
Under review as submission to TMLR

BISLERi: Ask Your Neural Network Not To Forget In
Streaming Learning Scenarios

Anonymous authors
Paper under double-blind review

Abstract

This paper introduces a new method for class-incremental streaming learning. In streaming1

learning, a learner encounters one single training example at a time and is constrained to:2

(i) utilize each sample only once, i.e., single-pass learning, (ii) adapt the parameters im-3

mediately, (iii) effectively predict on any new example at any time step without involving4

any additional computation, i.e., it can be evaluated anytime, and (iv) minimize the storage5

cost. Moreover, in streaming setting, the input data-stream cannot be assumed i.i.d, that is,6

there can be a temporal coherence in the input data-stream. Finally, the class-incremental7

learning implies that the learner does not require any task-id for the inference. A wide8

variety of the existing lifelong learning approaches are either designed to utilize more than9

one example once/multiple times or not optimized for the fast update or anytime infer-10

ence. The premise of their designs, as well as other aspects (e.g., memory buffer/replay11

size, the requirement of fine-tuning), render some of the existing methods sub-optimal, if12

not ill-suited, for streaming learning setup. We propose a streaming Bayesian framework13

that enables fast parameter update of the network, given a single example, and allows it14

to be evaluated anytime. In addition, we also apply an implicit regularizer in the form of15

snap-shot self-distillation to effectively minimize the information loss further. The proposed16

method utilizes a tiny-episodic memory buffer and replays to conform with the streaming17

learning constraints. We also propose an efficient online memory replay and buffer replace-18

ment policies that significantly boost the model’s performance. Extensive experiments and19

ablations on multiple datasets in different scenarios demonstrate the superior performance20

of our method over several strong baselines.21

1 Introduction22

In this paper, we aim to achieve continual learning by solving an extremely restrictive form of lifelong learning,23

i.e., ‘streaming learning’ (Gama et al., 2013) in the deep neural networks (Hayes et al., 2019a;b). Most of the24

existing popular and successful methods in continual learning operate in incremental batch learning (IBL)25

scenarios (Rusu et al., 2016; Shin et al., 2017; Kirkpatrick et al., 2017; Wu et al., 2018; Aljundi et al., 2018a;26

Nguyen et al., 2017; Mallya & Lazebnik, 2018). In IBL, it is assumed that the current task data is available27

in batches during training, and the learner visits them sequentially multiple times. However, these methods28

are ill-suited in a rapidly changing environment, where the learner needs to quickly adapt to an important29

(since we cannot wait to adapt) and rare (as we may not collect batch) streaming data with no catastrophic30

forgetting (McCloskey & Cohen, 1989; French, 1999). For example, consider a real-world scenario, where an31

autonomous agent, such as an autonomous car, might meet with a rare incident/accident, then it could be32

lifesaving if it can be trained incrementally with that single example without any forgetting. It would be33

impractical, if not infeasible, to wait and aggregate a batch of samples to train the autonomous agent, as in34

this case, we may not collect a batch due to its rare nature.35

The ability to continually learn effectively from streaming data with no catastrophic forgetting (McCloskey &36

Cohen, 1989; French, 1999) is a challenging problem and this has not received widespread attention (Hayes37

et al., 2019a;b). However, its utility is apparent, as it enables the practical deployment of autonomous38

AI agents. Hayes et al. (2019b) argued that streaming learning is more closer to biological learning than39

1

Under review as submission to TMLR

Table 1: Categorization of the baseline approaches depending on the underlying simplifying assumptions
they impose. In ζ(n), n represents the number of gradient steps required to train the corresponding model.
ζ(n)� ζ(k) ≥ ζ(2) > ζ(1). ‘-’ indicates, we are unable to find the exact value.
Note: Although GEM (Lopez-Paz & Ranzato, 2017) performs a single gradient update for online learning, it
does solve a Quadratic Program with inequality constraints, which is a computationally expensive operation;
therefore, we consider it costs higher than a single gradient update. Furthermore, MIR (Aljundi et al., 2019)
requires two gradient update, where it first performs a virtual gradient update to select maximally interfered
samples from memory, and then performs another gradient update to finally update the network parameters.
We provide detailed discussion on each column in the appendix.

