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ABSTRACT

Large Language Models (LLMs) as autonomous agents are increasingly tasked
with solving complex, long-horizon problems. Aligning these agents via
preference-based methods like Direct Preference Optimization (DPO) is a promis-
ing direction, yet it faces a critical granularity mismatch. Trajectory-level DPO
provides stable signals but blur where credit should be assigned within long tra-
jectories, whereas step-level DPO offers fine-grained supervision but can be sta-
tistically noisy and data-inefficient when Monte Carlo rollouts are limited, and
can be hard to fully exploit multi-step structured behaviors that only reveal their
effect over several actions. To balance this trade-off, we introduce Hierarchical
Preference Learning (HPL), a hierarchical framework that optimizes LLM agents
by leveraging preference signals at multiple, complementary granularities. While
HPL incorporates trajectory- and step-level DPO for global and local policy sta-
bility, its core innovation lies in group-level preference optimization guided by a
dual-layer curriculum. HPL first decomposes expert trajectories into semantically
coherent action groups and then generates contrasting suboptimal groups to enable
preference learning at a fine-grained, sub-task level. Then, instead of treating all
preference pairs equally, HPL introduces a curriculum scheduler that organizes
the learning process from simple to complex. This curriculum is structured along
two axes: the group length, representing sub-task complexity, and the sample diffi-
culty, defined by the reward gap between preferred and dispreferred action groups.
Experiments on three challenging agent benchmarks show that HPL outperforms
existing state-of-the-art methods. Our analyses demonstrate that the hierarchical
DPO loss effectively integrates preference signals across multiple granularities,
while the dual-layer curriculum is crucial for enabling the agent to solve a wide
range of tasks, from simple behaviors to complex multi-step sequences.

1 INTRODUCTION

Large Language Models (LLMs) have evolved from static question-answering systems into au-
tonomous agents capable of perceiving, reasoning, and acting within complex, open-ended envi-
ronments (Li et al., 2024; Gou et al., 2025). This transformation has powered a new generation
of applications, from embodied assistants that navigate simulated homes (Shridhar et al., 2021) to
web navigators that execute multi-step online tasks (Zheng et al., 2024; Furuta et al., 2024). Unlike
single-turn tasks, these agent-environment interactions unfold in multi-turn loops over extended pe-
riods (Wang et al., 2024a). This paradigm shift introduces a core challenge: long-horizon planning
and decision-making, where the agent must execute a coherent sequence of actions to succeed.

To equip agents for such tasks, Reinforcement Learning (RL) has become a crucial recipe for post-
training LLMs (Liu et al., 2024). Online RL methods like PPO (Sutton et al., 1998; Schulman et al.,
2017) often entail substantial computational costs, high sample inefficiency, and risky, inefficient
exploration in vast action spaces. These challenges have motivated approaches that reduce reliance
on online interaction by learning from static datasets collected in advance. Direct Preference Op-
timization (DPO) (Rafailov et al., 2023) directly aligns agent policies using preference pairs (e.g.,
expert vs. suboptimal behaviors) without requiring costly environment interaction or an explicitly
trained reward model.
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Figure 1: Conceptual comparison of different DPO granularities. While (a) trajectory-level DPO
provides a coarse but stable signal and (b) step-level DPO offers focused but potentially noisy super-
vision, (c) our proposed Group-level DPO learns from semantically coherent action groups, which
provides a structured signal, enabling the agent to reason at the sub-task level.

However, applying DPO to long-horizon agent tasks reveals a fundamental challenge we term the
granularity mismatch. On one hand, trajectory-level DPO, such as ETO (Song et al., 2024), com-
pares entire trajectories and yields stable, low-variance feedback aligned with final outcomes, but
it provides limited resolution for credit assignment, which is hard to tell which segment of a long
interaction actually determined success or failure. On the other hand, step-level DPO, employed by
methods such as IPR (Xiong et al., 2024), attributes preferences to individual decisions by estimating
the expected return from each decision point via Monte Carlo rollouts. However, this fine-grained
focus poses practical challenges in the finite-data, limited-rollout regime. Supervision becomes
fragmented across many decision points, so each step is updated from only a few noisy rollouts,
and it can be hard to fully exploit multi-step structured behaviors whose contribution to success
only becomes apparent when several actions are considered jointly. For instance, the sub-task of
“retrieving an apple from the fridge” is composed of a chain of actions—navigating, opening, and
taking—whose collective value cannot be captured by rewarding any single action in isolation.

To resolve this dilemma, we introduce Hierarchical Preference Learning (HPL), a hierarchical
framework that optimizes LLM agents by leveraging preference signals at multiple, synergistic
granularities. HPL first addresses the granularity mismatch by incorporating DPO losses at the
trajectory, action, and the action-group levels. The group-level view provides both a structural
prior by focusing supervision on sub-trajectories that are more likely to encode reusable skills and a
statistical benefit by aggregating the contribution of multiple actions into one decision unit, which
reduces variance relative to per-step Monte Carlo estimates under a fixed rollout budget. Beyond
merely combining these losses, the core innovation of HPL is a dual-layer curriculum learning strat-
egy that guides the training process. This curriculum systematically organizes the learning path from
simple to complex along two orthogonal axes: sub-task complexity, defined by the length of an ac-
tion group, and sample difficulty, measured by the reward gap between preferred and dispreferred
behaviors. By first mastering simple, easily distinguishable sub-tasks, the agent builds a foundation
before progressing to more complex challenges.

Our main contributions are summarized as follows:

• We identify and address the granularity mismatch problem in preference-based agent alignment by
proposing a novel hierarchical framework that integrates preference signals at three distinct levels:
the coarse trajectory-level, the fine-grained step-level, and a intermediate action-group level.

• We introduce HPL, a novel training paradigm with a dual-layer curriculum learning strategy. This
is the first work to apply a structured curriculum to action-group level preference optimization,
dynamically scheduling samples based on both task complexity and distinguishability.

• We design and systematically evaluate a range of action grouping strategies, from simple heuristics
to a semantic-based approach, to generate meaningful sub-tasks for our framework.

• We demonstrate through extensive experiments on three diverse and challenging long-horizon
benchmarks that HPL significantly outperforms existing state-of-the-art methods, establishing a
more effective and principled paradigm for preference-based training of LLM agents from fixed
datasets after a one-shot exploration phase.
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Figure 2: An overview of our proposed framework, HPL. Stage 1 generates hierarchical preference
data with Action Group Segmentation component. Stage 2 then optimizes the agent with a composite
objective, where the training is guided by dual-layer curriculum scheduler.

2 RELATED WORK

LLM-based Agents. The remarkable reasoning and instruction-following capabilities of mod-
ern LLMs have enabled their use as autonomous agents capable of tackling complex, interactive
tasks (Li et al., 2024; Gou et al., 2025). Initial approaches primarily leveraged the in-context learning
abilities of LLMs through prompts like ReAct (Yao et al., 2023) and Reflexion (Shinn et al., 2023)
to elicit multi-step reasoning and action generation. To enhance the performance of open-source
models beyond zero-shot prompting, a subsequent line of work has focused on fine-tuning agents on
collected trajectory data (Chen et al., 2023). These methods range from standard Supervised Fine-
Tuning (SFT) on expert demonstrations (Zeng et al., 2023; Chen et al., 2024) to more advanced
techniques that learn from preference data, such as contrasting successful and failed trajectories to
optimize for final outcomes (Song et al., 2024). While effective, these fine-tuning paradigms often
treat entire trajectories as monolithic data points (Wang et al., 2024b), overlooking the fine-grained
procedural knowledge embedded within the interaction trajectory.

Process Supervision. To address the limitations of outcome-based rewards, particularly the chal-
lenge of credit assignment in long-horizon tasks, a growing body of research has explored process
supervision (Luo et al., 2024; Xiong et al., 2025). The core idea is to provide agents with more gran-
ular feedback at intermediate steps of a task. Early efforts in this area often relied on costly human
annotations to label the correctness of each step (Lightman et al., 2023). To automate this, recent
methods have proposed various techniques to estimate step-level rewards, such as using Monte Carlo
rollouts to predict the future outcome from an intermediate state (Xiong et al., 2024) or training a
separate reward model to predict the value of each action (Choudhury, 2025; Wang et al., 2025).
These approaches typically use the estimated step-level rewards to guide the agent via reinforce-
ment learning (Feng et al., 2025; Zhang et al., 2025) or DPO at the single-action level.

3 METHODOLOGY

In this section, we present our novel agent alignment framework Hierarchical Preference Learning
(HPL) as depicted in Figure 2. We detail the principal phases of our method below: initial policy
bootstrapping through behavior cloning, the generation of multi-granularity preference data, the
design of our dual-layer curriculum scheduler, and finally, the hierarchical optimization objective.
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3.1 PROBLEM SETTING

In this work, HPL follow the same two-stage protocol as previous work (Song et al., 2024; Xiong
et al., 2024) that combines a one-shot exploration phase with purely offline preference optimization.

• Fixed exploration and labeling. A frozen reference policy πref interacts with the environment
once to collect a pool of interaction traces, including both full trajectories and partial segments.
We then run Monte Carlo rollouts with πref on this static pool to derive different level reward
estimates, constructing the preference datasets. Importantly, the policy πθ is never updated during
this phase, and no further data collection is performed once the datasets are built.

• Offline preference optimization. Given these fixed datasets, preference-based methods train the
target policy πθ using DPO-style objectives at different levels (trajectory, step, and group), without
any additional environment interaction or reward queries.

We therefore view our setting as offline preference optimization after a one-shot exploration phase,
which is distinct from fully online RL methods such as PPO (Schulman et al., 2017) that continu-
ously interleave policy updates with new environment rollouts throughout training.

3.2 BOOTSTRAPPING VIA EXPERT BEHAVIOR CLONING

To equip the base model with fundamental task-solving capabilities, we perform behavior cloning on
a dataset of expert trajectories Dexpert = {(u, τ∗)(i)}|Dexpert|

i=1 , where u is the task instruction and τ∗ is
the corresponding expert trajectory. Each trajectory τ is a sequence of alternating states and actions
τ = (s1, a1, s2, a2, . . . , sT , aT ). A state st is a textual description of the environment, and an action
at is a textual command generated by the agent. This process aims to maximize the likelihood of
the expert’s actions. The loss is defined as:

LBC(θ;Dexpert) = −E(u,τ∗)∼Dexpert

|τ∗|∑
t=1

log πθ(a
∗
t |s∗t , u, τ∗<t)

 , (1)

where τ∗<t represents the history (s∗1, a
∗
1, . . . , s

∗
t−1, a

∗
t−1). This initial cloning step yields a compe-

tent base agent, which serves as our reference policy πref for the subsequent optimization stages.

