Can Frozen Large Language Models Solve Visual Reasoning?

Anonymous ACL submission

Abstract

We present ReasonLM, a simple framework
which utilizes a pre-trained, frozen large lan-
guage model (LLM) for visual reasoning
tasks, and achieves competitive performance
on ACRE and MEWL. We demonstrate for the
first time that a frozen LLM serves as a task-
agnostic reasoning machine for diverse reason-
ing tasks that involve object recognition, causal
induction, and relation modeling. ReasonLM
does not rely on synthesizing symbolic pro-
grams or self-supervised visual representation
learning. Rather, it learns an object-centric,
light-weight visual encoder from scratch. Via
its simplified design, we investigate the essen-
tial design choices for strong visual reasoning
performance. Code and model will be released.

1 Introduction

Visual reasoning tasks examine the abilities of ex-
tracting visual information, recognizing the rela-
tions and patterns among the visual information,
and generalizing to novel situations by making
analogies (Zhang et al., 2021; Jiang et al., 2023;
Zhang et al., 2019; Chollet, 2019; Moskvichev
et al., 2023; Girdhar and Ramanan, 2019). Thus,
such tasks evaluate a model’s visual perception ca-
pabilities and logical reasoning capabilities, both
of which reflect how intelligent a model is.

There has been a series of work studying var-
ious approaches to solve visual reasoning tasks.
Some approaches rely on task-specific visual en-
coders, such as symbolic object encoders (Zhang
et al., 2021), object detectors (Ding et al., 2021), or
on task-specific training strategies for these visual
encoders (Sun et al., 2024; Bhattacharyya et al.,
2023). Other approaches introduce inductive bi-
ases by developing task-specific visual reasoning
modules (Hu et al., 2021; Benny et al., 2021). How-
ever, these task-specific components limit the scal-
ability and generalizability across different visual
reasoning tasks.

In this work, we investigate how to simplify a
visual reasoning framework in order to minimize
the task-specific designs and maximize the sharing
of visual encoders and reasoning modules across
tasks. We propose a visual reasoning framework
ReasonlLM, which consists of a perception module
and a task-agnostic reasoning module. The per-
ception module is a light-weight visual encoder
which does not require large-scale self-supervised
pretraining or task-specific inductive biases, such
as slot attention layers (Sun et al., 2024) and inter-
leaved cross-attention mechanism (Bhattacharyya
et al., 2023). The reasoning module is a frozen pre-
trained large language model (LLM) which solves
visual reasoning tasks as sequence modeling prob-
lems, and simplifies the pretraining of the visual
encoder by optimizing the visual encoder with a
next token prediction objective.

We focus on two visual reasoning tasks, ACRE
(Zhang et al., 2021) and MEWL (Jiang et al., 2023),
which require a model to recognize and infer the
implicit or explicit properties of objects with a lim-
ited number of observations and generalize to new
scenarios. We first show that a frozen pretrained
LLM can be used as the underlying reasoner and
shared across different visual reasoning tasks, when
these tasks represent the images into symbolic rep-
resentations. Following, we study if frozen LLMs
can solve visual reasoning with image inputs by
projecting image representations into language la-
tent space. We demonstrate that, for the first time,
state-of-the-art visual reasoning can be achieved
by learning a simple 2-layer ViT encoder from
scratch. Last, we investigate if a learned visual
encoder combined with a frozen LLM can solve a
visual reasoning task which requires understanding
of a specific concept, to what extent this model
can solve other tasks involving the same concept
(Moskvichev et al., 2023). We observe that the
visual encoders can be adapted to other reasoning
sub-tasks with a simply learned linear projection.



At last, we identify two essential design choices for
the visual encoder: (1) Object-centric inputs or rep-
resentations are crucial for solving visual reasoning
tasks; (2) Visual encoders learned with a diverse
set of sub-tasks are easier to transfer to novel tasks.