‘Class-Incremental Streaming Learning’ (CISL) Crucial Properties

Methods Type
Bayesian
Framework

Batch-Size
(Nt) Fine-tunes

Single Pass
Learning CIL

Subset
Buffer Replay

Training
Time

Inference
Time

Violates Any
CISL Constraint

Memory
Capacity

Regularization
Based

Memory
Based

EWC
(Kirkpatrick et al., 2017) Batch 7 Nt � 1 7 7 7 n/a ζ(n) ζ(1) 3 n/a 3 7

MAS
(Aljundi et al., 2018a) Batch 7 Nt � 1 7 7 7 n/a ζ(n) ζ(1) 3 n/a 3 7

SI
(Zenke et al., 2017) Batch 7 Nt � 1 7 7 7 n/a ζ(n) ζ(1) 3 n/a 3 7

VCL
(Nguyen et al., 2017) Batch 3 Nt � 1 7 7 7 n/a ζ(n) ζ(1) 3 n/a 3 7

Coreset VCL
(Nguyen et al., 2017) Batch 3 Nt � 1 3 7 7 7 ζ(n) ζ(n) 3 - 3 3

Coreset Only
(Farquhar & Gal, 2018) Batch 3 Nt � 1 3 7 7 7 ζ(n) ζ(n) 3 - 7 3

GDumb
(Prabhu et al., 2020) Online 7 Nt � 1 3 7 3 7 ζ(1) ζ(n) 3 - 7 3

TinyER
(Chaudhry et al., 2019) Online 7 Nt � 1 7 3 3 3 ζ(1) ζ(1) 7 ≤ 5% 7 3

DER
(Buzzega et al., 2020) Online 7 Nt � 1 7 3 3 3 ζ(1) ζ(1) 7 ≤ 5% 3 7

DER++
(Buzzega et al., 2020) Online 7 Nt � 1 7 3 3 3 ζ(1) ζ(1) 7 ≤ 5% 3 3

AGEM
(Chaudhry et al., 2018b) Online 7 Nt � 1 7 3 7 3 ζ(1) ζ(1) 3 - 3 3

GEM
(Lopez-Paz & Ranzato, 2017) Online 7 Nt � 1 7 3 7 7 ζ(k) ζ(1) 3 - 3 3

MIR
(Aljundi et al., 2019) Online 7 Nt � 1 7 7 3 3 ζ(2) ζ(1) 3 - 7 3

ExStream
(Hayes et al., 2019a) Streaming 7 Nt = 1 7 3 3 7 ζ(1) ζ(1) 3 ≤ 5% 7 3

REMIND
(Hayes et al., 2019b) Streaming 7 Nt = 1 7 3 3 3 ζ(1) ζ(1) 7 � 10% 7 3

Ours Streaming 3 Nt = 1 7 3 3 3 ζ(1) ζ(1) 7 ≤ 5% 3 3

CISL Constraints Nt = 1 7 3 3 3 ζ(1) ζ(1)

other existing incremental learning scenarios. In this paper, we are interested in class-incremental learning40

in a streaming scenario (CISL), where a learner requires to continually learn in a ‘single-pass’ with no41

forgetting, given a single training example at every time step. That is, the learner is allowed to utilize the42

single new example only once (Hayes et al., 2019b;a). Class incremental learning (CIL) setting (Rebuffi43

et al., 2017; Chaudhry et al., 2018a; Belouadah et al., 2020) implies that the label space includes all the44

classes observed so far and no task id is required during inference, as opposed to task incremental learning45

methods like VCL/Coreset VCL (Nguyen et al., 2017). In addition, the model being learned should be46

able to predict efficiently at any time step (Gama et al., 2013) without any additional computation to47

improve the performance. It implies that the fine-tuning as needed in GDumb (Prabhu et al., 2020), Coreset48

VCL (Nguyen et al., 2017) is forbidden. Finally, for practical applicability, the learning strategy is expected49

to update the parameters quickly and leverage only a small memory buffer.50

Training a deep neural network in streaming setting continuously with no forgetting (McCloskey & Cohen,51

1989; French, 1999) is non-trivial due to the aforementioned requirements. Furthermore, adapting an exist-52

ing online learning method is not straight forward due to various limitations poses by these methods which53

violates one or multiple conditions of the restrictive class-incremental streaming learning setup. For instance,54

