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Abstract

Existing diffusion-based super-resolution approaches often exhibit semantic ambi-
guities due to inaccuracies and incompleteness in their text conditioning, coupled
with the inherent tendency for cross-attention to divert towards irrelevant pixels.
These limitations can lead to semantic misalignment and hallucinated details in
the generated high-resolution outputs. To address these, we propose a novel, plug-
and-play spatially re-focused super-resolution (SRSR) framework that consists of
two core components: first, we introduce Spatially Re-focused Cross-Attention
(SRCA), which refines text conditioning at inference time by applying visually-
grounded segmentation masks to guide cross-attention. Second, we introduce a
Spatially Targeted Classifier-Free Guidance (STCFG) mechanism that selectively
bypasses text influences on ungrounded pixels to prevent hallucinations. Extensive
experiments on both synthetic and real-world datasets demonstrate that SRSR
consistently outperforms seven state-of-the-art baselines in standard fidelity met-
rics (PSNR and SSIM) across all datasets, and in perceptual quality measures
(LPIPS and DISTS) on two real-world benchmarks, underscoring its effectiveness
in achieving both high semantic fidelity and perceptual quality in super-resolution.

1 Introduction

Image super-resolution (SR) aims to restore a high-resolution (HR) image from a low-resolution
(LR) counterpart degraded by blur, noise, and compression artifacts or other distortions. This classic
problem has broad real-world applications, ranging from photography [18]] and digital surveillance [63}
32| to medical imaging [12} 41} [17] and remote sensing [45]. However, restoring both photorealistic
details and semantically coherent content under severe degradations remains an open challenge. Early
deep-learning-based approaches often assume simple, known degradations (e.g., bicubic or Gaussian
downsampling) and investigate new architectural designs [3. 4,8}, 19, 24, 28| 38} 167]. Subsequently,
super-resolution methods based on generative models like GANs [[11]] and diffusion models [[16} 29]
can produce realistic details [62, 46 19, 49], yet they frequently struggle on real-world LR image
inputs that deviate from the above assumptions, resulting in clear artifacts in the super-resolved
outputs. Consequently, recent research adopts more complex and realistic degradation pipelines (e.g.,
Real-ESRGAN [46]) and exploits the powerful Stable Diffusion (SD) prior [36], as in StableSR [44]]
and DiffBIR [25]], to improve generalization in real-world ISR. However, these methods overlook
textual guidance, thus risking semantic misalignment.

A recent trend is to incorporate text priors to guide super-resolution via a text-to-image Stable
Diffusion pipeline, leading to better semantic fidelity [58 59} 31} 54, 153]]. Among these methods,
the degradation-aware prompt extractor (DAPE) proposed by SeeSR [54] demonstrates superior
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Figure 1: Illustrations of how inherent cross-attention can be misled by irrelevant tokens, resulting in
semantically incorrect restorations (top). Left: the baseline mistakenly associates the stone region
with the token ‘bird’, and the animal’s neck and beak with ‘stone’, producing wing-like artifacts on the
stone and unnatural textures on the animal. Right: attention for ‘stare’ is scattered across irrelevant
patches, and both the eye and lion face incorrectly respond to ‘grass’, introducing hallucinated
textures. We propose re-focusing cross-attention by constraining the influence of each text token to
its grounded region, yielding sharper and semantically aligned reconstructions (bottom).

performance in terms of both degradation-awareness and efficiency compared to other off-the-shelf
models used like ResNet [14], YOLO [33]], BLIP [23]] and LLaVA [26]] employed in other works.
OSED:iff [53] further trains a one-step model that also leverages DAPE as the prompt extractor.

Despite these advances, text conditioning can induce hallucinations, causing ambiguous semantics
in the restored results, as illustrated in Fig.[I] We identify three main limitations in current designs:
Firstly, existing approaches rely exclusively on cross-attention to inject text prompts, but tokens often
leak onto unrelated regions, leading to mismatched guidance and semantic ambiguity. Secondly,
although DAPE is more degradation-aware than other prompt extractors, it remains only partially
robust to severe degradations, making accurate prompt extraction challenging. Providing erroneous
text prompts can degrade the fidelity of super-resolved outputs more severely than omitting text
guidance altogether. Thirdly, prompt extraction methods do not guarantee full-image coverage,
leaving ungrounded regions without guidance from relevant semantics and vulnerable to the influence
of unrelated text prompts. A recent work [40]] exploits Mask2Former [5] trained on ADE20K [70]]
to achieve full-image coverage by assigning dense segmentation labels to every pixel. However, its
segmentation model lacks degradation-awareness and is restricted to 150 categories, limiting its scope
for real-world applications that demand open-vocabulary understanding. Bridging these limitations
to achieve fully coherent, semantically correct super-resolution remains an open challenge.

To address the aforementioned challenges, we propose a novel framework that conducts Spatially
Re-focused Super-Resolution (SRSR). We first apply visual grounding to filter out less relevant tags
and generate tag-region pairs via segmentation masks. Based on these, we introduce Spatially
Re-focused Cross-Attention (SRCA), which constrains each tag’s influence to its corresponding
spatial region, effectively mitigating semantic hallucinations from the first two limitations. To
further improve restoration in ungrounded regions, we introduce a Spatially Targeted Classifier-Free
Guidance (STCFG) mechanism that selectively disables classifier-free guidance in these regions to
avoid undesired text-conditioning effects. Notably, our method operates exclusively at inference time,
eliminating the need for additional training or fine-tuning. As a result, it serves as a lightweight,
plug-and-play module compatible with any cross-attention-based SR approach that utilizes text priors.

Our results show that incorporating SRSR into both the 1-step OSEDiff and the 50-step SeeSR base-
lines yields significant improvements in full-reference metrics across synthetic and real-world datasets.
When compared to seven other state-of-the-art baselines, our method consistently outperforms all
alternatives in fidelity measures PSNR and SSIM on every dataset, and achieves the top performance
for perceptual metrics LPIPS and DISTS on the two real-world datasets (RealSR and DrealSR) while
ranking second on the synthetic DIV2K set. In summary, our contributions are threefold: First, we
highlight underexplored gaps in existing methods that impede semantically accurate super-resolution.
Second, we propose a novel SRSR framework that effectively alleviates semantic ambiguity through
spatially re-focused cross-attention (SRCA) and spatially targeted CFG (STCFG), while remaining a
lightweight, inference-time plug-and-play module for any cross-attention-based SR approach with
text priors. Third, SRSR achieves new state-of-the-art performance against seven strong baselines.
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2 Related work
2.1 Non-diffusion-based super-resolution methods

Starting with CNN-based approaches, SR has been extensively explored through models that directly
map LR images to HR outputs in an end-to-end manner [21} |69} [13} 19, 39, 16]]. Many CNN-based
methods focus on designing deeper or wider networks and improving attention mechanisms to
enhance SR performance [48]]. With the rise of generative models, GANs have gained popularity by
using adversarial frameworks where the generator creates HR images closely matching real image
distributions, thereby improving perceptual quality and realism. Real-ESRGAN [46] advanced this
by introducing a high-order degradation model and modifying the U-Net discriminator to enhance
stability and visual performance in real-world SR scenarios. Building on this, uncertainty and
semantic-aware approaches have been proposed [27, 142 22| 61, [30]. Uncertainty-Aware GANs
[27] integrated pixel-level uncertainty into adversarial training for fine-grained feedback, while SeD
[22]] incorporated semantic information into the discriminator to guide the generator in producing
semantically aligned textures. CAL-GAN [61]], another context-aware method, employs a mixture of
classifiers to handle image patches based on content, improving discriminator capacity for photo-
realistic SR. In parallel, SFT-GAN [47] demonstrates how spatially-varying categorical priors derived
from semantic segmentation maps can be integrated into SR networks through Spatial Feature
Transform (SFT) layers, enabling region-specific modulation of features and the recovery of textures
that are more realistic and faithful to underlying semantics. However, these methods primarily focus
on broader image-level semantic context rather than explicitly leveraging object-level understanding
within images for SR.

