dravidian (Kannada, Malayalam, Tamil, Telugu), and Sino-Tibetan (Manipuri,
Bodo). We sourced 200 Creative-Commons-licensed YouTube videos across diverse domains such as educa-
tion, news, technology, sports, and finance to capture a broad range of real-world speaking styles.

All audio recordings were standardized to a 16 kHz mono-channel format. We applied Voice Activity Detec-
tion (py-webrtcvad, aggressiveness=2) to exclude silence and non-speech segments. Additionally, we filtered
out segments with Signal-to-Noise Ratios (SNR) below 15 dB, measured using the WADA-SNR method,
ensuring consistently high-quality audio. Subsequently, each audio file was segmented into uniform five-
second clips. To ensure speaker independence, we adopted a 70-30 train-test split at the video level, yielding
approximately 2,660 hours of authentic speech data suitable for rigorous evaluation and training.

Fake Audio Generation: Synthetic speech samples within IndicFake were generated using multiple so-
phisticated TTS models. These models span a variety of architectures, from traditional pipeline-based
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Table 2: Characteristics of proposed IndicFake dataset. The dataset contains real and synthetic speech
samples across English and 17 Indian languages, including per-model TTS splits by gender and overall
dataset composition.

Language Real Data MMS IndicTTS DonaLabTTS DonaLabTTS2
Male Male Female Male Female Male Female

Assamese 112,426 30,000 29,982 29,982 – – 26,927 26,927
Bangla 111,077 30,000 29,986 29,986 29,640 29,640 29,653 29,653
Boro 5,715 – – – – – – 22,118
Dogri 3,649 5,499 – – – – – –
English 30,000 29,908 29,908 – – 30,043 21,631
Gujarati 144,337 – – – 28,885 28,885 29,261 29,261
Hindi 221,022 30,000 29,915 29,915 29,186 27,345 29,508 15,188
Kannada 214,855 30,000 29,995 29,995 22,476 28,793 29,240 29,240
Maithili 328 14,960 – – – – – –
Malayalam 153,954 30,000 29,994 29,994 28,851 28,851 28,738 8,778
Manipuri 46,813 – 4,816 4,815 – – 18,553 –
Marathi 211,906 30,000 26,306 – 29,376 29,376 29,429 29,429
Oriya 115,732 30,000 27,319 27,318 – – 29,724 29,722
Punjabi 137,442 30,000 24,751 24,604 – – 30,033 30,033
Rajasthani – – 4,925 4,926 4,926 4,926 4,926 4,925
Tamil 146,215 30,000 29,920 29,920 25,134 28,284 30,002 30,002
Telugu 259,908 30,000 29,989 – 28,810 28,810 29,558 29,536
Urdu 112,185 41,335 – – – – 30,000 30,000
#samples 1,997,564 391,794 327,806 271,363 227,284 234,910 405,595 366,443
#samples/model 1,997,564 391,794 599,169 462,194 772,038
#samples/class 1,997,564 2,225,195
Total 4,222,759

approaches to state-of-the-art end-to-end frameworks, ensuring comprehensive coverage of synthetic speech
characteristics:

• IndicTTS (F01) (Kumar et al., 2022): Utilizes FastPitch (Ren et al., 2019) for efficient mel-
spectrogram prediction coupled with HiFi-GAN (Kong et al., 2020) for generating high-fidelity audio
waveforms. This combination ensures rapid generation of natural-sounding speech with accurate
prosodic modeling.

• DonaLabTTS (F02) & DonaLabTTS2 (F03) (Ren et al., 2020): Both models are derived from
the FastSpeech2 framework but differ significantly in their phoneme alignment strategies. DonaL-
abTTS applies a hybrid segmentation method to achieve robust phoneme-level alignments, while
DonaLabTTS2 utilizes the precise Montreal Forced Aligner (MFA) method, resulting in consistently
accurate duration modeling across various linguistic contexts.

• Massive Multilingual Speech (F04) (Pratap et al., 2024): Employs a Variational Inference with
adversarial learning for Text-to-Speech (VITS) model, directly generating raw waveforms without
intermediate spectrogram stages. This approach effectively captures an expansive range of prosodic
variations, benefiting from extensive multilingual pre-training encompassing up to 1,100 languages.

5



Under review as submission to TMLR

Table 3: Language metadata across the IndicFake dataset showing language codes, speaker gender dis-
tribution, script systems, language families, and native regions, highlighting the dataset’s linguistic and
demographic diversity.

Language Code Speakers Script Family Native Region

Assamese as male, female Eastern-Nagari Indo-European Assam
Bangla bn male, female Eastern-Nagari Indo-European West-Bengal, Bangladesh
Boro brx female DevaNagari Sino-Tibetan Bodoland Territory
Dogri dgo male Dogri Indo-European Rajasthan
English en male, female English Indo-European Pan India
Gujarati gu male, female Gujrati Indo-European Gujarat
Hindi hi male, female DevaNagari Indo-European Hindi Belt
Kannada kn male, female Kannada Dravidian Karnataka
Maithili ma male DevaNagari Indo-European Bihar
Malayalam ml male, female Malayalam Dravidian Kerala
Manipuri mni male, female Meetei, Eastern-Nagari Sino-Tibetan Imphal valley (Manipur)
Marathi mr male, female DevaNagari Indo-European Maharashtra
Oriya or male, female Odia Indo-European Odisha
Panjabi pa male, female Gurumukhi Indo-European Eastern-Punjab
Rajasthani raj male, female DevaNagari Indo-European Rajasthan
Tamil ta male, female Tamil Dravidian Tamil Nadu
Telugu te male, female Telugu Dravidian Andhra Pradesh, Telangana
Urdu ur male, female Arabic Indo-European Hindi Belt

2.2 Dataset Diversity

The IndicFake dataset is a comprehensive and linguistically diverse collection featuring 18 languages across
India’s three major language families. This extensive diversity ensures robust cultural and linguistic rep-
resentation, essential for effective multilingual deepfake detection. The dataset includes various scripts,
reflecting India’s rich textual heritage. For instance, the Eastern-Nagari script is employed for Assamese
and Bangla, representing linguistic traditions from eastern India. The widely-used Devanagari script encom-
passes Hindi, Marathi, and Rajasthani, illustrating central and western linguistic characteristics. Southern
languages—Tamil, Telugu, Malayalam, and Kannada—each possess distinctive scripts with unique characters
and writing conventions.