AGEM (Chaudhry et al., 2018b) requires task id for prediction (i.e., task incremental learning setup). We55

provide empirical evidence that, when extended to CISL, the gradient computed in AGEM from a single56

example leads to suboptimal results (perhaps not surprisingly). MIR (Aljundi et al., 2019) infringes the57

single-pass learning constraint by employing a two-step learning process. It first performs a virtual gradient58

update to select the samples for memory replay and then performs another gradient update to finally update59

the model parameters. GDumb (Prabhu et al., 2020) proposes a greedy strategy to maintain past examples60

in a buffer and retrains on all examples during inference. Although it has been shown to work well on various61

2

Under review as submission to TMLR

online learning setttings, GDumb does not update the model until inference (i.e., it does not accumulate any62

knowledge in the network) and requires fine-tuning before every inference, which violates (i) single-pass learn-63

ing constraint and (ii) any time inference without further training constraint. Finally, the recently proposed64

streaming learning approach, REMIND (Hayes et al., 2019b) requires a large amount of cached data for good65

performance, which restricts its applicability. Table 1 illustrates which critical components/requirements of66

streaming learning are satisfied/infringed by the existing lifelong learning approaches.67

Contributions. In this paper, we propose a novel method, ‘Bayesian Class Incremental Streaming68

Learning’ (BISLERi) to facilitate lifelong learning in streaming setting by addressing the aforementioned69

limitations. In particular, we enable streaming learning by leveraging a tiny episodic memory-buffer replay70

with dual regularization. It regularises the model from two sources. One focuses on regularizing the model71

parameters explicitly in a streaming Bayesian framework (Neal, 2012; Broderick et al., 2013), while the other72

regularizes, in the form of self-distillation (Mobahi et al., 2020), by enforcing the updated model to produce73

similar outputs for previous models on the past observed data. Our approach jointly trains the buffer replay74

and current task sample by incorporating the likelihood of the replay and current sample. As a result, unlike75

VCL (Nguyen et al., 2017), GDumb (Prabhu et al., 2020), we do not need explicit fine-tuning to improve the76

model’s performance, and the model can be evaluated on the fly. We also propose novel online loss-aware77

buffer replacement and various replay strategies that helps to fraction buffer replay or replacement in an78

optimal way, which significantly improves the training and boost the model’s performance.79

Our experimental results on five benchmark datasets demonstrate the effectiveness of the proposed method80

to circumvent catastrophic forgetting in highly challenging streaming settings. The proposed approach81

significantly improves the recent state-of-the-art, and the extensive ablations validate the importance of82

the proposed components. In Figure 2, we compare the proposed method with the recent strong baselines.83

Even though designed for streaming learning, it outperforms the baselines by a significant margin in all three84

different lifelong learning settings. It implies that a method designed to work in the most restrictive setting85

can be thought of as a robust and flexible method for the various lifelong learning settings with the widest86

possible applicability.87

Our main contributions can be summarised as follows:88

(i) we propose a novel replay-based dual-regularization framework (BISLERi), comprising a streaming89

Bayesian framework (Neal, 2012; Broderick et al., 2013) as well as a functional regularizer, to overcome90

catastrophic forgetting in challenging class-incremental streaming learning scenario, (ii) we propose novel91

online loss-aware buffer replacement policies and include various sampling strategies which significantly92

boosts the model’s performance, (iii) we empirically show that selecting a tiny subset of samples from mem-93

ory and computing the joint likelihood with the current sample is highly efficient in terms of the model’s94

accuracy, and enough to avoid explicit finetuning, and (iv) we experimentally show that our method signifi-95

cantly outperforms the recent strong baselines.96

2 Problem Formulation97

In this paper, we study class incremental streaming learning (CISL) in the deep neural networks.98

Streaming Learning (SL). Streaming learning is the extreme case of online learning, where data arrives99

sequentially one datum at a time, and the model needs to adapt online in a single pass. That is, it is not100

allowed to visit any part of the data multiple times, and it can be evaluated at any point of time without101

waiting for the termination of the training. While in this setting, a learner can use a tiny replay buffer, it102

is strictly forbidden to use any additional computation, such as fine-tuning, to improve the performance at103

any time. Therefore, approaches like GDumb (Prabhu et al., 2020), Coreset VCL (Nguyen et al., 2017), are104

not allowed. Furthermore, it cannot be assumed that the input data-stream is independent and identically105

distributed (i.i.d); the data-stream can be temporally contiguous and/or there can be a class-based correlation106

in the data, for e.g.: (i) class-instance and (ii) instance ordering (for more details, refer to Section 5.1).107