3.3 HIERARCHICAL CONTRASTIVE DATA GENERATION

After obtaining a competent reference policy πref via behavior cloning (Section 3.2), the next stage
is to generate a rich, multi-layered dataset for preference optimization. This is achieved by having
πref interact with the environment to produce a diverse set of suboptimal trajectories. By contrasting
these with expert trajectories, we construct three distinct preference datasets at the trajectory, action,
and group granularities, as illustrated in the left panel of Figure 2.

3.3.1 DATA GENERATION AT TRAJECTORY AND ACTION LEVELS

Trajectory-Level Data. This dataset provides a coarse, outcome-based learning signal. For each
expert trajectory τw from Dexpert, we use πref to generate a corresponding full trajectory τl. If the
outcome reward of τl is lower than that of τw, we form a preference pair (τw, τl). This process yields
a trajectory-level dataset Dtraj = {(u, τw, τl)(i)}, where u is the task instruction.

Step-Level Data. To provide a finer-grained, process-oriented signal, we adopt the methodology
from IPR (Xiong et al., 2024). At each step t of an expert trajectory, we use the history τ<t as a
prompt for our reference agent πref to generate an alternative action ât and complete the rest of the
trajectory, yielding τ lt:m. This is contrasted with the expert’s subsequent trajectory τwt:n. This cre-
ates a preference pair conditioned on the shared history, resulting in a step-level preference dataset
Dstep = {(τ<t, τ

w
t:n, τ

l
t:m)(i)}.

3.3.2 GROUP-LEVEL DATA GENERATION VIA ACTION GROUP SEGMENTATION

To bridge the gap between coarse trajectories and single actions, we introduce the core concept of
an action group. These groups serve as an intermediate unit of reasoning, ideally corresponding to

4
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semantically coherent sub-tasks for more effective credit assignment. The generation of group-level
data involves two key steps: segmenting trajectories into groups and then estimating a quantitative
reward for each group.

First, we apply a segmentation function f(·) to partition expert trajectory τw into corresponding
action groups {Gw,i}Ni=1. We design and investigate four distinct segmentation strategies:

Fixed Heuristic Strategies. As baselines, we consider two straightforward methods based on
length. Fixed-N Groups divides a trajectory into a fixed number N of equal-length groups. Fixed-K
Size creates groups with K consecutive action steps each. While simple, these methods are agnostic
to the task’s semantic structure and risk making arbitrary cuts.

Uncertainty-Based Segmentation. This adaptive strategy is based on the intuition that a policy’s
uncertainty often increases at sub-task boundaries (Guo et al., 2025). We leverage the entropy of
the reference policy’s action distribution, H(πref(·|ot)), as a proxy for uncertainty. A boundary is
inserted after action at−1 if the entropy at step t exceeds a predefined threshold ϵ.

Semantic Segmentation. To achieve the most meaningful partitions, we employ a powerful, pre-
trained LLM (e.g., GPT-4o) as an off-the-shelf “semantic segmenter”. We provide the full text
transcript of a trajectory to the model and prompt it to partition the sequence into high-level sub-
tasks based on their apparent goals (e.g., “find an object”, “operate an appliance”). This method is
expected to yield the highest quality segmentations.

Once an expert trajectory is partitioned into a sequence of winning groups {Gw,i}, we construct
the preference pairs required for our group-level optimization. For each expert action group Gw,i,
which begins from a context ci (i.e., the history of all preceding steps), we generate a corresponding
losing group Gl,i. This is achieved by sampling a new action sequence of the same length from
the reference policy πref(·|ci). This length-constrained sampling ensures a fair, apples-to-apples
comparison between the expert and suboptimal behaviors. The resulting tuples (ci, Gw,i, Gl,i) form
a rich dataset of fine-grained preference pairs, which are the fundamental training units for HPL.

3.3.3 GROUP-LEVEL REWARD ESTIMATION

After segmenting trajectories into groups, we need a quantitative reward estimate for each group to
filter data and enable our curriculum learning strategy (detailed in Section 3.4). We define the reward
of an action group Gi, which ends at timestep ti with history τ<ti , as the expected final outcome
reward of trajectories completed from that point. Given the difficulty of direct computation, we
estimate this value using Monte Carlo (MC) sampling. Specifically, we use our reference policy πref
to perform M stochastic rollouts starting from the state after Gi has been executed. The estimated
reward for the action group Gi, denoted r̂(Gi), is the average of the final outcome rewards R(·)
from these rollouts:

r̂(Gi) =
1

M

M∑
j=1

R(τ
(j)
i ), where {τ (j)i }Mj=1 = MCπref(τ<ti ;M). (2)

This MC estimation is applied to every winning group Gw,i and losing group Gl,i to obtain their
rewards. With these components, we finalize our group-level dataset Dgroup = {(c,Gw, Gl)

(i)},
where each entry contains a context, a preference pair of groups, and their estimated rewards.

While step-level MC estimation provides a principled, localized estimate of the expected return
at each decision point, in practice the rollout budget per state is small. Under this limited-rollout
regime, per-step estimates can have high variance, which makes purely step-level preference learn-
ing statistically inefficient. In contrast, our group-level rewards aggregate the outcomes of multiple
actions into a single supervision unit, amortizing the same rollout budget over longer sub-trajectories
and better capturing their joint contribution to task success.

3.4 DUAL-LAYER CURRICULUM LEARNING

Statically mixing the group-level preference data from all difficulties for training can be suboptimal,
as it may expose the model to highly complex samples before it has developed foundational skills,
leading to unstable or inefficient learning. To address this, we introduce the core innovation of our
framework: a dual-layer curriculum learning strategy. This strategy dynamically organizes the
training process to mimic an efficient human learning path, from simple concepts to complex ones.
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Figure 3: Illustration of the dual-layer cur-
riculum scheduler with group length (L) and
sample difficulty (∆R). The training follows
a three-phase schedule.

The 2D Curriculum Matrix. As illustrated in Fig-
ure 3, our curriculum is conceptualized as a two-
dimensional difficulty matrix. We categorize each
group-level preference pair (Gw, Gl) along two or-
thogonal axes:

• Sub-task Complexity (Y-axis): This dimension is
measured by the Group Length (L). Shorter ac-
tion groups (e.g., 1-3 steps) correspond to simple,
fundamental skills, while longer groups represent
more complex, multi-step behaviors that require
longer-term planning.

• Sample Discriminability (X-axis): This dimen-
sion is measured by the Sample Difficulty (∆R),
defined as the difference between the estimated re-
wards of the winning and losing groups: ∆R =
r̂(Gw) − r̂(Gl). A large ∆R indicates an easy-
to-distinguish sample where the losing group is
clearly inferior. A small ∆R represents a hard-to-
distinguish sample that requires finer judgment from the agent for successful policy refinement.

Based on these two axes, we partition the group-level dataset Dgroup into a 3x3 grid of data buckets,
denoted as BL,D, where L,D ∈ {1, 2, 3} represent the levels of length and difficulty, respectively.

The Curriculum Schedule. Our training process is not a single pass over the mixed data, but
a staged schedule that progressively expands the training set, guiding the model along a path of
increasing difficulty. The schedule consists of three distinct phases:

1. Phase 1 (Foundational Skills): Initially, the model is trained exclusively on the easiest data
bucket, B1,1 (short length, easy difficulty). This allows the agent to quickly and stably learn the
most fundamental and unambiguous skills without being distracted by more complex scenarios.

2. Phase 2 (Expanding Complexity): After the initial phase, we expand the training data to include
B1,1 ∪ B1,2 ∪ B2,1. In this stage, the agent begins to tackle harder (less distinguishable) short-
horizon tasks while also being introduced to simple medium-horizon skills, effectively broaden-
ing its capabilities.

3. Phase 3 (Full-Scale Tuning): Finally, the training set is expanded to include all nine buckets
(
⋃

L,D BL,D). The agent now fine-tunes its policy on the full spectrum of complexities and
difficulties, mastering the most challenging and nuanced aspects of the tasks.

This staged exposure ensures a smooth learning gradient, building agent’s expertise from the ground
up and preventing it from being overwhelmed by difficult samples early in the training process.

3.5 MULTI-GRANULARITY PREFERENCE OPTIMIZATION

In the final stage, we optimize the policy πθ using a composite loss function that integrates signals
from all three granularities. This approach ensures that the agent not only learns from high-level
outcomes and fine-grained sub-tasks but also stays grounded in the expert’s behavior. The final loss
includes a sum of three components:

Trajectory-Level DPO Loss (Ltraj-DPO). To learn from the overall outcome, we apply a DPO loss
on the trajectory-level dataset Dtraj. This loss encourages the policy to assign a higher likelihood to
the entire successful trajectory over the failed one:

Ltraj-DPO(θ;Dtraj) = −E(τw,τl)∼Dtraj

[
log σ

(
β log

πθ(τw|u)
πref(τw|u)

− β log
πθ(τl|u)
πref(τl|u)

)]
. (3)

Step-Level DPO Loss (Lstep-DPO). Drawing from Xiong et al. (2024), this loss uses Dstep to provide
step-level supervision by comparing the entire future from a decision point:

Lstep-DPO(θ;Dstep) = −E(τ<t,τw
t:n,τ

l
t:m)∼Dstep

[
log σ

(
β log

πθ(τ
w
t:n|τ<t)

πref(τw
t:n|τ<t)

− β log
πθ(τ

l
t:m|τ<t)

πref(τ l
t:m|τ<t)

)]
. (4)
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Group-Level DPO Loss (Lgroup-DPO). This is the core component of our framework, providing mid-
level supervision. We apply the DPO loss to the group-level dataset Dgroup, comparing corresponding
action groups:

Lgroup-DPO(θ;Dgroup) = −E(c,Gw,Gl)∼Dgroup

[
log σ

(
β log

πθ(Gw|c)
πref(Gw|c)

− β log
πθ(Gl|c)
πref(Gl|c)

)]
. (5)

We briefly analyze the bias-variance properties of this group-level objective in the following propo-
sition, with a full derivation provided in Appendix F.
Proposition 1 (Bias-variance trade-off of group-level DPO loss). Let T denote the trajectory length,
γ ∈ [0, 1) the discount factor, and Rmax the maximum reward. Let Ltraj, Lstep, and Lgroup(k) denote
the empirical losses of trajectory-level, step-level, and group-level DPO with group length k < T ,
respectively. Then there exists a constant C > 0 depending only on (γ, πref) such that for every

ϵ ∈ (0, 1) the choice k(ϵ) =
⌈
logγ

(
(1−γ)ϵ
2βRmax

)⌉
satisfies

Bias(Lgroup(k)) ≤ min{Bias(Ltraj),Bias(Lstep)}+ ϵ, (6)

Var(Lgroup(k)) ≤
C log(1/ϵ)

T
min{Var(Ltraj),Var(Lstep)}. (7)

Hence, by setting k = Θ(log(1/ϵ)), group-level DPO loss simultaneously improves the variance by
a factor Ω(T/ log(1/ϵ)) while incurring at most an additive bias of ϵ over the other two losses.

