
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING WHAT TO REMEMBER FOR NON-
MARKOVIAN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent success in developing increasingly general purpose agents based on se-
quence models has led to increased focus on the problem of deploying computa-
tionally limited agents within the vastly more complex real-world. A key challenge
experienced in these more realistic domains is highly non-Markovian dependencies
with respect to the agent’s observations, which are less common in small controlled
domains. The predominant approach for dealing with this in the literature is to
stack together a window of the most recent observations (Frame Stacking), but this
window size must grow with the degree of non-Markovian dependencies, which
results in prohibitive computational and memory requirements for both action
inference and learning. In this paper, we are motivated by the insight that in many
environments that are highly non-Markovian with respect to time, the environ-
ment only causally depends on a relatively small number of observations over that
time-scale. A natural direction would then be to consider meta-algorithms that
maintain relatively small adaptive stacks of memories such that it is possible to
express highly non-Markovian dependencies with respect to time while consid-
ering fewer observations at each step and thus experience substantial savings in
both compute and memory requirements. Hence, we propose a meta-algorithm
(Adaptive Stacking) for achieving exactly that with convergence guarantees and
quantify the reduced computation and memory constraints for MLP, LSTM, and
Transformer-based agents. Our experiments utilize popular memory tasks, which
give us control over the degree of non-Markovian dependencies in the environment.
This allows us to demonstrate that an appropriate meta-algorithm can learn the
removal of memories not predictive of future rewards and achieve convergence in
the stack management policy without excessive removal of important experiences.

Agent

𝐼𝑡

𝑋𝑡+1 𝐴𝑡

𝑅𝑡+1

𝑅𝑡

environment action

memory action

reward

𝑋𝑡

environment observation

Policy

𝑆𝑡

memory state

𝑆𝑡+1

Environment

Memory

Figure 1: The RL loop for learning what to remember using Adaptive Stacking.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Reinforcement learning (RL) agents are typically formulated under the Markov assumption: the
agent’s current observation contains all information needed for optimal decision-making (Puterman,
2014). In practice, however, real-world environments are often partially observable – the agent’s
immediate observation is an incomplete snapshot of the true state. This leads to non-Markovian
dependencies over time, where past observations contain critical context for future decisions. Notably,
Abel et al. (2021) proved that there exist certain tasks (for example expressed as desired behaviour
specifications) that cannot be captured by any Markovian reward function. In other words, no
memoryless reward can incentivise the correct behaviour for those tasks and agents must rely on
histories of observations to infer hidden state information to resolve non-Markovian dependencies.
This theoretical insight underlines that non-Markovian tasks are not just harder, but sometimes
fundamentally require memory beyond the scope of standard Markov formulations. We are interested
in such settings in big worlds (Javed & Sutton, 2024), where only a relatively small subset of past
observations are relevant for optimal decision-making, but they are separated by large spans of time.

While RL has shown great success in a variety domains (Arulkumaran et al., 2017; Cao et al., 2024),
handling such temporal dependencies remains a challenge especially for computationally limited
agents operating in big worlds (Javed & Sutton, 2024). In practice, the most common approach to
address this problem is Frame Stacking (FS), which is a FIFO short-term memory wherein a fixed
context window of the most recent k∗ observations (and actions) are concatenated. This is then used
directly as policy input, or first used to infer hidden states typically using active inference (Friston,
2009; Sajid et al., 2021) or sequence models like recurrent neural networks (Hochreiter & Schmid-
huber, 1997; Hausknecht & Stone, 2015), Transformers (Vaswani et al., 2017; Chen et al., 2021),
and state space models (Gu et al., 2021; Samsami et al., 2024). Given knowledge of the nature of the
temporal dependencies, for example when they are expressible as reward machines (Icarte et al., 2022;
Bester et al., 2023), prior works also use such histories of observations and program synthesis to learn
abstract state machines that compactly represent the memory and temporal dependencies (Toro Icarte
et al., 2019; Hasanbeig et al., 2024). While such approaches based on FS are very effective in domains
with short-term dependencies, such as in Atari games (Mnih et al., 2013) where 4 frames are enough
to capture the motion of objects, they quickly become impractical in domains where relevant informa-
tion may have occurred in an unknown large number of steps (Ni et al., 2023). Importantly, increasing
k∗ causes an exponential increase in the dimensionality of the observation space, leading to both a
severe increase in compute and storage, and potentially poor sample efficiency and generalisation.

However, many tasks may not actually require remembering everything. Often only a sparse subset of
past observations is truly relevant for making optimal decisions. This insight aligns with findings in
cognitive neuroscience: working memory in humans is known to have limited capacity and is thought
to employ a selective gating mechanism that retains task-relevant information while filtering out
irrelevant inputs (Unger et al., 2016). For example, a driver listening to a traffic report will update only
the few road incidents relevant to her route into memory and ignore other trivial reports. Similarly, an
RL agent with constrained memory should learn what to remember and what to forget. If the agent
can identify which observations carry information critical for future reward, it could store just those
and safely discard others, drastically reducing the burden on its memory and computation. Ideally,
this is possible without sacrificing performance, but instead while actually improving generalisation.

Driven by this insight, we make the following main contributions: 1. Adaptive Stacking: We propose
Adaptive Stacking (AS), a general meta-algorithm that learns to selectively retain observations in a
working memory of fixed size κ (Figure 1). When κ≪ k∗, this significantly improves compute and
memory efficiency. It also leads to an exponential reduction in the size of the search space, which
has implications for sample efficiency and generalisation. 2. Theoretical analysis: We then prove
that agents using this approach are guaranteed to converge to an optimal policy in general when
using unbiased value estimates, and in particular when using TD-learning under general assumptions.
This enables practical trade-offs under the same resource constraints, such as the use of smaller
memory to enable larger policy networks and the use of partial, instead of full, observations for better
generalisation. 3. Empirical analysis: We run comprehensive experiments on memory intensive
tasks using standard algorithms like Q-learning and PPO. Results demonstrate that AS generally leads
to better memory management and sample efficiency than FS with κ memory (when k∗ is unknown),
while having comparable sample efficiency to FS with k∗ memory (when k∗ is given by an oracle).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PROBLEM SETTING

The Environment. We are interested in non-Markovian environments, which can be modelled as
a Non-Markovian Decision Process (NMDP). Here, an agent interacts in an environment receiving
observations xt ∈ X at each step t ∈ {0, 1, ..., T} and producing action at ∈ A, where T is the
length of an episode (or the lifetime of the agent in non-episodic settings). The agent’s action causes
the environment to transition to a new observation xt+1 ∈ X and also provides the agent with a scalar
reward rt+1 ∈ R. The environment is k∗-order Markovian (i.e. a k∗-order Markov Decision Process
(Puterman, 2014)), meaning that k∗ ∈ N is the smallest number such that the probability function
Pr(xt+1, rt+1|xt:t−k∗ , at) is stationary regardless of the agent’s policy, where xt:t−k∗ includes the
last k∗ observations.1 If k∗ = 1, then this is a standard Markov Decision Processes (MDP). We are
interested in designing realistic computationally limited agents that can perform in environments
where k∗ is very large. Note that our setting closely mirrors that of partially observable Markov
decision processes (POMDP) (Kaelbling et al., 1998) where the last k∗ observations constitute a
sufficient statistic of the state of the environment. In our work, discussion of the environment state is
not necessary as we make no attempt to build a formal belief state as is commonly done in POMDPs.
The notion of a memory state that we focus on building can be far more compact at scale.

The Agent. The agent acts in the environment using a policy π(at|xt:t−k∗), which can be char-
acterised by a value function V π(xt:t−k∗) := Eat∼π,(xt+1,rt+1)∼Pr [

∑∞
t=0 γ

trt+1|xt:t−k∗]. The
agent’s objective is to learn an optimal policy π∗ that maximizes their long-term accumulated reward,
characterised by the optimal value function V ∗(xt:t−k∗) = maxπ V

π(xt:t−k∗). However, the agent
must learn π∗ with finite computational resources including a working memory w (i.e. RAM) of finite
capacity (in bits) |w| ≤ |w|∗, and computational resources c of finite capacity (in allowable floating
point operations per environment step) |c| ≤ |c|∗ split across both inference and learning. The size
and architecture of the agents parameters θ must be chosen such that the two resource limits are
always respected. Most recent progress in AI has been driven by sequence models (e.g. Transformers
or RNNs), which in our setting would learn a policy of the form πθ(at|xt:t−k). A fully differentiable
sequence model has at least a linear dependence with respect to the sequence length k for the working
memory size i.e. |w| ∈ Ω(k) and computation i.e. |c| ∈ Ω(k) during inference and learning.2

The Problem. For a fully differentiable sequence model to learn in environments with large k∗,
we must then correspondingly decrease the model size |θ| so that we can accommodate for the
agent’s limitations in terms of working memory |w|∗ and computational resources |c|∗. However,
in many environments with high k∗, only κ ≪ k∗ observations are actually needed to predict the
environment dynamics. Thus k∗ is only large because the relevant observations are spaced apart by
long temporal distances, not because there are many relevant observations to consider. So then if we
learn to maintain a memory of size k∗ ≥ k ≥ κ with RL, we can potentially improve the efficiency
of computation and working memory by a factor of Ω(k∗/κ) and increase |θ| at the same resource
budget. Additionally, such an abstraction will induce a policy search space reduction of O(|X |k∗−κ),
which could lead to improvements in sample efficiency and generalisation for a policy using it. In
this work, we consider approaches for achieving this goal with deep sequence models.

3 RELATED WORK

Agents without working memory. Foundational work has shown that settings that violate the
Markov property introduce substantial complexity. For example, Singh et al. (1994) and Talvitie
& Singh (2011) demonstrated that applying standard TD-learning in POMDPs leads to biased
value estimates. Classical solutions attempt to address this problem by maintaining a belief state
(distribution over states) as a sufficient statistic of the history (Kaelbling et al., 1998; Friston, 2009;
Sajid et al., 2021). However, exact belief-state planning is intractable for complex environments, so
modern RL agents rely on learned memory or state representations without full state estimation.

RNN-based Agents. To address the input dimensionality explosion of Frame Stacking, recurrent
neural networks (RNNs) such as Long Short Term Memories (LSTMs) and Gated Recurrent Units

1For clarity and without loss of generality, we only consider the history of observations and not the history of
actions and rewards, since these can always be included in the observations as well.

2For the popular Transformer architecture, it is actually even worse |c| ∈ Ω(k2).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(GRUs) have been employed (Hausknecht & Stone, 2015), offering a learned internal state repre-
sentation. Yet, these architectures often struggle in long-horizon tasks due to gradient vanishing,
limited capacity, and sensitivity to training dynamics (Singh et al., 1994; Ni et al., 2021). Recent
improvements Javed et al. (2023; 2024) have thus focused on efficient RNNs training methods.

Transformer-based Agents. In a separate line of work, Transformers have been increasingly
applied to RL settings due to their success in natural language processing (NLP) (Vaswani et al.,
2017). Self-attention allows these models to learn to focus on relevant past events and scale to longer
memory horizons. Parisotto et al. (2020) proposed GTrXL, demonstrating improved stability over
LSTMs. Chen et al. (2021) introduced the Decision Transformer, a sequence model for offline RL.
Most relevant to this work, Ni et al. (2023) rigorously studied the separation of memory length and
credit assignment. They showed that Transformers can remember cues over a relatively large number
of steps in synthetic T-Maze tasks, but struggle with long-term credit assignment. These works still
depend on maintaining a memory stack of length k∗ using FS to learn optimal policies.

Agents Agnostic to Sequence Models. Several works attempt to bypass the exponential blow-up
in agent states by learning compact, predictive memory representations for arbitrary sequence models.
Allen et al. (2024) introduced λ-discrepancy, a measure of the deviation between TD targets with and
without bootstrapping. They prove that this discrepancy is zero in fully observed MDPs and positive
in POMDPs, offering a diagnostic and learning signal for memory sufficiency. Alternative strategies
include learning which observations are worth remembering. Most closely related to our work is the
Act-Then-Measure framework (Krale et al., 2023), which lets agents actively choose when to observe
their state, balancing the cost of memory against its value. However, these works still use Frame
Stacking when the stack is full, and hence can be seamless integrated with learning-based memory
selection methods such as our Adaptive Stacking method.

Learned Stack Management. In Peshkin et al. (1999) and Demir (2023) they provide the agent
with actions to explicitly manage the memory. Demir (2023) is probably the most directly relevant
work to our paper in their use of memory actions over a stack of observations. However, the action
space considered: push (add an element to the top of the stack) and skip (do nothing) is quite different
than the action space we consider that allows for the observation to be skipped or used to replace any
available slot in memory. The action space in Demir (2023) is significantly smaller than ours, but
the memory architecture is biased in favor of always overwriting the oldest memory. Our approach
provides the agent with more choice over the maintenance of memory and thus has the potential to
more efficiently utilize memory for problems where multiple observations with significant temporal
distance must be considered. Our approach also learns a policy to access a memory by maximizing
reward whereas Demir (2023) considers intrinsic motivation to store observations that are more novel.
This bias is again intuitively helpful for many problems, but it would be easy to construct counter
examples where it is detrimental (such as the famous "noisy TV" scenario). It is also important to note
that while Demir (2023) compares to RNNs with function approximation, their memory management
approach is instantiated as a purely tabular method. Our work extends stack management to function
approximation and perhaps most importantly, demonstrates utility for Transformer models, whereas
most efficient memory methods for RL so far have been restricted to recurrent processing.

4 ADAPTIVE STACKING

We propose Adaptive Stacking as a general-purpose memory abstraction for reinforcement learning in
partially observable environments. Adaptive Stacking extends the common frame stacking heuristic
by endowing the agent with control over which past observations to retain in a bounded memory
stack of size k. Rather than passively retaining the most recent k observations, the agent actively
decides which observation to discard, including the current observation. This transforms memory
management into a decision-making problem aligned with maximizing reward.

Motivating Examples. Consider the TMaze environment illustrated in Figure 7a, a canonical memory
task from neuroscience (O’Keefe & Dostrovsky, 1971) which we adapt similarly to prior work in the
field of RL (Bakker, 2001; Osband et al., 2019; Hung et al., 2019; Ni et al., 2023).

• Passive-TMaze task (Figure 5a): The agent begins in a corridor with a color-coded goal
indicator (green or red), then proceeds through a long grey corridor to a junction where the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

correct turning direction depends on the goal shown at the start. Figure 6 contrasts Frame
Stacking and Adaptive Stacking. Here, the agent only needs to remember the goal cue in
order to pick the correct goal at the junction cue, and doesn’t need to learn to navigate in
the maze. Frame Stacking, due to its FIFO nature, forgets the goal signal when the maze
is longer than the memory window (k < L + 2). In contrast, with an adaptive stacking
approach, the agent can learn to retain the goal-defining observation across time and discard
irrelevant grey observations (thereby solving the task with a much smaller memory budget).

