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Abstract

The learning process of a reinforcement learning (RL) agent remains poorly under-
stood beyond the mathematical formulation of its learning algorithm. To address
this gap, we introduce attention-oriented metrics (ATOMs) to investigate the de-
velopment of an RL agent’s attention during training. In a controlled experiment,
we tested ATOMs on three variations of a Pong game, each designed to teach the
agent distinct behaviours, complemented by a behavioural assessment. ATOMs
successfully delineate the attention patterns of an agent trained on each game vari-
ation, and that these differences in attention patterns translate into differences in
the agent’s behaviour. Through continuous monitoring of ATOMs during training,
we observed that the agent’s attention developed in phases, and that these phases
were consistent across game variations. Overall, we believe that ATOM could
help improve our understanding of the learning processes of RL agents and better
understand the relationship between attention and learning.

1 Introduction

Understanding the learning process of a deep Reinforcement Learning (RL) agent is critical to
improve its transparency and performance. Yet, the information available during the learning phase of
an agent is limited, typically reduced to its performance score. This calls for new metrics to provide
insight into how and what an agent learns during training.

Currently, the primary indicator of an agent’s learning progress is its performance score derived from
task-specific rewards. While necessary to optimize an agent [1, 2, 7], this performance score provides
a very limited view of an agent’s development during learning and fails to explain or predict certain
behaviours in the testing phase [4, 5]. In this context, explainable AI (XAI) methods can complement
the performance score by providing an insight into an agent understanding of its environment and
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task through the explanation of its decisions [6, 7]. However, the explanation format of these methods
- which may be a decision tree [8], a structural causal model [9], or a set of linguistic rules [10] -
is often too complex to be tracked during learning. Nevertheless, some studies based on saliency
maps [11, 12, 13, 14] have examined changes in an agent’s attention during training. For instance,
[15] visualized saliency maps of agents trained on Atari games at various stages during training and
[16] compared the saliency maps of RL agents and humans playing Atari games during learning.
However, these analyses were qualitative and human-driven, resulting in a very sparse source of
information during training (fewer than a dozen data samples over the whole training phase). The
most closely related work to our study is [2] which examined the emergence of a DQN agent’s
strategy to target the tunnel in Breakout by saving the network’s state at various point during training.
However, this approach requires waiting until the end of the training to get information about the
agent’s attention and is memory intensive. Lastly, the need for rigorous scientific methods based on
the verification of hypotheses through controlled experiments has grown in the field of explainable
reinforcement learning. This was emphasized by [18] who used perturbation experiments to test
common hypotheses about an agent’s strategy when playing ATARI games. Therefore we believe
that the new metrics proposed to understand the learning of a RL agents should be accompanied by
an appropriate experimental framework and controllable setting.

In this work, we introduce attention-oriented metrics (ATOMs) to gain insight into an agent’s learning
process through the development of its attention. ATOMs are derived from saliency maps and
quantify an agent’s attention on the objects within its environment. Specifically, ATOMs encompass
two levels of description: the hierarchical-attention (ranked attention on individual objects) and
the combinatorial-attention (attention on combinations of such objects). To systematically evaluate
ATOMs’ ability to give information about what an RL agent has learnt, we created three variations of
a Pong game. Each variation required the agent to learn a distinct behaviour. In addition to these
games, we designed a behavioural experiment to test if the agent’s attention described by ATOMs
translated into their observed behaviour [18].

