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Abstract

Audio deepfakes pose a growing threat, particularly in linguistically diverse and low-resource
settings where existing detection methods often struggle. This work introduces two transfor-
mative contributions to address these challenges. First, we present IndicFake, a pioneering
audio deepfake dataset with over 4.2 million samples (7,350 hours) spanning English and
17 Indian languages across Indo-European, Dravidian, and Sino-Tibetan families. With
minimal overlap (Jaccard similarity: 0.00-0.06) with existing datasets, IndicFake offers an
unparalleled benchmark for multilingual deepfake detection. Second, we propose SAFARI-
LLM (Semantic Acoustic Feature Adaptive Router with Integrated LLM). This novel frame-
work integrates Whisper’s semantic embeddings and m-HuBERT"s acoustic features through
an adaptive Audio Feature Unification Module (AFUM). Enhanced by LoRA-fine-tuned
LLaMA-7B, SAFARI-LLM achieves unmatched cross-lingual and cross-family generaliza-
tion. Evaluations across the IndicFake, DECRO, and WaveFake datasets demonstrate its
superiority, outperforming 14 state-of-the-art models with standout accuracies of 94.21%
(English-to-Japanese transfer on WaveFake) and 84.48% (English-to-Chinese transfer on
DECRO), alongside robust performance across diverse linguistic contexts. These advance-
ments establish a new standard for reliable, scalable audio deepfake detection. Resources
will be publicly available at: [URLL

1 Introduction

Voice technology has fundamentally changed how we engage with devices and services. Driven by sophisti-
cated speech recognition that converts spoken words into text with remarkable precision, it powers assistants
such as Siri, Alexa, and Google Assistant, enabling a wide range of tasks through simple voice commands.
In the United States, approximately 128 million peopleﬂ use these assistants each month. Meanwhile, smart
speaker adoption has increased by 135% since 2018, highlighting the rapid growth of voice-focused tech-
nology. Beyond convenience, voice interfaces are becoming increasingly vital for security through speaker
verification, utilizing unique vocal features as biometric markers. Financial institutions such as Wells Fargo
and BarclaysE] now utilize this technology, enabling secure account management through voice commands.
Indian Railways has similarly introduced voice-enabled ticket booking, streamlining travel for millions.

Thttp://tinyurl.com/usvoice135
%http://tinyurl.com/barclaysvoice
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Figure 1: Overview of the IndicFake benchmark. SAFARI-LLM integrates language-specific and universal
features for robust detection, addressing linguistic diversity. The IndicFake dataset spans 18 languages
across Indo-European, Dravidian, Sino-Tibetan, and other language families, allowing for a comprehensive
evaluation. SAFARI-LLM integrates language-specific and universal features for robust detection, addressing
linguistic diversity.

These advancements also present significant risks. A recent reportﬂ indicated nearly 50 million Al-generated
"voice clone" calls spanning 22 official languages during the two months preceding India’s General Elections,
highlighting the growing threat of deepfakes exploiting linguistic diversity. Such deepfakes pose severe
implications, including the potential for election manipulation, financial fraud, and social engineering attacks.
Moreover, the ability of these deepfake technologies to convincingly replicate individual voices, including
those of public figures, adds layers of complexity to authentication and verification processes, necessitating
urgent advancements in detection technologies. Existing studies explore various deepfake algorithms, but
real-world complexities remain underexamined, notably the impact of accent variations, dialectal differences,
and the robustness of models across linguistically diverse settings (Ranjan et al., 2023} [2024)).

Furthermore, voice-based systems are particularly vulnerable in multilingual contexts, where training data
predominantly consists of high-resource languages, resulting in less effective coverage of low-resource lan-
guages. Such discrepancies in data availability significantly impact the detection efficacy, highlighting an
imbalance that undermines the overall security robustness. These gaps emphasize the urgent need for exten-
sive and representative datasets to facilitate practical training and evaluation of deepfake detection systems
in multilingual and cross-linguistic scenarios.

1.1 Related Work

Over the past decade, numerous voice anti-spoofing datasets have been developed to address deepfake audio
challenges. Benchmark datasets, such as ASVspoof (Wu et al.,|[2015; Wang et al.| [2020; |Yamagishi et al., [2021
Wang et al., [2024) and Audio Deepfake Detection (ADD) (Yi et al., |2022;|2023), have spearheaded tasks like
fake audio detection and manipulation region localization. However, these datasets generally feature English
samples with limited noise and codec variations (Reimao & Tzerpos| [2019; Frank & Schonherr, 2021} [Ma
et all [2022), reducing their effectiveness in diverse acoustic scenarios. Datasets such as MLAAD (Miiller
et al., 2024) and DECRO (Ba et al., |2023) expand linguistic coverage but lack partial fakes (Yi et al., |2022)).
Efforts like HABLA (Tamayo Florez et al., 2023), ILLUSION (Thakral et al., |2025), CVoiceFake (Li et al.
2024)), and VoiceWukong (Yan et al., 2024) broaden non-English contexts. Yet, no dataset comprehensively
offers extensive multilingual coverage, advanced generation methods, and real-world variability (Table .

Algorithmically, early approaches employed handcrafted features, such as phase (Xiao et al., [2015), magni-
tude (Tian et al.l 2016]), and pitch (Korshunov & Marcel, [2016), or deep learning models using raw waveforms

Shttps://tinyurl.com/indianelectionas
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Table 1: Summarizing the key statistics of the proposed IndicFake dataset and its comparison with existing
speech deepfake datasets. IndicFake is the largest among all the existing datasets and covers 18 languages
of the Southeast Asian region.

Dataset Year Language Indic Languages Spoofed Methods # Total Samples
ASVspoof 2015 (Wu et al.| 2015 2015 English X 10 246,500
ASVspoof 2019-LA (Wang et al. ‘ 2019 English X 19 130,378
FoR (Reimao & Tzerpos||2019 2019 English X 7 87,285
ASVspoof 2021-LA (Yamagishi et al.|[2021) 2021 English X 19 148,148
ASVspoof 2021-DF (Yamagishi et al.| 2021) 2021 English X 100+ 572,616
WaveFake (Frank & Schonherr||2021 2021  English, Japanese X 7 117,985
ADD2022 %mlml 2022 Chinese X Unknown 389,419
Latin American (Tamayo Florez et al.| 2022 Spanish X 6 58,000
CFAD (Ma et al.| 2022 2023 Chinese X 12 231,600
DECRO (Ba et al.|[2023] 2024  English, Chinese X 10 118,381
MLAAD (Miiller et al.|[2024] 2024 38 Languages v/ (Hindi, Bangla) 26 82,000
ASVspoof5 (Wang et al. ] M‘ 2024 English X 32 1,211,186
Speech-Forensics (Ji et al.|[2024) 2024 English X - 7,362
IndicFake (Proposed) 2025 18 Languages v 4 4,222,759

or extracted representations (Kawa et al.| 2023; [Tak et all) [2021a; [Jung et al. 2022). Although effective
on standardized benchmarks, English-trained models falter in multilingual scenarios (Korshunov & Marcel,
[2016; Miller et all 2022) or those with accented speech (Ranjan et al., |2024]), underscoring the need for
cross-lingual methods (Ba et al.,[2023). Challenges such as partial-truth detection, explainability, and noise
robustness (Ranjan et al.,|2023) highlight the urgency for comprehensive datasets and unified architectures
for reliable real-world deepfake detection.

LLM Reprogramming for Non-linguistic Tasks. Recent work has demonstrated that large pre-trained
language models can be reprogrammed to handle non-linguistic modalities by adapting their input or inter-
mediate representations, rather than retraining from scratch. proposed Time-LLM, which
reprograms a frozen LLM for time-series forecasting by transforming numerical inputs into token sequences.
[Melnyk et al.|(2023)) introduced ReprogBERT, applying a mapping between biological sequences and BERT
embeddings for antibody modeling. Similarly, presented LLMAir, which adapts LLMs for
air-quality prediction through task-specific reprogramming. These studies emphasize the LLM’s potential
as a universal sequence modeling engine rather than a purely linguistic system—a perspective adopted in
SAFARI-LLM, where the LLaMA backbone serves as a multimodal fusion layer integrating semantic and
acoustic embeddings for deepfake detection.

1.2 Problem Formulation and Research Contributions

The multilingual audio deepfake detection problem involves classifying an audio sample X € R (where
T is the temporal dimension) as real (y = 0) or fake (y = 1) across languages | € L = {ly,l2,...,lnm}
and generation methods m € M. Linguistic diversity introduces complexity, as languages exhibit distinct
phonetic, acoustic, and prosodic characteristics. Additionally, varied synthesis methods produce unique
artifacts, complicating detection in real-world scenarios.