Gender representation within the dataset has been carefully curated to maintain balanced voice diversity
across most languages. Both male and female voices are comprehensively represented, supporting nuanced
analyses of gender-specific vocal features. Languages like Dogri, Maithili, and Boro exhibit single-gender
representation due to demographic constraints and data availability limitations in these linguistic communi-
ties.

Categorizing languages by family provides essential linguistic context. The Indo-European family includes
twelve languages such as Assamese, Bangla, Dogri, English, Gujarati, Hindi, Maithili, Marathi, Oriya,
Punjabi, Rajasthani, and Urdu, highlighting the significant diversity within this linguistic group. The
Dravidian family, represented by Kannada, Malayalam, Tamil, and Telugu, showcases the distinct linguistic
identity of southern India. The inclusion of Sino-Tibetan languages—Boro and Manipuri—adds further
linguistic depth to the dataset.

Geographically, IndicFake captures linguistic diversity from across India, ranging from northern mountainous
regions (Dogri) to tropical southern landscapes (Malayalam), and western states (Gujarati) to northeastern
areas (Assamese). This comprehensive geographic coverage ensures broad cultural representation, effectively
reflecting the linguistic richness and complexity of the Indian subcontinent. Detailed dataset information is
presented in Table 3.
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Figure 2: Distribution of audio samples across 18 languages, showing representation of major languages and
inclusion of low-resource languages.

2.3 Dataset Statistics

The IndicFake dataset comprises over 4.2 million speech samples, totaling approximately 7,350 hours of audio
data. This extensive collection spans English and 17 Indian languages, grouped into three major language
families: Indo-European, Dravidian, and Sino-Tibetan. A detailed breakdown of this dataset is presented
in Table 2. IndicFake maintains a balanced distribution, with most languages exceeding 100,000 samples,
while thoughtfully preserving representation for low-resource languages. Specifically, the dataset includes
around 2 million real audio samples (approximately 2,660 hours) and 2.2 million synthetic audio samples
(approximately 4,690 hours) generated using four advanced TTS systems.

The language distribution within IndicFake demonstrates deliberate resource allocation to ensure robust
representativeness. Major languages such as Hindi (414,594 samples), Kannada (412,079 samples), and
Telugu (436,611 samples) are well-represented, aligning with their widespread usage and significant speaker
populations. Medium-resource languages, including Malayalam (349,477 samples), Tamil (339,160 samples),
and Marathi (385,822 samples), also maintain strong representation, ensuring comprehensive analytical
capabilities. Crucially, IndicFake incorporates lower-resource languages such as Boro (74,997 samples), Dogri
(50,545 samples), and Rajasthani (9,148 samples), underscoring the dataset’s inclusive design aimed at
supporting technology solutions across diverse language communities, irrespective of their size or availability
of resources. Figure 2 provides a visual overview of the dataset’s language-wise distribution.

The duration of audio samples within IndicFake has been curated to encompass various speech scenarios.
Short audio segments (0.8–2.0 seconds) constitute 12.4% of the dataset, effectively capturing brief utterances
and quick speech interactions. Medium-length segments (2.0–4.0 seconds) represent typical conversational
turns, accounting for 24.8% of the dataset. Longer segments (4.0–8.0 seconds), comprising 40.0%, offer
substantial context suitable for detailed analysis. Finally, extended segments exceeding 8.0 seconds make up
22.8%, enabling exploration of longer speech patterns, prosody, and extended conversational contexts.
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Figure 3: Showcases the distribution of speaker gender, language, and duration in IndicFake dataset demon-
strating dataset balance. The language distribution (A) shows balanced coverage across 18 languages. The
speaker distribution (B) highlights maintained gender balance across both real and synthetic speech samples,
enhancing the dataset’s representativeness for deepfake detection research. While the duration distribution
(C) indicates natural variation from 0.5 to over 8 seconds, reflecting real-world speech patterns.

Table 4: Jaccard similarity indices comparing language overlap between IndicFake and existing audio deep-
fake datasets, demonstrating IndicFake’s unique contribution to language coverage in deepfake detection
research.

Dataset ASVspoof 2015 ASVspoof 2019-LA FoR ASVspoof 2021-LA ASVspoof 2021-DF WaveFake ADD2022-LF Latin American CFAD DECRO ASVspoof5 Speech-Forensics MLAAD
Jaccard Index 0.06 0.06 0.06 0.06 0.06 0.05 0.00 0.00 0.00 0.05 0.06 0.06 0.06

IndicFake also achieves near-perfect gender parity, with male speakers representing 51.3% and female speak-
ers comprising 48.7% of the total audio samples. This balanced gender representation is essential for de-
veloping unbiased audio processing and deepfake detection algorithms capable of robust performance across
varied speaker demographics. Figure 3 illustrates the distribution across languages, durations, and gender,
highlighting the dataset’s comprehensive and balanced nature.