2 Method

Experimental setup Data were recorded in actor-critic agents (A2C; [2, 19]) from the Stable
Baseline 3 repository [6]. We study the actor network of each agent, responsible for the choice of
action. This network is composed of three convolutional layers followed by a linear layer that we will
refer to as Fc and a final output layer. Throughout the remainder of this paper, we will use the terms
’agent’ and ’actor network’ synonymously. ATOMs were computed from the neurons in the linear
layer (Fc). This layer is located just before the output layer and encompasses the final world-model
on which the agent choose its action. Details regarding agent training protocols are provided in
appendix B

Attention-Oriented Metrics (ATOMs) Here we characterise the Pong game by its constituent
objects: the paddles of the agent and its opponent, their respective displayed score, the ball(s) (B1
for v0, B1 and B2 for v1 and v2) and the walls. Figure 1 a illustrates the process to extract these
two metrics. Both metrics that compose ATOMs are derived from the attention of neurons in the
Fc layer that are relevant to an action. Specifically, this attention is measured by computing the
Layer-Wise Relevance Propagation (LRP; [1, 2]). To generate input images xxx (consisting of pixels
p) used for the LRP analysis, we let an agent play the game for ten episodes. Subsequently, we
filtered the input to ensure that all objects are present and do not overlap. We then sampled a total of
150 frames and automatically labelled the objects within each frame. Let XXX ∈ R150×4×84×84 and
X̄̄X̄X ∈ R150×4×84×84 be the original and the labelled versions of the input set, respectively. We focus
on the attention of neurons that influence action choices, identifying relevant neurons in the Fc layer
using LRP. For each input, xxx ∈XXX we first calculate the relevance scores RFc = {Ri}i∈Fc and select
neurons S ⊆ Fc that account for 90% of the total relevance RFc . This filtering step is used to avoid
noise components and decrease ATOMs computational time. We then generate relevance maps at
the model input RRRk(xxx) = {Rk

p(xxx)} for each neuron k ∈ S. Details regarding the derivation of the
relevance scores are provided in appendix A.
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Figure 1: a ATOMs pipeline. b Variations of the Pong game. Red balls yield reward to the agent, the
gray ball is a distractor. The balls’ dynamics are illustrated with lines indicating if a ball bounces
back from the opponent or passes through it. c Dual Ball Discrimination Test, which forces the agent
to choose between B1 or B2.

Hierarchical-attention For a given object og ∈ O, the hierarchical-attention metric h : O → R is
defined as follows: h(og) = 1

|XXX|
∑

xxx∈XXX
∑

k∈S Rk(xxx) · R̄k
g (xxx) with R̄k

g (xxx) =
1
V

∑
p∈Pog

Rk
p(xxx) and

V = |Rk
pg
(xxx) \ {0}| and pg denotes all pixels p ∈ og .

Combinatorial-attention For a subset of objects T ⊆ O, the combinatorial-attention metric
c : O → R is defined as follows: c(T ) = 1

|XXX|
∑

xxx∈XXX
∑

k∈S Rk(xxx) · δk(xxx;T ) with δk(xxx;T ) =
1 if R̄k

g (xxx) > β for all g ∈ T

and R̄k
g (xxx) = 0 for all g ∈ O \ T,

0 else.

where β = α ·Mk with α = 0.25 and Mk = maxg({R̄k
g (xxx)}g).

Designing Pong variations We implemented three different variations of the Pong game (see
Figure 1 b): v0, v1, and v2. While v0 maintains traditional gameplay, a second ball B2) is introduced
in v1 as a distraction (it does not bring reward). In v2, both B1 and B2 bring points, but B2 only
interacts with the agent’s paddle, awarding +1 for a rebound and -1 if it passes the paddle.Details
about the game implementation and the rules can be found in appendix C.

Dual Ball Discrimination Test A major difference between the three variations of the game is the
importance of ball B1 and ball B2. As the latter only yield rewards in v2 we expect the behaviour
of the agents toward B2 to change between games. To quantitatively assess agent behaviour, we
implemented the Dual Ball Discrimination Test, where the agent is placed in a situation that forces
a choice between both balls. This experiment involved generating 100 unique trajectories from
various initial positions and velocities, designed such that both balls reach the agent’s x-coordinate
simultaneously while maintaining a separation exceeding the length of the paddle. Consequently, the
agent can interact with only one ball, and we can analyse any systematic preference for B1 or B2. An
illustration of the test is shown in Figure 1 c.