3

Under review as submission to TMLR

Let us consider an example dataset D divided into T task sequences, i.e., D =
⋃T
t=1Dt. Each task Dt consists108

of Nt labeled data-points, i.e., Dt =
{
d

(j)
t

}Nt

j=1
= {(xj , yj)}Nt

j=1, and corresponds to different labeling task.109

xj represents the input image & yj is the corresponding class-label, and Nt is a variable across tasks.110

In streaming learning, each task Dt consist only a single data-point, i.e., |Dt| = Nt = 1,∀t, and the model111

is required to adapt to this new example with no forgetting in a single pass, i.e., it cannot observe the112

new example multiple times. This setup is different from the widely popular incremental batch learning113

(IBL) (Kirkpatrick et al., 2017; Nguyen et al., 2017; Aljundi et al., 2017; 2018a;b). In IBL, it is assumesd114

that the model have access to the whole dataset, i.e., D =
⋃T
t=1Dt; the data does not come in online manner.115

It is further assumed that: |Dt| = Nt � 1,∀t. The model visits each task data Dt sequentially multiple116

times to mitigate catastrophic forgetting. Online learning methods (Prabhu et al., 2020), on the other hand,117

while assume that each task Dt comes sequentially one at a time, assumes that the each data subset size118

|Dt| = Nt � 1. Furthermore, in online learning setup, it is allowed to fine-tune the network parameters any119

time with the samples stored in the memory. Specifically, it can fine-tune the network as many times as it120

wants, only constraint is that the samples are needed to be stored in the memory.121

Class Incremental Learning (CIL). Class-incremental learning (CIL) (Rebuffi et al., 2017; Chaudhry122

et al., 2018a; Belouadah et al., 2020; Rios & Itti, 2018) is a challenging variant of continual learning. During123

inference, it considers the label space over all the classes that have been observed so far. This is in contrast124

to the task-incremental learning methods, such as VCL (Nguyen et al., 2017), which requires the task-id to125

be specified while doing inference.126

In Table 1, we categorize various recently proposed strong baseline approaches depending on the underly-127

ing simplifying assumptions that they impose. It can be observed that TinyER (Chaudhry et al., 2019),128

REMIND (Hayes et al., 2019b) and BISLERi (Ours) do not violate any constraints of class-incremental129

streaming learning (CISL) setting. MIR (Aljundi et al., 2019) infringes the single-pass learning constraint130

by employing a two-step learning process. First, it performs a virtual gradient update to select the sam-131

ples for memory replay and then performs another gradient update to finally update the model parameters.132

While MIR (Aljundi et al., 2019) uses two-pass learning, a modified version of MIR can be considered as133

a single-pass method. That is, first compute the gradient gnew on Dnew and check the interference score134

after the gradient update (virtual gradient update) to get the dataset Dinterferred. Then, compute the135

gradient of Dnew ∪Dinterferred. Since, we already have the gradient w.r.t gnew, all we need is to compute136

the gradient over Dinterferred to get the gradient for the final update. However, we have to remember that137

in streaming learning (SL), |Dnew| = 1, i.e., in each incremental step, only a single training example arrives.138

Therefore, the gradient gnew will be computed w.r.t a single data-point Dnew, where |Dnew| = 1. Since SGD139

with just a single datapoint is extremely noisy and hard to optimize, the gradient update (virtual gradient140

update) with gnew will result in poor generalization. Henceforth, the selected maximally interfered dataset141

(Dinterferred) will be sub-optimal, such that, it will suffer from catastrophic forgetting (McCloskey & Cohen,142

1989; French, 1999; Goodfellow et al., 2015) in streaming lifelong learning setup. GDumb (Prabhu et al.,143