The objective is to minimize the binary cross-entropy loss:

memﬁ =——= Z yilog(fo(Xi)) + (1 — i) log(1 — fo(Xy))] (1)

where fp is the detection model parameterized by 6, and N is the number of training samples. However,
the assumption that training and testing data share the same distribution often fails in multilingual set-
tings, where models trained on one language must generalize to others with differing acoustic and linguistic
properties. This paper addresses three key research questions to tackle these challenges:

RQ1 (Cross-Lingual Generalization): Can a model trained on language [, detect deepfakes in language
Iy (fo: XU — y )2
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This question evaluates whether models can generalize across languages with distinct phonetic inventories,
prosodic patterns, and acoustic traits. Success in this task requires learning language-agnostic features,
enabling practical deployment where labeled data for every language is unavailable.

RQ2 (Cross-Language Family Generalization): Can a model trained on language family F, detect
deepfakes in family Fj (fg : X (Fa) — ¢(Fo))?

This extends RQ1 to more diverse linguistic structures, such as Indo-European versus Dravidian families,
which differ in phonological systems, word order, and consonant-vowel patterns. This is critical for regions
like India, where multiple language families coexist. Success indicates the model captures universal deepfake
artifacts across fundamentally different linguistic domains.

RQ3 (Impact of Model Architecture): How do architectural choices and input representations R €
{Rraw, Rspec, Raual} affect detection performance (fo.r: X — y)?

This investigates the role of raw waveforms (Ryaw), spectral features (Rgpec), and dual-stream representations
(Rqua1) in multilingual detection. It also explores how transformer-based encoders, attention mechanisms,
and feature fusion impact robustness. Optimal performance requires co-designing architectures with input
representations to capture both temporal and frequency-domain cues.

We address these research questions with two primary contributions, significantly advancing multilingual
audio deepfake detection:

e IndicFake Dataset: We introduce a multilingual audio deepfake dataset with over 4 million samples
across 18 languages from Indo-European, Dravidian, and Sino-Tibetan families. Unlike existing
datasets that primarily focus on English or have limited multilingual settings, IndicFake enables
robust evaluation of cross-lingual and cross-family generalization (RQ1, RQ2). It includes authentic
and synthetic audio from state-of-the-art text-to-speech systems, reflecting diverse speakers, acoustic
conditions, and generation methods.

e SAFARI-LLM Architecture: We propose a novel detection framework combining dual-stream
semantic (Whisper) and acoustic (m-HuBERT) encoders via an Audio Feature Unification Module
(AFUM). Designed for RQ3, SAFARI-LLM uses LoRA-based fine-tuning and dynamic routing to
adaptively integrate semantic and acoustic features, enhancing generalization across languages and
generation methods.

e SAFARI-LLM achieves 94.21% accuracy in English-to-Japanese transfer on WaveFake, 84.48% in
English-to-Chinese transfer on DECRO, and balanced performance across IndicFake’s diverse lan-
guage families, demonstrating its effectiveness in addressing real-world multilingual deepfake detec-
tion challenges.

2 Proposed IndicFake Dataset

Deepfake detection systems predominantly trained on English audio data struggle when applied to non-
English scenarios, emphasizing a critical gap in existing multilingual datasets (Wang et al., 2020; [Yamagishi
et al [2021; Y1 et al) [2022; 2023]). To bridge this gap, we introduce IndicFake, an extensive multilingual
dataset explicitly designed to enhance robust cross-lingual deepfake detection. IndicFake comprises over
4 million audio samples, covering English and 17 Indian languages from three major language families:
Indo-Aryan, Dravidian, and Sino-Tibetan, as detailed in Table 2] The dataset uniquely integrates authentic
speech recordings alongside synthetic audio generated by advanced text-to-speech (TTS) models, offering
comprehensive coverage of linguistic nuances and acoustic variations.

2.1 Dataset Construction

Creating a multilingual speech dataset for Indian languages is challenging due to the extensive diversity
in scripts, phonetic inventories, and prosodic structures. For instance, even languages within the same
family, such as Hindi and Marathi, share the same script (Devanagari), whereas languages like Bengali and
Punjabi utilize entirely different writing systems (Eastern Nagari and Gurmukhi, respectively). Similarly,
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Table 2: Characteristics of the proposed IndicFake dataset. The dataset contains real and synthetic speech
samples across English and 17 Indian languages, including per-model TTS splits by gender and overall
dataset composition.

MMS IndicTTS DonaLabTTS DonaLabTTS2
Language Real Data

Male Male Female Male Female Male Female
Assamese 112,426 30,000 29,982 29,982 - - 26,927 26,927
Bangla 111,077 30,000 29,986 29,986 29,640 29,640 29,653 29,653
Bodo 5,715 - - - - - - 22,118
Dogri 3,649 5,499 - - - - - -
English 30,000 29,908 29,908 — — 30,043 21,631
Gujarati 144,337 - - - 28,885 28,885 29,261 29,261
Hindi 221,022 30,000 29,915 29,915 29,186 27,345 29,508 15,188
Kannada 214,855 30,000 29,995 29,995 22,476 28,793 29,240 29,240
Maithili 328 14,960 - - - - - -
Malayalam 153,954 30,000 29,994 29,994 28,851 28,851 28,738 8,778
Manipuri 46,813 - 4,816 4,815 - - 18,553 -
Marathi 211,906 30,000 26,306 - 29,376 29,376 29,429 29,429
Oriya 115,732 30,000 27,319 27,318 - - 29,724 29,722
Punjabi 137,442 30,000 24,751 24,604 - - 30,033 30,033
Rajasthani - — 4,925 4,926 4,926 4,926 4,926 4,925
Tamil 146,215 30,000 29,920 29,920 25,134 28,284 30,002 30,002
Telugu 259,908 30,000 29,989 - 28,810 28,810 29,558 29,536
Urdu 112,185 41,335 - - - - 30,000 30,000
#samples 1,997,564 391,794 327,806 271,363 227,284 234,910 405,595 366,443
#samples/model 1,997,564 391,794 599,169 462,194 772,038
#samples/class 1,997,564 2,225,195
Total 4,222,759

the Dravidian languages (Kannada, Malayalam, Tamil, Telugu) each possess distinctive scripts, and Sino-
Tibetan languages (Manipuri, Bodo) frequently adopt multiple scripts (e.g., Eastern Nagari, Devanagari).
Recognizing this complexity, our dataset construction approach involves two distinct steps: the systematic
collection of authentic speech from diverse linguistic and script backgrounds, and the generation of synthetic
speech samples that capture a wide range of tonal and phonetic characteristics.

Real Data Collection: IndicFake derives its authentic speech exclusively from the curated Dhwani corpus
(Javed et al.,|2022), which provides lists of Creative Commons-licensed YouTube URLs specifically prepared
for ASR research. From Dhwani, we selected 17 languages that cover the Indo-European (Assamese, Bangla,
Marathi, Oriya, Punjabi, Rajasthani, Maithili, Dogri, Urdu, Gujarati, Hindi), Dravidian (Kannada, Malay-
alam, Tamil, Telugu), and Sino-Tibetan (Manipuri, Bodo) language families. We sampled 200 CC-licensed
videos per language (where available) across the education, news, technology, sports, and finance domains
to capture a variety of speaking styles.

All recordings were converted to 16 kHz mono-channel format. We applied Voice Activity Detection (py-
webrtcvad, aggressiveness=2) to remove non-speech segments. We filtered out segments with Signal-to-Noise
Ratios below 15dB using the WADA-SNR method, ensuring consistent audio quality. Each recording was
segmented into non-overlapping ~5-second windows; final clip lengths vary as VAD trims boundaries, and
very short segments are discarded. To minimize the risk of synthetic contamination in the real subset, each
source video underwent independent review by two annotators, following standardized guidelines. Annotators
excluded: (a) content explicitly labeled as "TTS," "AI voice," or "synthetic" in titles/descriptions/channels;
(b) dubbed or post-processed material; (c¢) content exhibiting synthetic speech markers such as unnaturally
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monotonic prosody, robotic cadence, or suspiciously uniform noise floors. We constructed a 70/30 train-test
split at the video level to ensure speaker independence and prevent content leakage across partitions, yielding
approximately 2,660 hours of verified authentic speech for training and evaluation.