2 Related Works

While deep neural networks have achieved consid-
erable success on image understanding tasks that
require reasoning, such as visual question answer-
ing (Hudson and Manning, 2019b; Zellers et al.,
2019; Marino et al., 2019), benchmarks collected
“from-the-wild” often contain dataset and language
biases, which make it harder to rigorously mea-
sure progress (Goyal et al., 2017). As a response,
a series of synthetic, diagnostic datasets (Johnson
et al., 2017; Yi et al., 2019; Girdhar and Ramanan,
2019; Zhang et al., 2021) have been proposed to
benchmark visual reasoning. We investigate the
use of a frozen large language model in visual rea-
soning tasks. LLMs have been previously applied
to reasoning with natural language (Magister et al.,
2022; Wei et al., 2022; Chen et al., 2022; Liu et al.,
2020), but the scope of “reasoning” they can rig-
orously solve is questioned (Kambhampati, 2024;
Mitchell et al., 2023; Gendron et al., 2024). Our
paper aims to leverage LLM as a tool to assist vi-
sual reasoning, and our problem scope is defined by
the ACRE (Zhang et al., 2021) and MEWL (Jiang
et al., 2023) benchmarks, which provide a training
dataset of example context observations, query ob-
servation, and the desirable output to illustrate the
reasoning tasks of interest.

Recent approaches on visual reasoning can be
categorized into neuro-symbolic methods (Mao
et al., 2019; Hudson and Manning, 2019a), or neu-
ral networks with implicit representations (Ding
et al., 2021; Sun et al., 2024; Bhattacharyya et al.,
2023). Both approaches roughly follow the same
outline of perception stage and reasoning stage.
The outputs of the perception stage are usually
object-centric, which can be obtained with a su-
pervised object detector (Traub et al., 2023; He
et al., 2017), or with self-supervised object discov-
ery (Geirhos et al., 2018; Hermann et al., 2020;
Olah et al., 2017; Burgess et al., 2019; Locatello
et al., 2020; Caron et al., 2021). It has been ob-
served that on diagostic datasets, both approaches
lead to satisfactory object localization. For reason-
ing, the former approach generates an interpretable
program to execute on the recognized visual inputs,

while the latter approach often relies on a reason-
ing neural network trained specifically to a certain
reasoning task. Our paper investigates the use of a
frozen LLM as the shared reasoning module, where
the visual encoders are trained from scratch.

3 Visual Reasoning Tasks

In this work, we consider visual reasoning tasks as
a task which requires forming and abstracting con-
cepts, and making generalization to new problems
,via analogies, from a limited number of observa-
tions. We focus on visual reasoning tasks that are
based on CLEVR objects (Johnson et al., 2017)
such that we can obtain oracle visual perception.

For each problem in a visual reasoning task,
there are N pairs of context frame and label
{e;,11}¥, and a query frame ¢. On each frame,
there are objects which can be represented by ob-
ject attributes (i.e., color, material, shape) and their
location information (i.e., bounding boxes). The
task is to solve the query frame by inducing the pat-
terns in context frames and applying the patterns
on the query frame.

ACRE (Zhang et al., 2021) evaluates a model’s
ability of causal induction, which means to iden-
tify unobservable causal relationships from limited
number of observations. It is inspired by Blicket de-
tection experiments from developmental psychol-
ogy (Gopnik and Sobel, 2000), where a Blicket
detector will be activated when at least one Blicket
object is placed on it. Since the Blicket-ness is an
unobservable property of the objects, it is needed
to infer which objects are Blickets by observing
several context trials where different combinations
of objects are placed on Blicket detector, revealing
its activation status. In ACRE, there are 6 context
frames and 4 query frames per sample, where each
frame contains a distinct set of CLEVR objects
(Johnson et al., 2017). Given the context frames
and a query frame, a model needs to predict the
activation status of Blicket detector in query frame,
which can be on, off, or unknown. We mask out
the Blicket detectors in all the frames in order to
avoid our model to directly infer activation status
by looking at the Blicket detectors.