• Active-TMaze task (Figure 7b): Here, the agent must both learn to navigate to find the goal
color and remember it to navigate to the corresponding goal location. While the necessary
memory length is bounded for Frame Stacking in the Passive-TMaze, this memory threshold
only holds for the optimal policy in the Active-TMaze. Indeed, the memory requirement can
grow indefinitely depending on how sub-optimal navigation in the environment is – while
the memory requirement remains unchanged for Adpative Stacking based agents.

4.1 RL WITH INTERNAL MEMORY DECISIONS

Formally, Adaptive Stacking induces a new decision process where the agent at each timestep t
receives an observation xt ∈ X and maintains a memory stack st = [xi1 , . . . , xik] containing k
selected past observations indexed by their relative timesteps in which the last element is always
xik = xt. We will refer to this memory stack as the agent state (Dong et al., 2022). Upon
receiving xt+1, the agent executes two actions: an environment action at ∈ A, and a memory action
it ∈ {1, . . . , k} selecting which observation to pop. The agent state is then updated as:3

st+1 = push(pop(st, it), xt+1). (1)

In general, this process induces a new POMDP Mk = ⟨M,S, I, u⟩ where M is the origi-
nal POMDP, S is the set of agent states, I is the set of memory management actions, and
u : S × I × X → S is a memory update function (such as Equation 1). The agent’s
policy is now πk(at, it|st), which can be characterised by a value function V πk

k (st) :=
E(at,it)∼πk,(xt+1,rt+1)∼Pr [

∑∞
t=0 γ

trt+1|u(st, it, xt+1)]. Its objective is now to learn an optimal
policy π∗

k that maximizes its long-term accumulated reward, characterised by the optimal value
function V ∗

k (st) = maxπk
V πk(st). We show how to instantiate this process in Algorithm 1 using

Q-learning, but the approach is applicable to any RL algorithm. Importantly, the approach is also
compatible with modern architectures such as Transformers by simply defining S, I, and u appro-
priately, leading to compute and memory benefits as described in Appendix F. By integrating the
memory update into the RL loop (see Figure 1), Adaptive Stacking fits cleanly into existing learning
pipelines and can be trained end-to-end.

In this view, Adaptive Stacking transforms memory selection into a sequential decision-making
problem aligned with the agent’s reward signal. This stands in contrast to passive memory mechanisms
based on Frame Stacking, which indiscriminately process all inputs. This also aligns with cognitive
models of working memory in humans, where attention-gated memory buffers retain only task-
relevant cues while filtering distractors (Unger et al., 2016). However, this raises an important
question: How does selective forgetting affect the standard theoretical guarantees established for the
convergence of RL agents such as value function and policy optimality?

4.2 MONTE CARLO VALUE FUNCTION ESTIMATES

Recent work for reasoning with large language models has highlighted the effectiveness of Monte
Carlo estimates of the value function (Shao et al., 2024) as originally pioneered by the REINFORCE
policy gradient algorithm (Williams, 1992). An advantage of this kind of algorithm is that its estimates
of the value function are unbiased as they are formed based on rolling out the policy for sufficiently
long in the environment itself. This greatly simplifies convergence to optimality in the limited memory
setting (Allen et al., 2024). We can then consider a notion of the minimal sufficient memory length.

Definition 1 Define κ to be the smallest memory length such that there exists a policy π∗
κ satisfying

V π∗
k(xt:t−k∗) = V ∗(xt:t−k∗) for all t.

3Until the memory stack is full, all observations are added to memory as in standard Frame Stacking.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This characterises the minimal task-relevant context size needed to act optimally in environments
with large k∗, and motivates the central promise of Adaptive Stacking: optimal memory management
via reward-guided memory decisions. κ always exists since in the simplest case we can have κ = k∗

(Proposition 1), as shown in Figure 7c when the maze length is 2 (when L = 0). Hence, any unbiased
RL algorithm that is guaranteed to converge to optimal policies under Frame Stacking with k = k∗ is
also guaranteed to converge to optimal policies under Adaptive Stacking with k = κ (Theorem 1).

Proposition 1 If k = k∗, then there exists a π∗
k such that V π∗

k(st) = V ∗(xt:t−k∗) for all st ∈ S.

Theorem 1 Let A be an RL algorithm that converges under Frame Stacking with k ≥ k∗. If A uses
unbiased value estimates to learn optimal policies, then it also converges under Adaptive Stacking
with k ≥ κ observations, assuming the policy class is sufficiently expressive.

See Appendix B.3 for a formal proof. This implies that algorithms that leverage Monte Carlo return
based value functions for policy gradient updates can be shown to converge to the optimal policy
with standard conditions regarding exploration and the policy parameterization. See Appendix B.4
for a proof of convergence for linear policies in the episodic setting and Appendix B.5 for a proof of
convergence for linear policies in the the standard continuing average reward setting. In line with
prior work on RL, non-linear policies in general can only be shown to converge to local optima.

The need for bootstrapped value estimates. It is also important to note that there are scaling issues
regarding using Monte Carlo returns for value function estimates in continuing environments as in
Appendix B.5. For true continual RL environments in big worlds, the amount of steps needed for
these unbiased rollouts becomes unwieldy (Riemer et al., 2022; Khetarpal et al., 2022). Additionally,
Riemer et al. (2024) demonstrated that this amount of steps increases with the agent’s memory size.
Thus is it will eventually be necessary to use truncated returns with bias inserted from bootstrapped
value estimates to tackle the challenging futuristic environments that our paper is inspired by.

4.3 ADAPTIVE STACKING AS A FORM OF STATE ABSTRACTION

While Adaptive Stacking is designed to learn which past observations to retain, a key theoretical
question is how this compression affects the ability of RL agents to preserve optimal behaviour.
Specifically, we want to understand how the value function under Adaptive Stacking relates to the
value function under full-history policies. We first observe that there is a general relationship between
the adaptive stack value function and the underlying full-history value function:

V πk

k (st) =
∑

xt:t−k∗

Pr(xt:t−k∗ |st, πk)V
πk(xt:t−k∗) for all st ∈ S, (2)

where Pr(xt:t−k∗ |st, πk) is the asymptotic probability amortized over time that the environment
k∗-history is xt:t−k∗ when the agent state is st under policy πk (Singh et al., 1994). This equation
shows that the agent’s value under compressed memory is an expectation over possible latent histories.
When the memory stack discards critical observations, this conditional distribution becomes broader,
increasing uncertainty. As such, it is clear that Adaptive Stacking can be seen as a form of state
abstraction in which multiple histories are compressed together in the estimate of the value function.

Model-equivalent abstractions. One of the most popular form of state abstractions are based
on the idea that a state abstraction itself should be able to reconstruct the rewards received in the
environment and state transitions in its own abstract space. A number of methods for learning these
kinds of abstractions have been proposed (Zhang et al., 2019; 2020; Tomar et al., 2021) – often called
"bisimulation" abstractions. As discussed by Li et al. (2006) this class of abstractions allows for
convergent TD learning, but results in the least compression among popular techniques.

Value-equivalent abstractions. A more ambitious kind of abstraction that results in more compres-
sion while still ensuring convergent TD learning is based on the value equivalence principle (Li et al.,
2006; Abel, 2022). This class of abstractions requires that, given a policy (or the optimal policy), its
value function conditioned on the true history is equal to that conditioned on the state abstraction.
While even more compressed state abstractions exist that preserve the optimal policy, it cannot be
shown that they lead to convergent TD learning in the general case (Li et al., 2006).

An even more powerful class of abstractions. While it is not possible to show this convergence in
general, it is possible to exploit the fact that Adaptive Stacking is a very particular form of structured

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

state abstraction in that it maintains actual observations from the environment. Indeed, we include a
counter example in Appendix B.6 in which the optimal policy can be learned from a form of state
abstraction that does not preserve the standard value-equivalence property and thus results in even
more compression. In general we can show that in tasks where uncertainty in the full history is not
relevant for value prediction (Assumption 4.1), Adaptive Stacking preserves the relative ordering
between policies (Theorem 2) and leads to globally convergent TD learning (Theorem 3).

Assumption 4.1 (Value-Consistency) Let πk be an Adaptive Stacking policy over memory states
st ∈ Sk. We say the memory representation is value-consistent with respect to πk if, for all
full histories xt:t−k∗ and x′

t:t−k∗ such that both Pr(xt:t−k∗ | st, πk) > 0 and Pr(x′
t:t−k∗ |

st, πk) > 0, it holds that V πk(xt:t−k∗) = V πk(x′
t:t−k∗) for all st ∈ S.

Assumption 4.1 says that two distinct full histories that map to the same memory state must agree
on their expected value under the given policy. This assumption happens to always hold for a wide
range of tasks of interest in RL, such as goal-reaching tasks with non-zero rewards only for reaching
goal states, and even stochastic environments like the TMaze tasks with random start states and
corridor lengths. However, it does not hold for tasks with arbitrary reward functions where histories
lead to different reward dynamics, such as reward machine tasks where the reward machines are not
observable (Hasanbeig et al., 2024). See Appendix C for a list of relevant benchmarks for which this
assumption holds. As this is the case for the popular environments we consider in Section 5, we do
not need to consider any form of explicit state abstraction supervision in our experiments.

4.4 CONVERGENCE OF TEMPORAL DIFFERENCE LEARNING

As we prove in Appendix B.7 and B.8, Assumption 4.1 is a sufficient condition for TD convergence.

Theorem 2 (Partial-order Preserving) Consider an agent with a value-consistent memory stack
of arbitrary length k ∈ N. Let π1

k and π2
k be two arbitrary Adaptive Stacking policies such that

V
π1
k

k (st) ≤ V
π2
k

k (st) for all t. Then V π1
k(xt:t−k∗) ≤ V π2

k(xt:t−k∗) for all t.

This key result allows us to extend convergence results from traditional RL to our setting. That is, any
RL agorithm that converges to the optimal policy under adaptive stacking simultaneously converges
to the optimal policy over the underlying history when k ≥ κ. For example, Singh et al. (1994) (in
Theorem 1) show that in POMDPs, policy evaluation of a policy πk using TD(0) under standard
assumptions converges to a fixed point value function V πk

TD(st) that is generally lower than the true
expected return V πk

k (st), due to uncertainty over hidden state. Hence TD-learning also preserves
partial-ordering. Similary, we can show that Q-learning still converges to optimal policies:

Theorem 3 Let k ≥ κ, and suppose Q-learning under standard learning assumptions (Robbins
& Monro, 1951) is applied to the induced decision processMk under a fixed exploratory policy
that ensures persistent exploration. Then: 1. The Q-function Q(s, a, i) converges with proba-
bility 1 to a fixed point Q̂(s, a, i). 2. The greedy policy with respect to Q̂ is optimal. That is,
π∗
k(st) ∈ argmax(a,i) Q̂(st, a, i) achieves the optimal value V ∗(xt:t−k∗).

Hence, an agent does not need to be able to predict states nor disambiguate trajectories to learn optimal
values using TD-learning. Although TD-learning under partial observability does not converge to
the true value function, it does converge to a consistent surrogate that retains the ordering between
policies. When the memory length k is sufficiently large (k ≥ κ), this ensures convergence to an
optimal policy despite non-Markovian dynamics. This has significant implications for compute and

Architecture Memory Type |c|a∼πθ
|c|TD |w|a∼πθ

|w|TD

MLP or LSTM Frame Stack Ω(k∗) Ω(k∗) Ω(k∗) Ω(k∗)
MLP or LSTM Adaptive Stack Ω(κ) Ω(κ) Ω(κ) Ω(κ)

Transformer Frame Stack Ω(k∗2) Ω(k∗) Ω(k∗2) Ω(k∗)
Transformer Adaptive Stack Ω(κ2) Ω(κ) Ω(κ2) Ω(κ)

Table 1: Compute |c| and memory |w| requirements for computing actions a ∼ πθ and TD updates.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

memory efficiency when using sequence models like Transformers. Transformers incur compute costs
of Ω(k2) and working memory costs of Ω(k) due to self-attention over long contexts (Narayanan et al.,
2021; Anthony et al., 2023). Adaptive Stacking reduces these to Ω(κ2) and Ω(κ) respectively, by
retaining only reward-relevant observations of length κ≪ k∗, thereby yielding substantial efficiency
gains in both inference and training shown in Table 1. See Appendix F for derivations.

5 EXPERIMENTS

We evaluate Adaptive Stacking on a variety of challenging memory tasks (as describe in Figure 7) to
assess both learning performance, memory management, and generalisation. We compare against two
baselines: FrameStack with k = κ (insufficient memory) and k = k∗ (oracle memory)4, and report
five key metrics here: (1) Returns: cumulative discounted rewards, (2) Reward regret: difference in
achieved values between the optimal and learn policies, (3) Memory regret: number of steps when
the goal cue is absent from memory, (4) Active memory regret: steps where the goal cue is seen but
not added to memory, and (5) Passive memory regret: steps where the goal cue is removed from
memory. All error bars represent one standard deviation across a number of random seeds (Nrs).

Continual TMaze with Q-learning. We first evaluate in a continual Passive and Active TMazes,
where episodes do not terminate, and rewards are only given at goal transitions. This stresses the
agent’s ability to persist and discard information appropriately. Results in Figure 2 show that Adaptive
Stacking achieves high returns and low reward regret, consistent with theoretical predictions. When
κ = k∗ (maze length 2), all methods perform similarly. But when κ < k∗, AS retains significantly
lower passive memory regret than FS(κ), learning to preserve goal cues over long delays. Note that
FS(k∗), even in the Passive-Tmaze, still incures some total memory regret for not having the goal cue
in memory each time the agent re-spawns at the start location. See Appendix E for the learning curves.

Episodic TMaze with PPO. We further evaluate AS in episodic Passive-TMaze using PPO in
variable maze lengths. To evaluate whether Adaptive Stacking depends on a specific sequence model
and memory length, we also compare returns across MLP, LSTM, and Transformer policies for

4In the Active-Tmaze and XorMaze, k∗ = ∞ since a non-optimal policy could stay arbitrarily long in some
cells. Hence, in practice we instead use k = L+ 2 for the oracle FrameStack these experiment.

AdaptiveStack k = κ (Ours) FrameStack k = κ FrameStack k = k∗

2 4 6
maze length (L + 2)

0

2

4

re
w

ar
ds

re
gr

et

×105

2 4 6
maze length (L + 2)

0.0

2.5

5.0

7.5

m
em

or
y

re
gr

et

×105

2 4 6
maze length (L + 2)

0

5

ac
ti

ve
m

em
or

y
re

gr
et ×104

2 4 6
maze length (L + 2)

0

1

2

3

pa
ss

iv
e

m
em

or
y

re
gr

et ×105

(a) Passive-TMaze

2 4 6
maze length (L + 2)

0.0

2.5

5.0

7.5

re
w

ar
ds

re
gr

et

×105

2 4 6
maze length (L + 2)

0

2

4

6

m
em

or
y

re
gr

et

×105

2 4 6
maze length (L + 2)

0.0

0.5

1.0

ac
ti

ve
m

em
or

y
re

gr
et ×105

2 4 6
maze length (L + 2)

0

1

pa
ss

iv
e

m
em

or
y

re
gr

et ×105

(b) Active-TMaze

Figure 2: Continual TMazes with Q-learning (Nrs = 20). AS matches the oracle FS(k∗) in returns
and memory usage, while outperforming FS(κ) especially for long-term dependencies.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2 4 8 16 32
memory length

0.0

0.5

1.0

re
tu

rn
s

1e5

2 4 8 16 32
memory length

0.0

2.5

5.0

7.5

m
em

or
y

re
gr

et

1e5

(a) Memory scaling (MLP)

2 4 8 16 64
maze length (L + 2)

0

2

4

re
tu

rn
s

×105

(b) Total rewards (MLP) (c) Architecture agnostic

Figure 3: Episodic Passive-TMaze with PPO (Nrs = 10). AS retains critical cues despite smaller
memory, achieving performance close to FS(k∗) and much better than FS(κ) irrespective of memory
length, maze length, and sequence model. (a) and (c) are respectively trained on mazes with random
lengths in [2, 18] and [2, 16] per episode.