2.4 Dataset Comparison

To contextualize IndicFake’s contribution within the existing landscape of audio deepfake datasets, we con-
ducted a comparative analysis using Jaccard similarity indices and UpSet plot visualizations. Jaccard simi-
larity indices revealed minimal overlap between IndicFake and existing datasets, ranging from 0.00 to 0.06.
IndicFake shares the highest overlap (0.06) with datasets such as ASVspoof 2015, ASVspoof 2019-LA, FoR,
ASVspoof 2021-LA, ASVspoof 2021-DF, and Speech-Forensics. This notably low overlap underscores Indic-
Fake’s distinctiveness, particularly regarding language diversity. A detailed comparison using Jaccard indices
is provided in Table 4.

The UpSet plot visualization in Figure 4 offers further insights into the dataset intersections. MLAAD
emerges as the most linguistically diverse dataset with 38 languages, closely followed by IndicFake’s substan-
tial coverage of 18 languages. The largest intersection occurs between MLAAD and IndicFake, highlighting
overlapping coverage of several Indian languages. However, this intersection remains comparatively small
relative to each dataset’s total linguistic scope, reinforcing the complementary nature of these resources.
Other datasets, such as DECRO and WaveFake, each intersect minimally, emphasizing their narrower lin-
guistic coverage. Most other existing datasets primarily concentrate on English or Chinese, with minimal
overlap across languages.

This comprehensive analysis emphasizes IndicFake’s unique and significant contribution to linguistic diversity
within audio deepfake research. By encompassing numerous underrepresented Indian languages, IndicFake
fills a critical gap in existing datasets, establishing itself as a valuable resource for developing more inclusive,
robust, and universally applicable deepfake detection technologies.
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Table 5: Comparing speech quality met-
rics for real and fake audio samples of the
proposed IndicFake dataset. SIG: Speech
Quality, BAK: Background Noise Quality,
OVRL: Overall Quality, P808-MOS: ITU-
T P.808 Mean Opinion Score

Subset SIG BAK OVRL P808-MOS
Real 3.175 3.367 2.650 3.233
Fake 3.440 4.111 3.19 3.879
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Figure 4: UpSet plot visualizing the intersection of lan-
guages across audio deepfake datasets. The plot reveals
limited overlap between datasets, with MLAAD (38 lan-
guages) and IndicFake (18 languages) showing the highest
language diversity.

2.5 Dataset Quality

The quality evaluation of the IndicFake dataset provides essential insights into the perceptual characteristics
of real and synthetic audio samples. We employ four key metrics: Speech Quality (SIG), Background Noise
Quality (BAK), Overall Quality (OVRL) (Reddy et al., 2022), and the ITU-T P.808 Mean Opinion Score
(MOS) (Reddy et al., 2021). Table 5 summarizes these results. Synthetic audio samples demonstrate superior
performance in background noise quality (BAK: 4.111 synthetic vs. 3.367 real) and overall quality (OVRL:
3.19 synthetic vs. 2.650 real), indicating effective noise suppression. This aligns with prior DNSMOS findings
(Reddy et al., 2021; 2022), confirming that noise reduction significantly enhances perceived audio quality.

The 8.3% improvement in speech clarity for synthetic samples (SIG: 3.440 vs. 3.175 for real) suggests syn-
thetic audio effectively maintains phonetic clarity. However, subtle artifacts remain detectable, particularly
during specialized analyses. The higher MOS scores (3.879 synthetic vs. 3.233 real) further confirm synthetic
audio’s human-like perceptual quality, mirroring observations in multilingual deepfake detection research.

These results present a dual challenge for detection systems. Synthetic audio achieves quality sufficient to
deceive casual listeners, as evidenced by elevated MOS and OVRL scores, yet it retains identifiable artifacts
detectable through structured analysis. Notably, the BAK metric underscores significant improvements in
noise suppression (21.3% increase). In contrast, the narrower margin in SIG (8.3% improvement) highlights
advancements in phonetic fidelity but points toward lingering subtle synthetic artifacts. This quality paradox
emphasizes the necessity for detection methods focusing on residual artifacts rather than conventional quality
indicators alone. IndicFake’s detailed quality evaluation thus offers a comprehensive framework to drive the
development of robust deepfake detection systems.

9
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2.6 Dataset Protocol

To facilitate rigorous and systematic evaluations, IndicFake is structured into three distinct subsets. Set A
encompasses ten Indo-European languages: Assamese, Bengali, Dogri, Gujarati, Hindi, Maithili, Marathi,
Odia, Punjabi, and Urdu. Set B includes four Dravidian languages: Kannada, Malayalam, Tamil, and
Telugu. Set C comprises Bodo, Manipuri, and English.

For Sets A and B, we implement train-test splits ensuring speaker and model independence. Training
datasets contain synthetic samples from DonaLabTTS2 and MMS TTS, while evaluation datasets include
synthetic samples from DonaLabTTS and IndicTTS, facilitating evaluation of unseen TTS models. Ad-
ditionally, real speech data is partitioned to maintain speaker independence and avoid biases. Set C is
exclusively designated for cross-lingual generalization testing, featuring languages entirely unseen during
training. This structured protocol supports comprehensive evaluation across three dimensions: cross-model,
cross-language, and speaker generalization, thereby establishing robust benchmarks for multilingual deepfake
detection systems.