Fake Audio Generation: Synthetic speech samples within IndicFake were generated using multiple so-
phisticated TTS models. These models span a variety of architectures, from traditional pipeline-based
approaches to state-of-the-art end-to-end frameworks, ensuring comprehensive coverage of synthetic speech
characteristics:

o IndicTTS (FO01) (Kumar et al) [2022): Utilizes FastPitch (Ren et al., [2019) for efficient mel-
spectrogram prediction coupled with HiFi-GAN (Kong et al.l2020) for generating high-fidelity audio
waveforms. This combination ensures rapid generation of natural-sounding speech with accurate
prosodic modeling.

o DonaLabTTS (F02) & DonaLabTTS2 (F03) (Ren et al.,|2020): Both models are derived from
the FastSpeech2 framework but differ significantly in their phoneme alignment strategies. Donal.-
abTTS applies a hybrid segmentation method to achieve robust phoneme-level alignments. At the
same time, DonalLabTTS2 utilizes the precise Montreal Forced Aligner (MFA) method, resulting in
consistently accurate duration modeling across diverse linguistic contexts.

o Massive Multilingual Speech (F04) (Pratap et al [2024): Employs a Variational Inference with
adversarial learning for Text-to-Speech (VITS) model, directly generating raw waveforms without
intermediate spectrogram stages. This approach effectively captures an expansive range of prosodic
variations, benefiting from extensive multilingual pre-training encompassing up to 1,100 languages.

Table 3: Language metadata across the IndicFake dataset showing language codes, speaker gender dis-
tribution, script systems, language families, and native regions, highlighting the dataset’s linguistic and
demographic diversity.

Language Code Speakers Script Family Native Region

Assamese as male, female Eastern-Nagari Indo-European Assam

Bangla bn male, female FEastern-Nagari Indo-European West-Bengal, Bangladesh
Bodo brx female Devanagari Sino-Tibetan Bodoland Territory
Dogri dgo male Dogri Indo-European Rajasthan

English en male, female English Indo-European Pan India

Gujarati gu male, female Gujarati Indo-European Gujarat

Hindi hi male, female Devanagari Indo-European Hindi Belt

Kannada kn male, female Kannada Dravidian Karnataka

Maithili ma male Devanagari Indo-European Bihar

Malayalam ml male, female Malayalam Dravidian Kerala

Manipuri mni male, female Meetei, Eastern-Nagari  Sino-Tibetan Imphal valley (Manipur)
Marathi mr male, female Devanagari Indo-European Maharashtra

Oriya or male, female Odia Indo-European  Odisha

Punjabi pa male, female Gurumukhi Indo-European Eastern-Punjab
Rajasthani raj male, female Devanagari Indo-European Rajasthan

Tamil ta male, female Tamil Dravidian Tamil Nadu

Telugu te male, female Telugu Dravidian Andhra Pradesh, Telangana
Urdu ur male, female Arabic Indo-European Hindi Belt

2.2 Dataset Diversity

The IndicFake dataset is a comprehensive and linguistically diverse collection featuring 18 languages across
India’s three major language families. This extensive diversity ensures robust cultural and linguistic rep-
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Figure 2: Distribution of audio samples across 18 languages, showing representation of major languages and
inclusion of low-resource languages.

resentation, essential for effective multilingual deepfake detection. The dataset includes various scripts,
reflecting India’s rich textual heritage. For instance, the Eastern-Nagari script is employed for Assamese
and Bangla, representing linguistic traditions from eastern India. The widely used Devanagari script encom-
passes Hindi, Marathi, and Rajasthani, illustrating central and western linguistic characteristics. Southern
languages—Tamil, Telugu, Malayalam, and Kannada—each possess distinctive scripts with unique characters
and writing conventions.

Gender representation within the dataset has been carefully curated to maintain balanced voice diversity
across most languages. Both male and female voices are comprehensively represented, supporting nuanced
analyses of gender-specific vocal features. Languages like Dogri, Maithili, and Bodo exhibit single-gender
representation due to demographic constraints and data availability limitations in these linguistic communi-
ties.

Categorizing languages by family provides essential linguistic context. The Indo-European family comprises
twelve languages, including Assamese, Bangla, Dogri, English, Gujarati, Hindi, Maithili, Marathi, Oriya,
Punjabi, Rajasthani, and Urdu, highlighting the significant diversity within this linguistic group. The
Dravidian family, represented by languages such as Kannada, Malayalam, Tamil, and Telugu, showcases the
distinct linguistic identity of southern India. The inclusion of Sino-Tibetan languages, such as Bodo and
Manipuri, adds further linguistic depth to the dataset.

Geographically, IndicFake captures linguistic diversity across India, ranging from the northern mountainous
regions (Dogri) to the tropical southern landscapes (Malayalam), and from the western states (Gujarati) to
the northeastern areas (Assamese). This comprehensive geographic coverage ensures broad cultural repre-
sentation, effectively reflecting the linguistic richness and complexity of the Indian subcontinent. Detailed
dataset information is presented in Table [3]
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Figure 3: Showcases the distribution of speaker gender, language, and duration in the IndicFake dataset,
demonstrating dataset balance. The language distribution (A) shows balanced coverage across 18 languages.
The speaker distribution (B) highlights maintained gender balance across both real and synthetic speech
samples, enhancing the dataset’s representativeness for deepfake detection research. While the duration
distribution (C) indicates natural variation, ranging from 0.5 to over 8 seconds, it reflects real-world speech
patterns.

2.3 Dataset Statistics

The IndicFake dataset comprises over 4.2 million speech samples, totaling approximately 7,350 hours of
audio data. This extensive collection spans English and 17 Indian languages, grouped into three prominent
language families: Indo-European, Dravidian, and Sino-Tibetan. A detailed breakdown of this dataset is
presented in Table 2] IndicFake maintains a balanced distribution, with most languages exceeding 100,000
samples, while thoughtfully preserving representation for low-resource languages. Specifically, the dataset
comprises approximately 2.2 million synthetic audio samples (approximately 4,690 hours) and 2 million real
audio samples (approximately 2,660 hours), both generated using four advanced TTS systems.

The language distribution within IndicFake demonstrates deliberate resource allocation to ensure robust
representativeness. Major languages such as Hindi (414,594 samples), Kannada (412,079 samples), and
Telugu (436,611 samples) are well-represented, aligning with their widespread usage and significant speaker
populations. Medium-resource languages, including Malayalam (349,477 samples), Tamil (339,160 samples),
and Marathi (385,822 samples), also maintain strong representation, ensuring comprehensive analytical
capabilities. Crucially, IndicFake incorporates lower-resource languages, such as Bodo (74,997 samples),
Dogri (50,545 samples), and Rajasthani (9,148 samples), highlighting the dataset’s inclusive design, which
aims to support technology solutions across diverse language communities, regardless of their size or resource
availability. Figure [2] provides a visual overview of the dataset’s language-wise distribution.

The duration of audio samples within IndicFake has been carefully curated to encompass a range of speech
scenarios. Short audio segments (0.8-2.0 seconds) constitute 12.4% of the dataset, effectively capturing
brief utterances and quick speech interactions. Medium-length segments (2.0-4.0 seconds) represent typical
conversational turns, accounting for 24.8% of the dataset. Longer segments (4.0-8.0 seconds), comprising
40.0%, offer substantial context suitable for detailed analysis. Finally, extended segments exceeding 8.0
seconds make up 22.8%, enabling exploration of longer speech patterns, prosody, and extended conversational
contexts.

IndicFake also achieves near-perfect gender parity, with male speakers representing 51.3% and female speakers
comprising 48.7% of the total audio samples. This balanced gender representation is essential for developing
unbiased audio processing and deepfake detection algorithms that can achieve robust performance across
diverse speaker demographics. Figure |3|illustrates the distribution across languages, durations, and gender,
highlighting the dataset’s comprehensive and balanced nature.

2.4 Dataset Comparison

To contextualize IndicFake’s contribution within the existing landscape of audio deepfake datasets, we con-
ducted a comparative analysis using Jaccard similarity indices and UpSet plot visualizations. Jaccard simi-
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Table 4: Jaccard similarity indices comparing language overlap between IndicFake and existing audio deep-
fake datasets, demonstrating IndicFake’s unique contribution to language coverage in deepfake detection
research.

