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Abstract001

We present ReasonLM, a simple framework002
which utilizes a pre-trained, frozen large lan-003
guage model (LLM) for visual reasoning004
tasks, and achieves competitive performance005
on ACRE and MEWL. We demonstrate for the006
first time that a frozen LLM serves as a task-007
agnostic reasoning machine for diverse reason-008
ing tasks that involve object recognition, causal009
induction, and relation modeling. ReasonLM010
does not rely on synthesizing symbolic pro-011
grams or self-supervised visual representation012
learning. Rather, it learns an object-centric,013
light-weight visual encoder from scratch. Via014
its simplified design, we investigate the essen-015
tial design choices for strong visual reasoning016
performance. Code and model will be released.017

1 Introduction018

Visual reasoning tasks examine the abilities of ex-019

tracting visual information, recognizing the rela-020

tions and patterns among the visual information,021

and generalizing to novel situations by making022

analogies (Zhang et al., 2021; Jiang et al., 2023;023

Zhang et al., 2019; Chollet, 2019; Moskvichev024

et al., 2023; Girdhar and Ramanan, 2019). Thus,025

such tasks evaluate a model’s visual perception ca-026

pabilities and logical reasoning capabilities, both027

of which reflect how intelligent a model is.028

There has been a series of work studying var-029

ious approaches to solve visual reasoning tasks.030

Some approaches rely on task-specific visual en-031

coders, such as symbolic object encoders (Zhang032

et al., 2021), object detectors (Ding et al., 2021), or033

on task-specific training strategies for these visual034

encoders (Sun et al., 2024; Bhattacharyya et al.,035

2023). Other approaches introduce inductive bi-036

ases by developing task-specific visual reasoning037

modules (Hu et al., 2021; Benny et al., 2021). How-038

ever, these task-specific components limit the scal-039

ability and generalizability across different visual040

reasoning tasks.041

In this work, we investigate how to simplify a 042

visual reasoning framework in order to minimize 043

the task-specific designs and maximize the sharing 044

of visual encoders and reasoning modules across 045

tasks. We propose a visual reasoning framework 046

ReasonLM, which consists of a perception module 047

and a task-agnostic reasoning module. The per- 048

ception module is a light-weight visual encoder 049

which does not require large-scale self-supervised 050

pretraining or task-specific inductive biases, such 051

as slot attention layers (Sun et al., 2024) and inter- 052

leaved cross-attention mechanism (Bhattacharyya 053

et al., 2023). The reasoning module is a frozen pre- 054

trained large language model (LLM) which solves 055

visual reasoning tasks as sequence modeling prob- 056

lems, and simplifies the pretraining of the visual 057

encoder by optimizing the visual encoder with a 058

next token prediction objective. 059

We focus on two visual reasoning tasks, ACRE 060

(Zhang et al., 2021) and MEWL (Jiang et al., 2023), 061

which require a model to recognize and infer the 062

implicit or explicit properties of objects with a lim- 063

ited number of observations and generalize to new 064

scenarios. We first show that a frozen pretrained 065

LLM can be used as the underlying reasoner and 066

shared across different visual reasoning tasks, when 067

these tasks represent the images into symbolic rep- 068

resentations. Following, we study if frozen LLMs 069

can solve visual reasoning with image inputs by 070

projecting image representations into language la- 071

tent space. We demonstrate that, for the first time, 072

state-of-the-art visual reasoning can be achieved 073

by learning a simple 2-layer ViT encoder from 074

scratch. Last, we investigate if a learned visual 075

encoder combined with a frozen LLM can solve a 076

visual reasoning task which requires understanding 077

of a specific concept, to what extent this model 078

can solve other tasks involving the same concept 079

(Moskvichev et al., 2023). We observe that the 080

visual encoders can be adapted to other reasoning 081

sub-tasks with a simply learned linear projection. 082
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At last, we identify two essential design choices for083