2020) violates streaming learning constraints by employing fine-tuning the network parameters before each144

inference. ExStream (Hayes et al., 2019a) despite being a streaming learning method, it replays all buffer145

samples instead of replaying only a few samples while training on the new example. Therefore, we consider146

that it violates the subset buffer replay constraint, which ultimately violates the CISL constraint. It can147

be observed, among the online learning methods, only TinyER (Chaudhry et al., 2019) can be adapted to148

the CISL setting without violating any crucial properties that are necessary for the CISL setting. Figure 2149

compares the performance of the various baselines in different lifelong learning settings. We can observe that150

BISLERi (Ours) performs best compared to the baselines consistently throughout the different settings.151

In Figure 4, we demonstrate the impact of the presence of temporal coherance in the input data-stream. It152

can be observed that (i) class-instance and (ii) instance ordering are more challenging compared to when153

the data-stream is organized randomly. It further can observed that while the strong baselines continue to154

suffer from severe forgetting in the presence of temporal coherance, BISLERi (Ours) suffer from minimal155

amount of forgetting.156

4

Under review as submission to TMLR

Figure 1: Schematic representation of the proposed model. θG represents the parameters of the feature
extractor G(·), whereas θF represents the parameters of the plastic network / Bayesian neural network F (·).

3 Proposed Streaming Learning Framework157

In the following, we introduce BISLERi, which trains a convolutional neural network (CNN) in streaming158

learning setup. Formally, it is assumed that we have access to a limited number of labeled training examples,159

which we use to train the model in a typical offline manner. We term this step as the base initialization step160

with t = 0. Then in each incremental step, i.e., ∀t > 0, the model observes a single new training example,161

i.e., Dt = {dt} = {(xt, yt)}, and adapts to it by doing a single step posterior computation.162

3.1 Streaming Learning With A Single Example163

Formally, we separate the CNN into two neural networks (Figure 1): (i) non-plastic feature extractor G(·)164

consisting the first few layers of the CNN, and (ii) plastic neural network F (·) consisting the final layers165

of the CNN. For a given input image x, the predicted class label is computed as: y = F (G(x)). We166

initialize the parameters of the feature extractor G(·) and keep it frozen throughout streaming learning.167

We use a Bayesian-neural-network (BNN) (Neal, 2012; Jospin et al., 2020) as the plastic network F (·), and168

optimize its parameters with sequentially coming data in streaming setting. We discuss how the parameters169

of the feature extractor G(·) is initialized in Section 3.5. In the below, we describe how the plastic network170

F (·) is trained with a single step posterior computation in each incremental step with a single data point171

Dt = {dt} = {(xt, yt)} in streaming learning setup with no catastrophic forgetting (McCloskey & Cohen,172

1989; French, 1999).173

Variational Posterior Estimation. Streaming learning naturally emerges from the Bayes’ rule (Broderick
et al., 2013); given the posterior p(θ|D1:t−1), whenever a new data: Dt = {dt} = {(xt, yt)} arrives, the new
posterior p(θ|D1:t) can be computed by combining the previous posterior and the new data likelihood,
i.e., p(θ|D1:t) ∝ p(Dt|θ) p(θ|D1:t−1), where the old posterior is treated as the prior. However, for any
complex model, the exact Bayesian inference is not tractable, and an approximation is needed. A Bayesian
neural network (Neal, 2012) commonly approximates the posterior with a variational posterior q(θ) by
minimizing the following KL divergence (Eq. 1), or equivalently by maximizating the evidence lower bound
(ELBO) (Blundell et al., 2015) (Eq. 2):

Lt(θ) = arg min
q∈Q

KL
(
qt(θ) || 1

Zt
qt−1(θ)p(Dt|θ)

)
(1)

w arg max
q∈Q

Eθ∼qt(θ) [log p(Dt|θ)]−KL (qt(θ) || qt−1(θ)) (2)

It is worth mentioning that the KL-divergence in Eq. 2 works as a inherent regularizer, which can prevent174

forgetting in the network by keeping the prior and the posterior distribution close to each other. However,175

there are few concerns. Firstly, optimizing the ELBO (in Eq. 2) to approximate the posterior p(θ|D1:t)176

with only a single training example, i.e., ∀t > 0,Dt = {dt} = {(xt, yt)}, in each incremental step can177

fail in streaming setting (Ghosh et al., 2018). Furthermore, likelihood estimation from a single example:178