Dataset ASVspoof 2015 ASVspoof 2019-LA FoR  ASVspoof 2021-LA  ASVspoof 2021-DF ~ WaveFake ADD2022-LF  Latin American CFAD DECRO ASVspoof5 Speech-Forensics MLAAD
Jaccard Index 0.06 0.06 0.06 0.06 0.06 0.05 0.00 0.00 0.00 0.05 0.06 0.06 0.06

larity indices revealed minimal overlap between IndicFake and existing datasets, ranging from 0.00 to 0.06.
IndicFake shares the highest overlap (0.06) with datasets such as ASVspoof 2015, ASVspoof 2019-LA, FoR,
ASVspoof 2021-LA, ASVspoof 2021-DF, and Speech-Forensics. This notably low overlap underscores In-
dicFake’s distinctiveness, particularly in terms of language diversity. A detailed comparison using Jaccard
indices is provided in Table

The UpSet plot visualization in Figure [4] offers further insights into the dataset intersections. MLAAD
emerges as the most linguistically diverse dataset with 38 languages, closely followed by IndicFake’s sub-
stantial coverage of 18 languages. The most significant intersection occurs between MLAAD and IndicFake,
highlighting overlapping coverage of several Indian languages. However, this intersection remains compara-
tively small relative to each dataset’s total linguistic scope, reinforcing the complementary nature of these
resources. Other datasets, such as DECRO and WaveFake, each intersect minimally, emphasizing their nar-
rower linguistic coverage. Most other existing datasets primarily concentrate on English or Chinese, with
minimal overlap across languages.

This comprehensive analysis highlights IndicFake’s unique and significant contribution to linguistic diversity
within the field of audio deepfake research. By encompassing numerous underrepresented Indian languages,
IndicFake fills a critical gap in existing datasets, establishing itself as a valuable resource for developing more
inclusive, robust, and universally applicable deepfake detection technologies.
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Figure 4: UpSet plot visualizing the intersection of lan-
guages across audio deepfake datasets. The plot reveals
limited overlap between datasets, with MLAAD (38 lan-
guages) and IndicFake (18 languages) showing the highest
language diversity.
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2.5 Dataset Quality

The quality evaluation of the IndicFake dataset provides essential insights into the perceptual characteristics
of real and synthetic audio samples. We employ four key metrics: Speech Quality (SIG), Background Noise
Quality (BAK), Overall Quality (OVRL) (Reddy et al., 2022)), and the ITU-T P.808 Mean Opinion Score
(MOS) (Reddy et al.,[2021)). Tablesummarizes these results. Synthetic audio samples demonstrate superior
performance in background noise quality (BAK: 4.111 synthetic vs. 3.367 real) and overall quality (OVRL:
3.19 synthetic vs. 2.650 real), indicating effective noise suppression. This aligns with prior DNSMOS findings
(Reddy et al., [2021} 2022), confirming that noise reduction significantly enhances perceived audio quality.

The 8.3% improvement in speech clarity for synthetic samples (SIG: 3.440 vs. 3.175 for real) suggests syn-
thetic audio effectively maintains phonetic clarity. However, subtle artifacts remain detectable, particularly
during specialized analyses. The higher MOS scores (3.879 synthetic vs. 3.233 real) further confirm synthetic
audio’s human-like perceptual quality, mirroring observations in multilingual deepfake detection research.

These results present a dual challenge for detection systems. Synthetic audio achieves a quality sufficient to
deceive casual listeners, as evidenced by elevated MOS and OVRL scores; yet, it retains identifiable artifacts
detectable through structured analysis. Notably, the BAK metric underscores significant improvements in
noise suppression (21.3% increase). In contrast, the narrower margin in SIG (8.3% improvement) highlights
advancements in phonetic fidelity but points toward lingering subtle synthetic artifacts. This quality paradox
highlights the need for detection methods that focus on residual artifacts, rather than relying solely on con-
ventional quality indicators. IndicFake’s detailed quality evaluation thus offers a comprehensive framework
to drive the development of robust deepfake detection systems.

2.6 Dataset Protocol

To facilitate rigorous and systematic evaluations, IndicFake is structured into three distinct subsets. Set A
encompasses ten Indo-European languages: Assamese, Bengali, Dogri, Gujarati, Hindi, Maithili, Marathi,
Odia, Punjabi, and Urdu. Set B includes four Dravidian languages: Kannada, Malayalam, Tamil, and
Telugu. Set C comprises Bodo, Manipuri, and English.

For Sets A and B, we implement train-test splits to ensure speaker and model independence. Training
datasets contain synthetic samples from DonaLabTTS2 and MMS TTS, while evaluation datasets include
synthetic samples from Donal.abTTS and IndicTTS, facilitating evaluation of unseen TTS models. Ad-
ditionally, real speech data is partitioned to maintain speaker independence and avoid biases. Set C is
exclusively designated for cross-lingual generalization testing, featuring languages entirely unseen during
training. This structured protocol supports comprehensive evaluation across three dimensions: cross-model,
cross-language, and speaker generalization, thereby establishing robust benchmarks for multilingual deepfake
detection systems.

2.7 Dataset Spectral Analysis

To understand the spectral characteristics of synthetic speech in IndicFake, we conducted a detailed frequency
analysis. Figure [5|illustrates average energy distributions across frequency bands, alongside difference plots
highlighting deviations from natural speech. The spectral profiles of real audio reveal typical characteristics,
with prominent energy concentrated in lower frequencies (0-3 kHz) and gradual declines at higher frequencies.
Synthetic audio generated by MMS, IndicTTS, DonaLabTTS, and Donal.abTTS2 maintain similar overall
spectral shapes, but exhibit notable deviations, particularly within higher frequency bands (6-11 kHz).

Difference plots quantify these spectral deviations explicitly. MMS audio exhibits the most significant high-
frequency artifacts, showing variations of up to 10 dB compared to natural speech. DonalLabTTS2 achieves
improved spectral fidelity over its predecessor, especially in mid-range frequencies (3—6 kHz), though some
discrepancies persist at higher frequencies. IndicTTS maintains more consistent spectral behavior but still
exhibits notable deviations above 6 kHz.

These characteristic spectral differences between synthetic and natural speech provide reliable indicators for
deepfake detection systems. Persistent high-frequency artifacts across all TTS systems suggest fundamental
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Figure 5: Spectral comparison between real and synthetic speech across different TTS systems. Each row
shows the average energy distribution (dB) across frequency bins for real speech (left), synthetic speech
(right), and their difference (center), highlighting characteristic deviations in the high-frequency region (6-11
kHz). The last plot shows the difference between two random real sets. These plots are inspired by the
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Figure 6: Overview of the proposed approach. Two speech encoders and adapters with different focuses are
utilized, where Whisper and its corresponding adapter are used for extracting semantic information, and m-
HuBERT is used for extracting acoustic information. Before being fed to the LLM, these two representations
are concatenated together.

3 Proposed SAFARI-LLM

The proposed SAFARI-LLM (Semantic Acoustic Feature Adaptive Router with Integrated LLM) ad-
dresses three key research questions: cross-lingual generalization (RQ1), extended cross-language family
generalization (RQ2), and the impact of model architecture on performance (RQ3). SAFARI-LLM inte-
grates semantic and acoustic speech processing with a Large Language Model (LLM) to enable robust,
multilingual deepfake detection across diverse linguistic contexts. As depicted in Figure [f], SAFARI-LLM
employs a dual-stream architecture comprising two specialized encoders: Whisper (Radford et al., 2022)) for
semantic analysis and m-HuBERT (Boito et al.l 2024)) for acoustic profiling. Their outputs are fused using
an Audio Feature Unification Module (AFUM), which dynamically balances semantic and acoustic features.
The unified representation is then processed by an LLM, fine-tuned with Low-Rank Adaptation (LoRA), to
achieve high detection accuracy across varied linguistic settings.

3.1 Dual-Stream Speech Encoders

The dual-stream architecture addresses RQ1 and RQ2 by capturing both semantic and acoustic information
critical for effective cross-lingual and cross-language family deepfake detection. Whisper-large (Radford et al.)
2022)), pretrained on 96 languages, extracts high-level semantic content from audio inputs, enabling robust
generalization across languages. Concurrently, m-HuBERT-base (Boito et al) [2024), pretrained on 147
languages, captures fine-grained acoustic features, including speaker identity, timbre, and prosodic patterns,
which are essential for detecting subtle deepfake artifacts.