2.2 Diffusion-based super-resolution methods

DDRM and DDNM [ 19! 149] were the earlier efforts that develop DDPM-based SR methods. Subse-
quently, Stable-Diffusion-based SR methods like StableSR [44] and DiffBIR [25]] were proposed to
tackle the more challenging real-world image super-resolution (Real-ISR) task by leveraging Stable
Diffusion (SD)’s strong prior that trained using billions of image-text pairs. A recent trend is to
incorporate text priors to guide generation in text-to-image SD, leading to better semantic fidelity.
For example, CoSeR [37] highlights the potential of bridging image and language understanding
using diffusion-based priors and cognitive embeddings. Also, PASD [58] extracts text prompts
via off-the-shelf models (ResNet [14], YOLO [33]] and BLIP [23]]) and leverages ControlNet [[65]]
without modifying SD’s pre-trained weights. SUPIR [59] and XPSR [31]] employ LLaVA [26],
while SeeSR [54] proposes a degradation-aware prompt extractor (DAPE) that improves on the
Recognize Anything Model (RAM) [68] for LR images. OSEDiff [53] further trains a one-step
model that also leverages DAPE as the prompt extractor, demonstrating its superiority over larger
vision-language models like LLaVA. Most recent works like SegSR [55]] and HolisDiP [40] propose
to additionally use semantic segmentation models to extract prompts with more comprehensive
coverage. Despite these advances, ensuring the accuracy of the extracted prompt and the robustness
of its cross-attention injection remains difficult under heavy degradation, as incorrect text guidance
can still trigger hallucinations and semantic ambiguity in the restored outputs.

3 Method

3.1 Research gaps

Recent work has shown that super-resolution (SR) methods based on Stable Diffusion (SD) hold
promise, primarily due to SD’s powerful prior learned from billions of image-text pairs. However,
when operating on degraded LR images, semantic errors can arise, leading to inaccurate reconstruc-
tions. Recent studies [58} 154, |59} 53] have demonstrated that leveraging SD’s text-conditioning,
guided by text priors extracted from LR images, can yield more semantically-aware SR results.
Nevertheless, hallucination is often observed due to three major limitations of the current designs:

Diverted cross-attention. Existing approaches rely on cross-attention to implicitly associate text
prompts with image pixels. However, we observe that these associations are often misaligned, with
text tokens attending to irrelevant regions. As shown in Fig.[I] (top row), the baseline cross-attention
maps frequently misattribute tokens such as ‘bird’, ‘stone’, ‘stare’, and ‘grass’ to unrelated image
areas, leading to semantic ambiguity and perceptual artifacts. The output’s semantic fidelity is further
degraded when the extracted text contains incorrect or loosely related tags. For instance, in Fig. 2| (top
row), ‘tower’ is loosely relevant to ‘building’, but the latter is mainly used for guiding the restoration
of the building regions. In contrast, ‘tower’ pays significant attention to regions highlighted by the
yellow bounding boxes, which actually correspond to tree-like structures, introducing hallucinated
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Figure 2: Analysis of how our proposed Spatially Re-focused Cross-Attennon (SRCA) and Spatially
Targeted Classifier-Free Guidance (STCFG) improve semantic fidelity in text-conditioned super-
resolution. The Ungrounded mask highlights regions where no textual tag can be confidently
grounded. Existing methods rely solely on inherent cross-attention, allowing global or irrelevant
tokens to influence all regions. SRCA addresses this by limiting each token’s influence to its
corresponding grounded region only, reducing semantic confusion. However, this leaves ungrounded
regions only associated with global tokens (e.g., EOS, padding, punctuation), where summary tokens
like EOS can still carry semantics of the entire prompt and influence its restoration. To resolve
this, STCFG disables text conditioning entirely in ungrounded areas by using unconditional noise
prediction in the reverse diffusion process, further enhancing the ungrounded region’s restoration.

content where it does not belong. A similar issue is shown in Fig. E] (third row), where the incorrect
tag ‘camouflage’ is extracted by DAPE from the degraded LR image. As a result, the SeeSR baseline
synthesizes camouflage-like patterns in regions (highlighted in red boxes) that should depict stones.
Although the output appears visually plausible, it suffers from poor semantic fidelity.

Incorrect prompts. Extracting accurate text prompts from LR images remains challenging. Recent
efforts, such as the degradation-aware prompt extractor (DAPE) [54]], improve on the Recognize
Anything Model (RAM) but still produce misguiding prompts under severe degradation. Injecting
these incorrect signals can lead to even more erroneous SR results than using no text guidance at all.

Incomplete prompts. While DAPE demonstrates greater robustness to image degradations than
many alternative text extractors, it does not guarantee comprehensive coverage of the entire image.
It may miss salient objects and often fails to assign tags to non-object background regions due to
its object-centric design. As a result, uncovered regions encounter two key issues: (1) they lack the
semantic guidance that tagged regions benefit from, and (2) they remain susceptible to influence from
unrelated text prompts, leading to hallucinations in areas that should remain unaffected.

In response, we propose a novel Spatially Re-focused Super-Resolution (SRSR) framework (Fig.
that comprises two key components. First, the Spatially Re-focused Cross-Attention (SRCA) module
(Sec. tackles the first two gaps by mitigating semantic ambiguity and reducing the influence of
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Figure 3: Overview of our proposed pipeline. First, the LR image is processed by a Degradation-
Aware Prompt Extractor (DAPE) [54] to obtain text tags. Both the LR image and the extracted tags
are then passed to Grounded SAM, which produces visually grounded tag—mask pairs. We also define
an ungrounded mask as the complement of the union of all grounded masks. Next, each tag-mask pair
is integrated into all 16 U-Net cross-attention layers, using the masks to constrain text conditioning
precisely to relevant regions. Once noise prediction is complete, we selectively apply Classifier-Free
Guidance (CFG) to grounded pixels while leaving ungrounded pixels under unconditional guidance,
ensuring they remain unaffected by the text prompts. After 7' denoising steps, a final decoder maps
the latent representation back to pixel space, yielding the super-resolved (SR) image.

incorrect or loosely related tags through spatially constrained attention. Second, the Spatially Targeted
Classifier-Free Guidance (STCFG) module (Sec. [3.3) targets the third limitation by improving
restoration in regions lacking explicit grounding. Notably, SRSR is designed as an efficient, inference-
only solution that requires no additional training or fine-tuning, making it compatible as a plug-and-
play module with any cross-attention-based super-resolution method that utilizes text priors.

3.2 Spatially Re-focused Cross-Attention (SRCA)

First, we ground the DAPE-extracted tags onto the image using Grounded SAM [33], assigning each
tag to a specific region. This step offers two key benefits: (1) tags that cannot be confidently grounded
are likely irrelevant and thus removed, avoiding the injection of erroneous signals into the super-
resolution process, addressing the aforementioned second limitation; (2) each grounded tag is now
accompanied by a segmentation mask, enabling our proposed Spatially Re-focused Cross-Attention
(SRCA) mechanism to mitigate semantic ambiguity and address the aforementioned first limitation.

With these text-mask pairs, SRCA refines the spatial precision of text conditioning, effectively
reducing semantic ambiguity in the super-resolved outputs. Specifically, instead of only relying on
the implicit cross-attention itself, we explicitly leverage each tag’s corresponding segmentation mask
to localize and re-focus the attention of text-conditioning, effectively suppressing attention outside
the designated target regions. This ensures that each text token attends exclusively to its intended
image regions, mitigating distractions from irrelevant areas. See Fig. [[|and [2] for visual analysis.