3 Results

Evaluation of ATOMs We evaluated ATOMs on 50 fully trained agents for each game variation to
test ATOMs ability to provide relevant information on the agent’s behavior.

Different game variations induce game-specific attention pattern. The hierarchical-attention
(Figure 2 a) shows that trained agents attended to the expected aspects of the game: agents trained
on v0 and v1 paid more attention to the only ball bringing a reward B1 while agents trained on
v2 showed a slight preference for the ball B2. The combinatorial-attention (Figure 2 c) shows a
consistent common pattern across game variations with attention to either the ball(s) alone or to a
combination of ball(s) and the agent’s paddle or ball(s) and the opponent’s paddle. Figures 2 b, d
show that successfully trained agents developed similar attention patterns.

Attention patterns are consistent with agents’ behaviour. As shown in Figure 2 a, ATOMs
indicate that agents trained on v1 still paid attention to B2 suggesting that these agents had not
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Figure 2: a Hierarchical-metric averaged over all agents. b Dissimilarity matrix for the hierarchy-
attention metrics for all agents.c Combinatorial-attention metric which examines co-observation of
objects. Each object is symbolized by a distinct coloured dot. Combinations of objects are indicated
through the simultaneous colouring of mutliple dots. d Dissimilarity matrix for the combinatorial-
attention metrics for all agents. e Relative interaction of the agent with B1 with respect to B2 in
function of the relative hierarchy of B1 with respect to B2. v0 was added as a reference.

learned to ignore the ball completely. We therefore assessed whether increased attention to one ball
over the other reflected a preference for interacting with that particular ball using the Dual Ball
Discrimination Test. Figure 2 e shows that the relative attention given to each ball indeed reflects how
an agent behaves towards them (in terms of preferred interaction). Furthermore, the cluster associated
with v1 shows that these agents still interact with B2, confirming that these agents had not learned to
ignore B2 completely.

Evolution of agents’ attention during learning We then monitored the development of the agents’
attention during their training using ATOMs (Figure 3). Applied to three variations of a Pong game,
we found that the learning process in A2C agents was characterised by a common developmental
pattern of attention in successfully trained agents with a late emergence of attention on the agent’s
paddle concomitant with an increase in its performance score.

4 Conclusion

We propose ATOMS to further our understanding of the learning process of an RL agent’s by
monitoring the development of its attention. We believe that ATOMs could help explain and test the
origin of certain limitations observed in RL agents such as observational overfitting [22]. In addition,
ATOMs could be used as an exploration tool to better understand the relationship between attention
and learning in both human [23] and artificial RL agents. Indeed, convolution neural networks (CNN)
have been used to model biological vision [24, 25], while reinforcement learning has been used as a
framework to study the neurobiology of learning and decision-making [26]. Here, one could explore
the role of external feedback and TD error (or internal feedback) [27, 28], the impact of certain
hyperparameters on an agent’s attention [16] or the interaction between top-down and bottom-up
attention during learning.
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Figure 3: Performance score and ATOMs during learning. The agent’s performance score was
averaged (dark line) over ten games at each measurement (the standard deviation is represented with
the shaded region). Dotted lines mark periods of notable score improvement, selected manually.
The combinatorial-attention grouped by category: noise (grey), combinations of balls only (orange),
combinations of opponent and balls (cyan),and combinations of objects including the agent (red).
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A LRP relevance score derivation

Let f : Rn → Rm be the feedforward neural network characterizing an agent’s network policy,
where, xxx ∈ Rn is the input image to the network, and f(xxx) ∈ Rm is its output. The function f
representing the neural network can be defined as f(xxx) = fL ◦ fL−1 ◦ ... ◦ f1(xxx) with each fl∈L

representing a transformation at layer l.