0 5
steps 1e5

0.0

0.5

1.0

re
tu

rn
s

(a) XorMaze (Q-Lerning)

0 5
steps 1e5

2

4

st
ep

s

1e2

(b) POPGym (PPO ↑)

0.0 0.5 1.0
steps 1e6

0

5

su
cc

es
se

s

1e2

0 5
test scrambles

0.0

0.5

1.0

su
cc

es
s

ra
te

(c) Partially Observable Rubik’s Cube (PPO)

Figure 4: Environment-agnostic results with Q-learning and PPO using an MLP policy (Nrs = 10).
The agents are trained with k = 3 for the XorMaze, k = 2 for POPGym, and k = 10 for the
Rubik’s cube. The shaded regions show 95% confidence intervals. Consistent with our other results,
we observe that AS achieves performance close to FS(k∗) (a,b) and much better than FS(κ).

varying maze and memory lengths. We observe consistent relative performance: AS significantly
outperforms FS with k < k∗ and matches the oracle k∗ baseline, regardless of architecture. Figure 3
shows that AS consistently recovers optimal rewards, with low memory regret. FS (κ) incurs high
memory regret, as it always discards the oldest observation, often the goal cue. AS actively avoids
discarding critical information, leading to competitive sample efficiency with FS(k∗) despite using
a smaller memory. This highlights that our approach is architecture-agnostic, scales well with and
complements various model classes, including attention-based and recurrence-based policies.

Generalisation to other representative domains. Finally, we investigate the performance of AS
in other tasks, using Q-Learning for the XorMaze and PPO with an MLP for the Rubik’s cube
and POPGym tasks. Similarly to the previous results, we observe in Figure 4 that AS is able to
efficiently learn what to remember to maximise rewards across all new environments. Importantly,
we also observe that AS outperforms FS in terms of generalisation to unseen task distributions in the
Passive-TMaze (Figure 26) and Rubik’s cube (Figure 4c right). This difference in generalisation
may also be attributed to the compact agent state representions learned by AS (Figure 26b).

6 CONCLUSION

We have introduced Adaptive Stacking, a general-purpose meta-algorithm for learning to manage
memory in partially observable environments. Unlike standard Frame Stacking, which blindly retains
recent observations, Adaptive Stacking allows agents to learn which observations to remember or
discard via reinforcement learning. We showed that this yields theoretical guarantees on policy
optimality under both unbiased optimization and TD-based learning, even when using a significantly
smaller memory than required for full observability. Experiments across multiple TMaze tasks
confirm that Adaptive Stacking matches the performance of oracle memory agents while using far
less memory, and substantially outperforms naive baselines under tight memory budgets. This offers
a promising path toward scalable, memory-efficient RL in large, partially observable environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Abel. A theory of abstraction in reinforcement learning. arXiv preprint arXiv:2203.00397,
2022.

David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup, and
Satinder Singh. On the expressivity of markov reward. Advances in Neural Information Processing
Systems, 34:7799–7812, 2021.

Cameron Allen, Aaron Kirtland, Ruo Yu Tao, Sam Lobel, Daniel Scott, Nicholas Petrocelli, Omer
Gottesman, Ronald Parr, Michael Littman, and George Konidaris. Mitigating partial observability
in sequential decision processes via the lambda discrepancy. Advances in Neural Information
Processing Systems, 37:62988–63028, 2024.

Quentin Anthony, Stella Biderman, and Hailey Schoelkopf. Transformer math 101, 2023.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Bram Bakker. Reinforcement learning with long short-term memory. Advances in neural information
processing systems, 14, 2001.

Jacob Beck, Kamil Ciosek, Sam Devlin, Sebastian Tschiatschek, Cheng Zhang, and Katja Hofmann.
Amrl: Aggregated memory for reinforcement learning. In International Conference on Learning
Representations, 2020.

Tristan Bester, Benjamin Rosman, Steven James, and Geraud Nangue Tasse. Counting reward
automata: Sample efficient reinforcement learning through the exploitation of reward function
structure. arXiv preprint arXiv:2312.11364, 2023.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods. IEEE Transactions on Neural Networks and Learning Systems,
2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment for
openai gym. https://github.com/maximecb/gym-minigrid, 2018. GitHub reposi-
tory.

Alper Demir. Learning what to memorize: Using intrinsic motivation to form useful memory in
partially observable reinforcement learning. Applied Intelligence, 53(16):19074–19092, Aug 2023.
ISSN 1573-7497. doi: 10.1007/s10489-022-04328-z. URL https://doi.org/10.1007/
s10489-022-04328-z.

Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Simple agent, complex environment: Efficient
reinforcement learning with agent states. Journal of Machine Learning Research, 23(255):1–54,
2022.

Max Esslinger et al. Memory gym: A benchmark for long-term memory in reinforcement learning.
In Advances in Neural Information Processing Systems, volume 35, pp. 12345–12356, 2022.

Meire Fortunato et al. Psychlab: A psychology laboratory for deep reinforcement learning agents. In
Advances in Neural Information Processing Systems, volume 32, pp. 1637–1648, 2019.

Karl Friston. The free-energy principle: a rough guide to the brain? Trends in cognitive sciences, 13
(7):293–301, 2009.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

10

https://github.com/maximecb/gym-minigrid
https://doi.org/10.1007/s10489-022-04328-z
https://doi.org/10.1007/s10489-022-04328-z

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and Daniel Kroening.
Symbolic task inference in deep reinforcement learning. Journal of Artificial Intelligence Research,
80:1099–1137, 2024.

Matthew J Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
AAAI fall symposia, volume 45, pp. 141, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. Nature communications, 10(1):5223, 2019.

Chia-Chun Hung et al. Optimizing agent behavior over long time scales by transporting value. In
International Conference on Machine Learning, pp. 2043–2052, 2018.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward machines
for high-level task specification and decomposition in reinforcement learning. In International
Conference on Machine Learning, pp. 2107–2116. PMLR, 2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial Intelligence
Research, 73:173–208, 2022.

Khurram Javed and Richard S Sutton. The big world hypothesis and its ramifications for artificial
intelligence. In Finding the Frame: An RLC Workshop for Examining Conceptual Frameworks,
2024.

Khurram Javed, Haseeb Shah, Richard S Sutton, and Martha White. Scalable real-time recurrent
learning using columnar-constructive networks. Journal of Machine Learning Research, 24(256):
1–34, 2023.

Khurram Javed, Arsalan Sharifnassab, and Richard S Sutton. Swifttd: A fast and robust algorithm for
temporal difference learning. In Reinforcement Learning Conference, 2024.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401–1476,
2022.

Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems (NeurIPS), volume 14, pp. 1008–1014. MIT Press, 2002.

Merlijn Krale, Thiago D Simao, and Nils Jansen. Act-then-measure: reinforcement learning for
partially observable environments with active measuring. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 33, pp. 212–220, 2023.

Andrew Lampinen et al. Towards mental time travel: A hierarchical memory for reinforcement
learning agents. arXiv preprint arXiv:2112.08369, 2021.

Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a unified theory of state abstraction
for mdps. In International Symposium on Artificial Intelligence and Mathematics, AI&Math 2006,
Fort Lauderdale, Florida, USA, January 4-6, 2006, 2006. URL http://anytime.cs.umass.
edu/aimath06/proceedings/P21.pdf.

Peter Marbach and John N. Tsitsiklis. Simulation-based optimization of markov reward processes.
IEEE Transactions on Automatic Control, 46(2):191–209, 2001.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

11

http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. Popgym:
Benchmarking partially observable reinforcement learning. arXiv preprint arXiv:2303.01859,
2023.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–15, 2021.

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free rl can be a strong
baseline for many pomdps. arXiv preprint arXiv:2110.05038, 2021.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36:50429–50452, 2023.

John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map: preliminary evidence
from unit activity in the freely-moving rat. Brain research, 1971.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Ian Osband et al. Behaviour suite for reinforcement learning. In International Conference on
Learning Representations, 2020.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Vytas Pasukonis et al. Evaluating long-term memory in 3d mazes. arXiv preprint arXiv:2210.13383,
2022.

Leonid Peshkin, Nicolas Meuleau, and Leslie Pack Kaelbling. Learning policies with external
memory. In Proceedings of the Sixteenth International Conference on Machine Learning, ICML
’99, pp. 307–314, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN
1558606122.

Marco Pleines et al. Memory gym: Partially observable challenges to memory-based agents. In
International Conference on Learning Representations, 2023.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Matthew Riemer, Sharath Chandra Raparthy, Ignacio Cases, Gopeshh Subbaraj, Maximilian
Puelma Touzel, and Irina Rish. Continual learning in environments with polynomial mixing
times. Advances in Neural Information Processing Systems, 35:21961–21973, 2022.

Matthew Riemer, Khimya Khetarpal, Janarthanan Rajendran, and Sarath Chandar. Balancing context
length and mixing times for reinforcement learning at scale. Advances in Neural Information
Processing Systems, 37:80268–80302, 2024.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Noor Sajid, Philip J Ball, Thomas Parr, and Karl J Friston. Active inference: demystified and
compared. Neural computation, 33(3):674–712, 2021.

Mohammad Reza Samsami, Artem Zholus, Janarthanan Rajendran, and Sarath Chandar. Mastering
memory tasks with world models. arXiv preprint arXiv:2403.04253, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Learning without state-estimation in
partially observable markovian decision processes. In Machine Learning Proceedings 1994, pp.
284–292. Elsevier, 1994.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Erik Talvitie and Satinder Singh. Learning to make predictions in partially observable environments
without a generative model. Journal of Artificial Intelligence Research, 42:353–392, 2011.

Geraud Nangue Tasse, Devon Jarvis, Steven James, and Benjamin Rosman. Skill machines: Temporal
logic skill composition in reinforcement learning. 2024.

Manan Tomar, Amy Zhang, Roberto Calandra, Matthew E Taylor, and Joelle Pineau. Model-invariant
state abstractions for model-based reinforcement learning. arXiv preprint arXiv:2102.09850, 2021.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and Sheila
McIlraith. Learning reward machines for partially observable reinforcement learning. Advances in
neural information processing systems, 32, 2019.

Kerstin Unger, Laura Ackerman, Christopher H Chatham, Dima Amso, and David Badre. Working
memory gating mechanisms explain developmental change in rule-guided behavior. Cognition,
155:8–22, 2016.

Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. Ltl2action:
Generalizing ltl instructions for multi-task rl. In International Conference on Machine Learning,
pp. 10497–10508. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Fan Yang and Phu Nguyen. Recurrent world models facilitate policy evolution. In Advances in
Neural Information Processing Systems, volume 34, pp. 1009–1021, 2021.

Amy Zhang, Zachary C Lipton, Luis Pineda, Kamyar Azizzadenesheli, Anima Anandkumar, Laurent
Itti, Joelle Pineau, and Tommaso Furlanello. Learning causal state representations of partially
observable environments. arXiv preprint arXiv:1906.10437, 2019.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADAPTIVE STACKING ALGORITHM

Algorithm 1: Q-Learning: Adaptive Stacking
Input : discounting γ = 0.99, learning rate α = 0.01, exploration ϵ = 0, memory length k
Initialise : value function Q(s, ⟨a, i⟩) = RMAX
foreach episode do

Get initial observation x0 ∈ X
Initialise observation stack s0 ← [x0]k // e.g. s0 = [x0, x0] if k = 2
foreach timestep t = 0, 1, ..., T while episode is not done do

⟨at, it⟩ ←
{
argmax⟨a,i⟩ Q(st, ⟨a, i⟩) w.p. 1− ε

a random action w.p. ε
Execute at, get reward rt+1 and next observation xt+1

Remove observation from stack st+1 ← pop(st, it)
Push observation into stack st+1 ← push(st+1, xt+1)

Q(st, ⟨at, it⟩) α←−
(
rt+1 + γmax⟨a,i⟩ Q(st+1, ⟨a, i⟩)

)
−Q(st, ⟨at, it⟩)

goal1

goal2

start -1

1goal
color {

L=3

(a) Passive-TMaze task

goal1

goal2

start 1

-1goal
color L=3

{

(b) Active-TMaze task

2 4 6 8 10
maze length (L + 2)

0

5

10
m

in
im

al
 m

em
or

y FS (k = k *)
AS (k =)
k * /

(c) Minimal memory

250 500 750
maze length (L + 2)

0.0

0.2

0.4

0.6

0.8

1.0

op
tim

al
 v

al
ue

s FS (k = k *)
AS (k =)
Value gap

(d) Value gap (γ = 0.99)

Figure 5: TMaze grid-world environment. There are only 4 observations here, corresponding to
the color of the grid cell the agent is in: red for goal1, green for goal2, blue for the maze
junction, and grey for the maze corridor. The given goal (red or green sampled uniformly) is only
shown at the tail end of the maze, and the corridor has length L. The agent is represented by the black
dot and has four cardinal actions for navigation. (a) Passive-TMaze task. The agent starts at the tail
end of the maze. It then takes one step to the right at every time step regardless of it’s action, until the
junction location where the top and right actions achieve goal1 while the down and left actions achieve
goal2. (b) Active-TMaze task. The agent starts one step to the right of the tail end of the maze. It then
moves in the cardinal direction corresponding to its action at every time step, or stays still if the action
hits the maze walls (for example taking the up or down actions in the corridor and the right action at
the junction). (c) Minimal memory stack required when using Frame Stacking vs Adaptive Stacking
in either task. (d) The value gap between the optimal Frame Stacking values (V ∗) and Adaptive
Stacking values (V π∗

k

k) when an agent has observed then under their respective optimal policies.

B THEORETICAL RESULTS

We begin by restating the key definitions and then give precise statements and proofs for Proposition
1, Theorem 1, Theorem 2, and Theorem 3.