the visual encoder: (1) Object-centric inputs or rep-084

resentations are crucial for solving visual reasoning085

tasks; (2) Visual encoders learned with a diverse086

set of sub-tasks are easier to transfer to novel tasks.087

2 Related Works088

While deep neural networks have achieved consid-089

erable success on image understanding tasks that090

require reasoning, such as visual question answer-091

ing (Hudson and Manning, 2019b; Zellers et al.,092

2019; Marino et al., 2019), benchmarks collected093

“from-the-wild” often contain dataset and language094

biases, which make it harder to rigorously mea-095

sure progress (Goyal et al., 2017). As a response,096

a series of synthetic, diagnostic datasets (Johnson097

et al., 2017; Yi et al., 2019; Girdhar and Ramanan,098

2019; Zhang et al., 2021) have been proposed to099

benchmark visual reasoning. We investigate the100

use of a frozen large language model in visual rea-101

soning tasks. LLMs have been previously applied102

to reasoning with natural language (Magister et al.,103

2022; Wei et al., 2022; Chen et al., 2022; Liu et al.,104

2020), but the scope of “reasoning” they can rig-105

orously solve is questioned (Kambhampati, 2024;106

Mitchell et al., 2023; Gendron et al., 2024). Our107

paper aims to leverage LLM as a tool to assist vi-108

sual reasoning, and our problem scope is defined by109

the ACRE (Zhang et al., 2021) and MEWL (Jiang110

et al., 2023) benchmarks, which provide a training111

dataset of example context observations, query ob-112

servation, and the desirable output to illustrate the113

reasoning tasks of interest.114

Recent approaches on visual reasoning can be115

categorized into neuro-symbolic methods (Mao116

et al., 2019; Hudson and Manning, 2019a), or neu-117

ral networks with implicit representations (Ding118

et al., 2021; Sun et al., 2024; Bhattacharyya et al.,119

2023). Both approaches roughly follow the same120

outline of perception stage and reasoning stage.121

The outputs of the perception stage are usually122

object-centric, which can be obtained with a su-123

pervised object detector (Traub et al., 2023; He124

et al., 2017), or with self-supervised object discov-125

ery (Geirhos et al., 2018; Hermann et al., 2020;126

Olah et al., 2017; Burgess et al., 2019; Locatello127

et al., 2020; Caron et al., 2021). It has been ob-128

served that on diagostic datasets, both approaches129

lead to satisfactory object localization. For reason-130

ing, the former approach generates an interpretable131

program to execute on the recognized visual inputs,132

while the latter approach often relies on a reason- 133

ing neural network trained specifically to a certain 134

reasoning task. Our paper investigates the use of a 135

frozen LLM as the shared reasoning module, where 136

the visual encoders are trained from scratch. 137

3 Visual Reasoning Tasks 138

In this work, we consider visual reasoning tasks as 139

a task which requires forming and abstracting con- 140

cepts, and making generalization to new problems 141

,via analogies, from a limited number of observa- 142

tions. We focus on visual reasoning tasks that are 143

based on CLEVR objects (Johnson et al., 2017) 144

such that we can obtain oracle visual perception. 145

For each problem in a visual reasoning task, 146

there are N pairs of context frame and label 147

{ci, lic}Ni=1 and a query frame q. On each frame, 148

there are objects which can be represented by ob- 149

ject attributes (i.e., color, material, shape) and their 150

location information (i.e., bounding boxes). The 151

task is to solve the query frame by inducing the pat- 152

terns in context frames and applying the patterns 153

on the query frame. 154

ACRE (Zhang et al., 2021) evaluates a model’s 155

ability of causal induction, which means to iden- 156

tify unobservable causal relationships from limited 157

number of observations. It is inspired by Blicket de- 158

tection experiments from developmental psychol- 159

ogy (Gopnik and Sobel, 2000), where a Blicket 160

detector will be activated when at least one Blicket 161

object is placed on it. Since the Blicket-ness is an 162

unobservable property of the objects, it is needed 163

to infer which objects are Blickets by observing 164

several context trials where different combinations 165

of objects are placed on Blicket detector, revealing 166

its activation status. In ACRE, there are 6 context 167

frames and 4 query frames per sample, where each 168

frame contains a distinct set of CLEVR objects 169