Formally, the cross-attention mechanism computes attention weights «;; for pixel ¢ and token j as:

Qi K;
i)

where ) and K are query and key embeddings, respectively, and d is the feature dimension. These
weights form a weighted sum of the token values V; to obtain O;, which is the output for pixel i:

0i =Y i Vj, )
J

ai; = SoftMax ( (1



In SRCA, we first apply a binary mask M;; (1 for valid regions) to refine the attention weights a;;:
SRCA

aij = MU Qg (3)
We then re-normalize these masked weights across both pixel and token dimensions:
aSRCA
~SRCA __ i
Qi = S, aSRCA” @)
,L‘/ ,j/ i/j/

This preserves proper attention distribution and ensures that zeroed-out entries do not distort the
attention map while preserving the normalization of valid tokens, ensuring they continue to sum to
one. As a result, this re-focusing operation suppresses contributions from irrelevant tokens, ensuring
that each pixel ¢ attends only to the relevant tokens while maintaining consistent overall attention
magnitudes. For example, for pixel 7, a relevant token V;,, would correspond to M;,,, = 1, resulting in
the attention weight unchanged afRSR = ;;. Conversely, for an irrelevant token V,,, the segmentation
mask would have M;,, =0, resullting in no attention is placed on such a token. Importantly, as Eq.
computes weighted average of all tokens, eliminating such irrelevant token also helps increase
the attentions to the relevant tokens. Consequently, SRCA produces more contextually aligned
super-resolution results, with enhanced focus on the key regions of the image.

3.3 Spatially Targeted CFG application (STCFG)

Although our proposed SRCA in Sec. [3.2]addresses the first two limitations, the third limitation of
insufficient tag coverage remains. Moreover, when our grounding mechanism is overly conservative
and discards tags that are partially relevant, coverage can be reduced further. Resolving this issue is
crucial for improving our overall performance. A recent work [40] proposed an interesting approach
to address this challenge by employing Mask2Former [3]], trained on ADE20K [70], to generate
semantic segmentation labels for each image region, which are then used as text conditions. However,
unlike DAPE, Mask2Former is not degradation-aware and often produces inaccurate labels when
applied to degraded LR images, failing to resolve the second limitation and ultimately resulting in
inferior performance. Furthermore, the model trained on ADE20K is limited to a fixed set of 150
categories, which restricts its expressiveness and precision in practice. Through additional ablation
studies (Tab. [2), we observe that using these additional segmentation tags in the prompt leads to
degraded performance. We also tested open-vocabulary segmentation methods, such as Prompt-Free
Anything Detection and Segmentation in DINO-X [34], and observed that while they outperformed
Mask2Former, their lack of degradation-awareness similarly led to inaccurate tags and inferior results
compared to using DAPE alone. These indicate that inaccuracies are more harmful than incomplete
coverage for text conditionings. More discussions are available in the ablation studies (Sec. [4.3).

Given the inherent difficulty and threshold sensitivity in balancing accuracy and coverage of tags
extracted from degraded LR images, we note that the coverage limitation affects only the ungrounded
regions. Instead of fine-tuning thresholds, can we explore an alternative that directly improves
ungrounded-region quality by design without risking incorrect prompts? Drawing from our insight
that erroneous tags are more detrimental than no tags, we argue that omitting guidance is preferable
to providing incorrect conditioning. In standard CFG, a text-conditional output ey (z;, y) is balanced
against an unconditional output €y (¢, ). The combined prediction € is typically computed as:

é<—€0(xtv¢)+s[€0(‘rt7y) _69((Et,¢)]7 (5)

where s > 1 is the guidance scale, indicating a positive weight is applied to the text-conditional
generation, while a non-positive weight is assigned to the unconditional generation. However,
uniformly applying CFG can degrade ungrounded regions because they only receive prompts from
semantic-free or summary global tokens (e.g., EOS, padding, punctuation), where summary tokens
like EOS can still carry semantics of the entire prompt and influence its restoration. To address this,
we construct an ungrounded mask M for each image by taking the complement of the union of all
grounded segmentation masks (i.e., M = 1 for ungrounded pixels and 0 for grounded pixels). We then
selectively apply CFG only to grounded pixels, while leaving the ungrounded pixels unconditional:

& + (1 - M) [60(%5,(?) +s(eo(ze,y) — 60(1715,(?))} + M eg(4, 9), (6)

where M; € {0,1} indicates whether pixel ¢ is ungrounded. This targeted approach ensures that
uncertain or irrelevant tags do not influence the restoration of ungrounded regions, while grounded
pixels still benefit from text conditioning, thereby preserving the visual fidelity.



Table 1: Quantitative comparison with state-of-the-art methods on both synthetic and real-world
baselines. ‘s’ denotes the number of diffusion reverse steps. Red = best, Blue = second-best.

Dataset Method Metric
PSNRT SSIMT LPIPS] DISTS] FID] NIQE] MUSIQT MANIQAT CLIPIQf
StableSR-s200 24770 0.7085 0.3018  0.2288  128.51 509122 65.78 0.6221 0.6178
DiffBIR-s50 24775  0.6567 0.3636 02312 128.99 5.5346 64.98 0.6246 0.6463
PASD-s20 2521 0.6798 0.3380  0.2260 124.29 5.4137 68.75 0.6487 0.6620
ResShift-s15 2631 0.7421 0.3460  0.2498 135.93  7.2635 58.43 0.5285 0.5444
RealSR SinSR-s1 2628 0.7347 0.3188  0.2353 131.93 6.2872 60.80 0.5385 0.6122
OSEDiff-s1 2443 0.7153 0.3173 02363 12597 6.3897 67.52 0.6168 0.6742
SeeSR-s50 25.18 0.7216  0.3009  0.2223 125.55 5.4081 69.77 0.6442 0.6612
SRSR-OSEDiIff-s1 | 2453 0.7206 0.3166 0.2378 132.55 6.6106 67.24 0.6137 0.6710
SRSR-SeeSR-s50 2640 0.7632 0.2718  0.2092 126.31 5.8627 62.88 0.5628 0.5409
StableSR-s200 2326 05726 0.3113 02048 2444 47581 65.92 0.6192 0.6771
DiffBIR-s50 23.64 05647 0.3524 02128  30.72  4.7042 65.81 0.6210 0.6704
PASD-s20 23.14 05505 0.3571 02207  29.20 4.3617 68.95 0.6483 0.6788
ResShift-s15 24.65 0.6181 0.3349 0.2213  36.11 6.8212 61.09 0.5454 0.6071
DIV2K-Val | SinSR-sl 2441 0.6018 0.3240 0.2066 3557 6.0159 62.82 0.5386 0.6471
OSEDiff-s1 2331 05970 0.3046 02129  26.80 5.4031 65.56 0.5857 0.6588
SeeSR-s50 23.68 0.6043 0.3194 0.1968 2590 4.8102 68.67 0.6240 0.6936
SRSR-OSEDiff-s1 | 2343  0.6023 03053 0.2142 27.65 5.5389 65.08 0.5797 0.6531
SRSR-SeeSR-s50 2472 0.6416 0.3275 0.1991 2531 5.4986 59.55 0.5402 0.5518
StableSR-s200 28.03 0.7536  0.3284  0.2269 148.98 6.5239 58.51 0.5601 0.6356
DiffBIR-s50 2671  0.6571 0.4557 02748 166.79 6.3124 61.07 0.5930 0.6395
PASD-s20 27.36  0.7073 03760  0.2531 156.13 5.5474 64.87 0.6169 0.6808
ResShift-s15 28.46  0.7673 0.4006 0.2656 172.26 8.1249 50.60 0.4586 0.5342
DrealSR SinSR-s1 2836 0.7515 0.3665  0.2685 170.57 6.9907 55.33 0.4884 0.6383
OSEDiff-s1 27.65 0.7743  0.3177  0.2366  141.96 7.3050 63.55 0.5758 0.7060
SeeSR-s50 28.17 0.7691 03189  0.2315 147.39 6.3967 64.93 0.6042 0.6804
SRSR-OSEDiIff-s1 | 27.72  0.7781 0.3178 0.2379 139.66 7.5271 63.62 0.5736 0.7010
SRSR-SeeSR-s50 29.50 0.8128 0.2866  0.2176  146.98 7.1279 54.04 0.4962 0.5513

Visually, as shown in Fig.[2] SRCA and STCFG play complementary roles. SRCA improves the
semantic fidelity of grounded objects by refining the cross-attention maps. In the top example, the
SeeSR baseline mistakenly restores part of the building (highlighted in red) as water-like due to
attention leakage from the ‘water’ token. SRCA re-focuses the attention of both ‘building’ and ‘water’
tokens to their correct regions, leading to the accurate restoration of the entire building. However,
SRCA falls short in suppressing the influence of global tokens on ungrounded regions (as visualized
by the ungrounded masks). To address this, STCFG applies unconditional guidance to those regions,
effectively preventing hallucinations and yielding more faithful restorations, as qualitatively observed.