B.1 PRELIMINARIES AND NOTATION

Let the underlying non-Markovian environment be a k∗-order MDP over observations xt ∈ X , with
full-history value

V ∗(xt:t−k∗) = max
π

E
[∞∑
h=0

γh rt+h+1

∣∣∣ xt:t−k∗ , π
]
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

{ {
a0=right

𝑥0 a1=right a2=right a3=right

V=0 V=0V=0V=0V=0
i0=3 i1=3 i2=3 i3=3

𝑥1 𝑥2 𝑥3 𝑥4

state action

(a) Frame Stacking. At every time step, the agent pops the last observation in the memory stack in order free up
space to push the new observation into the stack.

a0=right

{ {
𝑥0 a1=right a2=right a3=right

V=1V=
𝛾3+𝛾2+𝛾1V= 𝛾

4
i0=3 i1=0 i2=0 i3=0

𝑥1 𝑥2 𝑥3 𝑥4

3
V=

𝛾3+𝛾2+𝛾1

3
V=

𝛾3+𝛾2+𝛾1

3

state action

(b) Adaptive Stacking. At every time step, the agent chooses which observation in the memory stack to pop in
order to free up space to push the new observation into the stack.

Figure 6: Illustration of Frame Stacking and Adaptive Stacking with k = 4 in the passive-TMaze
with k∗ = L+ 2 = 5. Frame Stacking eventually forgets the goal trigger when the context length is
not large enough (k < k∗), while Adaptive Stacking is able to remember the goal trigger by choosing
to forget irrelevant grey observations. In this figure, corresponds to an empty memory slot.

Under Adaptive Stacking (AS) with memory size k, the agent memory state is st = [xi1 , . . . , xik]
and its value under policy πk is

V πk

k (st) = E
[∞∑
h=0

γh rt+h+1

∣∣∣ st, πk

]
=

∑
xt:t−k∗

Pr
(
xt:t−k∗ | st, πk

)
V πk(xt:t−k∗),

where V πk(xt:t−k∗) is the full-history value of πk using Frame Stacking (FS).

We define
κ = min

{
k ∈ N : ∃π∗

k with V π∗
k(xt:t−k∗) = V ∗(xt:t−k∗) ∀ t

}
.

B.2 PROOF OF PROPOSITION 1

Proposition 1 If k = k∗, then there exists a policy π∗
k such that V π∗

k(st) = V ∗(xt:t−k∗) for all t.

Proof When k = k∗, the Adaptive Stacking agent can simply retain the last k∗ observations in order,
equivalently to Frame Stacking. Thus, no important information is discarded, and the agent can
follow an optimal full-history policy π∗

k on st = [xt, xt−1, . . . , xt−k∗]. Hence,

Pr
(
xt:t−k∗ | st, π∗

k

)
=

{
1 if st = xt:t−k∗ ,

0 otherwise,

implying V
π∗
k

k (st) = V π∗
k(st) = V π∗

k(xt:t−k∗) = V ∗(xt:t−k∗).

B.3 PROOF FOR THEOREM 1

Theorem 1 in the main paper stated that traditional RL algorithms that converge under Frame Stacking
with k ≥ k∗ also converge under Adaptive Stacking, provided they use unbiased value estimates to
learn optimal policies. We first formally state this unbiased convergence assumption:

Assumption B.1 (Unbiased Convergence) Let A be an RL algorithm that converges under Frame
Stacking with k ≥ k∗. Assume that for any memory length k ∈ N, A also converges to a k-order
policy

π∗
k(xt:t−k) = argmax

πk

V̂ πk(xt:t−k) ∀ t,

where V̂ πk(xt:t−k) is an unbiased estimator of the true return:

E
[
V̂ πk(xt:t−k)

]
= V πk(xt:t−k).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We now restate the result more formally and provide a detailed proof.

Theorem 1 Let A be an RL algorithm that satisfies Assumption B.1. Then for any k ≥ κ, A converges
to an optimal Adaptive Stacking policy π∗

k such that:

V π∗
k(xt:t−k∗) = max

π
V π(xt:t−k∗) ∀ t.

Proof Adaptive Stacking with memory size k induces a new decision processMk in which the agent
new observation is the memory state st ∈ Sk, a stack of k underlying environment observations. This
process can be treated as a POMDP, where the true underlying state is the latent history xt:t−k∗ .

By definition of κ, there exists at least one k-order policy πk with k ≥ κ that achieves the optimal
value on all underlying latent histories:

V πk(xt:t−k∗) = V ∗(xt:t−k∗) for all t.
Since πk acts on st ∈ Sk and implicitly induces a distribution over latent histories xt:t−k∗ , its value
in the induced process is as shown in Equation 2. By construction of πk, we have V πk(xt:t−k∗) =
V ∗(xt:t−k∗), so:

V πk

k (st) =
∑

xt:t−k∗

Pr(xt:t−k∗ | st, πk)V
∗(xt:t−k∗) = Ext:t−k∗ [V

∗(xt:t−k∗) | st].

This implies that the policy πk achieves the best possible value in the induced processMk given that
it is optimal over latent histories.

Now, because A uses unbiased estimates of V πk(xt:t−k) and converges to the policy that maximizes
expected return under such estimates (by Assumption B.1), and since k ≥ κ implies such a policy
exists, it follows that A converges to π∗

k that satisfies:

V π∗
k(xt:t−k∗) = V ∗(xt:t−k∗) ∀t.

The critical observation from Theorem 1 is that convergence to an optimal policy is not limited to
k ≥ k∗, but to any k ≥ κ, where κ is the minimal sufficient memory required to disambiguate
value-relevant latent histories. The key assumption for this result is that A optimizes return estimates
that are unbiased with respect to the true value under the full history, for example as achieved by
Monte Carlo policy gradient methods like REINFORCE (Sutton & Barto, 2018).

We emphasize that this result does not extend to TD-based methods (which use biased targets), and is
handled separately in Section 4.4 of the main paper.

B.4 CONVERGENCE OF EPISODIC MONTE CARLO LEARNING FOR OPTIMAL κ-MEMORY
POLICIES

Corollary 2 (Convergence of Episodic Monte Carlo Policy Gradient) Consider the episodic set-
ting with finite horizon T <∞. Let policies be softmax-linear:

πθ(b | s) =
exp(θ⊤ϕ(s, b))∑
b′ exp(θ

⊤ϕ(s, b′))
,

where ϕ(s, b) ∈ Rd are bounded features and parameter vector θ is constrained to a compact convex
set Θ. Let the learning algorithm A be Monte Carlo policy-gradient (REINFORCE) with entropy
regularization (weight β > 0) and projected gradient updates (projection onto Θ). Assume the
entropy coefficient β may be annealed to zero slowly so as to ensure persistent exploration during
learning.

Then, under Assumption B.1, for any memory size k ≥ κ Adaptive Stacking trained with A converges
to an optimal κ-sufficient Adaptive Stacking policy π∗

k (i.e. it attains the full-history optimal value
V ∗ on all latent histories).

Proof We show that REINFORCE with the stated parameterization satisfies the unbiasedness
requirement of Assumption B.1 when estimating policy returns on the induced stack-processMk.
Once unbiasedness is shown, Theorem 1 implies the corollary.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1. Monte Carlo returns are unbiased in episodic setting. Fix a stack-policy πk and an initial
stack st. Let τ = (st, bt, rt+1, . . . , st+T) denote a finite-horizon trajectory generated by executing
πk in the true environment. The Monte Carlo return

V̂ πk(st) =

T−1∑
n=0

γnrt+n+1

is an unbiased estimator of the true expected return

V πk

k (st) = Eτ∼πk

[T−1∑
n=0

γnrt+n+1 | st
]
,

because expectation and sample-average commute (law of the unconscious statistician). This unbi-
asedness is purely a sampling fact and does not require the augmented-state to be Markov; it only
requires that rollouts are generated according to the policy πk and the true environment dynamics.

2. REINFORCE gradient estimator uses unbiased returns. The REINFORCE policy-gradient
estimator uses samples V̂ πk(st) (possibly with a baseline) multiplied by ∇θ log πθ(bt | st). Since
V̂ πk(st) is an unbiased estimator of the true return, the REINFORCE estimator is an unbiased
estimator of the true policy gradient:

E
[
∇θ log πθ(bt | st) V̂ πk(st)

]
= ∇θJ(θ),

where J(θ) is the (entropy-regularized) episodic objective. The softmax-linear parameterization
with bounded ϕ and compact Θ ensures ∇θ log πθ is bounded; projection onto Θ guarantees iterates
remain bounded.

3. Exploration via entropy regularization. The entropy regularizer (with slowly annealed β)
ensures the policy stays sufficiently stochastic during learning so that the sampling procedure
visits the relevant stack-states and joint actions; this condition is part of the standard assumptions
required for policy-gradient convergence in the episodic Monte Carlo setting (and is compatible with
Assumption B.1).

4. Apply Theorem 1. Because REINFORCE provides unbiased estimates V̂ πk(st) of V πk

k (st)
for any stack-policy πk, the Unbiased Convergence Assumption is satisfied. Hence by Theorem 1,
when k ≥ κ the algorithm A converges to an optimal Adaptive Stacking policy π∗

k achieving the
full-history optimum V ∗. This completes the proof.

B.5 CONVERGENCE OF MEMORY-AUGMENTED MONTE CARLO POLICY GRADIENT IN
UNICHAIN AVERAGE-REWARD NMDPS

Corollary 3 (Convergence of Average-Reward Monte Carlo Policy Gradient) Consider the in-
finite horizon unichain average-reward setting: assume every stationary policy on the induced
stack-processMk yields a unichain Markov chain (single recurrent class) and the chain is aperiodic.
Let the policy class be softmax-linear πθ(b | s) as in Corollary 2 with bounded features and θ ∈ Θ
compact. Use entropy regularization (weight β > 0) and projected updates. Let A be Monte Carlo
policy-gradient that estimates the average reward via long trajectory averages (or regeneration-based
sampling) of length L on the order of the chain’s mixing time; assume L is chosen (or scheduled) so
that estimators are asymptotically unbiased in the SA sense described below.

Then, under Assumption B.1 and the unichain assumption above, for any k ≥ κ Adaptive Stacking
trained with A converges (in the average-reward sense) to an entropy-regularized optimal Adaptive
Stacking policy π∗

k maximizing long-run average reward.

Proof We organize the proof into the following steps: (i) show how to construct asymptotically
unbiased average-reward estimators using long trajectories or regenerative sampling under the
unichain assumption, (ii) note that with those estimators A satisfies the Unbiased Convergence
Assumption, and (iii) apply Theorem 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1. Unichain ergodicity ⇒ time-average convergence. Under the unichain and aperiodicity
assumption for the induced stack-processMk, the Markov chain induced by any stationary policy πk

has a unique stationary distribution µπk . By the ergodic theorem for Markov chains, for a single long
trajectory (s0, b0, r1, s1, b1, r2, . . .) generated under πk we have almost surely

1

L

L−1∑
t=0

rt+1
a.s.−−−−→

L→∞
ρ(πk) =

∑
s

µπk(s)
∑
b

πk(b | s)r(s, b),

the long-run average reward (gain). Thus the empirical average over a sufficiently long trajectory is
an asymptotically unbiased estimator of ρ(πk). Alternatively, if regenerative sampling is available
(returns to a recurrent state), one can form i.i.d. regenerative cycles and obtain unbiased cycle-
averages; both approaches are standard ways to estimate average reward unbiasedly on unichain
chains.

2. Constructing an (approximately) unbiased differential-return estimator for gradients.
Policy-gradient formulas in the average-reward setting require estimating ∇θρ(θ), which can be
written in terms of stationary expectations involving the differential value function (Poisson solution).
A practical Monte Carlo estimator uses centered finite-horizon partial returns with empirical centering
by the block average, e.g. for a block of length L:

Ût =

L−1−t∑
k=0

(
rt+k+1 − r̄(L)

)
, r̄(L) :=

1

L

L−1∑
k=0

rt+k+1.

Under unichain ergodicity, as L→∞ these centered finite-horizon returns yield consistent (asymp-
totically unbiased) estimators of the differential/action-value Qπk

diff that appears in the average-reward
policy-gradient identity. See standard references on average-reward policy gradient estimators (e.g.,
Konda & Tsitsiklis (2002), Marbach & Tsitsiklis (2001)) for the detailed derivation.

3. Practical sampling schedule and asymptotic unbiasedness. To use these estimators in stochas-
tic approximation, one chooses a schedule of block lengths Ln and batch sizes Nn that grows so that
the estimator bias due to finite Ln is controlled relative to the step sizes αn (standard SA condition:∑

n αnεn < ∞ where εn is the bias at iteration n). Concretely, if the chain mixes geometrically
with mixing time τmix (uniform in a neighbourhood of the iterates), choosing Ln = C log(1/αn)
(or larger) plus sufficient burn-in ensures the bias εn = O(αn) or better, which is summable when
multiplied by αn. Under the unichain assumption this scheduling is feasible in principle; in practice
one picks Ln large enough (or uses regenerative sampling) to make bias negligible.

4. Boundedness, exploration and gradient boundedness. With softmax-linear parameterization
and bounded features, ∇θ log πθ is uniformly bounded on the compact parameter set Θ. Entropy
regularization keeps policies stochastic during learning and avoids vanishing exploration. Projection
of θ onto Θ ensures iterates stay bounded.

5. Satisfying the Unbiased Convergence Assumption. Putting (1)–(4) together, the Monte Carlo
average-reward gradient estimator (constructed from long blocks or regenerative cycles) yields
asymptotically unbiased estimates of the average-reward policy gradient; equivalently one can
produce (asymptotically) unbiased estimates V̂ πk of the relevant value-like quantities required by A.
Hence the Unbiased Convergence Assumption (Assumption B.1) is satisfied in the asymptotic sense
required for SA convergence.

6. Apply Theorem 1. By Assumption B.1, any algorithm that converges under Frame Stacking
with unbiased value estimates will converge to the optimal k-order policy. Therefore, with the
asymptotically unbiased average-reward estimates constructed above and k ≥ κ, A converges to an
Adaptive Stacking policy π∗

k that maximizes the long-run average reward ρ(π). This completes the
proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Remarks

• The episodic corollary is straightforward because finite-horizon Monte Carlo returns are exactly
unbiased. The linear softmax parameterization + compactness + entropy + projection assumptions
are standard to ensure bounded gradients and persistent exploration, and to make the SA theory
applicable.

• The unichain average-reward corollary requires the extra ergodicity/unichain assumption to justify
long-run averages as consistent estimators of ρ(π) (or regenerative sampling to provide unbiased
cycle averages). It also requires an explicit sampling schedule (block lengths Ln growing appropri-
ately) so that estimator bias is negligible in the SA limit; I sketched the standard way to satisfy this
condition (pick blocks scaling with mixing time / log(1/αn)).

• In both corollaries the key bridge to Theorem 1 is verifying that the practical Monte Carlo estimators
produce (asymptotically) unbiased estimates of the target value quantities. Once that is established,
the theorem implies convergence under Adaptive Stacking for k ≥ κ.

B.6 COUNTER EXAMPLE: COMPRESSION BEYOND VALUE EQUIVALENCE

Consider the Passive-TMaze example with corridor length L = 3, so that k∗ = L+ 2 = 5. Suppose
the agent uses an Adaptive Stacking policy with memory size k = 2. The optimal adaptive policy
π∗
2 , illustrated in Figure 6, learns to retain only the green goal indicator and discard irrelevant grey

observations. At timestep t = 1, the memory state is st = . However, multiple latent histories
are compatible with this state: xt:t−k∗ ∈ { , , } . This gives:

V
π∗
2

2 () =
1

3
V π∗

2 ()+
1

3
V π∗

2 ()+
1

3
V π∗

2 () =
1

3
(γ3+ γ2+ γ).