(Johnson et al., 2017). Given the context frames 170

and a query frame, a model needs to predict the 171

activation status of Blicket detector in query frame, 172

which can be on, off, or unknown. We mask out 173

the Blicket detectors in all the frames in order to 174

avoid our model to directly infer activation status 175

by looking at the Blicket detectors. 176

MEWL (Jiang et al., 2023) evaluates a model’s 177

ability of novel word learning in grounded visual 178

scenes. It simulates children’s word learning pro- 179

cess which is inherently few-shot and open-ended 180

and contains referential uncertainty. In MEWL, 181

2



You are a helpful assistant that 
determines whether the light will be 
activated by the objects. Some objects 
can activate the light. The other 
objects cannot activate the light. 
There are three possible light states: 
on, off, and unknown.
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Figure 1: Overflow of ReasonLM, specifically a ReasonLM-Object. ReasonLM consists of a perception module and
a reasoning module. Perception module is a visual encoder which takes object crops as inputs and outputs object
representations. The object representations are passed into task-specific prompts to represent panels. Reasoning
module is a frozen LLM which consumes the task-specific prompts and predicts the answer for the query panel.

there are 9 different sub-tasks: shape, color, mate-182

rial, object, composite, relation, bootstrap, number,183

pragmatic. These 9 tasks cover four types of scenar-184

ios: basic attribute naming, relational word learn-185

ing, number word learning, and pragmatic word186

learning. For each data sample, there are 6 context187

frames and 1 query frame per sample, where each188

frame contains a set of CLEVR objects and a cor-189

responding novel word or phrase (i.e., utterance).190

The task is to understand the meaning of the novel191

words by observing the context frames, and select192

the correct utterances out of 5 options for the query193

frame.194

4 Can Frozen LLMs Help Reasoning?195

Before studying whether a frozen pretrained LLM196

can solve visual reasoning, we first investigate197

whether an LLM can serve as a reasoning mod-198

ule. Thus, we assume oracle perception is available,199

and evaluate how well a frozen pretrained LLM can200

solve ACRE and MEWL with oracle information.201

4.1 Prompts for Reasoning Tasks202

We follow the prompt design in Gendron et al.203

(2024) such that there are two parts for each prompt.204

First, a task definition is used to define the visual205

reasoning task. Second, the descriptions of each206

panel and its corresponding label. On ACRE and207

MEWL, we retrieve panel captions which contain208

oracle information of the panels. We then directly209

use these captions to represent each panel, and ob-210

tain the prompts for ACRE and MEWL. On ACRE,211

each panel caption describes all the objects ap-212

peared on a panel (e.g., “There are brown rubber213

sphere and cyan metal cylinder.”). On MEWL, each 214

panel caption is generated by the panel captioner 215

from Jiang et al. (2023). 216

4.2 Language Baseline 217

A language baseline is where a frozen LLM directly 218

consumes visual reasoning prompts and make pre- 219

dictions by selecting the answer option with the 220

hightest joint probability. This setup is aligned 221

with the multiple choice evaluation in Gendron 222

et al. (2024). 223

4.3 ReasonLM 224

We introduce ReasonLM framework which lever- 225

ages a frozen pretrained LLM as the reasoning 226

module (Figure 1). The inputs to the LLM are 227

task-specific prompts. The difference between Rea- 228

sonLM and the language baseline is how a panel 229

is represented. For ReasonLM, a panel is repre- 230

sented by object representations. For each object 231

in a panel, a symbolic encoder1 encodes object at- 232

tributes with corresponding embedding layers and 233

encodes objects’ location information2 with a linear 234

layer. Following, the attribute embeddings and lo- 235

cation representation are concatenated and passed 236

into a projection layer to obtain an object represen- 237

tation in token embedding space. These object rep- 238

resentations can be considered as projected object 239

tokens and are passed to the prompts to represent 240

1As opposed to updating the token embedding directly,
we select the symbolic encoder which decouples the input
representations with general task definitions in the prompts.