Applied to an input image xxx, LRP [1, 2] calculates a relevance score Rp(xxx) for each pixel p ∈ xxx,
indicating the importance of the pixel in the network’s decision. The output of the LRP method is a
relevance map or heatmap, represented as RRR(xxx) = {Rp(xxx)}p∈xxx. RRR(xxx) is derived by iteratively back-
propagating the network output f(xxx) from layer l + 1 to layer l according to some backpropagation
rules. These backpropagation rules are guided by a relevance model, as detailed in [3] which can be
expressed in their general form by:

Ri∈l =
∑

j∈l+1

qij∑
i′∈l qi′j

Rj (1)

where Ri is the relevance of the neuron i ∈ l and Rj is the relevance of the neuron j ∈ l + 1. Here,
qij varies depending on the chosen relevance propagation rule, which is contingent on the input
domain of the data [3]. In our experiments, the data consist of pixel values p or outputs from a ReLU
activation function, both of which are positive real numbers. Consequently, we employ the z+-rule
for backpropagation. Within this framework, qij = xiw

+
ij , where xi represents the activity output of

neuron i, and w+
ij is the positive part of the weight connecting neurons i and j.

Common procedure In our research, we want to determine the extent to which specific regions of
an input image xxx contribute to the activation of a particular neuron in the Fc layer. Given input xxx, we
consider where a neuron is looking at in the input. To do so we apply the following steps for each
input, xxx ∈XXX:

1. Calculate the distributed relevance scores RFc
= {Ri}i∈Fc

. Identify and select the subset
of neurons S ⊆ Fc that collectively account for 90% of the total relevance RFc

.
2. For each neuron k ∈ S, generate the corresponding relevance map in the input space denoted

RRRk(xxx) = {Rk
p(xxx)}.

3. Identify the objects highlighted by the relevance maps.

1. Calculate the distributed relevance scores {Ri}i∈Fc

To compute {Ri}i∈Fc we backpropagate the output relevance RRRoutput back to the neurons in the Fc

layer using the propagation formula applied with the z+-rule. We initialize RRRoutput = f(xxx) and then
following equation (1):

Ri∈Fc =
∑

j∈f(x)

xiw
+
ij∑

i′∈Fc
x′
iw

+
i′j

· j (2)

We then order the neurons according to their relevance score and select the smallest subset S
responsible for at least 90% of the total relevance score.

2. For each neuron k ∈ S generate RRRk(xxx) = {Rk
p(xxx)}p∈xxx

Here Rk(xxx) is the relevance of neuron k in layer Fc with regard to the network’s output f(xxx). Rk
p(xxx)

is the relevance of the pixel p ∈ x to the output of the neuron k.

To compute {Rk(xxx)}k∈S we backpropagate the relevance score of neuron k to the input space. In
this step, we are only interested in where the neuron k is looking on the input image and not its
relative contribution to the choice of the action. We therefore initialise the new relevance distribution
in the Fc layer by setting RFc

= (t1, .., tk, .., tN ) where ti = 0 for all i ̸= k and tk = 1 where k is
the index of the neuron under study. The relevance RFc

is then backpropagated through the layers of
the network until the input xxx using the backpropagation formula in (1), such that,

Ri =
∑
j

xiw
+
ij∑

i′ x
′
iw

+
i′j

Rj (3)

8



Figure 4: Illustration of the extraction of the relevance score for the ball object computed from
a neuron k in the Fc layer. Here a single frame (among the 4 frames constituting an input) is
represented for clarity purposes. The relevance score of neuron k with respect to the output of the
network is computed with a first LRP operation noted here as LRP1. The relevance score of the ball
object with respect to the neuron k is then computed with a second LRP operation noted here as
LRP2.

This results in a relevance map over the input xxx which in combination with the corresponding labeled
input x̄xx allow us to retrieve where the input the network is looking. We used [4] for the implementation
of the LRP method.

B RL training procedure

For all games, the learning rate was set to α = 7e − 4, the discount factor γ = 0.99, the entropy
coefficient τ = 0.01 and the value loss coefficient vlc = 0.25. The number of parallel environment
was set to n = 100. Training was carried out on Nvidia via A100 GPUs using a single GPU with up
to 18 CPU cores per task and a memory of 125 GB.