2.7 Dataset Spectral Analysis

To understand the spectral characteristics of synthetic speech in IndicFake, we conducted a detailed frequency
analysis. Figure 5 illustrates average energy distributions across frequency bands, alongside difference plots
highlighting deviations from natural speech. The spectral profiles of real audio reveal typical characteristics,
with prominent energy concentrated in lower frequencies (0–3 kHz) and gradual declines at higher frequencies.
Synthetic audio generated by MMS, IndicTTS, DonaLabTTS, and DonaLabTTS2 maintain similar overall
spectral shapes, but exhibit notable deviations, particularly within higher frequency bands (6–11 kHz).

Difference plots quantify these spectral deviations explicitly. MMS audio exhibits the most significant high-
frequency artifacts, showing variations of up to ±10 dB compared to natural speech. DonaLabTTS2 achieves
improved spectral fidelity over its predecessor, especially in mid-range frequencies (3–6 kHz), though some
discrepancies persist at higher frequencies. IndicTTS maintains more consistent spectral behavior but still
exhibits notable deviations above 6 kHz.

These characteristic spectral differences between synthetic and natural speech provide reliable indicators for
deepfake detection systems. Persistent high-frequency artifacts across all TTS systems suggest fundamental
limitations in current synthetic speech generation methods. These insights highlight both opportunities to
enhance synthetic speech quality and strategies to improve deepfake detection techniques.

3 Proposed SAFARI-LLM

The proposed SAFARI-LLM (Semantic Acoustic Feature Adaptive Router with Integrated LLM) ad-
dresses three key research questions: cross-lingual generalization (RQ1), extended cross-language family
generalization (RQ2), and the impact of model architecture on performance (RQ3). SAFARI-LLM inte-
grates semantic and acoustic speech processing with a Large Language Model (LLM) to enable robust,
multilingual deepfake detection across diverse linguistic contexts. As depicted in Figure 6, SAFARI-LLM
employs a dual-stream architecture comprising two specialized encoders: Whisper (Radford et al., 2022) for
semantic analysis and m-HuBERT (Boito et al., 2024) for acoustic profiling. Their outputs are fused using
an Audio Feature Unification Module (AFUM), which dynamically balances semantic and acoustic features.
The unified representation is then processed by an LLM, fine-tuned with Low-Rank Adaptation (LoRA), to
achieve high detection accuracy across varied linguistic settings.

3.1 Dual-Stream Speech Encoders

The dual-stream architecture addresses RQ1 and RQ2 by capturing both semantic and acoustic information
critical for effective cross-lingual and cross-language family deepfake detection. Whisper-large (Radford et al.,
2022), pretrained on 96 languages, extracts high-level semantic content from audio inputs, enabling robust
generalization across languages. Concurrently, m-HuBERT-base (Boito et al., 2024), pretrained on 147
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Figure 5: Spectral comparison between real and synthetic speech across different TTS systems. Each row
shows average energy distribution (dB) across frequency bins for real speech (left), synthetic speech (right),
and their difference (center), highlighting characteristic deviations in high-frequency regions (6-11 kHz)

languages, captures fine-grained acoustic features, including speaker identity, timbre, and prosodic patterns,
which are essential for detecting subtle deepfake artifacts.

Formally, given a batch of audio signals X ∈ RB×T , where B is the batch size and T is the temporal
dimension, we first transform each signal into a log-mel spectrogram S ∈ RB×F ×T , where F denotes the
frequency dimension. Semantic embeddings are computed as:

Hs = Whisper(S), Hs ∈ RB×Ts×Ds , (2)
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Figure 6: Overview of the proposed approach. Two speech encoders and adapters with different focuses are
utilized, where Whisper and the corresponding adapter are used for extracting semantic information and
m-Hubert for extracting acoustic information. Before being fed to the LLM, these two representations are
concatenated together.

where Ts is the temporal dimension of the semantic features, and Ds is the embedding dimension. Acoustic
embeddings are derived using m-HuBERT:

Ha = mHuBERT(X), Ha ∈ RB×Ta×Da , (3)

where Ta and Da represent the temporal and embedding dimensions of the acoustic features, respectively. To
unify these heterogeneous embeddings, we employ adapter modules that perform the following operations:

1. Apply two 1D convolutional layers to reduce dimensionality and align temporal resolutions between
Hs and Ha.

2. Utilize a bottleneck adapter (Houlsby et al., 2019) to balance computational efficiency and feature
expressiveness.

3. Project both embeddings into a shared dimensional space using a linear layer.

The adapted embeddings, H′
s and H′

a, are mapped to a common space:

H′
s, H′

a ∈ RB×38×1024. (4)

These embeddings are concatenated to form a unified input:

xm = [H′
s, H′

a], xm ∈ RB×38×2048. (5)

3.2 Audio Feature Unification Module

The AFUM addresses RQ3 by dynamically balancing the contributions of semantic and acoustic features
to optimize detection performance. AFUM comprises K projection experts {Pk}, each implemented as a
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transformer-based layer, and a multi-layer perceptron (MLP) Audio Feature Router R (Puigcerver et al.,
2023). This design enables adaptive feature weighting, ensuring that the model prioritizes relevant informa-
tion based on the input audio characteristics.

Given the concatenated input xm ∈ RB×L×D, where L = 384 and D = 2048, AFUM computes a unified
representation as a weighted sum of expert outputs:

x̄m =
K∑

k=1
wm,k · Pk(xm), (6)

where wm,k are the routing weights for the k-th expert, and Pk(xm) denotes the output of the k-th projection
expert. The routing weights are computed dynamically by the router R:

wm = σ(R(xm)), wm ∈ RB×L×K , (7)

where σ(·) is the softmax function, ensuring that the weights are normalized across the K experts for each
input token. This mechanism allows AFUM to adaptively emphasize semantic or acoustic features based on
the input, enhancing robustness across diverse linguistic contexts.