2Each object location is represented as
[x1, y1, x2, y2, w, h, w × h]
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panels. LLM will take in the prompts with these241

object tokens and make predictions based on the242

highest joint probabilities of the answer options.243

The symbolic encoder is randomly initialized244

and trained from scratch. During training, the245

pretrained LLM will be frozen, and the symbolic246

encoder is trained with next token prediction ob-247

jective. Following, we refer this ReasonLM with248

symbolic encoder as ReasonLM-Symbol.249

4.4 Implementation Details250

On ACRE, we use the training set which involves251

6000 samples, where each sample contains 6 con-252

text frames and 4 query frames. Thus, the training253

set has 24000 sequences. On MEWL, we use the254

training sets of the 9 sub-tasks, each of which in-255

volves 600 samples. Thus, the number of training256

sequences is 5400. On both datasets, the image257

frames are resized to 224 × 224 and will be tok-258

enized to image patches with size of 16× 16.259

We choose the pretrained LLaMA2 (Touvron260

et al., 2023) with 7 billion parameters as our rea-261

soning module. We use a symbolic encoder with262

the embedding size of 32 for each object property.263

During pretraining, we use the AdamW opti-264

mizer with a learning rate of 3×10−5. We pretrain265

the visual encoders for 20 epochs on ACRE, and266

40 epochs on MEWL. The batch size is set to 64.267

Method Projection ACRE(%) MEWL(%)

Random - 33.3 20.0
LLaMA2-7B - 39.9 39.2

GPT-2∗ - 37.1 -
GPT-3.5-Turbo∗ - 18.4 -
GPT-4∗ - 27.2 -
Alpaca∗ - 3.6 -

ReasonLM-Symbol Linear 92.0 69.1
ReasonLM-Symbol MLP 98.5 -

Table 1: Results on visual reasoning tasks with ora-
cle perception. Our ReasonLM-Symbol with linear
projection significantly outperforms language baseline
(LLaMA2-7B) on both ACRE and MEWL, indicating
that LLaMA-7B has sufficient abstract reasoning capa-
bility to solve visual reasoning tasks if oracle visual
perception is provided as inputs. Results with ∗ are lan-
guage baselines from (Gendron et al., 2024).