MEWL (Jiang et al., 2023) evaluates a model’s
ability of novel word learning in grounded visual
scenes. It simulates children’s word learning pro-
cess which is inherently few-shot and open-ended
and contains referential uncertainty. In MEWL,
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Figure 1: Overflow of ReasonLLM, specifically a ReasonLM-Object. ReasonLLM consists of a perception module and
a reasoning module. Perception module is a visual encoder which takes object crops as inputs and outputs object
representations. The object representations are passed into task-specific prompts to represent panels. Reasoning
module is a frozen LLM which consumes the task-specific prompts and predicts the answer for the query panel.

there are 9 different sub-tasks: shape, color, mate-
rial, object, composite, relation, bootstrap, number,
pragmatic. These 9 tasks cover four types of scenar-
i0s: basic attribute naming, relational word learn-
ing, number word learning, and pragmatic word
learning. For each data sample, there are 6 context
frames and 1 query frame per sample, where each
frame contains a set of CLEVR objects and a cor-
responding novel word or phrase (i.e., utterance).
The task is to understand the meaning of the novel
words by observing the context frames, and select
the correct utterances out of 5 options for the query
frame.

4 Can Frozen LLMs Help Reasoning?

Before studying whether a frozen pretrained LLM
can solve visual reasoning, we first investigate
whether an LLM can serve as a reasoning mod-
ule. Thus, we assume oracle perception is available,
and evaluate how well a frozen pretrained LLM can
solve ACRE and MEWL with oracle information.

4.1 Prompts for Reasoning Tasks

We follow the prompt design in Gendron et al.
(2024) such that there are two parts for each prompt.
First, a task definition is used to define the visual
reasoning task. Second, the descriptions of each
panel and its corresponding label. On ACRE and
MEWL, we retrieve panel captions which contain
oracle information of the panels. We then directly
use these captions to represent each panel, and ob-
tain the prompts for ACRE and MEWL. On ACRE,
each panel caption describes all the objects ap-
peared on a panel (e.g., “There are brown rubber

sphere and cyan metal cylinder.”). On MEWL, each
panel caption is generated by the panel captioner
from Jiang et al. (2023).

4.2 Language Baseline

A language baseline is where a frozen LLM directly
consumes visual reasoning prompts and make pre-
dictions by selecting the answer option with the
hightest joint probability. This setup is aligned
with the multiple choice evaluation in Gendron
et al. (2024).

4.3 ReasonLM

We introduce ReasonLM framework which lever-
ages a frozen pretrained LLM as the reasoning
module (Figure 1). The inputs to the LLM are
task-specific prompts. The difference between Rea-
sonLLM and the language baseline is how a panel
is represented. For Reasonl.M, a panel is repre-
sented by object representations. For each object
in a panel, a symbolic encoder' encodes object at-
tributes with corresponding embedding layers and
encodes objects’ location information® with a linear
layer. Following, the attribute embeddings and lo-
cation representation are concatenated and passed
into a projection layer to obtain an object represen-
tation in token embedding space. These object rep-
resentations can be considered as projected object
tokens and are passed to the prompts to represent

'As opposed to updating the token embedding directly,
we select the symbolic encoder which decouples the input
representations with general task definitions in the prompts.

Each  object location is  represented  as
[:B 1,Y1,T2,Y2, W, }L7 w X }l]



panels. LL.M will take in the prompts with these
object tokens and make predictions based on the
highest joint probabilities of the answer options.
The symbolic encoder is randomly initialized
and trained from scratch. During training, the
pretrained LLM will be frozen, and the symbolic
encoder is trained with next token prediction ob-
jective. Following, we refer this ReasonLLM with
symbolic encoder as ReasonLM-Symbol.

4.4 Implementation Details

On ACRE, we use the training set which involves
6000 samples, where each sample contains 6 con-
text frames and 4 query frames. Thus, the training
set has 24000 sequences. On MEWL, we use the
training sets of the 9 sub-tasks, each of which in-
volves 600 samples. Thus, the number of training
sequences is 5400. On both datasets, the image
frames are resized to 224 x 224 and will be tok-
enized to image patches with size of 16 x 16.

We choose the pretrained LLaMA2 (Touvron
et al., 2023) with 7 billion parameters as our rea-
soning module. We use a symbolic encoder with
the embedding size of 32 for each object property.

During pretraining, we use the AdamW opti-
mizer with a learning rate of 3 x 10~°. We pretrain
the visual encoders for 20 epochs on ACRE, and
40 epochs on MEWL. The batch size is set to 64.