4 Experimental results

4.1 Setup

Datasets. Unlike prior approaches [44, 25] 58|, 54} 153]] that require training, our proposed SRSR
operates purely at inference time and therefore only needs test datasets. Following the baselines, we
adopt the standard test set from StableSR [44], which includes both synthetic and real-world data. The
synthetic portion contains 3,000 images (512x512), whose ground truths (GT) are randomly cropped
from DIV2K-Val [1] and degraded via the Real-ESRGAN pipeline [46]]. The real-world portion
comprises LQ-HQ pairs from RealSR [2]] (128 x 128) and DRealSR [52] (512x512), respectively.

Baseline methods. SRSR is a plug-and-play module that integrates seamlessly into any cross-
attention-based SR approach utilizing text priors, offering performance gains without additional
training. To validate its effectiveness, we incorporate SRSR into two state-of-the-art methods: a
50-step method, SeeSR [54]], and a single-step method, OSEDiff [53]]. Users can select between
these baselines based on their preferred trade-off between efficiency and quality, since multi-step
approaches often yield better results at the expense of increased computation.

We further compare our SRSR-SeeSR and SRSR-OSEDiff variants against a range of strong baselines
under their standard configurations, including StableSR [44], DiffBIR [25]], PASD [58]], ResShift [60],
and SinSR [50]. Among these, ResShift trains a diffusion model from scratch in the pixel space,
while SinSR is a one-step distilled model derived from ResShift. The remaining methods operate in
latent space and build on top of the pre-trained SD model.

Evaluation metrics. In line with prior work, we evaluate using both full-reference and no-reference
metrics. For full-reference evaluation, we use PSNR and SSIM [51] as fidelity measures, and
LPIPS [66] and DISTS [7] to assess perceptual quality. FID [15] is also employed to gauge the
distributional distance between super-resolved and ground-truth high-resolution (HR) images. For no-
reference assessment, we adopt NIQE [64], MANIQA-pipal [57]], MUSIQ [20], and CLIPIQA [43]].
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Figure 4: Qualitative results show that the baseline method exhibits clear semantic hallucinations.
In contrast, plugging SRSR into the baseline leads to semantically faithful restorations. All full-
reference metrics, including both fidelity (PSNR and SSIM) and perceptual quality (LPIPS and
DISTS) measures, consistently validate the improvements brought by our method. However, it is
worth noting that the no-reference metrics tend to misjudge and heavily reward hallucinated results
due to their design, as indicated by the significant performance gap observed despite degraded
semantic realism. This exposes their limitations in assessing semantic fidelity for super-resolution.

Implementation details. We adopt DAPE [54]] as our prompt extractor, following its use in both
SeeSR and OSEDiff. DAPE excels at handling degraded LR images while being more efficient than
advanced multimodal vision-language models [26]]. Although we experimented with various semantic
segmentation models (e.g., Mask2Former [3] and Prompt-Free Anything Detection/Segmentation in
DINO-X [34]), they did not make it into our final SRSR design. For grounding, we employ Grounded
SAM 2, which is a combined framework built upon DINO-X and SAM 2.

Complexity analysis. Within our proposed SRSR framework, both SRCA and STCFG are applied
only during inference and modify the cross-attention and CFG processes dynamically without
introducing any new learnable parameters. Our approach uses the same pretrained diffusion model
and UNet architecture as the baseline, so the parameter count remains the same. Therefore, the
performance gains are achieved without increasing model complexity or adding new parameters.

Efficiency analysis. Our integration of Grounded SAM into the pipeline is highly efficient. First, it
requires only a single inference per image before the SR process to pre-compute the masks, using the
low-resolution (LR) input. The resulting masks are cached and reused during inference, avoiding
repeated computation. Second, since only the LR image (e.g., 128x128) is fed into Grounded SAM,
the processing time is minimal (just 0.12s per image) on V100, and even for 512x512 inputs, it
remains low at 0.16s, making our approach practical and scalable for real-world applications. This
pre-processing step also does not affect the parameter count or inference complexity.

4.2 Comparisons with state-of-the-art baselines

Tab. [T compares our methods against several state-of-the-art baselines. To highlight SRSR’s contri-
bution, note how it improves a given baseline: for instance, applying SRSR to SeeSR considerably
boosts full-reference fidelity measures PSNR and SSIM across all three datasets. It also enhances
the full-reference perceptual quality metrics LPIPS and DISTS on two real-world sets (RealSR and
DRealSR) while offering comparable performance on synthetic data (DIV2K-Val). No-reference
metrics, however, often favor strong semantic cues, even if they are inaccurate, where it is frequently
observed that hallucinated restorations have high performance in no-reference metrics, making
them less reliable. Examples can be observed from Fig. [f] We also evaluate SRSR on OSEDIff,



which differs from SeeSR in two key aspects: it is a one-step inference method (confirming SRSR’s
flexibility regarding inference steps) and does not employ classifier-free guidance (CFG) (making
STCFG inapplicable). In this setting, only the SRCA module is integrated. Despite this, we observe
consistent improvements in fidelity metrics (PSNR and SSIM) across all datasets, with only marginal
trade-offs in perceptual quality (LPIPS and DISTS), demonstrating SRCA'’s standalone effectiveness
in enhancing semantic accuracy. This observation is further supported by the comparison between
V2 and V3 in Tab. 2] which highlights the standalone effectiveness of SRCA without STCFG. The
slight drop in perceptual quality arises from ungrounded regions still receiving text-conditioning from
summary or meaningless tokens (e.g., EOS, punctuation), which STCFG is designed to address. This
indicates that while SRSR is broadly compatible with diverse frameworks, its full potential is best
realized when the underlying method supports CFG. Nonetheless, using SRCA alone is valuable in
common scenarios where semantic fidelity is prioritized over background perceptual quality. These
results highlight SRCA’s independent benefits and STCFG’s complementary role.

Beyond direct baselines, we have also compare with a range of strong competitors, where our methods
generally achieve the best performance on full-reference fidelity and perceptual metrics, falling short
of the top rank only in LPIPS and DISTS on DIV2K-Val, yet still securing second place in such cases.

4.3 Ablation studies

Grounding. As discussed in Sec.[3.2]and Sec. grounding increases tag accuracy by discarding
irrelevant text at the expense of reduced coverage when certain relevant tags are mistakenly removed.
This reflects an accuracy-completeness trade-off in tag extraction. Experimentally, we find that
accuracy typically outweighs completeness: providing fewer but more relevant tags produces better
results than including extra but less reliable ones. For instance, comparing V1 and V2 in Tab. 2] shows
that simply applying grounding (V2) to the SeeSR baseline yields small gains in three out of four
metrics. Moreover, V5 differs from our final V4 only by including ungrounded tags, which lowers
performance on all four metrics. Additionally, grounding’s effectiveness depends on its confidence
threshold, which balances strictness (accuracy) against coverage (completeness). We further explore
this trade-off in Sec. .4] Finally, it is also worth emphasizing that grounding does more than just
manage the accuracy-completeness trade-off: it also enables spatial re-focusing through SRCA,
whereby each grounded tag is paired with a segmentation mask to alleviate semantic ambiguity.