Formally, given a batch of audio signals X € RE*T where B is the batch size and T is the temporal
dimension, we first transform each signal into a log-mel spectrogram S € RE*XFXT  where F' denotes the
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frequency dimension. Semantic embeddings are computed as:
H, = Whisper(S), H, ¢ REXT=xDs/ (2)

Where T is the temporal dimension of the semantic features, and Dy is the embedding dimension. Acoustic
embeddings are derived using m-HuBERT:

H, = mHuBERT(X), H, € RF*TaxDa (3)

Where T, and D, represent the temporal and embedding dimensions of the acoustic features, respectively.
To unify these heterogeneous embeddings, we employ adapter modules that perform the following operations:

1. Apply two 1D convolutional layers to reduce dimensionality and align temporal resolutions between
H, and H,.

2. Utilize a bottleneck adapter (Houlsby et al.l 2019)) to balance computational efficiency and feature
expressiveness.

3. Project both embeddings into a shared dimensional space using a linear layer.

The adapted embeddings, H/, and H/,, are mapped to a common space:

HlsaH; ERBX38X1024. (4)

These embeddings are concatenated to form a unified input:

X = [HfsvH:z]a X, € RBX38x2048. (5)

3.2 Audio Feature Unification Module

The AFUM addresses RQ3 by dynamically balancing the contributions of semantic and acoustic features
to optimize detection performance. AFUM comprises K projection experts {Py}, each implemented as a
transformer-based layer, and a multi-layer perceptron (MLP) Audio Feature Router R (Puigcerver et al.l
2023)). This design enables adaptive feature weighting, ensuring that the model prioritizes relevant informa-
tion based on the input audio characteristics.

Given the concatenated input x,, € REXLXP where L = 3@ and D = 2048, AFUM computes a unified
representation as a weighted sum of expert outputs:

K

)_(m == Zwm,k N Pk(xm)a (6)

k=1

where w,, ;, are the routing weights for the k-th expert, and Py (x,,) denotes the output of the k-th projection
expert. The routing weights are computed dynamically by the router R:

Wi = 0(R(Xp)), Wiy, € REXEXK (7)
Where o(+) is the softmax function, ensuring that the weights are normalized across the K experts for each

input token. This mechanism enables AFUM to adaptively emphasize either semantic or acoustic features
based on the input, thereby enhancing robustness across diverse linguistic contexts.

4The temporal dimension of 38 is directly adopted from the Whisper model’s semantic embeddings, and the acoustic
embeddings are aligned to this dimension.
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3.3 Large Language Model (LLM) Integration and Classification

To integrate semantic and acoustic embeddings with multilingual priors and long-range attention, we use
a LoRA-adapted LLaMA-7B backbone as a sequence integrator over audio embeddings. The LLM operates
on the unified sequence X, output by AFUM—formed from Whisper (semantic) and m-HuBERT (acoustic)
embeddings after their respective adapters—not on text tokens or transcripts. This design enables the
backbone to model token-level cross-modal dependencies and alignments between semantic content and its
acoustic realization.

Instantiation and adaptation. We instantiate the backbone with LLaMA-7B (Touvron et al.l 2023)
enhanced via Vicuna instruction-following fine-tuning (Vicunal 2023|), and adapt it efficiently using Low-
Rank Adaptation (LoRA) (Hu et all 2021). LoRA adapters with rank r=8 and scaling a=16 are inserted
into the query and value projections of all self-attention layers; the base transformer weights of LLaMA-7B
are kept frozen, preserving pretrained priors while enabling task-specific adaptation.

The unified embeddings x,, from AFUM are processed by the LoRA-adapted LLM:

yiim = LLMpora (Xm)- (8)

The resulting embeddings are fed into a Multi-Layer Perceptron (MLP) for binary classification:

§ = o(MLP(yLLm)), (9)

where o(-) is the sigmoid activation function, producing a probability score for the binary classification task
(real vs. fake audio).

Why an LLM? We adopt a LoRA-adapted LLaMA-7B model as a pretrained multilingual sequence inte-
grator whose long-range attention enables effective fusion of semantic (Whisper) and acoustic (m-HuBERT)
embeddings. Our motivation for incorporating an LLM is not to exploit its linguistic knowledge or text
generation capabilities, but rather to leverage its general sequence modeling capacity to align heterogeneous
modalities. This design choice is consistent with the emerging paradigm of LLM reprogramming, which
demonstrates that pretrained language models can be repurposed for non-linguistic domains such as time-
series forecasting or biological sequence modeling by adapting inputs into the model’s latent space (|[Jin et al.
(2024); [Fan et al.| (2024); Melnyk et al.| (2023])

In this view, the LLM serves as a flexible and high-capacity transformer backbone for multimodal integration,
rather than acting as a linguistic expert. The LoRA fine-tuning enables efficient task-specific adaptation while
preserving the general cross-domain priors that promote robust alignment between content and acoustics
across languages and deepfake synthesis methods.

4 Experimental Setup and Protocols

This section outlines the experimental setup, detailing the datasets used, baseline models for comparison,
implementation specifics, evaluation metrics, and the structured protocols designed to comprehensively assess
our proposed SAFARI-LLM model.

Existing Datasets Apart from the proposed IndicFake corpus, we evaluate our method using two promi-
nent multilingual datasets to thoroughly examine cross-lingual and cross-synthesis generalization capabilities:

« DECRO (Ba et al.l 2023): Contains English and Chinese subsets, with 21,218 bona fide Chinese
samples and 12,484 English samples, each with predefined training, development, and evaluation
partitions.

o WaveFake (Frank & Schonherr] 2021): Features 136,085 samples, including 121,085 in English
and 15,000 in Japanese, designed explicitly for assessing multilingual generalization and synthesis
variability. We follow the leave-one-out protocol enforcing evaluation on an unseen generator. For
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Table 6: Comparison of deepfake detection performance across English and Japanese languages using the
WaveFake dataset, showing cross-lingual generalization capabilities for different model architectures. Acc:
Accuracy (%), EER: Equal Error Rate.

Train on English, Train on English, | Train on Japanese, Train on Japanese,

Models Eval on English  Eval on Japanese Eval on English Eval on Japanese

Acc  EER(%) Acc EER(%) | Acc EER(%) Acc EER(%)
Whisper MesoNet 10.82 37.62 33.33 43.80 89.18 46.40 66.67 44.89
MesoNet 89.18 0.57 66.67 3.06 89.74 15.72 79.05 5.74
SSLModel 89.47 19.64 66.67 41.25 89.18 51.87 100.00 0.00
Whisper SpecRNet 89.83 24.46 67.23 33.47 50.45 36.97 89.97 6.38
Whisper LCNN 92.29 14.62 72.76 31.03 16.60 36.55 87.97 12.76
Conformer 93.53 8.96 54.92 45.78 89.18 46.03 99.98 0.01
RawNet2 99.79 0.26 66.65 48.84 18.71 42.74 99.70 0.18
SpecRNet 99.80 0.01 84.85 3.30 52.30 6.84 99.77 0.00
RawGAT-ST 99.85 0.24 87.42 8.36 57.49 19.85 99.01 0.34
AASIST 99.95 0.08 89.27 6.86 12.05 27.80 91.51 0.71
RawBMamba 99.98 0.03 83.25 2.87 37.26 14.00 99.94 0.04
LCNN 99.98 0.02 90.92 8.27 10.82 18.01 99.95 0.06
RawNet3 99.99 0.03 86.67 12.10 80.53 32.06 98.93 0.91
Whisper-frontend-LCNN  99.98 0.02 85.09 1.28 80.48 2.08 99.92 0.03
Proposed 99.99 0.02 94.21 2.48 92.31 5.31 100.00 0.00

both English and Japanese, MB-MelGAN is excluded from the training process. Evaluation spans
MelGAN, MelGAN(L), FB-MelGAN, MB-MelGAN (unseen), HiFi-GAN, WaveGlow, PWG, and
TTS, jointly testing model and linguistic generalization.

Baseline Models We benchmark SAFARI-LLM against a comprehensive set of 15 baseline architectures,
categorized based on their input modalities:

« Raw Waveform Models: Including RawBMamba [Chen et al.| (2024), Conformer [Rosello et al.
(2023), SSLModel Tak et al.| (2022)), AASIST weon Jung et al. (2022a), RawGAT-ST |Tak et al.
(2021c)), RawNet2|Tak et al.[(2021b), and RawNet3|weon Jung et al.| (2022b)), which operate directly
on time-domain signals.

o Spectrogram-based Models: LOCNN (Wu et al.| 2018), MesoNet (Afchar et al., 2018) (specifically
the Mesolnception-4 variant), and SpecRNet (Kawa et al.l 2022a; 2023), which process frequency-
domain spectrograms.

For spectrogram-based baselines, we test standard cepstral features (LFCC and MFCC), as well as advanced
embeddings from the Whisper encoder, alone and in combination with cepstral features, inspired by insights
from [Kawa et al.| (2022b]).