5

Under review as submission to TMLR

Dt = {dt} = {(xt, yt)} can bias the model towards the new data disproportionately and can maximize the179

confusion during inference in class incremental learning setup (Chaudhry et al., 2018a).180

These concerns cannot be prevented only with the parameters regularization. We, therefore, propose to181

estimate the likelihood from both the new example: Dt and the previously observed examples in order to182

compute the new posterior: p(θ|D1:t). For this purpose, a small fraction (≤ 5%) of past observed examples183

(for buffer capacity refer Table 2) are stored as representatives in a fixed-sized tiny episodic memory buffer184

M. Instead of storing raw pixels (images) x, we store the embedding z = G(x), where z ∈ Rd. This allows185

us to avoid the cost of recomputing the image-embeddings and expedites the learning even further. It also186

saves a significant amount of space and allows us to keep more examples in a small budget.187

During training on the new example: Dt = {dt} = {(xt, yt)}, we select a subset of samples: DM,t from
the memory M, where: (i)DM,t ⊂ M, (ii)|DM,t| = N ′1 � |M|, instead of replaying the whole buffer,
and compute the likelihood jointly with the new example Dt to estimate the new posterior. We, therefore,
compute the new posterior as follows: p(θ|D1:t) ∝ p(Dt|θ) p(DM,t|θ) p(θ|D1:t−1). Since the exact Bayesian
inference is intractable, we approximate it with a variational posterior qt(θ) as follows:

L1
t (θ) = arg min

qεQ
KL
(
qt(θ) || 1

Zt
qt−1(θ)p(Dt|θ)p(DM,t|θ)

)
(3)

Note that Eq. 3 is significantly different from VCL (Nguyen et al., 2017), where they assume task-incremental188

learning setting with separate head networks, and incorporates the coreset samples only for explicit finetuning189

before inference. For more details on VCL/Coreset VCL (Nguyen et al., 2017) refer to the appendix.190

The above minimization (in Eq. 3) can be equivalently written as the maximization of the evidence lower
bound (ELBO) as follow:

L1
t (θ) = Eθ∼qt(θ) [log p(yt|θ, G(xt))] +

N ′
1∑

n=1
Eθ∼qt(θ)

[
log p(y(n)

M,t|θ, z
(n)
M,t)

]
− λ1 ·KL (qt(θ) || qt−1(θ)) (4)

where: (i) Dt = {dt} = {(xt, yt)}, (ii) DM,t = {d(n)
M,t}

N ′
1

n=1 = {(z(n)
M,t, y

(n)
M,t)}

N ′
1

n=1, (iii) DM,t ⊂M,191

(iv) |DM,t| = N ′1 � |M|, and (v) λ1 is a hyper-parameter.192

193

Snap-Shot Self Distillation. It is worth noting that the KL divergence minimization (in Eq. 4) between194

the prior and the posterior distribution works as a inherent regularizer, which tries to keep the changes in195

the network parameters minimal during streaming learning. However, its effect may weaken over the time196

due to the presence of distribution shift, temporal coherance in the input data-stream. Furthermore, the197

initialization of the prior with the old posterior at each incremental step can introduce information loss in the198

network for a longer sequence of streaming learning. On these grounds, we propose a functional regularizer,199

which encourages the network to mimic the output responses as produced in the past for the previously200

observed samples (for significance of self-distillation, see Section 6). Specifically, we propose to minimize the201

KL divergence between the class-probability scores obtained in the past and current time t:202

t−1∑
j=1

Eθ∼qt(θ) [KL (softmax(hj) || Fθ(G(xj)))] (5)

where: xj and hj represents input examples and the logits obtained while training on Dj respectively.203

The above objective (in Eq. 5) resembles the teacher-student training approach (Hinton et al., 2015); however,204

since in this case only a single network is used as both teacher & student network, it is called self knowledge205

distillation or self distillation (Hinton et al., 2015; Mobahi et al., 2020). It (the objective in Eq. 5), however,206

requires the availability of the embeddings and the corresponding logits for all the past observed data till207

time instance (t−1). Since storing all the past examples is not feasible, we only store the logits for all samples208

in memory M. During training, we uniformly select N ′2 samples along with their logits and optimize the209