The final training objective combines these losses:

L(s)
final = LBC + Ltraj-DPO + Lstep-DPO + L(s)

group-DPO, (8)

where the group-level loss L(s)
group-DPO for curriculum stage s is computed over a dynamically selected

subset of data, D(s)
group, which is determined by our curriculum scheduler (Section 3.4). The data

subset D(s)
group for each stage is constructed from the 2D curriculum matrix buckets BL,D as follows:

D(s)
group =


B1,1 if s = 1 (Phase 1)
B1,1 ∪ B1,2 ∪ B2,1 if s = 2 (Phase 2)⋃

L,D BL,D if s = 3 (Phase 3)
(9)

4 EXPERIMENTS

In this section, we conduct a series of experiments to comprehensively evaluate the performance of
our HPL framework. Our evaluation is designed to answer the following key research questions:

RQ1. Does HPL outperform strong baselines that rely on conventional learning granularities,
such as the trajectory-level (ETO) and step-level (IPR)?

RQ2. What is the impact of different action group segmentation strategies on the final perfor-
mance of the agent?

RQ3. How crucial is the dual-layer curriculum mechanism to the success of HPL, and what is
the contribution of each curriculum layer?

RQ4. How do trajectory-level, step-level, and group-level losses contribute to HPL?

4.1 EXPERIMENTAL SETUP

We evaluate our proposed method, HPL, on three diverse and challenging long-horizon agent bench-
marks: ALFWorld (Shridhar et al., 2021), WebShop (Yao et al., 2022), and InterCode-SQL (Yang
et al., 2023). In all our benchmarks, the environment returns a single terminal outcome reward at
the end of each episode, which defines a finite-horizon episodic MDP and can be modeled with γ
close to 1 and suitably rescaled rewards. For all experiments, we use Qwen2.5-1.5B-Instruct and
Qwen2.5-7B-Instruct as the backbone language models. HPL is compared against a suite of strong
baselines, including SFT, RFT (Yuan et al., 2023), ETO (Song et al., 2024), and IPR (Xiong et al.,
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Table 1: Performance comparison of HPL and baselines across agent benchmarks over 3 random
seeds. All methods are evaluated using Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct as base
models. The best and second-best results are highlighted in bold and with an underline, respectively.

Models ALFWorld WebShop InterCode-SQL Average
seen unseen avg. reward success rate avg. reward success rate

GPT-4o 36.43 32.09 55.26 18.50 28.50 28.50 33.21
Gemini-2.5-Pro 55.71 49.25 49.56 19.50 68.42 66.00 51.40

Qwen2.5-1.5B-Instruct 2.14 0.00 36.09 10.50 5.50 5.50 9.95
SFT 60.95±1.09 57.96±1.88 56.56±0.69 26.00±0.50 56.24±0.61 54.33±0.76 52.01±0.43
RFT (Yuan et al., 2023) 61.19±1.80 60.95±0.86 57.66±1.45 28.17±1.04 58.08±0.64 56.67±0.29 53.79±0.40
ETO (Song et al., 2024) 65.48±3.60 66.42±2.24 56.57±0.22 28.00±0.87 58.45±1.01 57.67±0.76 55.43±0.86
IPR (Xiong et al., 2024) 65.24±2.30 66.67±3.68 57.76±1.13 27.83±1.04 58.26±1.78 57.17±1.04 55.49±0.78
HPL (Fixed-N(3)) 69.52±1.48 74.38±1.14 60.21±2.04 30.17±1.61 58.75±0.67 57.67±0.58 58.45±0.60
HPL (Fixed-K(3)) 70.48±1.09 66.42±2.69 58.34±1.84 28.33±0.58 59.69±0.58 57.17±0.76 56.74±0.79
HPL (Uncertainty) 74.53±2.89 64.18±1.29 58.75±0.55 27.83±0.76 59.11±0.66 57.33±0.29 56.95±0.44
HPL (Semantic) 72.86±1.89 74.13±1.88 60.74±1.08 30.00±1.00 60.39±0.74 58.50±1.00 59.44±0.63

Qwen2.5-7B-Instruct 38.57 45.52 56.61 19.50 8.80 8.50 29.58
SFT 67.62±2.18 73.63±3.11 60.64±1.12 31.83±1.26 66.70±1.11 65.17±0.76 60.93±0.71
RFT (Yuan et al., 2023) 71.43±1.89 72.63±3.02 61.16±0.85 33.50±1.00 68.01±0.89 66.33±0.76 62.18±0.11
ETO (Song et al., 2024) 72.62±2.51 77.86±2.40 61.85±1.00 33.17±1.04 68.32±0.86 67.00±0.50 63.47±0.47
IPR (Xiong et al., 2024) 73.10±1.80 78.11±3.76 62.01±0.43 33.67±0.58 68.86±1.02 67.17±0.58 63.82±0.69
HPL (Fixed-N(3)) 78.33±2.51 78.86±2.40 62.11±0.41 34.33±0.76 69.55±1.38 68.00±1.00 65.20±0.38
HPL (Fixed-K(3)) 85.71±2.58 78.61±1.55 62.01±1.04 33.83±1.26 69.40±0.98 68.17±0.58 66.29±0.54
HPL (Uncertainty) 83.10±1.80 83.33±1.88 62.79±0.85 35.33±1.04 69.21±0.47 67.83±0.29 66.93±0.43
HPL (Semantic) 82.62±2.30 84.08±2.28 62.97±0.50 35.17±0.58 70.37±1.27 68.50±1.32 67.28±0.47

2024). All methods are initialized from an SFT model trained on expert trajectories generated by
a GPT-4o teacher model. For MC estimation, we use M = 5 rollouts for per group. For Fixed-N
and Fixed-K strategy, we set N = 3 and K = 3. For Uncertainty strategy, the entropy thresh-
old ϵ is set to the 80th percentile of all action entropies (i.e., the threshold for the top 20% highest
values) computed across the training dataset. Detailed descriptions of the environments, baseline
implementations, and all hyperparameters are deferred to Appendix C.

4.2 MAIN RESULTS (RQ1, RQ2)

As shown in Table 1, our HPL framework outperforms all baseline methods across both model
scales, providing a clear answer to our first research question. For the Qwen2.5-7B-Instruct model,
our best-performing variant, HPL (Semantic), achieves an average score of 67.28, surpassing the
strongest single-granularity baselines, ETO and IPR, by 3.81 and 3.46 points, respectively, and
maintaining this advantage across all three benchmarks. The benefit of HPL’s hierarchical ap-
proach is especially notable in tasks requiring complex, long-horizon generalization: on ALFWorld
unseen scenarios, HPL (Semantic) attains a mean success rate of 84.08%, nearly 6 points higher
than state-of-the-art IPR (78.11%). These results indicate that by integrating preference signals at
the trajectory, action, and group levels, HPL effectively resolves the granularity mismatch problem
and learns a more robust and generalizable policy.

Our experiments also reveal the critical impact of the action group segmentation strategy, directly
addressing our second research question. While all HPL variants consistently outperform the base-
lines, adaptive, content-aware segmentation methods generally yield better performance than heuris-
tic approaches. In particular, HPL (Semantic), which partitions trajectories into semantically coher-
ent sub-tasks, is the top-performing variant for both the 1.5B and 7B models, outpacing the next-
best HPL (Uncertainty) by over 0.35 point in mean average score on the 7B model. This suggests
that the quality of the action groups is paramount: providing the DPO loss with more meaningful,
human-aligned sub-tasks as comparison units leads to a more effective learning signal. Moreover,
the strong performance of the simpler Uncertainty and Fixed-N strategies demonstrates the value of
incorporating an intermediate granularity, validating the core design of our framework.

4.3 ANALYSIS OF THE CURRICULUM LEARNING MECHANISM (RQ3)

Ablation of Curriculum Components. To quantitatively assess the importance of our dual-layer
curriculum, we conduct an ablation study by removing each layer individually, with results presented
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Table 2: Ablation study on our curriculum learning mechanism of HPL across three agent bench-
marks.

Models ALFWorld WebShop InterCode-SQL Average
seen unseen avg. reward success rate avg. reward success rate

Qwen2.5-1.5B-Instruct
HPL 71.43 72.39 59.99 30.00 60.08 58.50 58.73
HPL Static 68.57 71.64 58.80 29.00 59.45 58.00 57.58
HPL Length CL Only 69.29 72.39 58.06 28.50 59.39 57.50 57.52
HPL Difficulty CL Only 71.43 70.71 58.83 30.00 60.50 58.00 58.25

Qwen2.5-7B-Instruct
HPL 83.57 86.57 62.56 34.50 70.63 69.00 67.81
HPL Static 75.71 82.84 62.05 33.00 69.71 68.50 65.30
HPL Length CL Only 82.14 85.07 62.26 34.00 69.49 67.50 66.74
HPL Difficulty CL Only 81.43 85.82 62.27 34.50 69.63 68.00 66.94
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Figure 4: Phase-wise performance progression of HPL on the ALFWorld benchmark. (a) Success
rates for both 1.5B and 7B models across the three curriculum phases. (b) A detailed breakdown for
the 1.5B model on 6 sub-task types.

in Table 2. The primary finding is that the full HPL model, equipped with both curriculum layers,
consistently outperforms all ablated variants. Removing the curriculum entirely (HPL Static) results
in the most significant performance degradation across both model scales, confirming that employing
a curriculum is crucial for effective learning. Furthermore, the results indicate that both the length
and difficulty-based curricula contribute positively to the final performance, with their individual
removal leading to noticeable performance drops. This demonstrates the synergistic benefit of our
dual-layer design, where organizing the learning process first by task complexity (length) and then
by solution quality (difficulty) provides a more effective path to mastering complex agent behaviors.