Spatially Re-focused Cross-Attention (SRCA). SRCA mitigates semantic ambiguities and enhances
output fidelity. When used alone without STCFG (V2 vs.V3), it improves fidelity at a slight cost to
perceptual quality. However, when combined with STCFG (V4 vs.V6), SRCA yields improvements
across all four metrics, underscoring its importance and complementary role within the full framework.

Spatially Targeted CFG application (STCFG). STCFG provides a direct mechanism for enhancing
ungrounded regions and significantly improves all four metrics, whether used alone (V2 vs.V6), in
combination with SRCA (V3 vs.V4), or in combination with both SRCA and different semantic
segmentation methods (V9 vs.V7 and V10 vs.V8), demonstrating its effectiveness and versatility.

DAPE vs. Semantic Segmentation. As mentioned in Sec.[3.3] a contemporary work uses semantic
segmentation (SS), specifically, Mask2Former [5] pre-trained on ADE20K, to extract semantic labels
with complete image coverage. Motivated by their interesting work, we also experimented with

Table 2: Ablation study evaluating the contribution of each component within SRSR. SRCA denotes
spatially re-focused cross-attention, and STCFG denotes spatially targeted classifier-free guidance.
Mask2Former and DINO-X represent different semantic segmentation backbones. Bold indicates the
best performance. Refer to Tab. @ for the extended ablation results with no-reference metrics.

Version PSNR{  SSIM{ LPIPS] DISTS]
V1: SeeSR 25.1717  0.7219  0.3008  0.2223
V2: SeeSR + Grounding 25.1751 0.7234  0.3001  0.2229
V3: SeeSR + Grounding + SRCA 25.2688 0.7280 0.3013  0.2254
V4: SeeSR + Grounding + SRCA + STCFG (Ours) 26.3996 0.7632 0.2718  0.2092
V5: SeeSR + Grounding + SRCA + STCFG + Ungrounded Tags | 26.3871 0.7625 0.2729  0.2095
V6: SeeSR + Grounding + STCFG 26.3986 0.7627  0.2735  0.2112
V7: SeeSR + Grounding + SRCA + STCFG + Mask2Former 26.3128 0.7620 0.2725  0.2093
V8: SeeSR + Grounding + SRCA + STCFG + DINO-X 26.3449 0.7627  0.2722  0.2089
VO: SeeSR + Grounding + SRCA + Mask2Former 26.2885 0.7609 0.2734  0.2098
V10: SeeSR + Grounding + SRCA + DINO-X 26.3221 0.7621 0.2729  0.2090




augmenting the well-performing DAPE tags using SS. However, as shown by comparing V4 and V7
in Tab. [2] performance declined, primarily because SS models, not trained with degradation in design,
often produce inaccurate labels. Moreover, Mask2Former recognizes only 150 categories, limiting
coverage for real-world SR tasks. This further reduce the semantic accuracy of the extracted texts.

To mitigate these constraints, we tried Prompt-Free Anything Detection and Segmentation in DINO-
X [34] (V8 in Tab. 2, which supports open-vocabulary SS. Although it outperforms Mask2Former
(V7), it still trails behind using only DAPE (V4). These results reaffirm that inaccurate tags prove
more detrimental than incomplete ones - an insight that also reinforces our grounding design.

4.4 Hyper-parameter analysis

The confidence threshold for grounding affects Table 3: Hyper-parameter analysis: different
the balance between tag accuracy and coverage. A grounding thresholds produce consistent results
higher threshold discards less certain tags to boost that outperform the SeeSR baseline on RealSR
accuracy, but also reduces coverage. As shown in dataset. Red = best, Blue = second-best.

Table [3| larger thresholds generally yield higher

Threshold | PSNRT SSIM{T LPIPS| DISTS|

PSNR and SSIM, whereas thresholds of 0.25-0.35 Baseline 251717 0.7219 0.3008 0.2223
achieve more favorable LPIPS and DISTS. Over- 0.15 26.3632  0.7625 02727  0.2093
all, SRSR remains robust against varying thresh- 025 26399 07632 02718 02092

. oo 0.35 264550 0.7644 02715  0.2099
olds: in all cases, it significantly outperforms the 0.45 265378 07657 02731 02112
baseline in all four metrics. We adopt a confidence 0.55 26.6008  0.7665  0.2735  0.2124

threshold of 0.25 for all reported comparisons.

5 Conclusion

We introduced a spatially re-focused super-resolution (SRSR) framework to improve the semantic
accuracy of text-conditioned, diffusion-based SR. By grounding and filtering extracted tags, we
remove irrelevant text prompts and pair each valid tag with a corresponding segmentation mask. This
enables spatially re-focused cross-attention (SRCA), which directs guidance to target regions, and
spatially targeted classifier-free guidance (STCFG), which preserves visual fidelity in ungrounded
areas. Our approach operates entirely at inference time and can be applied to any cross-attention-
based SR model that leverages text priors. Experiments on both synthetic and real-world datasets
show that SRSR outperforms seven state-of-the-art methods in fidelity and perceptual quality metrics.

6 Limitations and future works

While SRSR achieves strong gains in both fidelity and semantic accuracy, several limitations and
future directions remain. First, further exploration of robust, degradation-aware segmentation
models could reduce incomplete tag coverage and enhance tagging accuracy. Indeed, our ablation
studies that compare Mask2Former with DINO-X suggest that stronger semantic segmentation
(SS) backbones improve SRSR’s performance, indicating that future innovations in SS can further
enhance our method. Second, SRSR is currently designed as an inference-time framework to
ensure plug-and-play compatibility with various pre-trained super-resolution models. Although
this design enables broad applicability without retraining, incorporating SRSR into the training
or fine-tuning process represents an exciting future direction. Doing so would allow the model to
internalize the spatial and semantic constraints imposed by SRSR, potentially improving region-
specific supervision and semantic localization. However, this integration would come at the cost of
additional training complexity and resource demands. Third, SRSR’s modular nature allows flexible
integration with other Real-ISR frameworks. In this work, we demonstrated its generality through
consistent improvements when applied to SeeSR [54]] and OSEDiff [53]. Future research could
further validate this generality by extending SRSR to broader architectures such as AddSR [56]
and TSD-SR [10]]. Finally, existing no-reference quality metrics remain unreliable, as they often
over-reward artifact-heavy or hallucinated outputs (see Fig. ] and Figures [STHSTI). Hence, we
emphasize full-reference fidelity and perceptual quality metrics as more trustworthy indicators of
restoration faithfulness, which is critical in practical scenarios (e.g., e-commerce product imaging)
where visual accuracy directly impacts trust and usability. Nevertheless, when high-quality references
are unavailable, the dependence on current no-reference metrics becomes problematic. Developing
hallucination-aware no-reference metrics that better align with full-reference measures and human
perception is an urgent research need. Promising directions include leveraging vision-language
models for perceptual assessment and incorporating penalties for semantic hallucinations.
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* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations and future works are provided as a deliberate section in the
paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper falls into computer vision applications and is not a theoretical paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Key methodological details are presented in the methodology section, with
additional implementation details, efficiency analysis, and complexity evaluation provided in
the experimental results section, ensuring the reproducibility of both the proposed approach
and its results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in our work are publicly available and widely adopted bench-
marks in the field. We have thoroughly detailed the dataset specifications and experimental
setup in the experimental results section to ensure faithful reproduction of our main findings.
The code will be released.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive details, including but not limited to the
datasets, hyperparameters, and evaluation metrics used. All experimental settings and
implementation specifics are described in the experimental results section.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our comparisons are conducted under controlled and consistent experimental
settings without randomness in data sampling or splitting. As a result, the evaluation is
deterministic and reproducible, and error bars are not applicable in this context. However,

18


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

we report results across multiple datasets and conduct comprehensive ablation studies and
hyperparameter analysis to support the robustness of our findings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The complexity and efficiency analysis are provided as separate sections in the
experimental results section, specifying the resources required.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The boarder impacts are addressed in the Supplementary Material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All properly cited and credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

Outline of supplementary material. This supplementary material provides additional results,
analyses, and discussions to support the main paper. It is structured as follows:

In Section[A] we present extensive qualitative comparisons and visual analyses by comparing
the baseline results and cross-attention maps before and after integrating our proposed SRSR
framework. These examples demonstrate the effectiveness and internal mechanisms of the
SRCA and STCFG components within the SRSR framework (Figures [SIHSTI).