Method Projection ‘ ACRE(%) MEWL(%)
Random - 33.3 20.0
LLaMA2-7B - 39.9 39.2
GPT-2* - 37.1 -
GPT-3.5-Turbo* - 18.4 -
GPT-4* - 272 -
Alpaca* - 3.6 -
ReasonLM-Symbol Linear 92.0 69.1
ReasonLM-Symbol MLP 98.5 -

Table 1: Results on visual reasoning tasks with ora-
cle perception. Our ReasonLM-Symbol with linear
projection significantly outperforms language baseline
(LLaMAZ2-7B) on both ACRE and MEWL, indicating
that LLaMA-7B has sufficient abstract reasoning capa-
bility to solve visual reasoning tasks if oracle visual
perception is provided as inputs. Results with * are lan-
guage baselines from (Gendron et al., 2024).

4.5 Results

Results are shown in Table 1. We observe that
ReasonLLM-Symbol can significantly outperform
its language baseline on both ACRE and MEWL

by simply learning the simple symbolic encoder
without updating the weights of the LLM back-
bone. This indicates that a frozen pretrained LLM
can serve as the reasoning module for visual rea-
soning tasks on ACRE and MEWL when oracle
perception is available. We further experiment with
a ReasonLM-Symbol with a 2-layer MLP as the
final projection layer on ACRE. We observe that
the increase in complexity of the final projection
layer can further improve model’s performance to
nearly perfect on ACRE. This further supports that
LLMs can reason, but LLMs do not perform the
best with natural language inputs. Instead, LLMs
may benefit more from linearly or non-linearly en-
coded information.

S What Makes Good Visual
Representations for LLM Reasoners?

Given that LLMs can be used as the reasoning
modules in visual reasoning task when oracle per-
ception is available, we study the factors of useful
visual representations for LLMs in order to unlock
LLMSs’ reasoning capabilities with visual inputs in
visual reasoning tasks. We mainly consider these
factors: (1) Is visual pretraining needed for visual
reasoning on ACRE and MEWL? (2) Is object-
centric inductive bias needed? (3) Do different
model inductive biases make any difference?

5.1 ReasonLM with Image Inputs

ReasonLM-Object takes object crops in each
panel as inputs and use a visual encoder to retrieve
representations of the objects in each panel. Thus,
each panel is represented by a number of object
representations. This variant assumes ground truth
object detection exists in order to control the fac-
tors of reasoning performance. In fact, it is reas-
sonable to learn a good object detector on ACRE
and MEWL (Ding et al., 2021). This variant has
most of the information needed for solving ACRE
and MEWL, except spatial information, since the
object location information is missing.

ReasonLM-Image takes each panel as inputs
and use a visual encoder to retrieve panel repre-
sentations. This variant simplifies the inputs the
most, but requires the visual encoder to understand
object properties and spatial relationships between
objects directly from panel images.



Method shape color material object composite relation bootstrap num. pragmatic Avg.
BERT 94.8 98.8 97.5 19.5 97.8 222 62.2 21.8 99.8 68.3
GPT-3.5 96.8 82.3 87.0 98.2 88.3 20.0 45.8 22.7 26.7 63.1
ALOE 34.2 332 31.0 19.5 30.5 21.5 27.5 233 20.8 26.8
Flamingo-1.1B 49.3 353 48.5 19.2 38.2 18.8 57.3 84.2 18.0 41.0
ReasonLM-Symbol 80.8 84.2 82.8 97.7 65.7 18.2 84.8 87.7 19.7 69.1
ReasonLLM-Image 31.8 98.8 76.2 24.0 30.7 17.7 36.0 48.7 18.7 42.5
ReasonLM-Object 34.8 99.5 99.5 96.8 533 19.7 84.8 99.8 21.3 67.7

Table 2: Results of ReasonLM with image inputs on MEWL tasks. We observe that, though ReasonLM-Object
does not require task-specific inductive biases or training strategies, ReasonLM-Object significantly outperforms
previous state-of-the-art, indicating that a frozen LLaMA2-7B can perform visual reasoning with image inputs.