4.5 Results268

Results are shown in Table 1. We observe that269

ReasonLM-Symbol can significantly outperform270

its language baseline on both ACRE and MEWL271

by simply learning the simple symbolic encoder 272

without updating the weights of the LLM back- 273

bone. This indicates that a frozen pretrained LLM 274

can serve as the reasoning module for visual rea- 275

soning tasks on ACRE and MEWL when oracle 276

perception is available. We further experiment with 277

a ReasonLM-Symbol with a 2-layer MLP as the 278

final projection layer on ACRE. We observe that 279

the increase in complexity of the final projection 280

layer can further improve model’s performance to 281

nearly perfect on ACRE. This further supports that 282

LLMs can reason, but LLMs do not perform the 283

best with natural language inputs. Instead, LLMs 284

may benefit more from linearly or non-linearly en- 285

coded information. 286

5 What Makes Good Visual 287

Representations for LLM Reasoners? 288

Given that LLMs can be used as the reasoning 289

modules in visual reasoning task when oracle per- 290

ception is available, we study the factors of useful 291

visual representations for LLMs in order to unlock 292

LLMs’ reasoning capabilities with visual inputs in 293

visual reasoning tasks. We mainly consider these 294

factors: (1) Is visual pretraining needed for visual 295

reasoning on ACRE and MEWL? (2) Is object- 296

centric inductive bias needed? (3) Do different 297

model inductive biases make any difference? 298

5.1 ReasonLM with Image Inputs 299

ReasonLM-Object takes object crops in each 300

panel as inputs and use a visual encoder to retrieve 301

representations of the objects in each panel. Thus, 302

each panel is represented by a number of object 303

representations. This variant assumes ground truth 304

object detection exists in order to control the fac- 305

tors of reasoning performance. In fact, it is reas- 306

sonable to learn a good object detector on ACRE 307

and MEWL (Ding et al., 2021). This variant has 308

most of the information needed for solving ACRE 309

and MEWL, except spatial information, since the 310

object location information is missing. 311

ReasonLM-Image takes each panel as inputs 312

and use a visual encoder to retrieve panel repre- 313

sentations. This variant simplifies the inputs the 314

most, but requires the visual encoder to understand 315

object properties and spatial relationships between 316

objects directly from panel images. 317

4



Method shape color material object composite relation bootstrap num. pragmatic Avg.

BERT 94.8 98.8 97.5 19.5 97.8 22.2 62.2 21.8 99.8 68.3
GPT-3.5 96.8 82.3 87.0 98.2 88.3 20.0 45.8 22.7 26.7 63.1

ALOE 34.2 33.2 31.0 19.5 30.5 21.5 27.5 23.3 20.8 26.8
Flamingo-1.1B 49.3 35.3 48.5 19.2 38.2 18.8 57.3 84.2 18.0 41.0

ReasonLM-Symbol 80.8 84.2 82.8 97.7 65.7 18.2 84.8 87.7 19.7 69.1
ReasonLM-Image 31.8 98.8 76.2 24.0 30.7 17.7 36.0 48.7 18.7 42.5
ReasonLM-Object 34.8 99.5 99.5 96.8 53.3 19.7 84.8 99.8 21.3 67.7

Table 2: Results of ReasonLM with image inputs on MEWL tasks. We observe that, though ReasonLM-Object
does not require task-specific inductive biases or training strategies, ReasonLM-Object significantly outperforms
previous state-of-the-art, indicating that a frozen LLaMA2-7B can perform visual reasoning with image inputs.

Method Encoder Acc.(%)

NS-OPT - 66.3
IV-CL - 93.0

ReasonLM-Symbol Linear 92.0
ReasonLM-Image ViT-L2H4 76.6
ReasonLM-Object ViT-L2H4 97.0
ReasonLM-Object ViT-L6H8 96.6
ReasonLM-Object ResNet-50 93.6

Table 3: Results of ReasonLM with image inputs on
ACRE I.I.D. split. ReasonLM-Object significantly out-
performs prior works which use self-supervised visual
encoders, indicating that visual pretraining is not neces-
sary for visual reasoning tasks. By running an ablation
on visual encoder, we observe that model inductive bias
does not make a big difference on ACRE.