3.3 Large Language Model (LLM) Integration and Classification

To leverage advanced semantic reasoning, SAFARI-LLM integrates LLaMA-7B (Touvron et al., 2023), en-
hanced through Vicuna instruction-following fine-tuning (Vicuna, 2023). To address the computational cost
of fine-tuning a large-scale LLM, we employ Low-Rank Adaptation (LoRA) (Hu et al., 2021), which in-
troduces lightweight adapters into the self-attention layers of the LLM. Specifically, LoRA adapters with
rank r = 8 and scaling factor α = 16 are applied to the key and query matrices, preserving the pretrained
linguistic knowledge while enabling efficient task-specific adaptation.

The unified embeddings x̄m from AFUM are processed by the LoRA-adapted LLM:

yLLM = LLMLoRA(x̄m). (8)

The resulting embeddings are fed into a Multi-Layer Perceptron (MLP) for binary classification:

ŷ = σ(MLP(yLLM)), (9)

where σ(·) is the sigmoid activation function, producing a probability score for the binary classification task
(real vs. fake audio). The SAFARI-LLM framework comprehensively addresses RQ1, RQ2, and RQ3 by
integrating semantic and acoustic features through a dual-stream architecture, dynamically unifying them
via AFUM, and leveraging a LoRA-adapted LLM for robust classification. This design enables effective cross-
lingual (RQ1) and cross-language family (RQ2) generalization while systematically evaluating architectural
impacts (RQ3). SAFARI-LLM achieves state-of-the-art performance in multilingual deepfake detection,
demonstrating strong generalization across diverse linguistic contexts.

4 Experimental Setup and Protocols

This section outlines the experimental setup, detailing the datasets used, baseline models for comparison,
implementation specifics, evaluation metrics, and the structured protocols designed to assess our proposed
SAFARI-LLM model comprehensively.

Existing Datasets Apart from the proposed IndicFake corpus, we evaluate our method using two promi-
nent multilingual datasets to thoroughly examine cross-lingual and cross-synthesis generalization capabilities:

4The temporal dimension of 38 is directly adopted from the Whisper model’s semantic embeddings, and the acoustic
embeddings are aligned to this dimension.
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Table 6: Comparison of deepfake detection performance across English and Japanese languages using the
WaveFake dataset, showing cross-lingual generalization capabilities for different model architectures. Acc:
Accuracy (%), EER: Equal Error Rate.

Models
Train on English,
Eval on English

Train on English,
Eval on Japanese

Train on Japanese,
Eval on English

Train on Japanese,
Eval on Japanese

Acc EER(%) Acc EER(%) Acc EER(%) Acc EER(%)
Whisper MesoNet 10.82 37.62 33.33 43.80 89.18 46.40 66.67 44.89
MesoNet 89.18 0.57 66.67 3.06 89.74 15.72 79.05 5.74
SSLModel 89.47 19.64 66.67 41.25 89.18 51.87 100.00 0.00
Whisper SpecRNet 89.83 24.46 67.23 33.47 50.45 36.97 89.97 6.38
Whisper LCNN 92.29 14.62 72.76 31.03 16.60 36.55 87.97 12.76
Conformer 93.53 8.96 54.92 45.78 89.18 46.03 99.98 0.01
RawNet2 99.79 0.26 66.65 48.84 18.71 42.74 99.70 0.18
SpecRNet 99.80 0.01 84.85 3.30 52.30 6.84 99.77 0.00
RawGAT-ST 99.85 0.24 87.42 8.36 57.49 19.85 99.01 0.34
AASIST 99.95 0.08 89.27 6.86 12.05 27.80 91.51 0.71
RawBMamba 99.98 0.03 83.25 2.87 37.26 14.00 99.94 0.04
LCNN 99.98 0.02 90.92 8.27 10.82 18.01 99.95 0.06
RawNet3 99.99 0.03 86.67 12.10 80.53 32.06 98.93 0.91
Whisper-frontend-LCNN 99.98 0.02 85.09 1.28 80.48 2.08 99.92 0.03
Proposed 99.99 0.02 94.21 2.48 92.31 5.31 100.00 0.00

• DECRO (Ba et al., 2023): Contains English and Chinese subsets, with 21,218 bona fide Chinese
samples and 12,484 English samples, each with predefined training, development, and evaluation
partitions.

• WaveFake (Frank & Schönherr, 2021): Features 136,085 samples, including 121,085 in English
and 15,000 in Japanese, designed explicitly for assessing multilingual generalization and synthesis
variability.

Baseline Models We benchmark SAFARI-LLM against a comprehensive set of 15 baseline architectures,
categorized based on their input modalities:

• Raw Waveform Models: Including RawBMamba, Conformer, SSLModel, AASIST, RawGAT-ST,
RawNet2, and RawNet3, which operate directly on time-domain signals.

• Spectrogram-based Models: LCNN (Wu et al., 2018), MesoNet (Afchar et al., 2018) (specifically
the MesoInception-4 variant), and SpecRNet (Kawa et al., 2022a; 2023), which process frequency-
domain spectrograms.

For spectrogram-based baselines, we test standard cepstral features (LFCC and MFCC), as well as advanced
embeddings from the Whisper encoder, alone and in combination with cepstral features, inspired by insights
from Kawa et al. (2022b).

Evaluation Protocols Our evaluation protocols are explicitly structured around the three primary RQs:

RQ1: Cross-Lingual Generalization. We train models on one language and test on another within the
same dataset, utilizing WaveFake (English-Japanese) and DECRO (English-Chinese). These experiments
specifically measure each model’s capacity to detect deepfake audio across distinct linguistic domains.