Evaluation Protocols Our evaluation protocols are explicitly structured around the three primary RQs:

RQ1: Cross-Lingual Generalization. We train models on one language and test on another within the
same dataset, utilizing WaveFake (English-Japanese) and DECRO (English-Chinese). These experiments
specifically measure each model’s capacity to detect deepfake audio across distinct linguistic domains.

RQ2: Extended Cross-Language Family Generalization. To examine generalization across funda-
mentally different language families, we use subsets from IndicFake: Set A (Indo-European) and Set B
(Dravidian). We conduct bi-directional experiments, training on one family and testing on the other. We
maintain speaker and synthesis-model independence by employing different TTS models—Donal.abTTS2
and MMS TTS for training, and DonaLabTTS and IndicTTS for evaluation.
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Table 7: Equal Error Rate (EER) of the SAFARI-LLM on different subsets (LFCC). We train a new model
for each data set and compute the EER.

.. LJSpeech JSUT

Training Set

MelGAN  MelGAN (L) MB-MelGAN  FB-MelGAN HiFi-GAN PWG WaveGlow TTS MB-MelGAN PWG
MelGAN 0 0.001 0.119 0.333 0.343 0.175 0.12 0.005 0.232 0.021
MelGAN (L) 0 0 0.313 0.551 0.512 0.398 0.161 0 0.159 0.012
MB-MelGAN 0.007 0.014 0.001 0.027 0.129 0.027 0.06 0.05 0.075 0.03
FB-MelGAN 0.003 0.004 0.002 0.003 0.04 0.004 0.02 0.011 0.043 0.012
HiFi-GAN 0.127 0.145 0.258 0.333 0.008 0.185 0.145 0.017 0.299 0.094
PWG 0.507 0.555 0.495 0.704 0.683 0.011 0.468 0.537 0.225 0.094
WaveGlow 0.044 0.134 0.147 0.424 0.378 0.255 0 0.055 0.432 0.34

Table 8: Comparison of the proposed model with different baseline models under the single training set
protocol.

Training Set WaveFake GMM (Table 2 ) WaveFake RawNet2 (Table 3) SAFARI-LLM
MelGAN 0.215 0.292 0.135
MelGAN (L) 0.222 0.258 0.211
MB-MelGAN 0.108 0.357 0.042
FB-MelGAN 0.062 0.363 0.014
HiFi-GAN 0.089 0.319 0.161
PWG 0.124 0.358 0.428
WaveGlow 0.085 0.294 0.221
Best aggregated EER 0.062 0.258 0.014

RQ3: Architectural Design Impact. We evaluate the influence of architectural choices and input
representations by comparing five categories of models: LLM-based (our SAFARI-LLM), State Space
Models (RawBMamba), Graph Neural Networks (AASIST, RawGAT-ST), Convolutional Neural Networks
(RawNet2, RawNet3), and Transformers (SSLModel, Conformer). We also analyze performance variations
between raw waveform and spectrogram input representations.

Implementation details and metrics: All audio is resampled to 16 kHz mono. Spectrogram-based
baselines use a 400-sample window with a 160-sample hop. LFCC features use 128 coefficients with A and
AA; for some baselines, these cepstra are concatenated with Whisper embeddings. We use the Whisper-large
variant throughout. For SAFARI-LLM, we adopt LLaMA-7B (Touvron et al.l |2023) with LoRA adapters
(r=8, a=16). AFUM employs K=2 transformer projection experts (eight layers each; ~88M parameters).
Adapters operate at a fixed temporal stride of 80 ms, and the unified token dimensionality is D=2048. Since
LLaMA-7B uses hidden size dp1,=4096, we insert a learned input adapter W;, € R2048x4096 hefore the LLM.
Models are trained with AdamW (51=0.9, 8,=0.95, weight decay 0.1). We report Accuracy and Equal Error
Rate (EER).

Parameter and efficiency accounting: We fine-tune Whisper-large and m-HuBERT end-to-end, while
keeping the LLaMA-7B backbone frozen except for LoRA adapters. Concretely, the trainable components
are: (i) Whisper-large, (ii) m-HuBERT, (iii) AFUM, (iv) the stream adapters, (v) the 2048—4096 input
adapter for LLaMA-7B, (vi) LoRA weights on the LLM, and (vii) the final MLP classifier. We show the
parameter count of model components in Table

Reproducibility. All the resources will be available at the project page.
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Table 9: Cross-lingual deepfake detection results on the DECRO dataset between English and Chinese
languages, demonstrating model performance when trained and evaluated across different language pairs.

Train on English, | Train on English, | Train on Chinese, | Train on Chinese,

Models Eval on Chinese Eval on English Eval on Chinese Eval on English

Acc  EER(%) | Acc EER(%) | Acc  EER(%) | Acc  EER(%)
RawNet3 62.57 33.94 81.54 17.25 97.33 2.41 78.91 18.60
Whisper-Mesonet 66.30 21.82 72.09 15.91 66.43 7.78 72.25 21.27
RawGAT-ST 67.79 38.76 84.29 20.65 99.42 0.56 80.79 21.90
AASIST 68.29 32.49 84.56 16.52 98.47 1.17 82.22 9.53
RawNet2 68.74 32.48 84.74 17.16 98.44 1.59 84.41 11.02
Whisper-SpecRNet 69.60 28.86 83.55 15.78 95.16 4.31 77.79 18.60
Whisper-LCNN 71.04 29.49 85.06 15.72 94.86 4.83 78.44 11.60
RawBMamba 71.49 29.17 86.12 14.93 98.33 1.56 81.90 17.60
LCNN 72.59 25.59 86.64 14.92 99.34 0.72 76.92 22.56
Conformer 72.86 42.89 86.55 22.38 98.23 1.52 76.54 20.66
Whisper-frontend-LCNN  80.65 25.83 90.57 14.62 98.20 0.96 77.36 8.72
SpecRNet 82.64 22.44 91.53 11.88 96.01 1.74 77.34 16.16
SSLModel 82.72 27.26 91.57 16.17 98.85 1.21 82.15 18.59
MesoNet 83.09 18.40 91.63 10.01 58.30 3.42 54.18 14.07
Proposed 84.48 21.20 92.44 11.35 99.60 0.36 82.70 11.80

5 Results and Analysis

This section presents a comprehensive evaluation of SAFARI-LLM’s performance, addressing our three re-
search questions related to cross-lingual generalization, extended cross-language family generalization, and
the impact of model architecture. We report key metrics, compare SAFARI-LLM against baseline models,
and embed detailed analyses and inferences within each subsection to elucidate trends and implications for
multilingual deepfake detection.

5.1 Cross-Lingual Generalization Analysis (RQ1)

We tested SAFARI-LLM’s cross-lingual generalization on the WaveFake and DECRO datasets. On Wave-
Fake, SAFARI-LLM achieves near-perfect within-language detection: 99.99% accuracy (0.02% Equal Error
Rate, EER) for English and 100% accuracy (0% EER) for Japanese, as shown in Table [ On DECRO
(Table E[), performance remains strong but reveals asymmetries, with 99.59% accuracy (0.36% EER) for
Chinese compared to 92.43% accuracy (11.34% EER) for English. This discrepancy stems from dataset
imbalances, with Chinese subsets having a real-to-fake ratio of 1:2 versus 1:3.4 for English, leading to higher
false positives in English detection.

Cross-lingual evaluations highlight the challenges of language transfer. Training on the larger English Wave-
Fake dataset (121,085 samples) yields robust generalization to Japanese (15,000 samples), achieving 94.21%
accuracy (2.48% EER). Conversely, Japanese-to-English transfer results in 92.31% accuracy (5.31% EER),
suggesting that larger, diverse training data enhances cross-lingual robustness.

We also evaluate SAFARI-LLM under the single-training-set protocol exactly as described in the Wave-
Fake paper (Table 2). In this setting, the model is trained on one generator (row) and evaluated across all
other generators (columns). The results for SAFARI-LLM in this protocol are shown in Table 7] and Table
Bl SAFARI-LLM yields substantially lower aEERs for MelGAN, MB-MelGAN, and FB-MelGAN train-
ing, demonstrating stronger in-distribution and cross-vocoder generalization. FB-MelGAN training achieves
an aEER of 0.014, compared to 0.062 (GMM) and 0.363 (RawNet2). These improvements suggest that
SAFARI-LLM captures spoofing artifacts in a more transferable manner across vocoders, outperforming tra-
ditional GMMs and RawNet2 in most cases. SAFARI-LLM’s performance is weaker on PWG and WaveGlow
compared to GMM, which we attribute to vocoder-specific biases.
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Table 10: Results with training models on Set A
(Indo-European languages) and evaluating across
Set A (within-family), Set B (Dravidian lan-
guages), and Set C (mixed languages) for Indic-
Fake dataset, showing cross-language family gen-
eralization.