Method Encoder ‘ Acc.(%)
NS-OPT - 66.3
IV-CL - 93.0
ReasonLM-Symbol Linear 92.0
ReasonLM-Image  ViT-L2H4 76.6
ReasonLM-Object  ViT-L2H4 97.0
ReasonLM-Object ~ ViT-L6H8 96.6
ReasonLM-Object  ResNet-50 93.6

strong visual reasoning performance, which is on
par or even better than ReasonLM-Symbol which
uses oracle symbolic object information. Further-
more, we demonstrate that on ACRE, Reasonl. M-
Object with a simple 2-layer ViT trained from
scratch significantly outperforms IV-CL (Sun et al.,
2024) and ALOE (Ding et al., 2021) which use
self-supervised visual encoders, indicating that vi-

Table 3: Results of ReasonLM with image inputs on
ACRE LLD. split. ReasonLM-Object significantly out-
performs prior works which use self-supervised visual
encoders, indicating that visual pretraining is not neces-
sary for visual reasoning tasks. By running an ablation
on visual encoder, we observe that model inductive bias
does not make a big difference on ACRE.

5.2 Implementation Details

For the visual encoders for ReasonLM-Object and
ReasonL.M-Image, we use a 2-layer ViT (Doso-
vitskiy et al., 2020) with 4 attention heads and a
768-dimensional hidden space, and stack a linear
projection layer on top at map the hidden repre-
sentations to token embedding space. The visual
encoders are randomly initialized and trained with
next token prediction objective with a frozen LLM.
The training data and other hyperparameters are
the same as ReasonLM-Symbol. In contrast to
IV-CL (Sun et al., 2024), where the heavy visual
encoder contains model inductive bias (i.e., slot
attention (Locatello et al., 2020)), and it needs to
be pretrained, ReasonLM-Object and ReasonLM-
Image do not require any task-specific pretraining
or model inductive biases.

5.3 Results

Tables 2 and 3 summarize the results on Rea-
sonLM with image inputs. We show that on both
ACRE and MEWL, ReasonLLM-Object achieves

sual pretraining is not necessary for visual reason-
ing tasks. By comparing ReasonLM-Object and
ReasonLM-Image on ACRE and MEWL, we find
that object-centric representations are essential for
the great performance for ReasonL.M-Object, re-
flecting that input inductive bias is still needed.
Last, we run an ablation study of model inductive
bias on ACRE. We observe that ReasonLM-Object
with either ViT (Dosovitskiy et al., 2020) or ResNet
(He et al., 2016) is competitive, though ViT per-
forms slightly better. This indicates that model
inductive bias does not make a big difference on
ACRE.

6 Can LLM-supervised Visual
Representations Generalize Across
Different Visual Reasoning Tasks?

With object-centric inductive bias, our ReasonL.M-
Object performs well on ACRE and MEWL. How-
ever, it is unclear whether the LLM-supervised vi-
sual encoders are task-specific or are generalizable
across different reasoning tasks. In this section, we
first study whether the learned visual representa-
tions are generalizable across different visual rea-
soning tasks. Following, we explore how to better
transfer the learned visual encoders by finetuning
the final linear projection in the visual encoder. At
last, we investigate what types of reasoning tasks
lead to more generalizable visual representations.
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Figure 2: Results of transfer learning experiment on MEWL. For both ReasonLM-Symbol and ReasonLM-Object,
the models pretrained on a task perform worse when they are transferred to other tasks, compared to the models
pretrained just for this task. This reflect that learned visual encoders are task-specific, and do not generalize directly.
After we finetune the final linear projection of the visual encoders, the visual encoders consistently generalize better

on all sub-tasks.
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encoders do not show strong generalization for both ReasonLM-Symbol and ReasonLM-Object.



6.1 Transfer Learning Experiment

We conduct transfer learning experiment to mea-
sure the generalizability of the learned visual repre-
sentations. Given that there are nine different sub-
tasks in MEWL, we focus on MEWL for transfer
learning experiment. We consider sub-task training
and all-task training. Sub-task training means to
pretrain a visual encoder on one sub-task in MEWL,
and all-task training means to pretrain a visual en-
coder on all the nine sub-tasks together. After we
train ReasonLM-Object on each sub-task and on
all-task, we conduct transfer learning experiment
by applying a ReasonLM-Object pretrained on a
sub-task A to another sub-task B. To further ex-
plore how to better transfer the learned visual en-
coders, we finetune only the last linear projection
in a visual encoder during the transfer learning ex-
periment.