Section [B|extends this analysis to an ablation variant that uses semantic segmentation masks
for prompt extraction. This supplements the quantitative ablation study results in Section
4.3 of the main paper and supports the claim in Section 3.3 that semantic segmentation
has two key limitations (lack of degradation awareness and constrained vocabulary size),
which lead to inferior results compared to our approach based on DAPE and Grounded SAM

(Figures ST25T3).
In Section|[C] we provide additional qualitative comparisons paired with quantitative metrics
to highlight a key observation: no-reference metrics often misjudge and favor hallucinated
outputs (Figures[ST6HST7).

Section[D]presents an additional user study evaluating human perceptual preferences between

the baseline results and those produced after integrating SRSR (Figure [ST8). The study
shows that human annotators consistently prefer our SRSR-enhanced outputs.

Section [E] supplements the ablation results in Tab[2] with no-reference metrics (Tab. [ST),
further showing that while full-reference fidelity and perceptual metrics align with visual
quality improvements, existing no-reference metrics often produce misleading trends and
over-reward artifact-heavy outputs.

Finally, Section [F] provides a clarification on potential societal impacts.

All figure references include detailed captions to support discussion and analysis of the corresponding

findings.

A Additional qualitative comparisons and visual analysis

As a plug-and-play module, the effectiveness of SRSR is most clearly demonstrated by comparing the
performance of the same baseline before and after integration. In this section, we present additional
qualitative comparisons and visual analyses (Figures[SIHSTT) to support the following key takeaways:

1.

Enhanced semantic fidelity. We provide qualitative comparisons that highlight the ability
of SRSR to improve semantic fidelity by removing hallucinations. While baseline results
may appear visually appealing, they often contain hallucinated objects or textures that
are semantically inconsistent with the ground-truth high-resolution image. In contrast, our
method produces restorations that better align with the true image content.

. Limitations of no-reference metrics. Alongside visual results, we include corresponding

quantitative comparisons. We emphasize that no-reference metrics, which lack access to
the ground-truth high-resolution image, tend to misjudge and often reward hallucinated
outputs. This is evident in the performance drop of these metrics when hallucinations are
removed. Conversely, full-reference metrics (PSNR and SSIM for fidelity, and LPIPS and
DISTS for perceptual quality) provide a more reliable assessment of semantic and visual
accuracy. SRSR demonstrates superior performance in these full-reference evaluations.

. Visual analysis of SRCA and STCFG effects. To further illustrate the mechanisms of our

proposed components, we include auxiliary visualizations such as the re-focused versus
original cross-attention maps or the ungrounded region masks. These demonstrate how
SRCA enhances text-token alignment with relevant regions and how STCFG effectively
suppresses text influence in ungrounded areas to prevent hallucinations.

All figures presented in this section are accompanied by detailed captions to support discussion and
analysis of the corresponding findings.
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B Comparing prompt extraction methods: DAPE vs. Semantic Segmentation

As discussed in Section 3.3 of the main paper, we also experimented with using semantic segmentation
to extract grounded tag-region pairs, and compared its performance with our final method that
employs DAPE and Grounded SAM for the same goal. We observed two key limitations when using
semantic segmentation compared to DAPE: First, unlike DAPE, which is trained to be degradation-
aware when extracting tags from low-quality LR images, standard semantic segmentation models lack
this capability and tend to extract incorrect tags more frequently, leading to restoring hallucinated
contents that are not faithful to the ground-truth HR image. Second, Semantic segmentation models
often have a limited vocabulary size, which restricts their expressiveness and precision in practice.
This leads to the extraction of coarse prompts that result in imprecise or incorrect restorations. These
issues result in inferior performance compared to our final approach, which uses DAPE for prompt
extraction followed by Grounded SAM for visual grounding.

As reported in Section 4.3 of the main paper, we already presented ablation studies with quantitative
comparisons. In this section, we supplement those results with additional qualitative comparisons
and analysis. Specifically, the figures correspond to supporting the following key takeaways:

1. Semantic segmentation models lack degradation awareness. Figures highlight
that this limitation causes incorrect prompts to be confidently extracted, which then misguide
the restoration process and lead to semantically incorrect outputs.

2. Semantic segmentation models have constrained vocabulary size. Figures [S14
illustrate that this limitation reduces the expressiveness and precision of prompt extraction.
As a result, using only coarsely related prompts to guide the restoration process leads to
suboptimal outcomes.

3. Limitations of no-reference metrics. Same as in Section[A] all figures in this section (Fig-
ures further demonstrate the drawbacks of no-reference metrics: they frequently
misjudge and favor outputs that contain hallucinations resulting from incorrect text condi-
tioning, demonstrating their limitations in assessing semantic fidelity for super-resolution.

All figures presented in this section are also accompanied by detailed captions to support discussion
and analysis of the corresponding findings.

C More qualitative comparisons illustrating no-reference metrics’ limitations

The previous two sections have already highlighted the limitations of no-reference metrics by com-
paring our method against both the baseline and an ablation variant that uses semantic segmentation
masks for prompt extraction. In this section (Figures[ST6HS17)), we provide additional visual com-
parisons (paired with corresponding quantitative metrics) between our method and other baseline
approaches to further underscore the shortcomings of no-reference metrics.

D Additional user study results

We have also conducted a user study to evaluate human perceptual preferences between the baseline
results before and after integrating our SRSR framework. Given the size of the synthetic DIV2K
dataset, we focus the study on two real-world datasets: RealSR and DRealSR, using their entire
datasets. For each image, we presented the low-resolution input along with two anonymized high-
resolution outputs (ours: SRSR-SeeSR and the baseline: SeeSR) labeled ‘Method A’ and ‘Method B’.
Two annotators were asked to select the preferred image or indicate if both appeared visually similar,
with evaluations based on sharpness, visual realism, and detail preservation. The order of presentation
was randomized, and full images were shown (not crops) to avoid bias. Results are aggregated and
visualized in bar charts (Figure [ST8)), showing that SRSR-SeeSR is consistently preferred over the
baseline SeeSR across both datasets.
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Table S1: Ablation study evaluating the contribution of each component within SRSR. SRCA denotes
spatially re-focused cross-attention, STCFG denotes spatially targeted classifier-free guidance, and G
refers to grounding. Mask2Former and DINO-X represent different semantic segmentation backbones.
Bold indicates the best performance.