However, the actual latent history at time t = 1 is xt:t−k∗ = , and the true optimal value
is: V ∗(xt:t−k∗) = γ3. This induces a value gap |V ∗(xt:t−k∗)− V

π∗
2

2 (st)| > 0, but π∗
2 is still optimal

since V π∗
2 (xt:t−k∗) = V ∗(xt:t−k∗), even though st is not a sufficient statistic of the k∗-history

xt:t−k∗ . Figure 7d shows the value gap for varying T-Maze lengths. This illustrates a crucial point:

Remark 1 Uncertainty in history may harm value expectations, |V ∗(xt:t−k∗)− V
π∗
k

k (st)| > 0, but
it does not necessarily harm policy optimality as long as the uncertain differences are irrelevant for
optimal decision making: V ∗(xt:t−k∗) = V π∗

k(xt:t−k∗).

In the TMaze example, discarding some grey cells does not affect the correct action at the junction,
so the policy is optimal even if the value is slightly pessimistic. This leads us to the following notion
of a minimal sufficient memory length:

Definition 2 Define κ to be the smallest memory length such that there exists a policy π∗
κ satisfying

V π∗
k(xt:t−k∗) = V ∗(xt:t−k∗) for all t.

B.7 PROOF FOR THEOREM 2

We now prove that if two policies have an ordering over value functions in the induced memory
POMDPMk, and the memory representation is value-consistent, then the same ordering holds over
the original latent histories.

Assumption B.2 (Value-Consistency) Let πk be an Adaptive Stacking policy over memory states
st ∈ Sk. We say the memory representation is value-consistent with respect to πk if for any st ∈ Sk
and any two latent histories xt:t−k∗ , x′

t:t−k∗ such that

Pr(xt:t−k∗ | st, πk) > 0 and Pr(x′
t:t−k∗ | st, πk) > 0,

it holds that:
V πk(xt:t−k∗) = V πk(x′

t:t−k∗).

Theorem 4 (Partial-order Preserving) Let k ∈ N and let π1
k, π

2
k be two policies under Adaptive

Stacking such that for all memory states st ∈ Sk:

V
π1
k

k (st) ≤ V
π2
k

k (st).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

If both policies induce value-consistent memory representations (Assumption B.2), then for all latent
histories xt:t−k∗ :

V π1
k(xt:t−k∗) ≤ V π2

k(xt:t−k∗).

Proof By Equation 2, the expected return under π1
k in the induced memory process is:

V
πi
k

k (st) =
∑

xt:t−k∗

Pr(xt:t−k∗ | st, πi
k)V

πi
k(xt:t−k∗).

Under Assumption B.2, for each i ∈ {1, 2}, all latent histories xt:t−k∗ consistent with a memory
state st have equal value:

V πi
k(xt:t−k∗) = ci(st), a constant.

Hence, the above expectation reduces to:

V
πi
k

k (st) = ci(st).

Therefore, the ordering assumption implies:

c1(st) = V π1
k(xt:t−k∗) ≤ V π2

k(xt:t−k∗) = c2(st),

for all xt:t−k∗ such that Pr(xt:t−k∗ | st, πi
k) > 0.

Thus, the partial ordering V
π1
k

k (st) ≤ V
π2
k

k (st) implies:

V π1
k(xt:t−k∗) ≤ V π2

k(xt:t−k∗) for all xt:t−k∗ .

B.8 PROOF FOR THEOREM 3

We now prove that Temporal Difference (TD) learning converges to the optimal policy under Adaptive
Stacking, provided that k ≥ κ and the memory representation is value-consistent.

Theorem 5 Let k ≥ κ, and suppose Q-learning under standard learning assumptions (Robbins &
Monro, 1951) is applied to the induced decision processMk under a fixed exploratory policy that
ensures persistent exploration. If policies inMk are value-consitent, then:

1. The Q-function Q(s, a, i) converges with probability 1 to a fixed point Q̂(s, a, i).

2. The greedy policy with respect to Q̂ is optimal. That is, π∗
k(st) ∈ argmax(a,i) Q̂(st, a, i)

achieves the optimal value V ∗(xt:t−k∗).

Proof Since the agent operates over the induced processMk, its effective state is st ∈ Sk. The
Q-learning update rule is:

Qt+1(st, at, it)← Qt(st, at, it) + αt

[
rt+1 + γ max

(a′,i′)
Qt(st+1, a

′, i′)−Qt(st, at, it)

]
,

where st+1 = push(pop(st, it), xt+1) is the updated memory stack, and αt is a learning rate satisfy-
ing the standard conditions: ∑

t

αt =∞,
∑
t

α2
t <∞.

Under the assumption that all (s, a, i) tuples are visited infinitely often, and rewards are bounded,
Theorem 2 of Singh et al. (1994) guarantees that Q(s, a, i) converges to the fixed point Q̂(s, a, i).

Since k ≥ κ, by definition of κ, there exists a policy π∗
k such that for all latent histories xt:t−k∗ :

V π∗
k(xt:t−k∗) = V ∗(xt:t−k∗).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Because memory length k is sufficient to represent all task-relevant distinctions (the disambiguation
required for value prediction), we know from Theorem 2 that under the value-consistency assumption,
the policy π∗

k that is greedy with respect to Q̂ in the induced processMk will also be optimal in the
underlying latent space:

π∗
k(st) ∈ argmax

(a,i)
Q̂(st, a, i) ⇒ V π∗

k(xt:t−k∗) = V ∗(xt:t−k∗) ∀ t.

Thus, Q-learning in the adaptive stacking process not only converges, but yields an optimal policy
over the original environment when k ≥ κ.

C VALUE-CONSISTENCY ASSUMPTION IN POPULAR BENCHMARKS

In this section, we analyze common RL benchmarks to determine when our Value-Consistency (VC)
Assumption 4.1 holds. Recall that this assumption requires that all full histories xt:t−k∗ mapping to
the same agent memory state st under policy πk must share the same expected return V πk(xt:t−k∗).
This often holds in goal-reaching or sparse-reward settings, but can be violated in tasks with dense or
history-sensitive rewards (such as unobservable reward machines).

Table 2 summarizes our analysis, and we provide justification for each task below.

T-Maze (Classic) (Bakker, 2001): The agent observes a goal cue at the start, traverses a corridor,
and makes a binary decision at a junction. Here, k∗ = T = 70, since full observability only comes
from the initial and final steps. However, κ = 2 suffices: the initial cue and position are enough to
act optimally. VC holds since all consistent histories that lead to the same stack (for example, seeing
“green”) yield the same value.

TMaze Long (Beck et al., 2020): Structurally identical to Classic T-Maze but with longer horizon
T = 100. Again, k∗ = T , κ = 2, and VC holds for the same reason.

Passive Visual Match (Hung et al., 2018): The goal color is observed passively at the start.
The main reward depends only on whether the agent chooses the matching color at the end (plus
intermediate rewards from collecting apples). k∗ = T = 600, but κ = T . VC holds since the goal
cue and nearby apples fully determines return.

MiniGrid-Memory (Chevalier-Boisvert et al., 2018): To plan efficiently, the agent must memorize
a cue seen early and traverse a grid. The worst-case k∗ ≤ 51 and κ = 2 for simple cue-based planning.
VC holds because position and cue suffice. In practice, if the position is not given, it can be estimated
using path intergration.

Memory Length (Osband et al., 2020): Observations are i.i.d. at each step. k∗ = T = 100, but
optimality requires only κ = 2. VC holds since memory state compresses all relevant statistics.

Memory Maze (Pasukonis et al., 2022): Agent must collect colored balls in order. The reward
depends only on the current pickup. k∗ = Long, κ = Long. VC holds since rewards depend only on
present state and target.

HeavenHell (Esslinger et al., 2022): The agent visits an oracle early in the episode which defines
the correct terminal target. The memory requirement is k∗ = T = 20, but once the cue is retained,
κ = 2 ensures optimality. VC holds because different paths to the same cue yield identical future
returns.

Memory Cards (Esslinger et al., 2022): The agent must match cards based on values seen in
earlier steps. k∗ = 2, but κ = Long due to potential card permutations. VC holds because matching
decisions are memory-conditional, not trajectory-sensitive.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Task T k∗ κ Assumption 4.1 (VC) Holds?
T-Maze (Classic)
(Bakker, 2001)

70 70 2 ✓: Only goal cue matters

TMaze Long
(Beck et al., 2020)

100 100 2 ✓: Only goal cue matters

Passive Visual Match
(Hung et al., 2018)

600 T Long ✓: Only goal cue and apples affects return

MiniGrid-Memory
(Chevalier-Boisvert
et al., 2018)

1445 ≤ 51 2 ✓: Position suffices after goal cue

Memory Length
(Osband et al., 2020)

100 T 2 ✓: Observation i.i.d. per timestep

Memory Maze
(Pasukonis et al.,
2022)

4000 Long Long ✓: Only current transition affect rewards

PsychLab
(Fortunato et al.,
2019)

600 T Long ✓: Passive episodic recall

HeavenHell
(Esslinger et al.,
2022)

20 T 2 ✓: Only goal cue matters

Memory Cards
(Esslinger et al.,
2022)

50 2 Long ✓: Only current card pairs affect rewards

Ballet
(Lampinen et al.,
2021)

1024 ≥ 464 ≥ 464 ✓: Rewards unaffected by previous actions

Mortar Mayhem
(Pleines et al., 2023)

135 T T ✓: Rewards unaffected by previous actions

Numpad
(Parisotto et al., 2020)

500 T N2 ✓: Rewards unaffected by previous actions

Reacher-POMDP
(Ni et al., 2021)

50 Long 2 ✓: Only goal cue matters

Repeat First
(Morad et al., 2023)

832 2 2 ✓: Only previous optimal action matters

Autoencode
(Morad et al., 2023)

312 312 156 ✓: Rewards unaffected by previous actions

POPGym CartPole
(Morad et al., 2023)

600 2 2 ✓: Only previous velocity matters

Reward Machines
(Icarte et al., 2022)

1000 T T ✗: Rewards affected by previous actions

Passive T-Maze
(Episodic) (Ours)

64 64 2 ✓: Only goal cue matters

Passive T-Maze
(Continual) (Ours)

106 64 2 ✓: Only goal cue matters

Active T-Maze
(Episodic) (Ours)

100 ∞ 2 ✓: Only goal cue matters

Active T-Maze
(Continual) (Ours)

106 ∞ 2 ✓: Only goal cue matters

XorMaze (Ours) 100 ∞ 3 ✓: Only goal cues matters
Rubik’s Cube
textbf(Ours)

100 ∞ ≥ 6 ✓: Episodic with a single goal and sparse rewards

Table 2: Evaluation of Value-Consistency (VC) assumption across popular RL benchmark tasks. T is
the maximum episode horizon or total training steps (for continual settings). k∗ is the memory length
required to make the environment Markov; Long means a relatively large proportion of the episode
must be remembered to make optimal value predictions. κ is the minimal memory length required to
achieve optimal return. Finally, VC Holds states whether Value-Consistency is satisfied.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

PsychLab (Fortunato et al., 2019): Involves passive image memorization, typically from the
beginning of an episode. k∗ = T = 600, but memorizing the image is sufficient (κ = Long). VC
holds due to deterministic mapping from memory state to return.

Ballet (Lampinen et al., 2021): Agent observes sequences of dances and selects a correct dancer.
Though the reward is episodic, the agent actions occur only post-observation. k∗ ≥ 464, κ ≥ 464.
VC holds because the same memory state determines the post-dance plan.

Mortar Mayhem (Pleines et al., 2023): Memorizing a command sequence and executing it.
k∗ = T = 135, κ = T . VC holds due to value depending solely on correctly recalling the command
sequence.

Numpad (Parisotto et al., 2020): Agent must press a sequence of pads. k∗ = T = 500, κ = N2.
VC holds: as long as the memory contains the correct order, the actual transition path is irrelevant.

Reacher-POMDP (Yang & Nguyen, 2021): The goal is revealed only at the first step, so k∗ must
capture that first observation. Any policy only needs to retain that goal and act accordingly, so κ = 2
suffices. VC holds since differing histories that preserve the same goal state will yield the same value
estimate.

Repeat First (Morad et al., 2023): Rewards depend on repeating the first action. k∗ = T , but
κ = 2 suffices by retaining just the first action. VC holds since the memory state is value-determining.

Autoencode (Morad et al., 2023): Agent reproduces observed sequence in reverse. k∗ = 311,
κ = 156 (half the trajectory). VC holds since the value depends only on accuracy of reproduction.

POPGym CartPole (Morad et al., 2023): We consider the VelocityOnlyCartPoleHard task in this
benchmark. This environment occludes the velocity component, but full observability is achieved
after two steps (velocity and estimated position). Thus, k∗ = 2 = κ. VC holds as only immediate
transitions affect return.

Our Passive and Active T-Maze (in Episodic and Continual settings): In all our TMaze variants,
the goal cue is shown at the tail of the maze and the return depends only on whether the goal is
reached. In the continual setting, the memory state is unchanged after the agent reaches a goal (unlike
the episodic setting where the memory is reset). Even in the training loop, there is no oracle done
signal and the agent is automatically placed back into the starting position once it reaches a goal.
Hence the agent here needs to learn to replace the goal cue it previously memorized. k∗ matches the
maze traversal length, and κ = 2. VC holds robustly, even under stochastic start states or corridor
lengths.

Our XorMaze: This environment is similar to the TMaze but with two corridors: one vertical and
one horizontal. These corridors are crossed in the middle (forming the + symbol), and the agent
starts at their intersection (also the junction location). The horizontal and vertical corners are a single
step from the center. At the corners of the horizontal corridor, there are goal cues randomly choosen
between red and green. In the vertical axis, we have the red goal (top) and green goal (bottom). The
task is to observe the values in the horizontal axis, and the agent has to go to the cell in the vertical
axis that is the result of an XOR. For example, if the horizontal values are red and green it should go
to the bottom location, but if they are red and red (or green and green) it should go to the top location.
Hence κ = 3 and k∗ = 5. VC holds here similarly to the TMaze.

Our Rubik’s Cube: The 2x2x2 Rubik’s cube task where the agent only sees one of the six faces at
a time. Hence the state is a 24 dimensional vector and the agent only observes a 4 dimensional slice
of it. The agent has 12 default actions for rotating the cube, plus 4 additional actions for 90 degrees
rotations of the camera across each 3D axis (to see an adjacent face). The goal of the agent is to
start from a randomly scrambled cube and reach the solved state (the unique correct colour for each
face). Hence κ ≥ 6 and k∗ =∞ (since the transitions depend on an arbitrarily long history of past
actions). VC holds here since the environment is deterministic, goal reaching with sparse rewards (1
for reaching the goal and zero otherwise), and there’s a single goal state.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.1 UNOBSERVABLE REWARD MACHINES COUNTER-EXAMPLE

While the Value-Consistency Assumption holds in many benchmark settings (Table 2), it fails in
environments where the true reward function depends not just on environment observations, but on
dynamic latent trajectory properties such as event sequences which change based on the agent policy.
This is most notably the case in environments that use reward machines (Icarte et al., 2018; Vaezipoor
et al., 2021; Icarte et al., 2022; Tasse et al., 2024) – finite state automata over temporal logic formulae
that determine rewards or sub-goals based on the sequence of states visited.