6.2 Results

Results are shown in Figure 2. For both ReasonL.M-
Symbol and ReasonLM-Object, the models pre-
trained on a task perform worse when they are
transferred to other tasks, compared to the models
pretrained just for this task. The only special case
is sub-task color, where ReasonLM-Object pre-
trained on sub-tasks object, composite and
bootstrap can perform reasonably well on sub-
task color. We attribute this to the fact that color
is one of the basic object property which is required
to solve the problems in these sub-tasks. In all,
these results reflect that the learned visual encoders
are task-specific, and do not generalize directly.

Next, we observe that with the finetuned final
linear projection, the visual encoders consistently
generalize better on all sub-tasks. We find that
reasoning tasks do make a difference on the gen-
eralizability of the learned encoders. When a task
requires the understanding of more visual informa-
tion, the better the visual encoders pretrained on
it can transfer to other tasks. For example, among
all sub-tasks, pretraining with object sub-task
works the best for both ReasonL.M-Symbol and
ReasonLLM-Object.

7 Data Efficiency of LLM-supervised
Visual Encoders for Transfer Learning

If a model can performs abstract reasoning, then it
is expected to see this model to generalize across
different tasks with few-shot examples (Chollet,
2019; Moskvichev et al., 2023; Mitchell, 2021).

Therefore, we explore how data efficient our pre-
trained visual encoders are for transfer learning.

7.1 Experimental Setup

We still focus on MEWL and all the setup remains
the same as in transfer learning experiment in Sec-
tion 6, except that we only use 1%/2%/5%/10% of
the training data from a sub-task A to finetune the
last linear projection of a visual encoder pretrained
on sub-task B. After a pretrained visual encoder is
finetuned on a new task, we evaluate how well this
visual encoder can perform on this new sub-task.

7.2 Results

Figure 3 shows the results, where we carry out
a min-max normalization on the amount of per-
formance improvement based on the performance
without finetuning and performance with full fine-
tuning. For example, for ReasonLM-Symbol’s vi-
sual encoder pretrained on shape sub-task, if we
finetune it with 5% data, we can reach about 20%
of the performance improvement, compared to full
finetuning. We observe that when the amount of
data used to finetune the pretrained visual encoders
is low, the finetuned visual encoders do not show
strong generalization for both ReasonL.M-Symbol
and ReasonLM-Object. This indicates that we are
still far away from performing abstract reasoning,
and more work needs to be done to investigate
whether the pretrained visual encoders perform
parts of the reasoning job and how to make this
visual reasoning system more data efficient.

8 Conclusions

We present a simple yet effective framework for
visual reasoning, powered by a pre-trained, frozen
large language model. We demonstrate that LLMs
can solve visual reasoning given both oracle ob-
ject information or image observations. Unlike
previous approaches that rely on task-specific rea-
soning modules or pre-trained visual encoders, our
proposed ReasonLLM uses the frozen LLM as the
shared reasoning module, and works by training a
light-weight visual encoder from scratch. Through
evaluations on ACRE and MEWL, we demonstrate
that ReasonLLM achieves competitive reasoning per-
formance, as long as the visual representations are
object-centric. Moreover, we demonstrate that the
visual encoders can be transferred across different
reasoning tasks, subject to a linear projection.



9 Limitations

We conduct evaluations on synthetic datasets only.
While the reasoning setup is realistic and designed
to avoid dataset bias, recognizing objects and their
attributes is arguably much simpler than from im-
ages captured in the real world. Additionally, the
visual encoders, though light-weight and can be
trained from scratch, are specific to individual rea-
soning (sub-)tasks. Learning generalizable or eas-
ily transferable visual representations remain an
important open problem.

10 Ethics Statement

We study the use of a pre-trained large language
model for visual reasoning tasks. All bench-
marks we used for evaluation are publicly available.
ACRE was released under GPL-3.0 License, and
MEWL was released under MIT License.
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Figure Al: Data samples of ACRE and MEWL. ACRE examines a model’s ability of causal induction, which is to
identify the unobservable causal relationships from limited number of observations. MEWL tests a model’s ability
of novel word learning from limited number of observations.
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