Train on Set A, Train on Set A, Train on Set A,

Models Eval on Set A Eval on Set B Eval on Set C
EER (%) EER (%) EER (%)

RawBMamba 2217 4.155 7.800
MesoNet 2.746 2.244 8.545
Whisper SpecRNet 3.054 3.164 4.777
Whisper MesoNet 5.554 3.456 3.828
LCNN 6.151 9.968 22.750
SSLModel 6.742 8.213 17.544
RawNet2 6.786 6.132 13.709 . .
Conformer 3.881 8177 15.335 Figure 7: DET curves showing model performance when
Proposed 0.941 1.153 0.023 trained on Set A of the IndicFake dataset and evaluated

on Set A, Set B, and Set C test sets.

On DECRO, Chinese-to-English transfer yields 82.69% accuracy (11.79% EER), while English-to-Chinese
achieves 84.48% accuracy but with a higher EER of 21.19%, indicating sensitivity to language-specific acous-
tic characteristics, particularly in prosodic and phonetic patterns.

SAFARI-LLM’s dual-encoder architecture, combining Whisper’s semantic embeddings and m-HuBERT’s
acoustic features, significantly outperforms single-stream models in cross-lingual settings. For instance, it
surpasses RawNet3 by 19.98% in English-to-Japanese accuracy. However, the elevated EER in cross-lingual
scenarios (e.g., 21.19% for English-to-Chinese) suggests residual sensitivity to language-specific acoustic arti-
facts. These results suggest that while semantic features facilitate robust generalization, acoustic variations
across languages continue to pose a challenge. Future improvements should incorporate explicit phonetic
modeling and balanced multilingual datasets to reduce false positives and enhance transferability, thereby
ensuring the suitability of SAFARI-LLM for real-world multilingual deployment.

The higher EER for English— Chinese (21.20%) compared to Chinese— English (11.80%) on DECRO high-
lights residual language-specific artifacts and distributional mismatch. In contrast, within the Indic setting,
where training and target languages are more closely aligned phonetically, cross-family EERs are much lower
(e.g., Set A—B: 1.15%, Set B—A: 3.78%); and joint training on AUB yields 0.72/0.73% EER on
Sets A/B and 0.68% on unseen Set C. Together, these findings suggest that typological proximity and
training coverage reduce score-distribution shift, while remaining errors motivate prosody-aware cues and
light language-conditioned calibration.

5.2 Extended Cross-Language Family Generalization (RQ2)

We assessed SAFARI-LLM’s generalization across language families using the IndicFake dataset, comprising
Indo-European (Set A), Dravidian (Set B), and mixed languages (Set C). The results reveal several critical
insights into cross-family transfer capabilities and architectural performance patterns.

5.2.1 Training on Set A (Indo-European Languages)

When training on Set A, SAFARI-LLM achieves strong in-family performance at 95.12% accuracy (0.94%
EER) as shown in Table This performance demonstrates excellent calibration, with the model achieving
high accuracy while maintaining exceptionally low error rates. Notably, while baseline models like AASIST
achieve higher accuracy (97.49%), their significantly higher EER (1.47%) indicates imbalanced class-specific
performance, suggesting potential overfitting to the training distribution. The cross-family generalization
results are particularly compelling. Testing the Set A-trained SAFARI-LLM on Set B yields 88.17% accuracy
(1.15% EER), demonstrating robust cross-family transfer despite fundamental linguistic differences between
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Table 11: Model performance when trained
on Set B (Dravidian languages) and evalu-
ated on Set A (Indo-European), Set B (within-
family), and Set C (mixed languages) for Indic-
Fake dataset, demonstrating cross-language fam-
ily transfer capabilities.

Train on Set B, Train on Set B, Train on Set B,

Models Eval on Set A Eval on Set B Eval on Set C
EER (%) EER (%) EER (%)

LCNN 4.507 3.215 25.597
RawBMamba 5.610 5.416 26.795
Whisper SpecRNet 5.676 4.175 19.298
SSLModel 7.162 5.801 18.246
Whisper MesoNet 7.966 4.821 7.689
Conformer 8.242 9.202 16.452
RawNet2 8.921 9.496 24.740 . .
MesoNet 14.568 9.331 30.524 Figure 8: DET curves showing model performance when
Proposed 3.728 3.782 7.224 trained on Set B of the IndicFake dataset and evaluated

on Set A, Set B, and Set C test sets.

DET Curve for iLSETA OET Curve for TR

Table 12: Results from joint training on Set
A and Set B, showing how combined training
on Indo-European and Dravidian languages af-
fects model performance across different lan-
guage families.

Train on All,  Train on All,  Train on All,

Models Eval on Set A Eval on Set B Eval on Set C
EER (%) EER (%) EER (%)

LCNN 1.232 0.892 6.496
RawGAT-ST 1.234 1.020 1.324 {
AASIST 1.306 0.726 3.110 H \
Whisper-Frontend-SpecRNet 1.535 1.450 0.568 "I\
RawBMamba 1.897 3.224 6.358
Whisper SpecRNet 2.329 2.641 6.747
SpecRNet 2.597 1.483 9.921
‘Whisper LCNN 3.280 4.860 12.714
Conformer 3.344 2.029 10.828
MesoNet 3.948 2.902 14.409 . .
RawNet2 1907 1208 13.087 Figure 9: DET curves showing model performance when
SSLModel 5.903 3.652 12.131 101 ] ]
Whisper MesoNet o a0 i jointly trained on Set A and Set B of the IndicFake
Proposed 0.725 0.729 0.680 dataset and evaluated on Set A, Set B, and Set C test

sets.

Indo-European and Dravidian language families. This represents only a 6.95% accuracy drop with a minimal
0.21% EER increase, indicating excellent preservation of discriminative features across language families.

In contrast, other models show more dramatic performance degradation. For instance, Whisper MesoNet
achieves higher cross-family accuracy (96.48%) but suffers from a substantially worse EER (3.45%), repre-
senting a 2.1x increase in error rate compared to SAFARI-LLM. This pattern suggests reduced reliability
and potential overfitting to acoustic patterns specific to the training language family. We show the DET
curve for each of the settings in Figure [7}

5.2.2 Training on Set B (Dravidian Languages)

Training on Set B reveals asymmetric transfer capabilities. SAFARI-LLM achieves 86.77% accuracy (3.78%
EER) for in-family performance and maintains stable cross-family performance on Set A at 86.77% accuracy
(3.72% EER). The remarkably consistent performance across both sets (86.77% accuracy) with nearly iden-

19



Published in Transactions on Machine Learning Research (11/2025)

tical EER values (3.78% vs 3.72%) suggests that the model successfully learns language-agnostic features
when trained on Dravidian languages.

However, a critical asymmetry emerges when comparing the effectiveness of Set A and Set B training. The Set
A-trained model significantly outperforms the Set B-trained model on Set C (97.30% vs 60.69% accuracy),
representing a 36.61% performance gap. This substantial difference indicates that Indo-European languages
provide more transferable semantic and acoustic cues, likely due to their broader representation in pretrained
foundation models like Whisper and m-HuBERT. We show the DET curve for each of the settings in Figure
B

5.2.3 Joint Training Analysis

Joint training on Sets A and B (Table achieves balanced performance: 83.92% accuracy (0.72% EER)
on Set A and 84.64% accuracy (0.73% EER) on Set B. The near-identical EER values (0.72% vs 0.73%)
and similar accuracy levels demonstrate successful knowledge integration across language families. This
represents an 11.2% accuracy decrease from Set A-only training but achieves a much better balance, with
only a 0.48% accuracy difference between families. Importantly, joint training dramatically improves Set C
performance, achieving 60.45% accuracy (0.68% EER), which substantially outperforms Set B-only training
(60.69%) while maintaining the excellent calibration characteristics of SAFARI-LLM. We show the DET
curve for each of the settings in Figure [0]

5.3 Impact of Model Architecture (RQ3)

We analyzed SAFARI-LLM’s architectural contributions compared to baseline models. Raw-audio models
like RawNet3 achieve near-perfect within-language accuracy (99.98%) but deteriorate sharply in cross-lingual
settings (e.g., 75.23% accuracy for English-to-Japanese), indicating a strong dependency on language-specific
acoustic features. Spectrogram-based models, such as Whisper-frontend-LCNN, show lower within-language
accuracy but greater cross-lingual stability (85.09% English-to-Japanese, 80.48% Japanese-to-English), ben-
efiting from language-agnostic pretrained embeddings.