Phase-wise Performance Progression. To provide a more fine-grained view of how the curriculum
works, Figure 4 visualizes the agent’s performance at the end of each curriculum phase. Panel (a)
shows a clear improvement in the overall success rate for both the 1.5B and 7B models as they
progress from Phase 1 to Phase 3. This trend holds for the unseen scenarios, indicating that the
curriculum effectively helps the model generalize its learned skills. Panel (b) offers a deeper insight
by breaking down the performance by sub-task type for the 1.5B model. We observe that while
simpler tasks like Pick are learned relatively early, more complex tasks requiring longer reasoning
chains, such as Clean and Pick2, show the most substantial performance gains in the later phases.

4.4 ABLATION ON HIERARCHICAL DPO LOSSES (RQ4)

To investigate the individual contribution of each component in our hierarchical framework, we
conduct an ablation study on the three DPO losses, with results shown in Figure 5. The results
reveal that while all three loss components, trajectory, action, and group, contribute positively to
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Figure 5: Ablation study on the HPL loss components on Qwen2.5-7B-Instruct.

the final performance, the group-level DPO is demonstrably the most critical. Across all bench-
marks, removing the group-level signal (HPL w/o group-DPO) induces a significantly more severe
performance degradation than removing either the trajectory or step-level signals. This provides
compelling evidence that the action-group granularity is the primary driver of HPL’s effectiveness,
serving as a crucial bridge between coarse trajectory feedback and action supervision and validating
the synergistic benefit of our three-level approach.

5 DISCUSSION

In this section, we discuss why group-level objectives are effective for long-horizon LLM agents.
Building on both our theoretical analysis and empirical ablations, we highlight two complementary
perspectives: (i) segmentation introduces a useful structural prior over sub-tasks, and (ii) group-
level objectives have favorable statistical properties in the finite-data, limited-rollout regime.

Segmentation as a structural prior. Group-level supervision implicitly encodes prior knowledge
about long-horizon task structure: instead of treating every individual action as an equally important
learning unit, it focuses the objective on short sub-trajectories that are more likely to correspond to
meaningful sub-tasks. Although HPL reuses exactly the same interaction data as trajectory- and step-
level baselines, reorganizing this data into action groups changes where supervision is concentrated.
Empirical results show that the semantic variant using a stronger segmentation prior achieves the
best overall performance, while simpler segmenters still improve over both trajectory and step-level
DPO, despite having almost no semantic information about sub-task boundaries.

Statistical properties in the finite-data regime. From an asymptotic perspective, a sufficiently
expressive step-level DPO objective could in principle represent the same long-horizon credit as-
signment as a group-level objective. Our focus, however, is the practically relevant regime where
both the dataset size and the MC rollout budget per state are limited. Under this regime, step-level
MC estimates provide localized but noisy supervision: each decision point is updated from only a
small number of rollouts. Group-level objectives alleviate this by aggregating multiple actions into a
single supervised unit. With the same overall rollout budget, group-level rewards effectively average
out noise over longer sub-trajectories and directly evaluate the joint contribution of several actions
to task success. Proposition 1 formalizes this intuition through a bias–variance analysis, and our
ablation studies further show that removing the group-level loss significantly degrades performance.

6 CONCLUSION

In this work, we address the critical issue of granularity mismatch in preference-based alignment
for LLM agents. We introduce Hierarchical Preference Learning (HPL), a novel framework that re-
solves this challenge by integrating preference signals across three levels of abstraction: trajectory,
action, and a crucial, intermediate action-group level. By partitioning trajectories into semantically
coherent sub-tasks and optimizing a hierarchical DPO loss, HPL learns to directly prefer success-
ful multi-step action sequences over flawed alternatives. Extensive experiments demonstrate that
HPL outperforms strong prior methods that operate primarily at the extreme granularities of entire
trajectories or individual actions, across a suite of complex, long-horizon agent benchmarks. In con-
clusion, our work underscores the importance of learning from hierarchical signals that mirror the
compositional nature of complex tasks, paving the way for more capable LLM agents.
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REPRODUCIBILITY STATEMENT

Our experimental setup is briefly summarized in Section 4.1. To facilitate the reproduction of
our results, Appendix C offers a detailed account of all the benchmarks, data generation process,
baselines, and all hyperparameters. We also release the code and data, which are available at:
https://anonymous.4open.science/r/HPL.
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A THE USE OF LLMS

In the preparation of this manuscript and the development of our codebase, we utilized LLMs to
assist in two primary capacities. We detail these uses below for full transparency:

• Writing and Editing Assistance: We used LLM as a writing assistant to improve the grammar,
phrasing, and overall clarity of the manuscript. The authors directed all core ideas and claims, and
are fully responsible for the final wording, arguments, and content presented in this paper.

• Code Implementation Support: During the implementation of our experimental framework, an
LLM served as a coding assistant for tasks such as generating basic code and aiding in debugging.
The authors designed the overall software architecture, and all LLM-generated code was carefully
reviewed and adapted by the authors to ensure its correctness and functionality.

B BROADER IMPACTS AND LIMITATIONS

Broader Impacts. Our work on Hierarchical Preference Learning (HPL) presents a more efficient
and effective paradigm for training capable autonomous agents from fixed datasets after a one-shot
exploration phase. Technologically, this reduces the reliance on costly and often unsafe online
exploration, making the development of sophisticated LLM agents more accessible and sustainable.
The ability to learn from the compositional structure of tasks via action groups could lead to more
reliable and predictable agents in real-world applications, from personalized assistants to complex
workflow automation. On a societal level, the deployment of more competent agents can enhance
productivity and assist with complex decision-making. However, as agent capabilities advance,
ensuring their alignment with human values becomes paramount. The preferences learned from
static datasets must be carefully curated to prevent the codification of biases or unintended behaviors.
Furthermore, the increasing autonomy of such agents necessitates continued research into robust
safety protocols, transparency, and ethical oversight to mitigate potential misuse and ensure these
powerful technologies are developed responsibly for the benefit of society.

Limitations. While our HPL framework demonstrates significant performance gains, we acknowl-
edge several limitations that offer avenues for future research. Firstly, the effectiveness of HPL,
particularly the semantic variant, is contingent on the quality of the action group segmentation. Al-
though our experiments show that simple heuristics are beneficial, a suboptimal segmentation could
yield less meaningful sub-tasks and hinder the learning process. Secondly, our dual-layer curricu-
lum, while effective, introduces a new set of hyperparameters for defining task complexity and sam-
ple distinguishability, and the optimal configuration of this curriculum may be domain-specific and
require careful tuning. Finally, our current work relies on a powerful teacher model for generating
preference data, which means the agent’s policy may inherit biases from the teacher. Future re-
search could explore more robust, self-supervised segmentation techniques and investigate methods
for learning curricula directly from the data.

C EXPERIMENTAL DETAILS

C.1 ENVIRONMENTS AND TASKS

We evaluate our framework on three challenging benchmarks that require long-horizon, multi-step
reasoning and interaction, representing a diverse set of agent tasks.

C.1.1 ALFWORLD

ALFWorld (Shridhar et al., 2021) is an embodied agent benchmark set in simulated household en-
vironments, uniquely designed to align abstract, text-based interactions with a visually rich, embod-
ied world. Agents must parse natural language instructions and perform a sequence of high-level
actions (e.g., goto, take, clean) to complete common household tasks, such as “put a clean
tomato on the sidetable”. The benchmark is structured into six distinct and compositional sub-task
categories: Pick, Clean, Heat, Cool, Examine, and Pick2. The dataset contains 3,553 sce-
narios for training. For evaluation, the test set is divided into a seen set of 140 scenarios to assess
in-distribution generalization within familiar room layouts, and a more challenging unseen set of
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134 scenarios with novel task instances in unobserved environments to evaluate out-of-distribution
generalization. For all tasks, the maximum number of interaction turns is set to 30.

C.1.2 WEBSHOP

WebShop (Yao et al., 2022) is a web-based simulation environment that tasks agents with navigat-
ing a realistic e-commerce website to find and purchase a product that matches a given instruction.
The environment is notable for its scale and realism, featuring 1.18 million real-world products and
over 12,000 crowd-sourced, natural language instructions. To succeed, an agent must interact with
multiple types of web pages, including search, results, and item-detail pages, by issuing high-level
actions, primarily “search[QUERY]” or “click[BUTTON]”. This process requires a combina-
tion of information retrieval skills to formulate effective search queries and long-horizon planning to
navigate the site, compare items, and select the correct product options. The final reward is automat-
ically calculated based on a heuristic that measures the attribute, option, and price match between
the purchased item and the user’s instruction. The benchmark includes 200 test tasks. For all tasks,
the maximum number of interaction turns is set to 10.

C.1.3 INTERCODE-SQL

InterCode-SQL (Yang et al., 2023) is an interactive environment designed to benchmark agent ca-
pabilities in complex data querying tasks. Within a safe and reproducible Docker container, the
agent interacts with a live MySQL database by iteratively writing and executing SQL queries to
answer natural language questions. The environment is built upon the challenging, cross-domain
Spider dataset (Yu et al., 2018), which requires the agent to understand complex database schemas
and formulate queries that often involve multiple tables and JOIN operations. A key feature of this
benchmark is its interactive nature; after each query execution, the agent receives real-world feed-
back, such as query results or error messages, which it must use to debug and refine its subsequent
actions. A final reward is calculated based on the Intersection over Union (IoU) between the agent’s
submitted query results and the ground-truth records. The benchmark consists of 200 test tasks. For
all tasks, the maximum number of interaction turns is set to 10.

C.2 MODELS AND IMPLEMENTATION DETAILS

Our methodology relies on a dataset of expert trajectories and generating a corresponding set of
suboptimal trajectories for creating preference pairs.

Expert Trajectories (Dexpert). Following prior work (Xiong et al., 2024), we generate our initial
set of expert trajectories by prompting a powerful teacher model (GPT-4o) to solve tasks in each
environment using a ReAct-style reasoning process. We then filter these generated trajectories,
retaining only those that achieve a high outcome reward (e.g., success score of 1.0 in ALFWorld and
InterCode-SQL, or >0.8 in WebShop) to form our final expert dataset, Dexpert. This dataset is used
for the initial behavior cloning stage.