Version PSNRT SSIMT LPIPS| DISTS] FID] NIQE] MUSIQ] MANIQAT CLIPIQAT
VT: SeeSR 251717 07219 03008 02223 12555 5.4081  69.77 0.6442 0.6612
V2: SeeSR + G 251751 07234 03001 02229 12841 54852  69.84 0.6436 0.6701
V3: SeeSR + G + SRCA 252688 07280 03013 02254 13255 55029  69.91 0.6422 0.6683
V4: SeeSR + G + SRCA + STCFG (Ours) 263996 0.7632 0.2718 02092 12631 58627  62.88 0.5628 0.5409
V5: V4 + Ungrounded Tags 263871 07625 02729 02095 12628 58657  63.15 0.5665 0.5460
V6: SeeSR + G + STCFG 263986 07627 02735 02112 12724 58047  62.99 0.5648 0.5456
V7: SeeSR + G + SRCA + STCFG + Mask2Former | 263128 07620 02725 02093 127.51 58026  63.31 0.5689 0.5477
V8: SeeSR + G + SRCA + STCFG + DINO-X 263449 07627 02722 02089 127.77 58196  63.17 0.5670 0.5450
V9: SeeSR + G + SRCA + Mask2Former 262885 07609 02734 02098 127.19 57801  63.73 0.5728 0.5543
V10: SeeSR + G + SRCA + DINO-X 263221 07621 02729 02090 12733 57927  63.58 0.5713 0.5520

E Extended ablation results

To further strengthen our point that the existing no-reference metrics are flawed that they tend to
over-reward artifact-heavy or hallucinated outputs, in Tab.[ST] we supplement the no-reference metrics
to the ablation results in Tab.

Tab. [ST] highlights a consistent trend: improvements in full-reference fidelity metrics (PSNR, SSIM)
and perceptual quality metrics (LPIPS, DISTS) align with observed improvements in visual and
semantic fidelity, as supported by our qualitative analysis (e.g., Fig.[d|and Figures [STHSTT). However,
the same changes often lead to worse results in all no-reference metrics (NIQE, MUSIQ, MANIQA,
CLIPIQA), which can misleadingly favor outputs with hallucinated or artifact-heavy details. For
example, removing STCFG (V3) from our full version (V4) improves all no-reference metrics, even
though fidelity, full-reference perceptual quality, and visual quality drop. Similarly, removing SRCA
(V6) worsens both fidelity and full-reference perceptual quality, yet again, no-reference metrics do not
consistently reflect this decline. This pattern also holds when comparing DINO-X to Mask2Former
(V8/V7, V10/V9): fidelity, full-reference perceptual quality metrics, and visual quality are better with
DINO-X, which aligns with the inherent advantages of DINO-X over Mask2Former, as we elaborated
in Sec. @ However, no-reference metrics show the reverse trend. These findings reinforce our
point that current no-reference metrics often fail to penalize hallucinations and can mislead practical
evaluation, especially in Real-ISR.

F Clarification on potential negative societal impact

Our work focuses on enhancing the visual quality of low-resolution images through super-resolution
techniques with improved semantic fidelity. It is primarily intended for applications in image
restoration, photography, and scientific imaging, where enhancing degraded real-world content is
valuable. Our method does not involve any user or personally identifiable information, and our
evaluation is conducted on public, non-sensitive datasets. Therefore, we believe our work does
not pose significant societal risks. On the contrary, it may benefit the aforementioned intended
applications where detail-preserving enhancement is crucial.
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SeeSR result w/ hallucinations ‘animal’ ‘stone’
\ d Full-reference X A X
PSNR: 20.04
SSIM: 0.4470
LPIPS: 0.3860
DISTS: 0.2866

No-reference
NIQE: 3.02
MUSIQ: 75.19
MANIQA: 0.6647
CLIPIQA: 0.8522

Ours result w/o hallucinations ‘animal’ ‘stone’

Full-reference
PSNR: 24.23

SSIM: 0.5519
LPIPS: 0.3456
DISTS: 0.2032

No-reference
NIQE: 4.89
MUSIQ: 41.47
L ’ o MANIQA: 0.4509
b, i 2 '8 N | CLIPIQA: 0.3537

Figure S1: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns 4-5:
Attention visualizations for selected tokens to illustrate the effect of SRSR. In the region highlighted
by the red bounding box, the object is actually an animal’s claw, but it is difficult to recognize in the
degraded LR image. Consequently, the prompt extractor (DAPE) fails to extract relevant tags such as
‘claw’. As a result, the baseline model attributes this region to the token ‘animal’ according to the
cross-attention map, and hallucinates it as a vivid fish. Similarly, in the yellow bounding box, the
region corresponds to the animal’s fur, but is misinterpreted due to degradation. The baseline instead
applies influence from the unrelated tag ‘stone’, resulting in a texture resembling small pebbles.
Beyond these highlighted objects, the baseline also introduces other over-synthesized textures in the
‘animal’ and ‘stone’ regions that deviate from the ground-truth HR image, despite being visually
plausible. In contrast, our SRSR framework assigns tags only to regions where grounding confidence
is high (e.g., ‘animal’, ‘stone’), leaving uncertain regions, such as the red region, ungrounded. Within
the SRSR framework, SRCA ensures that grounded regions are not influenced by irrelevant tokens,
thereby removing hallucinations from the ‘animal’ and ‘stone’ areas. Additionally, STCFG applies
unconditional predictions to ungrounded regions like the animal’s claw, suppressing inappropriate
text influence while preserving perceptual quality.

Ground-truth HR image SeeSR result w/ hallucinations ‘camouflage’

Full-reference

PSNR: 30.22
SSIM: 0.8720
LPIPS: 0.1991
DISTS: 0.1519

No-reference
NIQE: 4.35
MUSIQ: 57.74
MANIQA: 0.5277
| CLIPIQA: 0.5306

‘camouflage’ ‘soldier’