For example, consider the task "Deliver coffee to the office without breaking decorations" in a the
office grid-world environment (Icarte et al., 2022). The task is encoded as a reward machine over
three atomic propositions: pcoffee (the agent visits the coffee location), poffice (the agent visits the
office location), pdecor (the agent steps on any decoration tile). The agent starts at some initial location
and must: visit the coffee location first, then visit the office location, without ever triggering pdecor. A
reward of +1 is given only if the full trajectory satisfies the temporal formula:

(F (pcoffee ∧X(Fpoffice))) ∧ (G¬pdecor).

Why VC Fails. In the native environment, the agent’s observations are just its (x, y) location.
There is no explicit record of whether the coffee has been visited, or if a decoration tile was stepped
on. Consequently, two different trajectories can lead to the same agent observation st = (x, y) and
memory stack st = [xi1 , . . . , xik]. Yet these trajectories may differ in reward-relevant history, for
example, one might have stepped on a decoration earlier while another didn’t. Since the reward for
reaching the office depends on whether the coffee was collected and no decorations were touched in
the past, which is unobservable from st alone, the condition:

V πk(xt:t−k∗) = V πk(x′
t:t−k∗)

does not hold for histories xt:t−k∗ , x′
t:t−k∗ that lead to the same agent state st. Therefore, Assump-

tion 4.1 is violated. Other common temporal logic tasks that violate VC include:

• "Collect key A before key B, then go to door": reward depends on the order of events, not
the final state.

• "Don’t revisit any state": any policy that loops violates the reward constraint, but the current
memory may not capture visit counts.

• "Eventually visit both goal zones A and B, but never touch lava": again, whether lava was
touched can be lost under memory compression.

The VC assumption breaks because environment-level memory states st are not sufficient statistics
for the reward machine’s state. The true reward depends on a latent automaton state that evolves with
trajectory-dependent triggers. This is equivalent to acting in a cross-product MDP over (x, y)× u,
where u is the internal automaton state.

Can the Failure Be Benign? Despite the theoretical violation, practical agents can still learn to
behave correctly using Adaptive Stacking when: The reward machine state can be inferred from a
small set of key observations; The agent learns to preserve these key triggers (for example, the first
visit to coffee or decoration tiles); The failure to preserve value consistency leads to pessimistic value
estimates, but not incorrect action selection.

Hence, reward machine tasks represent a natural and important class of environments where the VC
assumption breaks due to latent trajectory-dependent semantics. This distinction is useful for future
work aiming to blend Adaptive Stacking with automaton inference, or for delineating the boundaries
of where value-consistent abstraction is theoretically sound.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS

goal1

goal2

start -1

1goal
color {

L=3

(a) TMaze

goal1

goal2

1

-1goal
color

goal
color

(b) XorMaze (c) 2x2 Rubik’s cube (d) POPGym Cartpole

Figure 7: Experimental domains. (a) There are two TMaze tasks: Passive where the agent starts on
the left tail and always moves to the right until the junction location, and Active where it starts one
step to the right of the tail and can move freely. There are only 4 observations here, corresponding to
the color of the grid cell the agent is in: red for goal1, green for goal2, blue for the maze
junction, and grey for the maze corridor. The given goal (red or green sampled uniformly) is
only shown at the tail end of the maze, and the corridor has length L. The agent is represented by the
black dot and has four cardinal actions for navigation. (b) The XorMaze has same observations and
action space as TMaze, but the agent here needs to navigate to goal1 if the left and right randomly
chosen goal colors are different, otherwise it needs to navigate to to goal2. Here κ ≤ 5 and k∗ =∞,
and hence is representative of simple domains with complex memory requirements. (c) The agent
here can only see one face of the cube at a time, and has 16 rotation actions to change the cube
configuration or camera view. Each episode here starts with N random scrambles of the cube, and
the agent needs to solve it (put the cube in the configuration shown in the picture). Here κ ≤ 100
and k∗ =∞, and hence is representative of complex domains with complex memory requirements.
(d) The Stateless VelocityOnlyCartPoleHard task from the POPGym Benchmark (Morad et al., 2023).
This enviroment is similar in memory requirements to the TMaze task with L = 0 (needing only
k = κ = k∗ = 2 memory), and hence is representative of domains that are complex in dynamics
continuous but actually simple in memory requirements.

All TMaze experiments use two variants of the T-Maze task (Passive and Active). In each variant,
we consider both continual mode—where the agent steps automatically and episodes never termi-
nate—and episodic mode—where the agent chooses navigation actions and an episode ends upon
reaching a goal. Corridor lengths L vary from 2 up to 62. At each time step the agent receives a single
categorical observation (cell color) and maintains a working memory of fixed size κ. We compare
three memory management schemes: 1. Adaptive stacking of size κ, where at each step the agent
chooses which slot to overwrite, 2. Frame stacking with k = κ (insufficient) or k = k∗ (oracle).

All agents were implemented in PyTorch and Gymnasium. Tabular Q-learning used in-memory arrays,
and PPO used Stable-Baselines3. Finally, all experiments were ran on CPU only Linux servers.

D.1 RECORDED METRICS

Every 100 environment steps we log:

1. Return: cumulative discounted reward.
2. Reward regret: V ∗(xt:t−k∗)− V π(xt:t−k∗).
3. Memory regret: fraction of steps where the goal cue is absent from the memory stack.
4. Active memory regret: steps when the goal cue is observed but not stored.
5. Passive memory regret: steps when the goal cue is in memory but then discarded.

Plots report mean and 1 standard deviation over Nrs independent seeds.

D.2 TABULAR Q-LEARNING (CONTINUAL AND EPISODIC)

We run a standard ε-greedy tabular Q-learning agent in both Passive and Active T-Maze, under
continual or episodic modes. Hyperparameters are listed in Table 3.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 3: Q-Learning hyperparameters

Parameter Value
Discount factor γ 0.99
Learning rate α 0.1
Exploration ε fixed 0.01
Total steps 106

Memory configurations FS(κ), FS(k∗), AS(κ)
Random seeds Nrs 20
Logging frequency every 100 steps

D.3 PROXIMAL POLICY OPTIMIZATION (EPISODIC AND CONTINUAL)

We evaluate PPO with MLP, CNN, LSTM and Transformer policies in both Passive and Active
T-Maze, under episodic or continual modes. Table 4 details the optimizer settings.

Table 4: PPO hyperparameters

Parameter Value

Total timesteps 106

Discount factor γ 0.99
GAE λ 0.95
Rollout length n_steps 128
Minibatch size 128
Epochs per update 10
Learning rate 3× 10−4

Clip range 0.2
Entropy coefficient 0.0 (default)
Value loss coefficient 0.5 (default)
Random seeds Nrs 10
Logging frequency every 100 steps

Each policy network receives the k-length memory stack as input and outputs two probability
distributions: one over environment actions and one over memory-slot indices. The final policy is
obtained by sampling each head independently.

MLP 1. Input: one-hot encoding of each of the k observations, concatenated into a vector. 2. Hidden
layers: three fully-connected layers of 128 units. 3. Outputs: (a) Env-action head: linear layer to |A|
logits. (b) Memory-action head: linear layer to k logits.

LSTM 1. Input embedding: each observation is embedded into a 128-dim vector. 2. Sequence
model: single-layer LSTM with 128 hidden units processes the k embeddings. 3. Readout: final
hidden state of size 128. 4. Outputs: two linear heads (as above) mapping the 128-dim readout to
action logits.

Transformer 1. Input embedding: each observation is embedded into 128-dim, plus learned
positional embeddings for positions 1, . . . , k. 2. Transformer decoder stack: two layers, model
dimension 128, 4 attention heads, feed-forward dimension 256. 3. Readout: the representation at the
final time step. 4. Outputs: two linear heads mapping the 128-dim readout to environment logits and
memory-slot logits.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E SUPPLEMENTARY EXPERIMENTS

E.1 LEARNING AREA UNDER THE CURVE BAR PLOTS

AdaptiveStack k = κ (Ours) FrameStack k = κ FrameStack k = k∗

2 4 8 16 64

maze length (L + 2)

0

1

2

3

4

5

re
tu

rn
s

×105

(a) Total rewards

2 4 8 16 64

maze length (L + 2)

0

2

4

6

8

m
em

or
y

re
gr

et

×105

(b) Memory regret

2 4 8 16 64

maze length (L + 2)

0.0

0.5

1.0

1.5

ac
ti

ve
m

em
or

y
re

gr
et

×105

(c) Active regret

2 4 8 16 64

maze length (L + 2)

0.0

0.5

1.0

1.5

2.0

pa
ss

iv
e

m
em

or
y

re
gr

et

×105

(d) Passive regret

Figure 8: Episodic Passive-TMaze with PPO and LSTM policy (Nrs = 10).

2 4 8 16 64

maze length (L + 2)

0

1

2

3

4

5

re
tu

rn
s

×105

(a) Total rewards

2 4 8 16 64

maze length (L + 2)

0.0

0.2

0.4

0.6

0.8

1.0

m
em

or
y

re
gr

et

×106

(b) Memory regret

2 4 8 16 64

maze length (L + 2)

−0.5

0.0

0.5

1.0

1.5

2.0

ac
ti

ve
m

em
or

y
re

gr
et

×105

(c) Active regret

2 4 8 16 64

maze length (L + 2)

0.0

0.5

1.0

1.5

2.0

pa
ss

iv
e

m
em

or
y

re
gr

et

×105

(d) Passive regret

Figure 9: Episodic Passive-TMaze with PPO and Transformer policy (Nrs = 10).).

2 3 4 5 6
maze length (L + 2)

0

2

4

re
tu

rn
s

×105

(a) Total rewards

2 3 4 5 6
maze length (L + 2)

0

2

4

6

8

m
em

or
y

re
gr

et

×105

(b) Memory regret

2 3 4 5 6
maze length (L + 2)

0

2

4

6

8

ac
ti

ve
m

em
or

y
re

gr
et

×104

(c) Active regret

2 3 4 5 6
maze length (L + 2)

0

1

2

3

pa
ss

iv
e

m
em

or
y

re
gr

et

×105

(d) Passive regret

Figure 10: Episodic Passive-TMaze (with corridor lengths per episode fixed to max length) with
PPO and MLP policy (Nrs = 10).

2 3 4 5 6
maze length (L + 2)

0

1

2

re
tu

rn
s

×105

(a) Total rewards

2 3 4 5 6
maze length (L + 2)

0

2

4

6

m
em

or
y

re
gr

et

×105

(b) Memory regret

2 3 4 5 6
maze length (L + 2)

0.0

0.5

1.0

ac
ti

ve
m

em
or

y
re

gr
et

×105

(c) Active regret

2 3 4 5 6
maze length (L + 2)

0

2

4

6

8

pa
ss

iv
e

m
em

or
y

re
gr

et

×104

(d) Passive regret

Figure 11: Episodic Active-TMaze (with corridor lengths per episode fixed to max length) with PPO
and MLP policy (Nrs = 10).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.2 LEARNING CURVES

AdaptiveStack k = κ (Ours) FrameStack k = κ FrameStack k = k∗

0.0 0.5 1.0
episode 1e4

4.6

4.8

5.0

re
tu

rn
s

(a) L = 0

0.0 0.5 1.0
episode 1e4

0

2

re
tu

rn
s

(b) L = 1

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

(c) L = 2

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

(d) L = 3

0.0 0.5 1.0
episode 1e4

0

1

re
tu

rn
s

(e) L = 4

Figure 12: Returns in Continual Passive-TMaze with Q-learning (Nrs = 20) for varying maze
lengths (L+ 2). AS quickly matches the oracle FS(k∗) in returns, while outperforming FS(κ).

0.0 0.5 1.0
episode 1e4

2

3

re
tu

rn
s

(a) L = 0

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

(b) L = 1

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

(c) L = 2

0.0 0.5 1.0
episode 1e4

0

2

re
tu

rn
s

1e 1

(d) L = 3

0.0 0.5 1.0
episode 1e4

5

0

5

re
tu

rn
s

1e 2

(e) L = 4

Figure 13: Returns in Continual Active-TMaze with Q-learning (Nrs = 20) for varying maze lengths
(L+ 2). AS quickly matches or exceeds the oracle FS(k∗) in returns, while outperforming FS(κ).

0.0 0.5 1.0
episode 1e4

3

4

5

re
tu

rn
s

1e1

(a) L = 0

0.0 0.5 1.0
episode 1e4

1

2

3

re
tu

rn
s

1e1

(b) L = 2

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

1e1

(c) L = 6

0.0 0.5 1.0
episode 1e4

0.0

0.5

1.0

re
tu

rn
s

1e1

(d) L = 14

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

(e) L = 62

Figure 14: Returns in Episodic Passive-TMaze using PPO with an MLP (Nrs = 10) for varying
maze lengths (L+ 2). AS is comparable to the oracle FS(k∗) in returns, while outperforming FS(κ).

0.0 0.5 1.0
episode 1e4

2

4

re
tu

rn
s

1e1

(a) L = 0

0.0 0.5 1.0
episode 1e4

1

2

3

re
tu

rn
s

1e1

(b) L = 2

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

1e1

(c) L = 6

0.0 0.5 1.0
episode 1e4

0.0

0.5

1.0

re
tu

rn
s

1e1

(d) L = 14

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

(e) L = 62

Figure 15: Returns in Episodic Passive-TMaze using PPO with an LSTM (Nrs = 10) for varying
maze lengths (L+ 2). AS is comparble to the oracle FS(k∗) in returns, while outperforming FS(κ).

0.0 0.5 1.0
episode 1e4

2

4

re
tu

rn
s

1e1

(a) L = 0

0.0 0.5 1.0
episode 1e4

1

2

3

re
tu

rn
s

1e1

(b) L = 2

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

1e1

(c) L = 6

0.0 0.5 1.0
episode 1e4

0.0

0.5

1.0

re
tu

rn
s

1e1

(d) L = 14

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

(e) L = 62

Figure 16: Returns in Episodic Passive-TMaze with PPO with an Transformer (Nrs = 10) for
varying maze lengths (L + 2). AS matches the oracle FS(k∗) in returns for smaller mazes but
struggles to learn for larger mazes, while still outperforming FS(κ, orange).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

AdaptiveStack k = κ (Ours) FrameStack k = κ FrameStack k = k∗

0.0 0.5 1.0
episode 1e4

2

4
re

tu
rn

s
1e1

(a) L = 0

0.0 0.5 1.0
episode 1e4

0

2

re
tu

rn
s

1e1

(b) L = 1

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

1e1

(c) L = 2

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

1e1

(d) L = 3

0.0 0.5 1.0
episode 1e4

0

1

re
tu

rn
s

1e1

(e) L = 4

Figure 17: Returns in Episodic Passive-TMaze using PPO with an MLP (Nrs = 10) for varying
maze lengths (L+ 2). The corridor lengths per episode fixed to max length. AS quickly matches the
oracle FS(k∗) in returns, while outperforming FS(κ, orange) especially for long-term dependencies.