5.2 Implementation Details318

For the visual encoders for ReasonLM-Object and319

ReasonLM-Image, we use a 2-layer ViT (Doso-320

vitskiy et al., 2020) with 4 attention heads and a321

768-dimensional hidden space, and stack a linear322

projection layer on top at map the hidden repre-323

sentations to token embedding space. The visual324

encoders are randomly initialized and trained with325

next token prediction objective with a frozen LLM.326

The training data and other hyperparameters are327

the same as ReasonLM-Symbol. In contrast to328

IV-CL (Sun et al., 2024), where the heavy visual329

encoder contains model inductive bias (i.e., slot330

attention (Locatello et al., 2020)), and it needs to331

be pretrained, ReasonLM-Object and ReasonLM-332

Image do not require any task-specific pretraining333

or model inductive biases.334

5.3 Results335

Tables 2 and 3 summarize the results on Rea-336

sonLM with image inputs. We show that on both337

ACRE and MEWL, ReasonLM-Object achieves338

strong visual reasoning performance, which is on 339

par or even better than ReasonLM-Symbol which 340

uses oracle symbolic object information. Further- 341

more, we demonstrate that on ACRE, ReasonLM- 342

Object with a simple 2-layer ViT trained from 343

scratch significantly outperforms IV-CL (Sun et al., 344

2024) and ALOE (Ding et al., 2021) which use 345

self-supervised visual encoders, indicating that vi- 346

sual pretraining is not necessary for visual reason- 347

ing tasks. By comparing ReasonLM-Object and 348

ReasonLM-Image on ACRE and MEWL, we find 349

that object-centric representations are essential for 350

the great performance for ReasonLM-Object, re- 351

flecting that input inductive bias is still needed. 352

Last, we run an ablation study of model inductive 353

bias on ACRE. We observe that ReasonLM-Object 354

with either ViT (Dosovitskiy et al., 2020) or ResNet 355

(He et al., 2016) is competitive, though ViT per- 356

forms slightly better. This indicates that model 357

inductive bias does not make a big difference on 358

ACRE. 359

6 Can LLM-supervised Visual 360

Representations Generalize Across 361

Different Visual Reasoning Tasks? 362

With object-centric inductive bias, our ReasonLM- 363

Object performs well on ACRE and MEWL. How- 364

ever, it is unclear whether the LLM-supervised vi- 365

sual encoders are task-specific or are generalizable 366

across different reasoning tasks. In this section, we 367

first study whether the learned visual representa- 368

tions are generalizable across different visual rea- 369

soning tasks. Following, we explore how to better 370

transfer the learned visual encoders by finetuning 371

the final linear projection in the visual encoder. At 372

last, we investigate what types of reasoning tasks 373

lead to more generalizable visual representations. 374
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Figure 2: Results of transfer learning experiment on MEWL. For both ReasonLM-Symbol and ReasonLM-Object,
the models pretrained on a task perform worse when they are transferred to other tasks, compared to the models
pretrained just for this task. This reflect that learned visual encoders are task-specific, and do not generalize directly.
After we finetune the final linear projection of the visual encoders, the visual encoders consistently generalize better
on all sub-tasks.
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Figure 3: Data efficiency analysis on ReasonLM-Symbol and ReasonLM on MEWL. X-axis is the proportion of
data used for finetuning. Y-axis is the amount of performance improvement normalized by min-max normalization.
We observe that when the amount of data used to finetune the pretrained visual encoders is low, the finetuned visual
encoders do not show strong generalization for both ReasonLM-Symbol and ReasonLM-Object.
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6.1 Transfer Learning Experiment375