Models and Training. We utilize Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct as the back-
bone models for all experiments. For all DPO-based methods, including our HPL, the reference
policy πref is the SFT agent trained on Dexpert. During the behavior cloning phase, models are
trained for 3 epochs using the AdamW optimizer with a cosine learning rate schedule, peaking at
1e-5. All experiments were conducted on 8 NVIDIA A800 80G GPUs.

C.3 BASELINES

We compare HPL against a suite of strong baselines representing different alignment strategies,
ranging from standard imitation learning to state-of-the-art preference optimization methods.

• SFT: The standard Supervised Fine-Tuning approach, where the model is trained only on
the expert trajectories Dexpert. This serves as our foundational base model and represents
the standard behavior cloning paradigm from which all other preference-based methods are
initialized.
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• RFT (Yuan et al., 2023): Rejection sampling Fine-Tuning is an enhanced fine-tuning
method that uses rejection sampling to augment the expert dataset with newly generated
successful trajectories. By enriching the training data with a more diverse set of successful
paths, RFT serves as a strong imitation learning baseline that tests the performance limits
of learning solely from positive demonstrations.

• ETO (Song et al., 2024): A trajectory-level DPO baseline that learns by contrasting full
successful and failed trajectories. This method represents the coarsest end of the preference
learning spectrum, providing a holistic signal based on the final outcome. While powerful,
this approach faces challenges in credit assignment, as it can struggle to pinpoint specific
errors within long action sequences.

• IPR (Xiong et al., 2024): A state-of-the-art process supervision method that performs step-
level DPO using rewards estimated from Monte Carlo rollouts. IPR operates at the finest
granularity, providing precise, localized feedback on individual actions. However, this
step-level focus may overlook the synergistic value of multi-step sub-tasks.

C.4 HYPERPARAMETERS

Table 3 and Table 4 show the hyperparameters for SFT and Group-DPO stage respectively across
three agent benchmarks. All experiments were conducted on 8 NVIDIA A800 80G GPUs.

Table 3: Hyperparamenters for SFT stage across three agent benchmarks.

Benchmark ALFWorld WebShop InterCode-SQL
Batch size 32 32 32
Learning rate 1e-5 1e-5 1e-5
Optimizer AdamW AdamW AdamW
LR scheduler cosine cosine cosine
Warmup ratio 0.1 0.1 0.1
Max epochs 3 3 3
Max seq length 6000 6000 6000
DeepSpeed Zero stage 3 3 3
Gradient accumulation steps 2 2 2

Table 4: Hyperparamenters for Group-DPO stage across three agent benchmarks.

Benchmark ALFWorld WebShop InterCode-SQL
Batch size 32 32 32
Learning rate 3e-6 1e-6 1e-6
β 0.3 0.3 0.3
Optimizer AdamW AdamW AdamW
LR scheduler cosine cosine cosine
Warmup ratio 0.1 0.1 0.1
Max epochs 1 1 1
Max seq length 6000 6000 6000
DeepSpeed Zero stage 3 3 3
Group length (L) threshold for curriculum (0,3,6) (0,2,4) (0,2,4)
Difficulty (∆R) threshold for curriculum (1.0, 0.7, 0.4) (1.0, 0.7, 0.4) (1.0, 0.7, 0.4)

C.5 RESOURCE COMPARISON

We report in Table 5 a resource comparison of SFT, ETO, IPR, and the HPL variants on ALFWorld
with Qwen2.5-1.5B-Instruct, including whether an external powerful LLM is used, the number of
LLM calls, and the generation/training time.

During data generation, we adopt the same parallel sampling implementation provided by the ETO
and IPR codebases to accelerate environment interaction. The actual generation time depends pri-
marily on the degree of parallelism in environment rollouts, as well as the time required to reset the
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Table 5: Resource comparison of SFT, ETO, IPR, and HPL variants on the ALFWorld benchmark
with Qwen2.5-1.5B-Instruct.

Method External powerful LLM # LLM calls Gen time Train time

SFT ✗ 0 0 18min
ETO ✗ ∼ 30,000 1h 7min 13min
IPR ✗ ∼ 750,000 (step-level part) 6h 13min (step-level part) 26min
HPL (Fixed-N(3)) ✗ ∼ 207,000 (group-level part) 3h 35min (group-level part) 25min
HPL (Fixed-K(3)) ✗ ∼ 213,000 (group-level part) 4h 15min (group-level part) 26min
HPL (Uncertainty) ✗ ∼ 194,000 (group-level part) 3h 47min (group-level part) 28min
HPL (Semantic) ✓ ∼ 221,000 (group-level part) 3h 21min (group-level part) 26min

environment and progress it to the desired states; the LLM call latency is not the dominant factor.
The reported training times are based on real runs using 4 NVIDIA A800 80G GPUs.

D ILLUSTRATIVE EXAMPLE OF GROUP REWARD ESTIMATION

In this section, we provide a concrete walkthrough of how the Monte Carlo (MC) rollout mechanism
estimates the expected outcome reward for a specific action group, as defined in Equation 2.

Consider an example from the ALFWorld benchmark:

• Task Instruction: put a clean apple in fridge

• Current Context (ci): The agent is located at the sinkbasin 1 and is holding a dirty
apple 1.

• Candidate Action Group (Gi): The policy generates a coherent sequence of actions in-
tended to complete the “cleaning” sub-task:

Gi = [go to sinkbasin 1, clean apple 1 with sinkbasin 1]

To estimate the reward r̂(Gi), we first execute Gi. The simulation state transitions to a point where
the agent is holding a clean apple at the sink. From this state, we perform M = 3 stochastic rollouts
using the reference policy πref to see if the task can be successfully completed.

• Rollout 1 (τ (1)): The agent successfully navigates to the fridge, opens it, and places the
apple inside.
→ Outcome Reward R(τ (1)) = 1.0 (Success).

• Rollout 2 (τ (2)): The agent navigates to the fridge but attempts to place the apple without
opening the fridge first. It fails to recover within the step limit.
→ Outcome Reward R(τ (2)) = 0.0 (Failure).

• Rollout 3 (τ (3)): The agent navigates to the fridge, opens it, and successfully places the
apple.
→ Outcome Reward R(τ (3)) = 1.0 (Success).

Finally, the estimated reward for group Gi is calculated as the average of these outcomes:

r̂(Gi) =
1

3
(1.0 + 0.0 + 1.0) ≈ 0.67.

This value r̂(Gi) = 0.67 serves as the quality label for this action group. If paired with a lower-
quality group (e.g., one that failed to clean the apple), the difference ∆R determines the sample
difficulty for our curriculum scheduler.

E DETAILS OF DUAL-LAYER CURRICULUM SCHEDULER

In this section, we provide the algorithmic implementation of our curriculum scheduler and a visual
illustration of the phase-wise training progression.

Algorithm 1 outlines the logic for partitioning the preference data into the 3×3 grid based on Group
Length (L) and Sample Difficulty (∆R), and selecting the active data subsets for the current training
phase s. We utilize the hyperparameters specified in Appendix C.4.
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Algorithm 1 HPL Dual-Layer Curriculum Scheduler

1: Input: Dataset Dall, Phase s ∈ {1, 2, 3}, Thresholds TL, T∆R.
2: Output: Training subset D(s)

train.
3: Step 1: Data Partitioning
4: Partition Dall into 3× 3 buckets Bl,d where l, d ∈ {1, 2, 3}.
5: For each sample x ∈ Dall, assign to Bl,d based on:

• Length Level l: Determined by group length vs. TL (Short→ 1, Long→ 3).
• Difficulty Level d: Determined by reward gap vs. T∆R (Easy→ 1, Hard→ 3).

6: Step 2: Phase-based Selection
7: Define the set of active bucket indices I(s) for current phase s:
8: if s = 1 then
9: I(1) ← {(1, 1)} {Phase 1: Foundational (Short & Easy)}

10: else if s = 2 then
11: I(2) ← {(1, 1), (1, 2), (2, 1)} {Phase 2: Expansion}
12: else
13: I(3) ← {(l, d) | 1 ≤ l, d ≤ 3} {Phase 3: Full Scale}
14: end if
15: return D(s)

train ←
⋃

(l,d)∈I(s) Bl,d

F ANALYSIS

We now analyze the bias and variance of group-level DPO loss. Consider an MDP with discount
factor γ ∈ [0, 1). A trajectory τ of horizon T is denoted as τ = (s1, a1, r1, . . . , sT , aT , rT ). Let
πref be a reference policy strictly positive on every state-action pair. For any sequence u, we define
its discounted return with respect to the (unknown) optimal value function V ∗ by

R(u) :=
∑
i∈u

γi−t0ri + γ|u|V ∗(st0+|u|), (10)

where t0 is the starting time index of u and |u| is its length. The true preference probability that uw

is preferred to ul is modelled by the Bradley-Terry law

P (uw ≻ ul) = σ

(
β

[
log

π∗(uw)

πref(uw)
− log

π∗(ul)

πref(ul)

])
:= σ(β∆∗), (11)

where σ(z) = 1
1+e−z and β > 0 is a fixed inverse-temperature. The population DPO loss for a

generic distribution µ over pairs (uw, ul) is

Lµ := −Eµ log σ(β∆
∗). (12)

Given a dataset D of N i.i.d. trajectories, each method forms its own empirical distribution µ• and
minimizes

L•(θ;D•) := − 1

|D•|
∑

(uw,ul)∈D•

log σ(β∆θ), (13)

where ∆θ := log πθ(uw)
πref(uw) − log πθ(ul)

πref(ul)
and • ∈ {traj, step, group}. We adopt the standard risk

decomposition
Risk(L•) := E[(L• − Lµ•)2]

= Bias(L•)
2 +Var(L•),

(14)

where the expectation E[·] is taken over the sampling distribution of D• and

Bias(L•) := E[L•]− Lµ• ,

Var(L•) := E
[
(L• − E[L•])

2
]
.