0.0 0.5 1.0
episode 1e4

0

2

re
tu

rn
s

1e1

(a) L = 0

0.0 0.5 1.0
episode 1e4

0

1

2

re
tu

rn
s

1e1

(b) L = 1

0.0 0.5 1.0
episode 1e4

0

1
re

tu
rn

s

1e1

(c) L = 2

0.0 0.5 1.0
episode 1e4

0

1

re
tu

rn
s

1e1

(d) L = 3

0.0 0.5 1.0
episode 1e4

0

5

re
tu

rn
s

(e) L = 4

Figure 18: Returns in Episodic Active-TMaze with PPO with an MLP (Nrs = 10) for varying maze
lengths (L+ 2). The corridor lengths per episode fixed to max length. AS quickly matches the oracle
FS(k∗) in returns, while outperforming FS(κ, orange).

E.3 EVALUATING LEARNED POLICIES

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

31.54 31.54 31.54 25.56 18.12

0.00 20.80 20.80 20.80 20.70

0.00 15.61 15.61 15.61 15.52

0.00 12.43 12.43 12.43 12.33

0.00 10.06 10.06 10.06 9.97

AdaptiveStack κ (Ours)

0

10

20

30

re
tu

rn
s

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

31.54 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

FrameStack κ

0

10

20

30

re
tu

rn
s

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

31.54 0.00 0.00 0.00 0.00

0.00 20.80 0.00 0.00 0.00

0.00 0.00 15.61 0.00 0.00

0.00 0.00 0.00 12.43 0.00

0.00 0.00 0.00 0.00 10.06

FrameStack k∗

0

10

20

30

re
tu

rn
s

Figure 19: Generalisation in the continual Passive-TMaze with Q-learning (Nrs = 20). After
training for 1 million steps, each agent is restarted at s0 and tested for 100 additional steps in varying
maze lengths. We show results averaged over the 20 training runs. We observe that AS leads to
significantly better generalisation than FS(κ) and even the oracle FS(k∗), since it explicitly learns to
remember only the observations that are relevant for decision-making.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

20.74 10.30 2.06 0.05 -0.05

0.00 15.61 13.00 0.00 0.00

0.00 12.43 10.34 0.00 0.00

0.00 10.06 8.47 0.00 0.00

0.00 8.68 7.18 0.00 0.00

AdaptiveStack κ (Ours)

0

5

10

15

20

re
tu

rn
s

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

20.72 -0.05 0.05 0.00 0.00

0.00 0.00 0.03 0.00 0.09

0.00 0.00 0.08 0.00 0.00

0.00 0.00 0.06 0.00 0.00

0.00 0.00 0.08 0.00 0.00

FrameStack κ

0

5

10

15

20

re
tu

rn
s

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

20.72 0.00 0.00 -0.01 0.00

0.00 15.07 1.55 1.14 -0.95

0.00 0.00 7.39 2.28 0.20

0.00 0.00 0.04 0.81 0.00

0.00 0.00 -0.02 -0.20 0.00

FrameStack k∗

0

5

10

15

20

re
tu

rn
s

Figure 20: Generalisation in the continual Active-TMaze with Q-learning (Nrs = 20). We observe
that when an agent using AS is able to successfully reach the correct goals during training, it has
significantly better generalisation than even one using the oracle FS(k∗). Note that policies with
success rates in [0 0.5] can have returns of 0 since the rewards are non-zero only for goal transitions.

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.99 0.59

0.58 0.97 0.97 0.78 0.58

0.56 0.93 0.93 0.75 0.56

0.52 0.86 0.86 0.69 0.52

0.32 0.53 0.53 0.42 0.32

AdaptiveStack κ (Ours)

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.99 0.40

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

FrameStack κ

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.99 0.99

0.00 0.97 0.97 0.97 0.78

0.00 0.00 0.93 0.93 0.84

0.00 0.00 0.00 0.86 0.69

0.00 0.00 0.00 0.00 0.27

FrameStack k∗

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

Figure 21: Generalisation in the episodic Passive-TMaze with PPO and MLP policy (Nrs = 10).
After training for 1 million steps, each agent is tested for 2 additional episodes (for each goal color) in
varying maze lengths (the corridor length in each testing episode is fixed to the max length). We show
results averaged over the 10 training runs. We observe that the random corridor lengths during training
leads to consistently good in-distribution generalisation (upper-diagonal), but AS still generally leads
to better out-of-distribution generalisation (lower-diagonal) than even the oracle FS(k∗).

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.99 0.89

0.00 0.97 0.97 0.97 0.87

0.00 0.93 0.93 0.93 0.84

0.00 0.86 0.86 0.86 0.77

0.00 0.53 0.53 0.53 0.48

AdaptiveStack κ (Ours)

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.89 0.10

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

FrameStack κ

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.99 0.69

0.00 0.97 0.97 0.97 0.68

0.00 0.00 0.93 0.93 0.65

0.00 0.00 0.00 0.86 0.60

0.00 0.00 0.00 0.00 0.48

FrameStack k∗

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

Figure 22: Generalisation in the episodic Passive-TMaze with PPO and LSTM policy (Nrs = 10).
We observe similar results as Figure 21.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.89 0.28

0.19 0.97 0.97 0.87 0.28

0.19 0.93 0.93 0.84 0.27

0.17 0.86 0.86 0.77 0.25

0.11 0.53 0.53 0.48 0.15

AdaptiveStack κ (Ours)

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.99 0.33

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

FrameStack κ

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 4 8 16 64
train maze length (L + 2)

2
4

8
16

64
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.99 0.40

0.00 0.97 0.97 0.97 0.39

0.00 0.00 0.93 0.93 0.37

0.00 0.00 0.00 0.86 0.43

0.00 0.00 0.00 0.00 0.27

FrameStack k∗

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

Figure 23: Generalisation in the episodic Passive-TMaze with PPO and Transformer policy (Nrs =
10). We observe similar results as Figure 21.

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.99 0.99 0.79 0.99

0.98 0.98 0.98 0.98 0.98

0.97 0.97 0.97 0.97 0.97

0.96 0.96 0.96 0.96 0.96

0.95 0.95 0.95 0.95 0.95

AdaptiveStack κ (Ours)

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 0.40 0.40 0.00 0.20

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

FrameStack κ

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

0.99 -0.59 0.20 0.59 0.00

0.00 0.98 -0.39 0.39 0.00

0.00 0.00 0.97 0.00 -0.19

0.00 0.00 0.00 0.96 0.00

0.00 0.00 0.00 0.00 0.95

FrameStack k∗

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

Figure 24: Generalisation in the episodic Passive-TMaze (with corridor lengths per episode fixed
to max length) with PPO and MLP policy (Nrs = 10). We observe better results for AS and worse
results for FS compared to Figure 21. This is potentially because AS generalises mainly from
explicitly learning which observations to keep in memory, hence training with fixed corridor lengths
simply leads to faster convergence. In contrast, FS mainly relies on the random corridor lengths
during training to generalise.

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

0.98 0.00 0.00 0.20 0.19

0.10 0.97 0.97 0.97 0.58

0.10 0.67 0.96 0.96 0.57

0.10 0.67 0.95 0.95 0.57

0.09 0.66 0.94 0.94 0.56

AdaptiveStack κ (Ours)

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

0.88 0.00 0.00 0.00 0.00

0.00 0.10 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

FrameStack κ

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

2 3 4 5 6
train maze length (L + 2)

2
3

4
5

6
te

st
m

az
e

le
ng

th
(L

+
2)

0.88 0.19 -0.10 -0.19 -0.00

0.00 0.97 0.38 0.18 -0.20

0.00 0.10 0.86 0.28 -0.00

0.00 0.00 0.10 0.85 -0.00

0.00 0.00 0.00 0.10 0.56

FrameStack k∗

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

Figure 25: Generalisation in the episodic Active-TMaze (with corridor lengths per episode fixed
to max length) with PPO and MLP policy (Nrs = 10). We observe similar results as Figure 24,
except for maze lengths of 2. This difference is potentially because maze length 2 has no corridor
() observation, which makes it difficult to generalise the correct navigation actions to (and from) it.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

2 4 8 16 32
train memory length (L + 2)

2
4

8
16

32
te

st
m

az
e

le
ng

th
(L

+
2) 1.00

± 0.00
1.00

± 0.00
1.00

± 0.00
1.00

± 0.00
1.00

± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

AdaptiveStack (Ours)

0.0

0.2

0.4

0.6

0.8

1.0

op
ti

m
al

it
y

2 4 8 16 32
train memory length (L + 2)

2
4

8
16

32
te

st
m

az
e

le
ng

th
(L

+
2) 1.00

± 0.00
0.94

± 0.16
1.00

± 0.00
1.00

± 0.00
1.00

± 0.00

0.50
± 0.00

0.89
± 0.21

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

0.50
± 0.00

0.50
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

0.50
± 0.00

0.50
± 0.00

0.50
± 0.00

1.00
± 0.00

1.00
± 0.00

0.50
± 0.00

0.50
± 0.00

0.50
± 0.00

0.50
± 0.00

0.44
± 0.16

FrameStack

0.0

0.2

0.4

0.6

0.8

1.0

op
ti

m
al

it
y

(a) Optimality (higher is better ↑)

2 4 8 16 32
train memory length (L + 2)

2
4

8
16

32
te

st
m

az
e

le
ng

th
(L

+
2) 1.00

± 0.00
1.00

± 0.00
1.00

± 0.00
1.00

± 0.00
1.00

± 0.00

0.64
± 0.22

0.89
± 0.21

0.94
± 0.16

0.94
± 0.16

1.00
± 0.00

0.64
± 0.22

0.56
± 0.24

0.60
± 0.30

0.71
± 0.31

0.89
± 0.20

0.64
± 0.22

0.56
± 0.24

0.49
± 0.28

0.44
± 0.31

0.54
± 0.23

0.64
± 0.22

0.56
± 0.24

0.49
± 0.28

0.40
± 0.30

0.27
± 0.15

AdaptiveStack (Ours)

0.0

0.2

0.4

0.6

0.8

1.0

ag
en

t
st

at
es

2 4 8 16 32
train memory length (L + 2)

2
4

8
16

32
te

st
m

az
e

le
ng

th
(L

+
2) 1.00

± 0.00
1.00

± 0.00
1.00

± 0.00
1.00

± 0.00
1.00

± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

1.00
± 0.00

FrameStack

0.0

0.2

0.4

0.6

0.8

1.0

ag
en

t
st

at
es

(b) Abstraction (lower is better ↓)

Figure 26: Generalisation and state abstraction in the episodic Passive-TMaze with PPO training and
a MLP policy (Nrs = 10). (a) Optimality: normalised difference between evaluated and optimal
values (mean over 50 evaluation episodes per training run), (b) Abstraction: normalised difference
between the number of observed agent states during evaluation from a trained policies using k
memory and optimal policies using κ memory (mean over 50 evaluation episodes per training run).
AS leads to far stronger state abstraction than FS, which explains it’s much better generalisation to
out of distribution test mazes.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

E.4 COMPARING WITH OTHER BASELINES

AdaptiveStack k = κ (Ours) DemirStack k = κ FrameStack k = k∗

2 3 4 5 6
maze length (L + 2)

0

2

4

re
tu

rn
s

×105

2 3 4 5 6
maze length (L + 2)

0.0

2.5

5.0

7.5

m
em

or
y

re
gr

et

×105

2 3 4 5 6
maze length (L + 2)

0

1

2

ac
ti

ve
re

gr
et

×105

2 3 4 5 6
maze length (L + 2)

0

1

2

3

pa
ss

iv
e

re
gr

et

×104

(a) Passive-TMaze

2 3 4 5 6
maze length (L + 2)

0

1

2

3

re
tu

rn
s

×105

2 3 4 5 6
maze length (L + 2)

0.0

2.5

5.0

7.5

m
em

or
y

re
gr

et

×105

2 3 4 5 6
maze length (L + 2)

0.0

0.5

1.0

ac
ti

ve
re

gr
et

×105

2 3 4 5 6
maze length (L + 2)

0

2

4

6

pa
ss

iv
e

re
gr

et

×104

(b) Active-TMaze

Figure 27: Comparison with Demir (2023) (DemirStack) in the Continual TMazes with Q-learning
(Nrs = 5). We observe that our approach significantly outperforms it while it significantly struggles
in the Active-Tmaze, confirming the discussion provided in the related works.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F COMPUTE AND MEMORY REQUIREMENTS FOR TRANSFORMERS

In this section we analyse the compute and memory efficiency of Adaptive Stacking compared to
Frame Stacking. We provide compute and memory requirements for MLP, LSTM, and Transformer
models as a function of k, the context length processed by the model. In Table 1 of the main text, we
further extend these results leveraging the fact that for Frame Stacking to learn the optimal policy
k ≥ k∗ and for Adaptive Stacking to learn the optimal policy k ≥ κ.

F.1 MLP MODELS

Let us consider an MLP encoder model with weight precision P bytes per unit, L layers, a hidden
size of h, an action space size of |A|, an inference batch size of BInference = 1, and a learning batch
size of BLearn = B. For uniformity with our analysis of the sequence models, we assume the input
is already provided to the MLP in the form of k embeddings of size h, so the total input size is kh.
We also assume a Relu non-linearity for each layer. Additionally, in the case of the Frame Stacking
model, we assume that there is an linear output head with a value for each environment action in A.
Furthermore, in the case of the Adaptive Stacking model there is another linear output head with a
value for each of the k memory eviction actions. The number of copies of the model G that needs
to be stored in memory to compute updates during training depends on the learning optimizer. In
the case of SGD, we only need to store a single gradient G = 1, whereas for the popular AdamW
optimizer G = 4.