Full-reference
PSNR: 33.40
SSIM: 0.9252
LPIPS: 0.1457
DISTS: 0.1290

No-reference
NIQE: 5.20
MUSIQ: 53.18
MANIQA: 0.4032
CLIPIQA: 0.4484

Figure S2: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns
4-5: Attention visualizations for selected tokens to illustrate the effect of SRSR. In the highlighted
region, the baseline hallucinates gun-like objects due to incorrect tags like ‘gun’ and ‘rifle’ extracted
by DAPE, which misattribute attention to parts of the ‘camouflage’ object. In contrast, our SRSR
framework removes such irrelevant tags via grounding and re-focuses attention on salient concepts
like ‘camouflage’ and ‘soldier’, resulting in semantically faithful restorations.
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Figure S3: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns 4-5:
Ungrounded region mask and attention visualizations for selected tokens to illustrate the effect of
SRSR. In the highlighted region, the baseline hallucinates nose hairs on the face due to incorrect tags
like ‘nose’ and ‘mouth’ extracted by DAPE, which misattribute attention to parts of the ‘face’ object.
In contrast, our SRSR framework removes such irrelevant tags via grounding and re-focuses attention
on salient concepts like ‘face’, resulting in semantically faithful restorations.
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Figure S4: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns
4-5: Ungrounded region mask and attention visualizations for selected tokens to illustrate the effect
of SRSR. In the highlighted region, the baseline produces sweater textures that deviate from the
ground-truth HR image, influenced by unrelated tags such as ‘hair’ and incorrect tags like ‘stand’, as
indicated by the cross-attention maps. In contrast, our SRSR framework employs SRCA to eliminate
irrelevant tag influence and localize text conditioning strictly to grounded regions, associating the
sweater region only with the tag ‘sweater’, thereby ensuring more faithful and semantically accurate
restorations.
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Figure S5: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns 4-5:
Ungrounded region mask and attention visualizations for selected tokens to illustrate the effect of
SRSR. In the baseline, the inherent cross-attention for the token ‘animal’ is broadly dispersed across
the image, including the highlighted region corresponding to the stone object, leading to hallucinated
animal-like features in that area (note the stone is mistakenly restored with fur-like textures). Our
SRSR framework addresses this by first applying SRCA to constrain the token ‘animal’ to its grounded
region, correcting misaligned attention. However, ungrounded regions remain susceptible to influence
from global tokens such as EOS, padding, and punctuation, which can introduce noise and semantic
summary of the entire prompt. To address this, we introduce STCFG to explicitly avoid applying text
conditioning to ungrounded regions, resulting in more semantically faithful restorations.
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Figure S6: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns 4-5:
Ungrounded region mask and attention visualizations for selected tokens to illustrate the effect of
SRSR. The highlighted region is heavily degraded and should depict stone and weed in the ground-
truth HR image. However, the baseline incorrectly restores it as a cat’s face with whiskers, which is
visually plausible but semantically inaccurate. The baseline’s cross-attention maps reveal that the
punctuation token °, ° and the irrelevant token ‘lay’ attend to this region. These lack meaningful
semantics or relevance to the scene, resulting in hallucinated content during restoration. By contrast,
our SRSR framework applies SRCA to constrain the influence of tokens like ‘lay’ to their grounded
regions and uses STCFG to apply unconditional generation in ungrounded areas (as identified by the
ungrounded mask), effectively suppressing hallucinations and improving semantic fidelity.
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Figure S7: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns 4-5:
Ungrounded region mask and attention visualizations for selected tokens to illustrate the effect of
SRSR. The key objects in this example are two stacks of plates, each placed on a supporting base.
While DAPE successfully extracts the semantically related tag ‘stool’ for the base structures, it fails
to recognize the plates due to severe degradation in the LR image. In the baseline, the cross-attention
for the tag ‘stool’ is diffusely distributed across irrelevant regions, and additional tags such as ‘table’
and ‘stool’ incorrectly attend to the plate areas. This misattribution results in visible artifacts in
the restored plates and suboptimal reconstruction of the base. In contrast, our SRSR framework
leverages SRCA to re-focus attention on correctly grounded regions (e.g., the base) and uses STCFG
to suppress text-based influence in ungrounded regions (e.g., the plates), yielding more accurate and
faithful restorations.
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Figure S8: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns 4-5:
Attention visualizations for selected tokens to illustrate the effect of SRSR. In the highlighted water
regions, the baseline introduces unnatural patterns, influenced by the irrelevant token ‘stone’ and the
misdirected attention of the relevant token ‘water’ to incorrect spatial areas. By contrast, our SRSR
framework leverages SRCA to re-focus each token’s influence within its grounded spatial region,
producing semantically more faithful and visually accurate restorations.
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Figure S9: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline with
and without our proposed SRSR. Column 3: Corresponding quantitative metrics. In this example,
DAPE fails to extract any meaningful tags, leaving only global tokens (e.g., SOS, EOS, punctuation)
to drive text conditioning. The baseline forces the application of text guidance even in such cases,
causing the model to hallucinate textures despite the prompt carrying no semantic value. In contrast,
our SRSR framework uses STCFG to disable text conditioning in ungrounded regions (here, the
entire image), applying only unconditional prediction during denoising. This suppresses hallucinated
details and improves alignment with the ground-truth HR image.
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Figure S10: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. In this example,
DAPE fails to extract any meaningful tags, leaving only global tokens (e.g., SOS, EOS, punctuation)
to drive text conditioning. The baseline forces the application of text guidance even in such cases,
causing the model to hallucinate textures despite the prompt carrying no semantic value. In contrast,
our SRSR framework uses STCFG to disable text conditioning in ungrounded regions (here, the
entire image), applying only unconditional prediction during denoising. This suppresses hallucinated
details and improves alignment with the ground-truth HR image.
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Figure S11: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of the baseline
with and without our proposed SRSR. Column 3: Corresponding quantitative metrics. Columns
4-5: Ungrounded region mask and attention visualizations for selected tokens to illustrate the effect
of SRSR. In the baseline, the inherent cross-attention maps show that only the punctuation token
¢, attends to the highlighted region. However, this token carries no meaningful semantics, and its
influence during the generation process introduces noise and hallucinated details that deviate from the
ground-truth HR image. In contrast, our SRSR framework leverages STCFG to apply unconditional
generation specifically to regions that cannot be confidently grounded (i.e., those indicated by the
ungrounded mask), effectively removing such hallucinations and improving semantic fidelity.
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Figure S12: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of our results
using semantic segmentation versus DAPE + Grounded SAM for prompt extraction and grounding.
Column 3: Corresponding quantitative metrics. Columns 4-5: Grounded masks for selected tokens,
where white indicates grounded regions. Unlike DAPE, which is trained to be degradation-aware
when extracting tags from low-quality LR images, standard semantic segmentation models lack
this capability and tend to extract incorrect tags more frequently. In the highlighted region, the
semantic segmentation model confidently grounds the tag ‘earth, ground’, leading to a ground-like
restoration that is inconsistent with the true content (trees) seen in the HR image. In contrast, DAPE
is more degradation-aware, thus fails to confidently ground any tag for this region due to the severe
degradation, triggering our STCFG mechanism to apply unconditional generation. This results in
more faithful tree-like restoration and effectively prevents the introduction of semantically incorrect
content.
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Figure S13: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of our results
using semantic segmentation versus DAPE + Grounded SAM for prompt extraction and grounding.
Column 3: Corresponding quantitative metrics. Columns 4-5: Grounded masks for selected tokens,
where white indicates grounded regions. Unlike DAPE, which is trained to be degradation-aware
when extracting tags from low-quality LR images, standard semantic segmentation models lack
this capability and tend to extract incorrect tags more frequently. In the highlighted region, the
semantic segmentation model grounds tags such as ‘tray’ and ‘sink’, which leads to hallucinated
content — misrepresenting both the plates and the base beneath them. In contrast, DAPE extracts
the tag ‘stool’, which more appropriately describes the supporting base. For the severely degraded
plate regions, DAPE does not assign any confident tag, triggering our STCFG mechanism to apply
unconditional generation. This helps produce more semantically accurate restorations and avoids

introducing misleading visual artifacts.
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Figure S14: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of our results
using semantic segmentation versus DAPE + Grounded SAM for prompt extraction and grounding.
Column 3: Corresponding quantitative metrics. Columns 4-5: Grounded masks for selected tokens,
where white indicates grounded regions. Due to the limited vocabulary of semantic segmentation
models, the extracted prompt (‘person’) is a coarse descriptor and leads to imprecise restorations
of the sweater’s textures. In contrast, our method leverages DAPE with a broader vocabulary and
grounds the more appropriate tag ‘sweater’ via Grounded SAM, resulting in semantically faithful

restorations.
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Figure S15: Column 1: Paired LR-HR images. Column 2: Qualitative comparisons of our results
using semantic segmentation versus DAPE + Grounded SAM for prompt extraction and grounding.
Column 3: Corresponding quantitative metrics. Columns 4: Grounded masks for selected tokens,
where white indicates grounded regions. Both approaches ground the entire image with a single
tag, as reflected by the fully white masks. However, due to the limited vocabulary of semantic
segmentation models, the extracted prompt (‘mountain, mount’) is a coarse descriptor and leads to
mountain-like hallucinations. In contrast, our method leverages DAPE with a broader vocabulary and

grounds the more appropriate tag ‘rock face’ via Grounded SAM, resulting in semantically faithful
restorations.
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Figure S16: Additional qualitative results paired with quantitative metrics reveal that no-reference
metrics tend to misjudge and heavily reward hallucinated results. This exposes their limitations in
assessing semantic fidelity in super-resolution tasks.
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Figure S17: Additional qualitative results paired with quantitative metrics reveal that no-reference
metrics tend to misjudge and heavily reward hallucinated results. This exposes their limitations in
assessing semantic fidelity in super-resolution tasks.
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Figure S18: User study results evaluating human perceptual preferences between the baseline results
and those produced after integrating SRSR. The study shows that human annotators consistently
prefer our SRSR-enhanced outputs.
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