We conduct transfer learning experiment to mea-376

sure the generalizability of the learned visual repre-377

sentations. Given that there are nine different sub-378

tasks in MEWL, we focus on MEWL for transfer379

learning experiment. We consider sub-task training380

and all-task training. Sub-task training means to381

pretrain a visual encoder on one sub-task in MEWL,382

and all-task training means to pretrain a visual en-383

coder on all the nine sub-tasks together. After we384

train ReasonLM-Object on each sub-task and on385

all-task, we conduct transfer learning experiment386

by applying a ReasonLM-Object pretrained on a387

sub-task A to another sub-task B. To further ex-388

plore how to better transfer the learned visual en-389

coders, we finetune only the last linear projection390

in a visual encoder during the transfer learning ex-391

periment.392

6.2 Results393

Results are shown in Figure 2. For both ReasonLM-394

Symbol and ReasonLM-Object, the models pre-395

trained on a task perform worse when they are396

transferred to other tasks, compared to the models397

pretrained just for this task. The only special case398

is sub-task color, where ReasonLM-Object pre-399

trained on sub-tasks object, composite and400

bootstrap can perform reasonably well on sub-401

task color. We attribute this to the fact that color402

is one of the basic object property which is required403

to solve the problems in these sub-tasks. In all,404

these results reflect that the learned visual encoders405

are task-specific, and do not generalize directly.406

Next, we observe that with the finetuned final407

linear projection, the visual encoders consistently408

generalize better on all sub-tasks. We find that409

reasoning tasks do make a difference on the gen-410

eralizability of the learned encoders. When a task411

requires the understanding of more visual informa-412

tion, the better the visual encoders pretrained on413

it can transfer to other tasks. For example, among414

all sub-tasks, pretraining with object sub-task415

works the best for both ReasonLM-Symbol and416

ReasonLM-Object.417

7 Data Efficiency of LLM-supervised418

Visual Encoders for Transfer Learning419

If a model can performs abstract reasoning, then it420

is expected to see this model to generalize across421

different tasks with few-shot examples (Chollet,422

2019; Moskvichev et al., 2023; Mitchell, 2021).423

Therefore, we explore how data efficient our pre- 424

trained visual encoders are for transfer learning. 425

7.1 Experimental Setup 426

We still focus on MEWL and all the setup remains 427

the same as in transfer learning experiment in Sec- 428

tion 6, except that we only use 1%/2%/5%/10% of 429

the training data from a sub-task A to finetune the 430

last linear projection of a visual encoder pretrained 431

on sub-task B. After a pretrained visual encoder is 432

finetuned on a new task, we evaluate how well this 433

visual encoder can perform on this new sub-task. 434

7.2 Results 435

Figure 3 shows the results, where we carry out 436

a min-max normalization on the amount of per- 437

formance improvement based on the performance 438

without finetuning and performance with full fine- 439

tuning. For example, for ReasonLM-Symbol’s vi- 440

sual encoder pretrained on shape sub-task, if we 441

finetune it with 5% data, we can reach about 20% 442

of the performance improvement, compared to full 443

finetuning. We observe that when the amount of 444

data used to finetune the pretrained visual encoders 445

is low, the finetuned visual encoders do not show 446

strong generalization for both ReasonLM-Symbol 447

and ReasonLM-Object. This indicates that we are 448

still far away from performing abstract reasoning, 449

and more work needs to be done to investigate 450

whether the pretrained visual encoders perform 451

parts of the reasoning job and how to make this 452

visual reasoning system more data efficient. 453

8 Conclusions 454

We present a simple yet effective framework for 455

visual reasoning, powered by a pre-trained, frozen 456

large language model. We demonstrate that LLMs 457

can solve visual reasoning given both oracle ob- 458

ject information or image observations. Unlike 459

previous approaches that rely on task-specific rea- 460

soning modules or pre-trained visual encoders, our 461

proposed ReasonLM uses the frozen LLM as the 462

shared reasoning module, and works by training a 463

light-weight visual encoder from scratch. Through 464

evaluations on ACRE and MEWL, we demonstrate 465

that ReasonLM achieves competitive reasoning per- 466

formance, as long as the visual representations are 467

object-centric. Moreover, we demonstrate that the 468

visual encoders can be transferred across different 469

reasoning tasks, subject to a linear projection. 470

8



9 Limitations471

We conduct evaluations on synthetic datasets only.472

While the reasoning setup is realistic and designed473

to avoid dataset bias, recognizing objects and their474

attributes is arguably much simpler than from im-475

ages captured in the real world. Additionally, the476

visual encoders, though light-weight and can be477

trained from scratch, are specific to individual rea-478

soning (sub-)tasks. Learning generalizable or eas-479

ily transferable visual representations remain an480

important open problem.481

10 Ethics Statement482

We study the use of a pre-trained large language483

model for visual reasoning tasks. All bench-484

marks we used for evaluation are publicly available.485

ACRE was released under GPL-3.0 License, and486

MEWL was released under MIT License.487
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Figure A1: Data samples of ACRE and MEWL. ACRE examines a model’s ability of causal induction, which is to
identify the unobservable causal relationships from limited number of observations. MEWL tests a model’s ability
of novel word learning from limited number of observations.
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