(15)

Proposition 1 (Bias-variance trade-off of group-level DPO loss). Let T denote the trajectory length,
γ ∈ [0, 1) the discount factor, and Rmax the maximum reward. Let Ltraj, Lstep, and Lgroup(k) denote
the empirical losses of trajectory-level, step-level, and group-level DPO with group length k < T ,
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respectively. Then there exists a constant C > 0 depending only on (γ, πref) such that for every

ϵ ∈ (0, 1) the choice k(ϵ) =
⌈
logγ

(
(1−γ)ϵ
2βRmax

)⌉
satisfies

Bias(Lgroup(k)) ≤ min{Bias(Ltraj),Bias(Lstep)}+ ϵ, (16)

Var(Lgroup(k)) ≤
C log(1/ϵ)

T
min{Var(Ltraj),Var(Lstep)}. (17)

Proof. First, we analyze the bias of the three losses. We compare the population losses induced
by the three sampling schemes. Recall that the logistic loss is 1-Lipschitz, that is, for any scalar
difference z,

| log σ(z)− log σ(z′)| ≤ |z − z′|. (18)

Hence the bias of an empirical loss L• is controlled by

|E[L•]− Lµ• | ≤ βEµ• [|∆θ −∆∗|], (19)

which is governed by the error in the return difference induced by the length of the comparison unit.
We now analyze the three cases: trajectory, step, and group. Trajectory-level DPO compares entire
trajectories with no truncation. Hence Bias(Ltraj) = 0. Step-level DPO compares suffixes from
time t to T . Following the implementation in Xiong et al. (2024), these suffixes are not truncated
either. Hence Bias(Lstep) = 0. For group-level DPO, the unit has fixed length k < T . For clarity,
we define R∗(t) :=

∑T
i=t γ

i−tri. According to Bellman equation,

R∗(t) =

t+k−1∑
i=t

γi−tri + γkR∗(t+ k). (20)

Consider a group pair (Gw, Gl) starting from the same state st, the true return difference should
be δtraj = R∗

w(t) − R∗
l (t), while group-level DPO uses δgroup = R(Gw) − R(Gl). Substituting

Equation 20 into δtraj, we get

δtraj =

 t+k−1∑
i=t,ri∈Gw

γi−tri + γkR∗
w(t+ k)

−

 t+k−1∑
i=t,ri∈Gl

γi−tri + γkR∗
l (t+ k)

 (21)

= (R(Gw)−R(Gl)) + γk(R∗
w(t+ k)−R∗

l (t+ k)) (22)

= δgroup + γk(R∗
w(t+ k)−R∗

l (t+ k)). (23)

Hence the error in the return difference is

|δtraj − δgroup| = γk|R∗
w(t+ k)−R∗

l (t+ k)| ≤ γk · 2Rmax

1− γ
, (24)

where the last step follows from the fact that the absolute value of any finite-horizon discounted sum
is bounded by

T∑
i=t+k

γi−(t+k)|ri| ≤ Rmax

T−(t+k)∑
j=0

γj <
Rmax

1− γ
. (25)

Therefore, for a single preference pair, the error of group-level DPO loss satisfies

| log σ(β∆group − log σ(β∆traj))| ≤ β|∆group −∆true| ≤ β · 2Rmax

1− γ
γk. (26)

Taking the expectation, we get

Bias(Lgroup) ≤ Bias(Ltraj) +
2βRmax

1− γ
γk. (27)

By choosing k(ϵ) =
⌈
logγ

(
(1−γ)ϵ
2βRmax

)⌉
, we obtain

Bias(Lgroup(k)) ≤ ϵ = min{Bias(Ltraj),Bias(Lstep)}+ ϵ. (28)
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Next, we analyze the variance of the three losses. We derive element-wise bounds on the variance
of the empirical loss

L• =
1

|D•|
∑

(uw,ul)∈D•

ℓ(∆θ), ℓ(∆θ) := − log σ(β∆θ), (29)

for • ∈ {traj, step, group}. All samples are generated from N i.i.d. trajectories.

For trajectory-level DPO, each trajectory contributes exactly one preference pair. The total number
of samples |Dtraj| = N . The N pairs are i.i.d., hence the covariance terms in the variance vanish:

Var(Ltraj) =
1

N2

N∑
i=1

Var
[
ℓ(∆

(i)
θ )

]
=

1

N
Σtraj, (30)

where Σtraj := Var[ℓ(∆θ)] under the trajectory-level sampling distribution.

For step-level DPO, from one trajectory we extract T consecutive suffixes (ut)
T
t=1 with ut =

(st, . . . , sT ). The total number of samples is |Dstep| = NT . However, the T samples inside
one trajectory are highly overlapped. Sequence ut and ut+1 share T − t − 1 identical transitions.
Therefore the covariance part in covariance is non-zero and large.

Since |∆θ| ≤ 2Rmax

1−γ , we have 0 ≤ ℓ(∆θ) ≤ Lmax := log(1 + e
2βRmax

1−γ ). For any t < s ≤ T , let
o = s − t (number of shared steps). The Cauchy-Schwarz inequality gives Cov(ℓt, ℓs) ≤ γoL2

max.
Summing over ordered pairs in one trajectory, we get∑

1≤t<s≤T

Cov(ℓt, ℓs) ≤ L2
max

T−1∑
o=1

(T − o)γo < L2
max

γ

(1− γ)2
. (31)

We now consider total variance across N trajectories. Each trajectory contributes T samples, and
samples from different trajectories are i.i.d. Hence,

Var(Lstep) =
1

(NT )2

N · T ·Var(ℓt) +N · 2
∑

1≤t<s≤T

Cov(ℓt, ℓs)

 (32)

≤ L2
max

NT
+

2L2
maxγ

NT (1− γ)2
=

L2
max

NT

(
1 +

2γ

(1− γ)2

)
. (33)

Var(Lstep) is O( 1
NT ) but with a constant that does not degrade with T .

For group-level DPO, we extract M = ⌊T/k⌋ non-overlapping groups of length k. The total num-
ber of samples is |Dgroup| = NM . Between-trajectory samples are i.i.d., while within-trajectory
samples are independent by construction. Therefore, the covariance terms in variance are zero, and

Var(Lgroup(k)) =
1

(NM)2
·NM ·Var[ℓ(∆θ)] =

1

NM
Σgroup, (34)

where Σgroup := Var[ℓ(∆θ)] under the group-level distribution. Since a sub-trajectory has smaller
variance than the full trajectory, Σgroup ≤ Σtraj. Inserting M ≥ T/k − 1 into Equation 34, we
obtain

Var(Lgroup(k)) ≤
k

T
· 1

N
Σtraj =

k

T
Var(Ltraj). (35)

An identical comparision with step-DPO gives

Var(Lgroup(k)) ≤
Ck

T
Var(Lstep), C =

2tr(Σstep)

tr(Σgroup)
≥ 1. (36)

The constant C depends only on γ and Rmax, and is independent of T ,k, and N .

With k(ϵ) =
⌈
logγ

(
(1−γ)ϵ
2βRmax

)⌉
= Θ(log(1/ϵ)), Equation 35 and 36 yield

Var(Lgroup(k)) ≤
C log(1/ϵ)

T
min{Var(Ltraj),Var(Lstep)}, (37)

which is the variance bound claimed in the proposition.
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G ADDITIONAL EXPERIMENTS

G.1 SUB-TASK PERFORMANCE ON ALFWORLD

To provide a more fine-grained analysis of our method’s capabilities, we present a detailed break-
down of success rates on the six distinct sub-task types in ALFWorld for both seen (Table 6) and
unseen (Table 7) sets. The largest performance gains are often observed in the complex sub-tasks,
such as Examine and Pick2, which require longer reasoning chains.

Table 6: Sub-task success rate (%) comparison on the ALFWorld seen set.

Models
Sub-task

OverallPick Clean Heat Cool Examine Pick2

Qwen2.5-1.5B-Instruct 8.57 0.00 0.00 0.00 0.00 0.00 2.14
SFT 88.57 44.44 62.50 72.00 46.15 41.67 62.14
RFT (Yuan et al., 2023) 88.57 40.74 62.50 72.00 46.15 41.67 61.43
ETO (Song et al., 2024) 91.43 40.74 62.50 72.00 46.15 41.67 62.14
IPR (Xiong et al., 2024) 94.29 44.44 68.75 72.00 46.15 41.67 64.29
HPL (Fixed-N(3)) 97.14 48.15 75.00 72.00 46.15 50.00 67.86
HPL (Fixed-K(3)) 94.29 51.85 75.00 80.00 46.15 50.00 69.29
HPL (Uncertainty) 94.29 55.56 87.50 80.00 61.54 50.00 72.86
HPL (Semantic) 97.14 51.85 87.50 80.00 61.54 41.67 71.43

Qwen2.5-7B-Instruct 74.29 29.63 37.50 32.00 15.38 16.67 38.57
SFT 94.29 51.85 75.00 72.00 53.85 41.67 67.14
RFT (Yuan et al., 2023) 97.14 55.56 75.00 80.00 61.54 54.17 72.86
ETO (Song et al., 2024) 94.29 55.56 87.50 72.00 53.85 45.83 70.00
IPR (Xiong et al., 2024) 94.29 59.26 87.50 80.00 61.54 45.83 72.86
HPL (Fixed-N(3)) 97.14 66.67 87.50 88.00 76.92 50.00 78.57
HPL (Fixed-K(3)) 100.00 88.89 93.75 92.00 84.62 66.67 88.57
HPL (Uncertainty) 97.14 74.07 87.50 88.00 92.31 50.00 81.43
HPL (Semantic) 100.00 77.78 87.50 92.00 76.92 58.33 83.57

Table 7: Sub-task success rate (%) comparison on the ALFWorld unseen set.