C Game

C.1 Game Dynamics Setup

We developed a modified version of the classic Atari Pong game using the Pygame library (v.2.5.2
[5]) to create a custom environment for our experiments. This variation maintains the original game’s
elements—paddles, walls, and scoring—but introduces dual balls instead of one. The dimensions
and colours of the game components mirror those in the original Pong. In this setup, each paddle is
distinctively colored, as are the two balls. The paddles move on the y-axis at a rate of 2 pixels per
frame, while the balls move at speeds of 4 pixels per frame along the x-axis and 2 pixels per frame on
the y-axis.Game states are represented as 84x84 pixel RGB images.

C.2 Preprocessing and Environment Wrapping

To prepare the game environment for reinforcement learning (RL), we encapsulated it within the
same preprocessing wrapper used for Atari games in the Stable Baselines 3 framework (v.3 [6]).
This wrapper converts each game frame from RGB to grayscale to streamline input dimensions and
reduce computational demands [7]. To prevent the RL agent from memorising action sequences, we
introduced randomness in the initial ball direction. Last but not the least, the observation input given
to the agent is not Markovian as all the information necessary to predict the next input given this
input and an action is not available. Aligning with prior research by Y and common practices in
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Table 1: Design of the game variations.

Version Balls Dynamics Rewards
B1 B2 B1 B2 B1 B2

v0 Yes No D1 X R1 X
v1 Yes Yes D1 D1 R1 X
v2 Yes Yes D1 D2 R1 R2

Stable Baselines 3, we stacked four consecutive frames, producing a composite input ot ∈ R4×84×84,
to provide the agent with a temporal context for decision-making.

C.3 Variations

The game variations are summarised in Table Y.

Dynamics:

• D1: The ball rebounds off both the walls and the paddles.
• D2: The ball is capable of bouncing off the walls and the agent’s paddle. However, it will

not rebound off the opponent’s paddle, and pass through it.

Rewards:

• R1: The agent is awarded +1 for scoring a point on the opponent’s side, and receives a -1 if
the agent fails to hit the ball, allowing it to pass by.

• R2: The agent gains +1 for successfully hitting the ball with their paddle. Conversely, a -1
penalty is applied if the agent fails to hit the ball, allowing it to pass by.

The balls start in the middle of the screen. They have the same x-direction that is randomly generated
and opposite y-directions. This choice of initial states forces the agent to choose between the balls
for the first hit. The condition for an episode to end and for the balls to respawn is dependent on B1
being scored. The opponent is hard-coded to position its y-axis on the y-axis of B1.

D Example combinatorial-attention

Figure 5 presents various combinatorial-attention patterns for individual neurons in the Fc layer.
Each neuron’s relevance map, generated for a specific input, is overlaid onto the input provided to the
agent. The right side features a bar chart that quantifyes the average intensity of relevance scores for
each object, with a dotted line indicating the 25% threshold of the maximum intensity value.

E Threshold value for the combinatorial-attention

The threshold value, α, utilised in the combinatorial-attention metric functions as a hyperparameter
and influences the result of the metric. This threshold sets the minimum intensity level necessary
for an object to be considered within the set of observed objects. A threshold approaching zero will
result in a combinatorial-attention metric that accounts for all objects with any non-zero intensity
score. Conversely, a threshold near one will reflect combinatorial-attention equivalent to only the
single object with the highest intensity value. To avoid these extremes, we choose a threshold of
α = 0.25. This value allows for the detection of more nuanced patterns of combinatorial attention. To
demonstrate the dependency of the combinatorial-attention metric on the threshold value, calculations
were performed across a range of threshold values from 0 to 1 for the 20 trained agents in each
version of the game. Figure 6 illustrates the average combinatorial attention metric between models
as a function of α for each version of the game.