F.1.1 PRODUCING A SINGLE ACTION

Compute of Frame Stacking. In the first layer of the network 2kh2 + h FLOPs are used for the
linear layer due to the matrix multiplication and addition of bias (one multiply + one add per element
of output). An additional h FLOPs are used for the Relu non-linearity computations. For the next
L− 1 layers, 2h2 + 2h FLOPs are used. In the final layer, 2h|A| FLOPs are used. Therefore, the
total FLOPs for a single action generation is:

|c|a∼πθ
= 2kh2 + 2h+ (L− 1)(2h2 + 2h) + 2h|A| ∈ Ω(k)

Compute of Adaptive Stacking. For Adaptive Stacking, we do the same amount of computation the
first L layers of the network, one using the standard last layer with output size |A| and one using a
layer of size k representing the memory action. This then brings the total FLOPs for a single action
generation to:

|c|a∼πθ
= 2kh2 + 2h+ (L− 1)(2h2 + 2h) + 2h(|A|+ k) ∈ Ω(k)

Memory of Frame Stacking. For MLP inference, we do not need to store intermediate activations
after they are used. They are only needed when computing gradients. As such, we lower bound
the memory needed for action inference by the number of parameters and precision of the model
|w|a∼πθ

≥ P|θ| where |θ| = |θ|MLP+ |θ|stack. The weight matrix in the first layer has kh2 parameters,
the weight matrix in the middle L− 1 layers each have h2 parameters, and the weight matrix in the
last layers has h|A| parameters. The bias vector in the first L layers each have h parameters, and the
bias vector in the last layer has |A| parameters. As such, the number of total number parameters is
|θ|MLP = kh2+(L−1)h2+Lh+(h+1)|A|. Additionally, the stack itself must store |θ|stack = Phk.
So the total RAM requirement of the model can be lower bounded as:

|w|a∼πθ
≥ P|θ| = Pk(h2 + h) + P(L− 1)h2 + PLh+ P(h+ 1)|A| ∈ Ω(k)

Memory of Adaptive Stacking. The number of parameters in the Adaptive Stacking approach are
the same for the first L layers, with the addition of a final layer with a weight matrix of size hk and a
bias vector of size k. Additionally, the stack itself has the same number parameters as a function of k.
So the total RAM requirement of the model can be lower bounded as:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

|w|a∼πθ
≥ P|θ| = Pk(h2 + h) + P(L− 1)h2 + PLh+ P(h+ 1)(|A|+ k) ∈ Ω(k)

F.1.2 PRODUCING A TD UPDATE

Compute of Frame Stacking. To compute a TD update, we must perform two forward propagations
for each item in the batch. The additional forward propagation is for computing the bootstrapping
target using a target network that is the same size as the original network. The cost of a backward
propagation should match that of a forward propagation, so it is clear that |c|TD = 3B|c|a∼πθ

. This
then brings the total FLOPs for a TD batch update to:

|c|TD = 3B

(
2kh2 + 2h+ (L− 1)(2h2 + 2h) + 2h|A|

)
∈ Ω(k)

Compute of Adaptive Stacking. In the case of Adaptive Stacking, we must perform TD updates
for both the environment actions and the memory actions. Thus, we again have the relationship that
|c|TD = 3B|c|a∼πθ

. This then implies that the total FLOPs for a TD batch update to:

|c|TD = 3B

(
2kh2 + 2h+ (L− 1)(2h2 + 2h) + 2h(|A|+ k)

)
∈ Ω(k)

Memory of Frame Stacking. During a TD update, we must also store the target network in memory,
which has the same number of parameters as the original MLP. We also must store the activations of
the main network now to compute the gradients. Thus, we can lower bound the memory required as
|w|TD ≥ (2 +G)P|θ|MLP + PB|θ|stack + PBhL, meaning the total RAM requirement of the model
can be lower bounded as:

|w|TD ≥ (2 +G)

(
Pkh2 + P(L− 1)h2 + PLh+ P(h+ 1)|A|

)
+ PBkh+ PBhL ∈ Ω(k)

Memory of Adaptive Stacking. We again have the fact that |w|TD ≥ (2+G)P|θ|MLP +PB|θ|stack +
PBhL, but |θ|MLP is different for Adaptive Stacking because of the extra final layer for the memory
policy. So the total RAM requirement of the model can be lower bounded as:

|w|TD ≥ (2 +G)

(
Pkh2 + P(L− 1)h2 + PLh+ P(h+ 1)(|A|+ k)

)
+ PBkh+ PBhL ∈ Ω(k)

F.2 LSTM MODELS

Let us consider an LSTM encoder model with weight precision P bytes per unit, L layers, a hidden
size of h, an action space size of |A|, an inference batch size of BInference = 1, and a learning batch
size of BLearn = B. We assume the input is already provided in the form of k embeddings of size h.
Additionally, in the case of the Frame Stacking model, we assume that there is an linear output head
with a value for each environment action in A. Furthermore, in the case of the Adaptive Stacking
model there is another linear output head with a value for each of the k memory eviction actions.
The number of copies of the model G that needs to be stored in memory to compute updates during
training depends on the learning optimizer. In the case of SGD, we only need to store a single gradient
G = 1, whereas for the popular AdamW optimizer G = 4.

While it is well known that RNNs can have inference costs independent of the history length, we note
that this only works in pure testing settings and is not relevant to the continual learning setting we
explore in this work. The issue is that the historical examples must be re-encoded by the RNN if any
update has happened to the network during this sequence.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F.2.1 PRODUCING A SINGLE ACTION

Compute of Frame Stacking. Each LSTM cell at a given time step performs operations for 4 gates:
the input gate, the forget gate, the output gate, and the candidate cell update. Each gate for each item
in the batch for each time-step requires a matrix multiplication with the input, a matrix multiplication
with the last hidden state, an additive bias vector, and a cost per hidden unit of applying non-linearities.
Thus for each of the L layers we need 8h2 + 4h+ 16h FLOPs. For the last linear layer at the last
step we need 2h|A| FLOPs. This then brings the total FLOPs for a single action generation to:

|c|a∼πθ
= kL

(
8h2 + 20h

)
+ 2h|A| ∈ Ω(k)

Compute of Adaptive Stacking. For Adaptive Stacking, we must do two passes through the L layer
LSTM and additionally produce a memory action with a final layer head requiring 2hk FLOPs. This
then brings the total FLOPs for a single action generation to:

|c|a∼πθ
= kL

(
8h2 + 20h

)
+ 2h(|A|+ k) ∈ Ω(k)

Memory of Frame Stacking. As with the MLP network, |w|a∼πθ
≥ P|θ| where the total parameters

can be decomposed as |θ| = |θ|LSTM + |θ|activation + |θ|stack. The network consists of 4 gates in each
layer, including two matrices with h2 parameters and one bias vector with h parameters. So, there
are 8h2 + 4h parameters per layer, and L(8h2 + 4h) parameters in the L layers. The linear output
layer then contains (h + 1)|A| parameters. The activation memory only needs to be stored at the
current step during inference, requiring PhL bytes of memory. The stack itself requires Pkh bytes
of memory. So the total RAM requirement of the model can be lower bounded as:

|w|a∼πθ
≥ PL(8h2 + 4h) + P(h+ 1)|A|+ PhL+ Pkh ∈ Ω(k)

Memory of Adaptive Stacking. The Adaptive Stacking case only adds the additional output layer
for memory actions, which has (h + 1)k total parameters. So the total RAM requirement of the
model can be lower bounded as:

|w|a∼πθ
≥ PL(8h2 + 4h) + P(h+ 1)(|A|+ k) + PhL+ Pkh ∈ Ω(k)

F.2.2 PRODUCING A TD UPDATE

Compute of Frame Stacking. To compute a TD update, we must perform two forward propagations
for each item in the batch. The additional forward propagation is for computing the bootstrapping
target using a target network that is the same size as the original network. The cost of a backward
propagation should match that of a forward propagation, so it is clear that |c|TD = 3B|c|a∼πθ

. This
then brings the total FLOPs for a TD batch update to:

|c|TD = 3BkL

(
8h2 + 20h

)
+ 6Bh|A| ∈ Ω(k)

Compute of Adaptive Stacking. In the case of Adaptive Stacking, we must perform TD updates
for both the environment actions and the memory actions. Thus, we again have the relationship that
|c|TD = 3B|c|a∼πθ

. This then implies that the total FLOPs for a TD batch update to:

|c|TD = 3BkL

(
8h2 + 20h

)
+ 6Bh(|A|+ k)

)
∈ Ω(k)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Memory of Frame Stacking. During a TD update, we must also store the target network in memory,
which has the same number of parameters as the original LSTM. We also must store the activations of
the main network for all steps now to compute the gradients. Thus, we can lower bound the memory
required as |w|TD ≥ (2 +G)P|θ|LSTM +PB|θ|stack +PBkhL, meaning the total RAM requirement
of the model can be lower bounded as:

|w|TD ≥ (2 +G)

(
PL(8h2 + 4h) + P(h+ 1)|A|

)
+ PBkhL+ PBkh ∈ Ω(k)

Memory of Adaptive Stacking. We again have the fact that |w|TD ≥ (2+G)P|θ|LSTM+PB|θ|stack+
PBkhL, but |θ|LSTM is different for Adaptive Stacking because of the extra final layer for the memory
policy. So the total RAM requirement of the model can be lower bounded as:

|w|TD ≥ (2 +G)

(
PL(8h2 + 4h) + P(h+ 1)(|A|+ k)

)
+ PBkhL+ PBkh ∈ Ω(k)

F.3 TRANSFORMER MODELS

Let us consider an Transformer model with weight precision P bytes per unit, L layers, a hidden
size of h, an action space size of |A|, an inference batch size of BInference = 1, and a learning batch
size of BLearn = B. We assume the input is already provided in the form of k embeddings of size h.
Additionally, in the case of the Frame Stacking model, we assume that there is an linear output head
with a value for each environment action in A. Furthermore, in the case of the Adaptive Stacking
model there is another linear output head with a value for each of the k memory eviction actions.
The number of copies of the model G that needs to be stored in memory to compute updates during
training depends on the learning optimizer. For example, in the case of SGD, we only need to store a
single gradient G = 1, whereas for the popular AdamW optimizer G = 4.

F.3.1 PRODUCING A SINGLE ACTION

Compute of Frame Stacking. We consider the analysis of the compute required for a typical
Transformer from Narayanan et al. (2021). The compute cost |c| of doing inference of the final hidden
state over a batch size of BInf over tokenized inputs with a context length of k using a Transformer
with L layers and a hidden size of h is 24LBInfkh

2 + 4LBInfk
2h the compute cost of the final logit

layer producing values for each action in A is 2BInfh|A| only applied once per sequence. So we can
lower bound the compute cost of producing a single action (i.e. BInf = 1) as:

|c|a∼πθ
≥ 24Lh2k + 4Lhk2 + 2h|A| ∈ Ω(k2)

It is a lower bound because we do not include any pre-Transformer layers needed to produce
embeddings for the input. We also do not include actions and rewards as part of the interaction
history, which would bring the context length to k′ = 3k − 2. Additionally, we do not include any
recomputation costs that make sense to incur when we are bound by memory rather than compute –
here we assume we are compute bound.

Compute of Adaptive Stacking. For producing a single action with Adaptive Stacking, the new
compute overhead comes from the addition of the memory action head that comprises an extra 2hk
FLOPs. This then brings the total FLOPs for a single action generation to:

|c|a∼πθ
≥ 24Lh2k + 4Lhk2 + 2h(|A|+ k) ∈ Ω(k2)

Memory of Frame Stacking. We now assume that we are memory bound and not compute bound and
include the cost of storing the model of parameter size |θ| at precision P where |θ| = |θ|Transformer +
|θ|stack + |θ|activations. In each Transformer layer, there are 4h2 parameters used to compute attention,
8h2 parameters used in the feedforward network, and 4h parameters used in the layer norm. If biases

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

are used for all linear layers, there are an additional 9h parameters – we exclude these for now in
the spirit of lower bounds as they do not change the asymptotic result in terms of k either way. The
output layer then has (h + 1)|A| parameters, making |θ|Transformer = L(12h2 + 4h) + (h + 1)|A|.
The memory used for the stack itself is Pkh. Additionally, the cost of activations PkhL assuming
full re-computations at each step. This results in a lower bound on the working memory cost of
producing a single action:

|w|a∼πθ
≥ PL(12h2 + 4h) + P(h+ 1)|A|) + PB(L+ 1)hk ∈ Ω(k)

Memory of Adaptive Stacking. The main additional memory overhead of Adaptive Stacking is the
output layer for the memory policy, which has (h+ 1)k parameters. This results in a lower bound on
the working memory cost of producing a single action:

|w|a∼πθ
≥ PL(12h2 + 4h) + P(h+ 1)(|A|+ k) + P(L+ 1)hk ∈ Ω(k)

F.3.2 PRODUCING A TD UPDATE

Compute of Frame Stacking. To compute a TD update, we must perform two forward propagations
for each item in the batch. The additional forward propagation is for computing the bootstrapping
target using a target network that is the same size as the original network. The cost of a backward
propagation should match that of a forward propagation, so it is clear that |c|TD = 3B|c|a∼πθ

. This
then brings the total FLOPs for a TD batch update to:

|c|TD ≥ 3B

(
24Lh2k + 4Lhk2 + 2h|A|

)
∈ Ω(k2)

Compute of Adaptive Stacking. In the case of Adaptive Stacking, we must perform TD updates
for both the environment actions and the memory actions. Thus, we again have the relationship that
|c|TD = 3B|c|a∼πθ

. This then implies that the total FLOPs for a TD batch update to:

|c|TD ≥ 3B

(
24Lh2k + 4Lhk2 + 2h(|A|+ k)

)
∈ Ω(k2)

Memory of Frame Stacking. To analyse the working memory requirements |w| of producing a
single action for a typical Transformer, we follow Anthony et al. (2023). We now assume that we are
memory bound and not compute bound. During a TD update, we must also store the target network
in memory, which has the same number of parameters as the original Transformer. Thus, we can
lower bound the memory required as |w|TD ≥ (2 +G)P|θ|Transformer + PB|θ|stack + PB|θ|activations,
meaning the total RAM requirement of the model can be lower bounded as:

|w|TD ≥ (2 +G)

(
PL(12h2 + 4h) + P(h+ 1)|A|

)
+ PB(L+ 1)hk ∈ Ω(k)

Memory of Adaptive Stacking. We again have the fact that |w|TD ≥ (2 + G)P|θ|Transformer +
PB|θ|stack + PB|θ|activations, but |θ|Transformer is different for Adaptive Stacking because of the extra
final layer for the memory policy. So the RAM requirement of the model can be lower bounded as:

|w|TD ≥ (2 +G)

(
PL(12h2 + 4h) + P(h+ 1)(|A|+ k)

)
+ PB(L+ 1)hk ∈ Ω(k)

38

	Introduction
	Problem Setting
	Related Work
	Adaptive Stacking
	RL with Internal Memory Decisions
	Monte Carlo Value Function Estimates
	Adaptive Stacking as a form of State Abstraction
	Convergence of Temporal Difference Learning

	Experiments
	Conclusion
	Adaptive Stacking Algorithm
	Theoretical Results
	Preliminaries and Notation
	Proof of Proposition 1
	Proof for Theorem 1
	Convergence of Episodic Monte Carlo Learning for Optimal -Memory Policies
	Convergence of Memory-Augmented Monte Carlo Policy Gradient in Unichain Average-Reward NMDPs
	Counter Example: Compression Beyond Value Equivalence
	Proof for Theorem 2
	Proof for Theorem 3

	Value-Consistency Assumption in Popular Benchmarks
	Unobservable Reward Machines Counter-Example

	Experimental Details
	Recorded Metrics
	Tabular Q-Learning (Continual and Episodic)
	Proximal Policy Optimization (Episodic and Continual)

	Supplementary Experiments
	Learning Area Under the Curve Bar Plots
	Learning Curves
	Evaluating Learned Policies
	Comparing with other baselines

	Compute and Memory Requirements for Transformers
	MLP Models
	Producing a Single Action
	Producing a TD Update

	LSTM Models
	Producing a Single Action
	Producing a TD Update

	Transformer Models
	Producing a Single Action
	Producing a TD Update