SAFARI-LLM integrates the strengths of both approaches through its dual-stream architecture, leveraging
Whisper for semantic features and m-HuBERT for acoustic cues. The Audio Feature Unification Module
(AFUM) dynamically balances these representations, achieving a synergy that bridges cross-lingual gaps.
For example, SAFARI-LLM outperforms RawNet3 by 19.98% and Whisper-frontend-LCNN by 9.12% in
English-to-Japanese accuracy.

The LoRA-adapted LLaMA component in SAFARI-LLM strengthens multimodal integration by effectively
aligning semantic and acoustic embeddings. This leads to consistent performance across languages and
spoofing techniques. Importantly, the improvements appear to stem not from the linguistic pretraining of
the LLM, but from its generalized ability to model dependencies across heterogeneous feature spaces.

This interpretation aligns with recent findings from LLM reprogramming literature (|[Jin et al.| (2024); Fan
et al.|(2024); Melnyk et al.| (2023)), which view pretrained language models as universal sequence processors
that can be adapted to new modalities through minimal parameter updates. SAFARI-LLM adheres to this
principle: the LLM acts as a multimodal sequence integrator, facilitating the adaptive fusion of semantic
and acoustic features while mitigating language-specific biases. Future work could explore more explicit
reprogramming strategies and dynamic routing in AFUM to further enhance cross-domain generalization
and resilience to emerging deepfake synthesis techniques.

5.4 Ablation Studies
To better understand the contributions of data scale and model design, we conduct two complementary

ablations: (i) scaling training data within a language, and (ii) isolating the role of each feature stream and
the LLM backbone. These controlled studies provide concrete evidence for the effectiveness of SAFARI-LLM.
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Table 13: Within-language EER(%) as training samples increase. Gains differ by language family and
representation in the pretraining pool.

Training Samples Hindi EER Tamil EER

10k 3.91 4.23
20k 2.35 3.74

Table 14: Ablation (EER %): contribution of the LLM and dual-stream fusion. Base retains both encoders
and AFUM, replacing the LLM with a 2-layer MLP head to isolate the LLM’s effect. All systems are trained
on Set A U Set B and evaluated individually on Set A, Set B, and Set C. We also show the parameter count
for each of the configurations.

Model Variant (Train = Set AUSet B) Parameter Count Eval Set A Eval Set B Eval Set C
Base (dual-stream + AFUM, MLP head; no LLM) 893,446,276 6.532 15.405 23.688
Whisper + AFUM + LLM 7,533,161,476 4.762 11.079 21.097
m-HuBERT + AFUM + LLM 6,983,075,204 5.818 13.362 21.970
SAFARI-LLM (Whisper + m-HuBERT + AFUM + LLM) 7,631,861,892 0.725 0.729 0.680

5.4.1 Effect of Scaling Within a Language

We examine the effect of increasing training data for two typologically distinct Indic languages—Hindi (Indo—
European) and Tamil (Dravidian). The evaluation is performed in a within-language setting, isolating the
impact of additional data without cross-lingual transfer. We find that increasing Hindi data from 10k to
20k samples reduces EER by ~40% (3.91 —2.35), while Tamil improves by only ~12% (4.23 —3.74). This
suggests that the marginal utility of additional data depends on the language family and its representation
in the pretraining pool. Languages already well represented (e.g., Hindi) benefit more strongly from scaling,
whereas typologically distant and under-represented languages (e.g., Tamil) remain challenging even with
larger data sizes.

5.4.2 Effect of Model Components

We evaluate the contribution of each component using a controlled ablation with four settings trained on
Set AUSet B and evaluated on Set A, Set B, and Set C: (i) a dual-stream baseline that retains both encoders
and AFUM but replaces the LLM with a 2-layer MLP head; (ii) Whisper + LLM (semantic stream only);
(iii) m-HuBERT + LLM (acoustic stream only); and (iv) the full SAFARI-LLM with both streams unified by
AFUM and processed by the LoRA-adapted LLM. This isolates the effect of the LLM from (a) dual-stream
fusion and (b) AFUM.

Table [I4] shows that adding an LLM to a single stream yields consistent but modest gains over the dual-
stream MLP baseline, whereas the largest improvement occurs when both semantic and acoustic streams are
fused by AFUM and integrated by the pretrained LLM (0.73/0.73/0.68 EER). This supports our hypothesis
that complementary semantict+acoustic cues, integrated by a pretrained multilingual sequence model with
long-range attention, are crucial for robust cross-family and zero-shot transfer (cf. Table 10).

6 Limitations and Future Work

While SAFARI-LLM advances multilingual deepfake detection, several limitations remain. First, our dataset,
IndicFake, is region-focused and primarily targets Indic languages. We position it as a complement to existing
global resources rather than a replacement and therefore refrain from claiming universal generalizability
from IndicFake alone. To contextualize the scope, we also evaluate the proposed methodology on non-Indic
benchmarks, WaveFake (English +» Japanese) and DECRO (English <+ Chinese), so that model relevance is
assessed beyond the Indic region (see Table 6 and Table 7).
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Second, the synthetic speech sources used in this work cover a few representative TTS architectures; Ex-
panding to more diverse and stronger generators is an important next step. Third, although SAFARI-LLM
achieves strong cross-lingual transfer, performance remains challenging between typologically distant lan-
guages (e.g., English— Chinese), highlighting persistent language-specific artifacts. Fourth, we do not
explicitly evaluate robustness to partial manipulations or controlled noise/codec/channel effects, though
the diversity of YouTube-sourced real data provides some natural robustness. We view these limitations
as opportunities for future work: expanding coverage to additional language families, incorporating more
diverse synthesis pipelines (including stronger contemporary generators), ensuring fully speaker-disjoint test
splits, extending the framework to partial-fake detection and channel/codec robustness, and developing
lighter-weight variants (e.g., distillation/compression) for edge deployment. In addition, exploring modern
time-series foundation models such as Moment, TimesFM, or Granite TSPulse as alternatives to the LLM
backbone presents a promising direction for reducing model size while retaining strong representational ca-
pacity. Finally, the architecture integrates Whisper-large, m-HuBERT, and a 7B LLM backbone; despite
parameter-efficient LoRA fine-tuning, this remains computationally heavier than several baselines.

We view these limitations as opportunities for future work: expanding coverage to additional language fam-
ilies, incorporating more diverse synthesis pipelines (including stronger contemporary generators), ensuring
fully speaker-disjoint test splits, extending the framework to partial-fake detection and channel/codec ro-
bustness, and developing lighter-weight variants (e.g., distillation/compression) for edge deployment. In
addition, exploring modern time-series foundation models such as Moment |Goswami et al.[(2024), TimesFM
Das et al.| (2024]), or Granite TSPulse |[Anonymous| (2025)) as alternatives to the LLM backbone presents a
promising direction for reducing model size while retaining strong representational capacity.

7 Conclusion

This work introduces two transformative contributions to multilingual deepfake detection: the IndicFake
dataset and the SAFARI-LLM model. The IndicFake dataset, encompassing over 4.2 million audio samples
across 18 Indian languages from the Indo-European, Dravidian, and Sino-Tibetan families, establishes a
new benchmark for linguistic diversity in deepfake research. IndicFake exhibits minimal overlap (Jaccard
similarity ranging from 0.00 to 0.06) when compared individually to existing datasets, making it a robust
resource for evaluating detection models across varied linguistic contexts. The proposed SAFARI-LLM,
a novel dual-stream architecture, seamlessly integrates Whisper’s semantic embeddings and m-HuBERT’s
acoustic features through an adaptive Audio Feature Unification Module (AFUM). Enhanced by a LoRA-fine-
tuned LLaMA-7B model, SAFARI-LLM achieves state-of-the-art performance, delivering superior accuracy,
exceptionally low error rates, and robust generalization across diverse languages and synthesis methods.
Comprehensive experiments on IndicFake, DECRO, and WaveFake datasets demonstrate SAFARI-LLM’s
ability to balance semantic and acoustic information, outperforming existing models in cross-lingual and
cross-language family scenarios while maintaining stability across varied deepfake generation techniques.

These advancements set a new standard for multilingual deepfake detection, offering scalable and reliable
solutions for real-world deployment. In the future, we aim to expand IndicFake to include additional low-
resource languages, further broadening its applicability. Optimization efforts will focus on model compression
and efficient adaptation to enable deployment in resource-constrained environments. Additionally, integrat-
ing phonetic-aware modeling and targeted artifact identification will enhance cross-lingual robustness, paving
the way for universally effective audio deepfake detection systems.
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