RQ2: Extended Cross-Language Family Generalization. To examine generalization across funda-
mentally different language families, we use subsets from IndicFake: Set A (Indo-European) and Set B
(Dravidian). We conduct bi-directional experiments, training on one family and testing on the other. We
maintain speaker and synthesis-model independence by employing different TTS models—DonaLabTTS2
and MMS TTS for training, and DonaLabTTS and IndicTTS for evaluation.
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Table 7: Cross-lingual deepfake detection results on the DECRO dataset between English and Chinese
languages, demonstrating model performance when trained and evaluated across different language pairs.

Models
Train on English,
Eval on Chinese

Train on English,
Eval on English

Train on Chinese,
Eval on Chinese

Train on Chinese,
Eval on English

Acc EER(%) Acc EER(%) Acc EER(%) Acc EER(%)
RawNet3 62.57 33.94 81.54 17.25 97.33 2.41 78.91 18.60
Whisper-Mesonet 66.30 21.82 72.09 15.91 66.43 7.78 72.25 21.27
RawGAT-ST 67.79 38.76 84.29 20.65 99.42 0.56 80.79 21.90
AASIST 68.29 32.49 84.56 16.52 98.47 1.17 82.22 9.53
RawNet2 68.74 32.48 84.74 17.16 98.44 1.59 84.41 11.02
Whisper-SpecRNet 69.60 28.86 83.55 15.78 95.16 4.31 77.79 18.60
Whisper-LCNN 71.04 29.49 85.06 15.72 94.86 4.83 78.44 11.60
RawBMamba 71.49 29.17 86.12 14.93 98.33 1.56 81.90 17.60
LCNN 72.59 25.59 86.64 14.92 99.34 0.72 76.92 22.56
Conformer 72.86 42.89 86.55 22.38 98.23 1.52 76.54 20.66
Whisper-frontend-LCNN 80.65 25.83 90.57 14.62 98.20 0.96 77.36 8.72
SpecRNet 82.64 22.44 91.53 11.88 96.01 1.74 77.34 16.16
SSLModel 82.72 27.26 91.57 16.17 98.85 1.21 82.15 18.59
MesoNet 83.09 18.40 91.63 10.01 58.30 3.42 54.18 14.07
Proposed 84.48 21.20 92.44 11.35 99.60 0.36 82.70 11.80

RQ3: Architectural Design Impact. We evaluate the influence of architectural choices and input
representations by comparing five categories of models: LLM-based (our SAFARI-LLM), State Space
Models (RawBMamba), Graph Neural Networks (AASIST, RawGAT-ST), Convolutional Neural Networks
(RawNet2, RawNet3), and Transformers (SSLModel, Conformer). We also analyze performance variations
between raw waveform and spectrogram input representations.

Implementation Details and Evaluation Metrics All audio samples are standardized to 16,kHz mono-
channel format. Spectrogram-based models use a window length of 400 samples with a 160-sample hop size.
LFCC features incorporate 128 coefficients and are augmented with delta and double-delta coefficients. These
augmented cepstral features are optionally concatenated with Whisper features for enhanced robustness. The
Whisper-large model variant is consistently used across experiments.

For SAFARI-LLM, we adopt LLaMA-7B (Touvron et al., 2023) enhanced by LoRA adapters (rank=8,
α = 16). The AFUM includes K = 2 transformer-based projection experts, each with eight layers, totaling
approximately 88M parameters. We train using AdamW optimizer with parameters β1 = 0.9, β2 = 0.95, and
a weight decay of 0.1. The temporal stride of adapters is fixed at 80,ms, and the unified feature dimensionality
is set to 2,048. We report model performance using standard metrics for deepfake detection tasks: Accuracy,
Equal Error Rate (EER), and Area Under the Curve (AUC). For transparency and reproducibility, all source
codes, detailed configurations, and trained model checkpoints are publicly accessible via this URL.

5 Results and Analysis

This section presents a comprehensive evaluation of SAFARI-LLM’s performance, addressing our three re-
search questions related to cross-lingual generalization, extended cross-language family generalization, and
the impact of model architecture. We report key metrics, compare SAFARI-LLM against baseline models,
and embed detailed analyses and inferences within each subsection to elucidate trends and implications for
multilingual deepfake detection.

5.1 Cross-Lingual Generalization Analysis (RQ1)

We tested SAFARI-LLM’s cross-lingual generalization on the WaveFake and DECRO datasets. On Wave-
Fake, SAFARI-LLM achieves near-perfect within-language detection: 99.99% accuracy (0.02% Equal Error
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Table 8: Results with training models on Set A
(Indo-European languages) and evaluating across
Set A (within-family), Set B (Dravidian lan-
guages), and Set C (mixed languages) for Indic-
Fake dataset, showing cross-language family gen-
eralization.

Models
Train on Set A,
Eval on Set A

Train on Set A,
Eval on Set B

Train on Set A,
Eval on Set C

EER (%) EER (%) EER (%)
SpecRNet 0.979 1.529 2.089
RawGAT-ST 1.018 1.762 2.760
AASIST 1.472 1.894 3.294
Whisper-Frontend-SpecRNet 1.965 2.274 3.872
Whisper LCNN 2.196 3.788 7.299
RawBMamba 2.217 4.155 7.800
MesoNet 2.746 2.244 8.545
Whisper SpecRNet 3.054 3.164 4.777
Whsiper MesoNet 5.554 3.456 3.828
LCNN 6.151 9.968 22.750
SSLModel 6.742 8.213 17.544
RawNet2 6.786 6.132 13.709
Conformer 8.881 8.177 15.335
Proposed 0.941 1.153 0.023

Figure 7: ROC curves showing model performance when
trained on Set A of the India Fake dataset and evaluated
on Set A, Set B, and Set C test sets.