Models
Sub-task

OverallPick Clean Heat Cool Examine Pick2

Qwen2.5-1.5B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFT 70.83 64.52 60.87 76.19 27.78 35.29 58.21
RFT (Yuan et al., 2023) 79.17 61.29 65.22 76.19 33.33 35.29 60.45
ETO (Song et al., 2024) 83.33 64.52 65.22 80.95 38.89 41.18 64.18
IPR (Xiong et al., 2024) 83.33 64.52 65.22 80.95 38.89 47.06 64.93
HPL (Fixed-N(3)) 87.50 80.65 73.91 85.71 44.44 52.94 73.13
HPL (Fixed-K(3)) 83.33 61.29 69.57 80.95 33.33 41.18 63.43
HPL (Uncertainty) 83.33 61.29 69.57 85.71 33.33 35.29 63.43
HPL (Semantic) 87.50 80.65 78.26 76.19 44.44 52.94 72.39

Qwen2.5-7B-Instruct 62.50 54.84 52.17 52.38 16.67 17.65 45.52
SFT 91.67 80.65 78.26 85.71 50.00 58.82 76.12
RFT (Yuan et al., 2023) 79.17 74.19 78.26 76.19 44.44 52.94 69.40
ETO (Song et al., 2024) 95.83 74.19 78.26 80.95 55.56 70.59 76.87
IPR (Xiong et al., 2024) 95.83 77.42 73.91 85.71 61.11 64.71 77.61
HPL (Fixed-N(3)) 95.83 77.42 73.91 80.95 55.56 64.71 76.12
HPL (Fixed-K(3)) 95.83 80.65 69.57 80.95 55.56 70.59 76.87
HPL (Uncertainty) 100.00 87.10 82.61 80.95 66.67 76.47 83.58
HPL (Semantic) 100.00 87.10 82.61 90.48 77.78 76.47 86.57
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G.2 CASE STUDY

G.2.1 ALFWORLD

Case Study of ALFWorld

IPR
Task Instruction: You are in the middle of a
room. Looking quickly around you, you see
a cabinet 6, a cabinet 5, a cabinet 4, a cabinet
3, a cabinet 2, a cabinet 1, a coffeemachine 1,
a countertop 3, a countertop 2, a countertop
1, a drawer 3, a drawer 2, a drawer 1, a fridge
1, a garbagecan 1, a microwave 1, a shelf 3, a
shelf 2, a shelf 1, a sinkbasin 1, a stoveburner
4, a stoveburner 3, a stoveburner 2, a stove-
burner 1, and a toaster 1.
Your task is to: put a cool mug in cabinet.
Thought: I need to find a mug to put in the
cabinet. The task description doesn’t specify
where the mug is, so I should look around the
room to locate one.
Action: go to toaster 1
Observation: On the toaster 1, you see noth-
ing.
Thought: The toaster is not where mugs
would typically be found, but it’s good to
check all areas systematically. There’s noth-
ing on the toaster, so I’ll continue searching.
Action: go to stoveburner 1
Observation: On the stoveburner 1, you see
a pot 1.

...... (search for the mug)

Thought: Cabinet 3 has a vase, but no mug.
I’ll check cabinet 4.
Action: go to cabinet 4
Observation: On the cabinet 4, you see a
mug 2.

Thought: Cabinet 4 has a mug. This could
be the mug I need to put in the cabinet. I’ll
take it and then place it in the cabinet.
Action: take mug 2 from cabinet 4
Observation: You pick up the mug 2 from
the cabinet 4.
Thought: With the mug in hand, I need to
return to cabinet 1 to place the mug inside.
Action: go to cabinet 1
Observation: On the cabinet 1, you see a
peppershaker 1, a soapbottle 1, and a vase
2.
Thought: To complete the task, I need to
put the mug into the cabinet.
Action: put mug 2 in/on cabinet 1
Observation: You put the mug 2 in/on the
cabinet 1.

HPL

Task Instruction: You are in the middle of a
room. Looking quickly around you, you see
a cabinet 6, a cabinet 5, a cabinet 4, a cabinet
3, a cabinet 2, a cabinet 1, a coffeemachine 1,
a countertop 3, a countertop 2, a countertop
1, a drawer 3, a drawer 2, a drawer 1, a fridge
1, a garbagecan 1, a microwave 1, a shelf 3, a
shelf 2, a shelf 1, a sinkbasin 1, a stoveburner
4, a stoveburner 3, a stoveburner 2, a stove-
burner 1, and a toaster 1.
Your task is to: put a cool mug in cabinet.
Thought: I need to find a mug to put in the
cabinet. The sink basin is a common place
where mugs are found after being used or
washed.
Action: go to sinkbasin 1
Observation: On the sinkbasin 1, you see a
cup 1, a dishsponge 2, a plate 2, and a potato
1.
Thought: There is no mug at the sink basin,
but there are other items here. I should check
the shelves as they often store mugs.
Action: go to shelf 1
Observation: On the shelf 1, you see a cred-
itcard 3.

...... (search for the mug)

Thought: Cabinet 3 has a vase but no mug.
I’ll proceed to the next cabinet.
Action: go to cabinet 4
Observation: On the cabinet 4, you see a
mug 2.

Thought: I found a mug in cabinet 4. I need
to take it so I can put it in the cooler as in-
structed.
Action: take mug 2 from cabinet 4
Observation: You pick up the mug 2 from
the cabinet 4.
Thought: Now that I have the mug, I need
to cool it. The fridge is the best place to do
this.
Action: go to fridge 1
Observation: The fridge 1 is closed.
Thought: The fridge is closed. I need to
open it to cool the mug.
Action: cool mug 2 with fridge 1
Observation: You cool the mug 2 using the
fridge 1.
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# The agent mistakenly believes that the task
has been completed.
Thought: The task is now complete, and I
should prepare to move on to the next task or
task set. I need to ensure that I approach each
task with clarity and precision, adhering to
the given instructions and using the appropri-
ate tools and resources.
Action: prepare for next task
Observation: Nothing happens.

...... (until the steps are exhausted)
Reward: 0.0

Thought: The mug is now cool. I should
return to the cabinet to complete the task.
Action: go to cabinet 1
Observation: On the cabinet 1, you see a
peppershaker 1, a soapbottle 1, and a vase 2.
Thought: I am back at cabinet 1. I need to
put the cool mug in the cabinet as per the task
instructions.
Action: put mug 2 in/on cabinet 1
Reward: 1.0

G.2.2 WEBSHOP

Case Study of WebShop

IPR
Task Instruction: I am looking for a gluten
free, 100% vegan plant based protein shake
that is soy-free, and price lower than 40.00
dollars.
Thought: I need to find a plant-based protein
shake that meets specific criteria including
being gluten-free, 100% vegan, soy-free, and
under $40. I’ll start by searching with these
details.
Action: search[gluten free, 100% vegan plant
based protein shake that is soy-free]
Observation: Page 1 (Total results: 50)
[SEP] Next > [SEP] B08FW5Y13G [SEP]
Orgain Bundle - Chocolate and Vanilla Bean
Protein Powder - ... [SEP] $53.98 [SEP]
B0885Y2GD4 [SEP] OWYN 100% Ve-
gan Plant-Based Protein Shake, Cookies &
Creamless, 1 Count, with 20g Plant Protein,
... [SEP] $100.0 ...... (other product details)
Thought: The first page of results doesn’t
seem to have any options that fit all my cri-
teria. I should check the next page for more
options.
Action: click[next >]
Observation: Page 2 (Total results: 50)
[SEP] < Prev [SEP] Next > [SEP]
B07DM8SP27 [SEP] OWYN 100% Vegan
Plant-Based Protein Shake, Strawberry Ba-
nana, 24 Pack, 20g Plant Protein ... [SEP]
$71.18 [SEP] B08H8VJJGZ [SEP] OWYN -
100% Vegan Plant-Based Pro Elite High Pro-
tein Shakes | Vanilla, 12 Fl Oz ... [SEP] $4.48
[SEP] ...... (other product details)

HPL
Task Instruction: I am looking for a gluten
free, 100% vegan plant based protein shake
that is soy-free, and price lower than 40.00
dollars.
Thought: I need to find a plant-based protein
shake that meets specific criteria including
being gluten-free, 100% vegan, soy-free, and
under $40. I’ll start by searching with these
details.
Action: search[gluten free, 100% vegan plant
based protein shake that is soy-free]
Observation: Page 1 (Total results: 50)
[SEP] Next > [SEP] B08FW5Y13G [SEP]
Orgain Bundle - Chocolate and Vanilla Bean
Protein Powder - ... [SEP] $53.98 [SEP]
B0885Y2GD4 [SEP] OWYN 100% Ve-
gan Plant-Based Protein Shake, Cookies &
Creamless, 1 Count, with 20g Plant Protein,
... [SEP] $100.0 ...... (other product details)
Thought: The first page of results doesn’t
seem to have any options that fit all my cri-
teria. I should check the next page for more
options.
Action: click[next >]
Observation: Page 2 (Total results: 50)
[SEP] < Prev [SEP] Next > [SEP]
B07DM8SP27 [SEP] OWYN 100% Vegan
Plant-Based Protein Shake, Strawberry Ba-
nana, 24 Pack, 20g Plant Protein ... [SEP]
$71.18 [SEP] B08H8VJJGZ [SEP] OWYN -
100% Vegan Plant-Based Pro Elite High Pro-
tein Shakes | Vanilla, 12 Fl Oz ... [SEP] $4.48
[SEP] ...... (other product details)
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Thought: On the second page, I see
a product called “OWYN 100% Vegan
Plant-Based Protein Shake” which seems
to match most of my requirements except
for the price. It’s also listed as soy-free and
vegan, and it’s well below $40. I’ll take a
closer look at this option.
Action: click[b07dm8sp27]
Observation: < Prev [SEP] OWYN 100%
Vegan Plant-Based Protein Shake, Straw-
berry Banana, 24 Pack, 20g Plant Protein
with Omega-3, Prebiotic supplements,
Superfoods Greens Blend, Gluten-Free,
Soy-Free, Non-GMO [SEP] Price: $71.18
[SEP] Rating: [SEP] Description [SEP]
Features [SEP] Reviews [SEP] Buy Now
Thought: This product has a high price
compared to my budget, and although
it’s described as vegan and soy-free, the
price is above $40. Since I’m looking
for something within my budget, I might
reconsider or look for another option that
fits all my criteria including the price limit.

Action: click[buy now]
Reward: 0.5

Thought: On the second page, I see
a product called “OWYN 100% Vegan
Plant-Based Protein Shake” which seems
to match my requirements. It’s also well
within my budget at $4.48. I should take a
closer look at this option.
Action: click[b08h8vjjgz]
Observation: < Prev [SEP] OWYN -
100% Vegan Plant-Based Pro Elite High
Protein Shakes | Vanilla, 12 Fl Oz | Dairy-
Free, Gluten-Free, Soy Free, Keto Friendly,
Zero Sugar, Vegetarian [SEP] Price: $4.48
[SEP] Rating: [SEP] Description [SEP]
Features [SEP] Reviews [SEP] Buy Now
Thought: This product has all the features
I’m looking for.