F Impact of the agent and opponent score displayed on the agents’ behavior

Based on the observation that ATOMs exhibited a stronger focus on the scores of both the agents and
their opponents in version v2 compared to versions v1 and v0, we investigated the potential impact of
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Figure 5: Illustrations of different combinatorial-attention results. Each line represents a combination
of objects "looked at" by a neuron in the Fc layer. From left to right: symbol of the combination as
depicted in the main text, neuron’s relevance map overlaid onto the input frames, bar plot quantifying
the average intensity of relevance scores for each object with the 25% threshold.

the displayed scores on the agent’s decision to hit B1 or B2.To examine this, we conducted the Dual
Ball Discrimination Test across all combinations of displayed scores (ranging from 0 to 20 for the
opponent and 0 to 40 for the agent) for each of the 50 agents trained on v2. In this test, the agent,
given a specific score combination (score agent, score opponent), had to choose to hit B1 or B2 over
100 different trajectories. The set of 100 trajectories was consistent across all score combinations and
agents. This process generated two-dimensional matrices of dimensions 21 x 41, where each matrix
value represents the relative interaction of the agent with B1, calculated as the ratio of the number
of times the agent hit B1 to the total number of times the agent hit any ball. We standardized the
relative interaction for each agent to account for variations in the average interactions of different
agents. Using the standardized data, we computed a pairwise distance matrix with the ’correlation’
metric and performed hierarchical clustering using the complete method. The resulting dendrogram
is presented in Figure 7. Figure 8 illustrates the averaged heatmaps by clusters at a distance of 1.1,
along with examples of heatmaps for models belonging to clusters three and five. Positive values (in
red) indicate a preference for B1, while negative values (in blue) indicate a preference for B2. The
findings reveal that the displayed scores influence the agent’s choice to hit B1 or B2, with distinct
patterns of influence emerging among different agents. For example, agents belonging to cluster five
mostly interact with B1 until their displayed score get closer to 40 points where they tends to choose
B2 over B1 (the game terminates when the agent reaches 41 points). In contrast, agents belonging
to cluster three interact more with B1 or B2 in function of if the score of the opponent displayed is
below or above 10 points.
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Figure 6: Combinatorial-attention values in function of alpha averaged over 20 trained agents for a
version v0,b version v1 and c version v2. Dotted lines indicate α = 0.25.

Figure 7: Dendrogram computed from the standardized interaction matrices of 50 agents trained on
V2. Each interaction matrix is of size 21x41 corresponding to all combinations of score displayed.
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Figure 8: Dendrogram illustrating the hierarchical clustering of agents, with clusters identified up
to a distance of 1.1, resulting in five main clusters. The heatmaps for each cluster were generated
by averaging the heatmaps of all models within that cluster. The second row presents individual
heatmaps from representative agents within clusters three and five.

Figure 9: a Hierarchical attention average across 47 agents with an initial color mapping: B1 color
(236, 236, 236) and B2 color (255, 255, 0). b Hierarchical attention average across 20 agents with a
swapped color mapping: B1 color (255, 255, 0) and B2 color (236, 236, 236). Error bars represent
the standard deviation.

G Color swap between B1 and B2

In this experiment, we investigated whether the colour assigned to each ball affected the outcomes
as measured by our metrics. We conducted this experiment by training 20 models for each game
version, exchanging only the colors of balls B1 and B2. As observed on Figure 9, the color of the ball
does not impact the hierarchical-attention pattern which similar for both mapping of color to ball.

H ATOMs for version v2 complete
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Figure 10: Development of the performance score and of ATOMs during learning for an agent trained
on version v2. The performance scores of the agent is computed at each measurement over ten games.
The dotted lines indicate the time frame during which the agent’s score showed a marked increase.
These time frames were estimated manually.The average score is depicted by the central dark line,
with the shaded region representing the standard deviation. The combinatorial-attention is categorized
as follows from top to bottom: noise (grey), combinations of balls only (orange), combinations of
opponent and balls (cyan),combinations of objects including the agent itself (red), and combinations
of objects including the score opponent (SO) and the score of the agent (SA) (purple).
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