Rate, EER) for English and 100% accuracy (0% EER) for Japanese, as shown in Table 6. On DECRO
(Table 7), performance remains strong but reveals asymmetries, with 99.59% accuracy (0.36% EER) for
Chinese compared to 92.43% accuracy (11.34% EER) for English. This discrepancy stems from dataset
imbalances, with Chinese subsets having a real-to-fake ratio of 1:2 versus 1:3.4 for English, leading to higher
false positives in English detection.

Cross-lingual evaluations highlight the challenges of language transfer. Training on the larger English Wave-
Fake dataset (121,085 samples) yields robust generalization to Japanese (15,000 samples), achieving 94.21%
accuracy (2.48% EER). Conversely, Japanese-to-English transfer results in 92.31% accuracy (5.31% EER),
suggesting that larger, diverse training data enhances cross-lingual robustness. On DECRO, Chinese-to-
English transfer yields 82.69% accuracy (11.79% EER), while English-to-Chinese achieves 84.48% accuracy
but with a higher EER of 21.19%, indicating sensitivity to language-specific acoustic characteristics, partic-
ularly in prosodic and phonetic patterns.

SAFARI-LLM’s dual-encoder architecture, combining Whisper’s semantic embeddings and m-HuBERT’s
acoustic features, significantly outperforms single-stream models in cross-lingual settings. For instance, it
surpasses RawNet3 by 19.98% in English-to-Japanese accuracy. However, the elevated EER in cross-lingual
scenarios (e.g., 21.19% for English-to-Chinese) suggests residual sensitivity to language-specific acoustic
artifacts. These results imply that while semantic features enable robust generalization, acoustic variations
across languages remain a challenge. Future improvements should incorporate explicit phonetic modeling and
balanced multilingual datasets to reduce false positives and enhance transferability, ensuring SAFARI-LLM’s
suitability for real-world multilingual deployment.

5.2 Extended Cross-Language Family Generalization (RQ2)

We assessed SAFARI-LLM’s generalization across language families using the IndicFake dataset, comprising
Indo-European (Set A), Dravidian (Set B), and mixed languages (Set C). The results reveal several critical
insights into cross-family transfer capabilities and architectural performance patterns.

5.2.1 Training on Set A (Indo-European Languages)

When training on Set A, SAFARI-LLM achieves strong in-family performance at 95.12% accuracy (0.94%
EER) as shown in Table 8. This performance demonstrates excellent calibration, with the model achieving
high accuracy while maintaining exceptionally low error rates. Notably, while baseline models like AASIST
achieve higher accuracy (97.49%), their significantly higher EER (1.47%) indicates imbalanced class-specific
performance, suggesting potential overfitting to the training distribution.
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Table 9: Model performance when trained on Set
B (Dravidian languages) and evaluated on Set
A (Indo-European), Set B (within-family), and
Set C (mixed languages) for IndicFake dataset,
demonstrating cross-language family transfer ca-
pabilities.

Models
Train on Set B,
Eval on Set A

Train on Set B,
Eval on Set B

Train on Set B,
Eval on Set C

EER (%) EER (%) EER (%)
LCNN 4.507 3.215 25.597
RawBMamba 5.610 5.416 26.795
Whisper SpecRNet 5.676 4.175 19.298
AASIST 5.750 3.975 11.993
SpecRNet 6.350 8.000 23.711
SSLModel 7.162 5.801 18.246
Whsiper MesoNet 7.966 4.821 7.689
Conformer 8.242 9.202 16.452
Whisper LCNN 8.326 3.970 15.746
Whisper-Frontend-SpecRNet 8.673 9.838 24.847
RawNet2 8.921 9.496 24.740
RawGAT-ST 9.878 7.542 17.822
MesoNet 14.568 9.331 30.524
Proposed 3.728 3.782 7.224

Figure 8: ROC curves showing model performance when
trained on SetB of the India Fake dataset and evaluated
on Set A, Set B, and Set C test sets.

The cross-family generalization results are particularly compelling. Testing the Set A-trained SAFARI-LLM
on Set B yields 88.17% accuracy (1.15% EER), demonstrating robust cross-family transfer despite funda-
mental linguistic differences between Indo-European and Dravidian language families. This represents only a
6.95% accuracy drop with a minimal 0.21% EER increase, indicating excellent preservation of discriminative
features across language families.

In contrast, other models show more dramatic performance degradation. For instance, Whisper MesoNet
achieves higher cross-family accuracy (96.48%) but suffers from a substantially worse EER (3.45%), repre-
senting a 2.1x increase in error rate compared to SAFARI-LLM. This pattern suggests reduced reliability
and potential overfitting to acoustic patterns specific to the training language family. We show the ROC
curve for each of the settings in Figure 7.

5.2.2 Training on Set B (Dravidian Languages)

Training on Set B reveals asymmetric transfer capabilities. SAFARI-LLM achieves 86.77% accuracy (3.78%
EER) for in-family performance and maintains stable cross-family performance on Set A at 86.77% accuracy
(3.72% EER). The remarkably consistent performance across both sets (86.77% accuracy) with nearly iden-
tical EER values (3.78% vs 3.72%) suggests that the model successfully learns language-agnostic features
when trained on Dravidian languages.