Action: click[buy now]
Reward: 1.0

G.2.3 INTERCODE-SQL

Case Study of InterCode-SQL

IPR
Task Instruction: What is the money rank of
the tallest poker player?
Thought: I need to check what tables are
available to use.
Action: SHOW TABLES
Observation: [(‘people’,), (‘poker player’,)]
Thought: There are two tables available,
‘people’ and ‘poker player’. Since the ques-
tion is asking about the money rank of the
tallest poker player, I should check if there is
a table related to poker players.
Action: DESC poker player
Observation: [(‘Poker Player ID’, ‘int’,
‘NO’, ‘PRI’, None, ‘auto increment’), (‘Peo-
ple ID’, ‘int’, ‘YES’, ‘MUL’, None, ‘’), (‘Fi-
nal Table Made’, ‘double’, ‘YES’, ‘’, None,
‘’), (‘Best Finish’, ‘double’, ‘YES’, ‘’, None,
‘’), (‘Money Rank’, ‘double’, ‘YES’, ‘’,
None, ‘’), (‘Earnings’, ‘double’, ‘YES’, ‘’,
None, ‘’)]

HPL

Task Instruction: What is the money rank of
the tallest poker player?
Thought: I need to check what tables are
available to use.
Action: SHOW TABLES
Observation: [(‘people’,), (‘poker player’,)]
Thought: The table ‘poker player’ might
have information about the height and money
rank of the players. I should check the struc-
ture of this table.
Action: DESC poker player
Observation: [(‘Poker Player ID’, ‘int’,
‘NO’, ‘PRI’, None, ‘auto increment’), (‘Peo-
ple ID’, ‘int’, ‘YES’, ‘MUL’, None, ‘’), (‘Fi-
nal Table Made’, ‘double’, ‘YES’, ‘’, None,
‘’), (‘Best Finish’, ‘double’, ‘YES’, ‘’, None,
‘’), (‘Money Rank’, ‘double’, ‘YES’, ‘’,
None, ‘’), (‘Earnings’, ‘double’, ‘YES’, ‘’,
None, ‘’)]
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Thought: The ‘poker player’ table con-
tains information about poker players,
including their money rank. To find the
money rank of the tallest poker player, I
need to join the ‘people’ table with the
‘poker player’ table on the ‘People ID’
column. Then, I can order the results based
on height and limit the result to 1 to get the
tallest poker player’s money rank.
Action:
SELECT Money Rank
FROM people
JOIN poker player ON
people.People ID =
poker player.Poker Player ID
ORDER BY height
LIMIT 1
Observation: [(141.0,)]
Thought: The query executed successfully
and returned a single number, which is the
money rank of the tallest poker player. This
should be the answer to the question.

Action: submit
Reward: 0.0

Thought: The ‘poker player’ table con-
tains columns for money rank and height.
I can write a SQL query to find the money
rank of the tallest poker player.
Action:
SELECT Money Rank
FROM poker player
ORDER BY Height DESC
LIMIT 1
Observation: Error executing query: Un-
known column ‘Height’ in ‘order clause’.
Thought: Oops, it seems like there
is no column named ‘Height’ in the
‘poker player’ table. I should check the
structure of the ‘people’ table to see if it has
the height information.
Action: DESC people
Observation: [(‘People ID’, ‘int’, ‘NO’,
‘PRI’, None, ‘auto increment’), (‘National-
ity’, ‘text’, ‘YES’, ‘’, None, ‘’), (‘Name’,
‘text’, ‘YES’, ‘’, None, ‘’), (‘Birth Date’,
‘text’, ‘YES’, ‘’, None, ‘’), (‘Height’,
‘double’, ‘YES’, ‘’, None, ‘’)]
Thought: The ‘people’ table does have
a column for height. I can join the
‘poker player’ and ‘people’ tables to get
the money rank of the tallest poker player.
Action:
SELECT p.Money Rank
FROM poker player p
JOIN people pe ON p.People ID
= pe.People ID
ORDER BY pe.Height DESC
LIMIT 1
Observation: [(68.0,)]
Thought: The query executed successfully
and returned the money rank of the tallest
poker player as 68. This should be the
answer to the question.

Action: submit
Reward: 1.0

H PROMPTS

H.1 ALFWORLD

Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning
of your interactions, you will be given the detailed description of the current environment and
your goal to accomplish.
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For each of your turn, you will be given the observation of the last turn. You should first think
about the current condition and plan for your future actions, and then output your action in
this turn. Your output must strictly follow this format:“Thought: your thoughts.\nAction:
your next action”.

The available actions are:
1. go to {recep}
2. take {obj} from {recep}
3. put {obj} in/on {recep}
4. open {recep}
5. close {recep}
6. toggle {obj} {recep}
7. clean {obj} with {recep}
8. heat {obj} with {recep}
9. cool {obj} with {recep}
where {obj} and {recep} correspond to objects and receptacles.

After your each turn, the environment will give you immediate feedback based on which
you plan your next few steps. if the envrionment output “Nothing happened”, that means the
previous action is invalid and you should try more options.

Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

Semantic Grouping Prompt for ALFWorld

I need you to help me divide the trajectory of an agent’s interaction with the environment into
multiple action groups based on semantic relevance.

Below is an interaction trajectory, which contains the environment description received by
the agent and the sequence of actions performed:
{trajectory}

Please divide the action sequence in this trajectory into multiple semantically related groups,
each group represents a set of actions to complete a sub-goal or sub-task.
Please follow the following principles when dividing:
1. Actions in the same group should be semantically closely related and complete a clear
subtask together
2. When the purpose of an action changes, it should be divided into a new group
3. For each group, briefly describe the common goal of the group of actions

Please use the following format to return the results:

<action groups>
Group 1 (action index: 0-2): Find the target item
- Action 0: go to toiletpaperhanger 1
- Action 1: go to toilet 1
- Action 2: take toiletpaper 1 from toilet 1
Group 2 (action index: 3-4): Complete the main task
- Action 3: go to toiletpaperhanger 1
- Action 4: put toiletpaper 1 in/on toiletpaperhanger 1
</action groups>
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H.2 WEBSHOP

Instruction Prompt for WebShop

You are web shopping.
I will give you instructions about what to do.
You have to follow the instructions.
Every round I will give you an observation and a list of available actions, you have to respond
an action based on the state and instruction.
You can use search action if search is available.
You can click one of the buttons in clickables.

An action should be of the following structure:
search[keywords]
click[value]

If the action is not valid, perform nothing.
Keywords in search are up to you, but the value in click must be a value in the list of available
actions.
Remember that your keywords in search should be carefully designed.

Your response should use the following format:
Thought: I think ...
Action: click[something]

Semantic Grouping Prompt for WebShop

I need you to divide a sequence of actions into groups based on semantic relevance.

A possible grouping example:

Group 1 (action index: 0-0): Initial search phase
- Action 0: search[size 5 patent-beige high heel]

Group 2 (action index: 1-1): Preliminary screening and click to view product details
- Action 1: click[b09gxnyjcd]

Group 3 (action index: 2-3): Specification confirmation and detailed screening stage
- Action 2: click[beige-almond toe-patent leather]
- Action 3: click[5]

Group 4 (action index: 4-4): Purchase decision stage
- Action 4: click[buy now]

Your output then should be in the following format:
[[0, 0], [1, 1], [2, 3], [4, 4]]

Below is the interaction trajectory:
{trajectory}

Please group the actions by their indices. Your response MUST be a valid JSON array of
arrays of integers, where each inner array represents a group of action indices.

Follow these rules STRICTLY:
1. Each action must belong to exactly one group.
2. The indices must be contiguous and cover the entire range from 0 to {num actions} - 1.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

3. The final output MUST NOT contain any text, explanations, code blocks, or markdown
formatting outside of the JSON array itself. It should be a raw JSON string.
4. The last number in the last group MUST be {num actions} - 1.

Example for a trajectory with 5 actions (indices 0, 1, 2, 3, 4):
[[0, 1], [2, 3], [4, 4]]

Another valid example:
[[0, 0], [1, 2], [3, 4]]

Your output must be only the JSON, like this:
[[0, 1], [2, 3], [4, 4]]

H.3 INTERCODE-SQL

Instruction Prompt for InterCode-SQL

You are a helpful assistant assigned with the task of problem-solving. To achieve this, you
will interact with a MySQL Database system using SQL queries to answer a question.
At each turn, you should first provide your step-by-step thinking for solving the task. Your
thought process should start with “Thought: ”, for example: Thought: I should write a SQL
query that gets the average GNP and total population from nations whose government is US
territory.

After that, you have two options:
1) Interact with a mysql programming environment and receive the corresponding output.
Your code should start with “Action: ” and should be surrounded with ‘‘‘sql‘‘‘ tag, for
example:
Action:
‘‘‘sql
SELECT AVG(GNP), SUM(population)
FROM nations
WHERE government = ‘US Territory’;

‘‘‘

2) Directly submit the result, for example: Action: submit.

You should use this format: “Thought: your thought\nAction: \n‘‘‘sql\n<the mysql
command>\n‘‘‘”. You will receive the corresponding output for your sql command.
Your output should contain only one “Action” part.
The “Action” part should be executed with a mysql interpreter or propose an answer. Any
natural language in it should be commented out.
The SQL query and submit parts can not appear in your output simutaneously.

Semantic Grouping Prompt for InterCode-SQL

I need you to divide a sequence of actions into groups based on semantic relevance.

A possible grouping example:

Group 1 (action index: 0-1): Task initialization and data structure exploration phase
- Action 0: SHOW TABLES
- Action 1: DESC university
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Group 2 (action index: 2-2): Query construction and execution phase
- Action 2: SELECT Enrollment, Primary conference FROM university
ORDER BY Founded ASC LIMIT 1

Group 3 (action index: 3-3): Result confirmation and submission stage
- Action 3: submit

Your output then should be in the following format:
[[0, 1], [2, 2], [3, 3]]

Below is the interaction trajectory:
{trajectory}

Please group the actions by their indices. Your response MUST be a valid JSON array of
arrays of integers, where each inner array represents a group of action indices.

Follow these rules STRICTLY:
1. Each action must belong to exactly one group.
2. The indices must be contiguous and cover the entire range from 0 to {num actions} - 1.
3. The final output MUST NOT contain any text, explanations, code blocks, or markdown
formatting outside of the JSON array itself. It should be a raw JSON string.
4. The last number in the last group MUST be {num actions} - 1.

Example for a trajectory with 5 actions (indices 0, 1, 2, 3, 4):
[[0, 1], [2, 3], [4, 4]]

Another valid example:
[[0, 0], [1, 2], [3, 4]]

Your output must be only the JSON, like this:
[[0, 1], [2, 3], [4, 4]]
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