However, a critical asymmetry emerges when comparing Set A and Set B training effectiveness. The Set
A-trained model significantly outperforms the Set B-trained model on Set C (97.30% vs 60.69% accuracy),
representing a 36.61% performance gap. This substantial difference indicates that Indo-European languages
provide more transferable semantic and acoustic cues, likely due to their broader representation in pretrained
foundation models like Whisper and m-HuBERT. We show the ROC curve for each of the settings in Figure
8.

5.2.3 Joint Training Analysis

Joint training on Sets A and B (Table 10) achieves balanced performance: 83.92% accuracy (0.72% EER)
on Set A and 84.64% accuracy (0.73% EER) on Set B. The near-identical EER values (0.72% vs 0.73%)
and similar accuracy levels demonstrate successful knowledge integration across language families. This
represents a 11.2% accuracy decrease from Set A-only training but achieves much better balance, with
only a 0.48% accuracy difference between families. Importantly, joint training dramatically improves Set C
performance, achieving 60.45% accuracy (0.68% EER), which substantially outperforms Set B-only training
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Table 10: Results from joint training on Set
A and Set B, showing how combined training
on Indo-European and Dravidian languages af-
fects model performance across different lan-
guage families.

Models
Train on All,
Eval on Set A

Train on All,
Eval on Set B

Train on All,
Eval on Set C

EER (%) EER (%) EER (%)
LCNN 1.232 0.892 6.496
RawGAT-ST 1.234 1.020 1.324
AASIST 1.306 0.726 3.110
Whisper-Frontend-SpecRNet 1.535 1.450 0.568
RawBMamba 1.897 3.224 6.358
Whisper SpecRNet 2.329 2.641 6.747
SpecRNet 2.597 1.483 9.921
Whisper LCNN 3.280 4.860 12.714
Conformer 3.344 2.029 10.828
MesoNet 3.948 2.902 14.409
RawNet2 4.907 4.208 13.087
SSLModel 5.903 3.652 12.131
Whsiper MesoNet 6.417 4.180 3.609
Proposed 0.725 0.729 0.680

Figure 9: ROC curves showing model performance when
jointly trained on Set A and Set B of the India Fake
dataset and evaluated on Set A, Set B, and Set C test
sets.

(60.69%) while maintaining the excellent calibration characteristics of SAFARI-LLM. We show the ROC
curve for each of the settings in Figure 9.

5.3 Impact of Model Architecture (RQ3)

We analyzed SAFARI-LLM’s architectural contributions compared to baseline models. Raw-audio models
like RawNet3 achieve near-perfect within-language accuracy (99.98%) but deteriorate sharply in cross-lingual
settings (e.g., 75.23% accuracy for English-to-Japanese), indicating a strong dependency on language-specific
acoustic features. Spectrogram-based models, such as Whisper-frontend-LCNN, show lower within-language
accuracy but greater cross-lingual stability (85.09% English-to-Japanese, 80.48% Japanese-to-English), ben-
efiting from language-agnostic pretrained embeddings.

SAFARI-LLM integrates the strengths of both approaches through its dual-stream architecture, leveraging
Whisper for semantic features and m-HuBERT for acoustic cues. The Audio Feature Unification Module
(AFUM) dynamically balances these representations, achieving a synergy that bridges cross-lingual gaps.
For example, SAFARI-LLM outperforms RawNet3 by 19.98% and Whisper-frontend-LCNN by 9.12% in
English-to-Japanese accuracy. The LoRA-fine-tuned LLaMA module further enhances semantic generaliza-
tion, ensuring robust performance across diverse languages and deepfake generation methods. These results
highlight the critical role of hybrid architectures in mitigating language-specific biases. SAFARI-LLM’s
balanced approach, combining semantic and acoustic features with adaptive unification and fine-tuned se-
mantic reasoning, sets a new benchmark for multilingual deepfake detection. However, further optimization
of AFUM’s routing mechanism and expanded pretraining could enhance adaptability to emerging deepfake
techniques, ensuring long-term robustness in diverse linguistic environments.

6 Conclusion

This work introduces two transformative contributions to multilingual deepfake detection: the IndicFake
dataset and the SAFARI-LLM model. The IndicFake dataset, encompassing over 4.2 million audio samples
across 18 Indian languages from the Indo-European, Dravidian, and Sino-Tibetan families, establishes a
new benchmark for linguistic diversity in deepfake research. IndicFake exhibits minimal overlap (Jaccard
similarity ranging from 0.00 to 0.06) when compared individually to existing datasets, making it a robust
resource for evaluating detection models across varied linguistic contexts. The proposed SAFARI-LLM,
a novel dual-stream architecture, seamlessly integrates Whisper’s semantic embeddings and m-HuBERT’s
acoustic features through an adaptive Audio Feature Unification Module (AFUM). Enhanced by a LoRA-fine-
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tuned LLaMA-7B model, SAFARI-LLM achieves state-of-the-art performance, delivering superior accuracy,
exceptionally low error rates, and robust generalization across diverse languages and synthesis methods.
Comprehensive experiments on IndicFake, DECRO, and WaveFake datasets demonstrate SAFARI-LLM’s
ability to balance semantic and acoustic information, outperforming existing models in cross-lingual and
cross-language family scenarios while maintaining stability across varied deepfake generation techniques.

These advancements set a new standard for multilingual deepfake detection, offering scalable and reliable
solutions for real-world deployment. In the future, we aim to expand IndicFake to include additional low-
resource languages, further broadening its applicability. Optimization efforts will focus on model compression
and efficient adaptation to enable deployment in resource-constrained environments. Additionally, integrat-
ing phonetic-aware modeling and targeted artifact identification will enhance cross-lingual robustness, paving
the way for universally effective audio deepfake detection systems.
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