6

Under review as submission to TMLR

following objective:210

L2
t (θ) =

N ′
2∑

j=1
Eθ∼qt(θ) [KL (softmax(hj) || Fθ(zj))] (6)

where: (i) zj and hj represents the feature-map and the corresponding logit, and (ii) N ′2 � |M|.211

Under the mild assumptions of knowledge distillation (Hinton et al., 2015), the optimization in Eq. 6 is212

equivalent to minimization of the Euclidean distance between the corresponding logits. In this work, we,213

therefore, minimize the following objective instead of the objective above (Eq. 6):214

L2
t (θ) = λ2 ·

N ′
2∑

j=1
Eθ∼qt(θ)

[
||hj − fθ(zj)||22

]
(7)

where: (i) f(·) represents the plastic network F (·) without the softmax activation, and (ii) λ2 is a hyper-215

parameter.216

It is, however, worth mentioning that the stored logits used in Eq.(7) are updated in an online manner.217

That is, whenever a sample is selected for memory replay, we replace the corresponding old logits with218

the newly predicted logits. Therefore, it is called snap-shot self-distillation (Yang et al., 2019), where the219

model is constrained to match the logits obtained during earlier memory replay, i.e., the last snap-shot. It220

essentially prevents the model from being constrained to match the sub-optimal initial logits and minimizes221

the information loss in the network.222

Training. Training the plastic network (BNN) F (·) requires specification of q(θ) and, in this work, we223

model θ by stacking up the parameters (weights & biases) of the network F (·). We use a Gaussian mean-224

field posterior qt(θ) for the network parameters, and choose the prior distribution, i.e., q0(θ) = p(θ), as225

multivariate Gaussian distribution. We train the network F (·) by maximizing the ELBO in Eq. 4 and226

minimizing the Euclidean distance in Eq. 7. For memory replay in Eq. 4, we select past informative samples227

using the strategies mentioned in Section 3.2, and we use uniform sampling to select samples from memory228

to be used in Eq. 7. Figure 1 shows the schematic diagram of the proposed model as well as the learning229

process.230

3.2 Informative Past Sample Selection For Replay231

We consider the following strategies for selecting past informative samples for memory replay:232

Uniform Sampling (Uni). In this approach, samples are selected uniformly random from memory. If we233

have the buffer of size K then each samples are selected with probability 1/K.234

Uncertainty-Aware Positive-Negative Sampling (UAPN). UAPN selects N ′1/2 samples with the235

highest uncertainty scores (negative samples) and N ′1/2 samples with the lowest uncertainty scores (positive236

samples). Empirically, we observe that this sample selection strategy results in the best performance. We237

measure the predictive uncertainty (Chai, 2018) for an input z with BNN F (·) as follows:238

Φ(z) ≈ −
∑
c

(∑
k p(ŷ = c|z,θk)

k

)
log
(∑

k p(ŷ = c|z,θk)
k

)
(8)

where: p(ŷ = c|z,θk) is the predicted softmax output for class c using the k-th sample of weights θk from239

q(θ). We use k = 5 samples for uncertainty estimation.240

Loss-Aware Positive-Negative Sampling (LAPN). LAPN selects N ′1/2 samples with the highest loss-241

values (negative-samples), and N ′1/2 samples with the lowest loss-values (positive-samples). Empirically we242

observe that the combination of most and least certain samples shows a significant performance boost since243

one ensures quality while the other ensures diversity for the memory replay.244

7

Under review as submission to TMLR

Table 2: Memory buffer capacity used for various datasets.

Dataset CIFAR10 CIFAR100 ImageNet100 iCubWorld 1.0 CORe50

Buffer Capacity 1000 1000 1000 180 1000

Training-Set Size 50000 50000 127778 6002 119894

3.3 Memory Buffer Replacement Policy245

In a practical lifelong learning scenario (Aljundi et al., 2018b;a), data can come indefinitely throughout the246

time. It imples that the episodic replay buffer will require to have an infinite capacity to store all the observed247

examples. Otherwise, its capacity will be quickly exhausted and the new instances cannot be accommodated248

in the replay buffer; it will then require a buffer replacement policy, which will replace a stored example in249

the memory to accommodate a new one whenever the buffer is full.250

In this work, we use a ‘fixed-sized’ tiny episodic replay buffer to store a fraction (≤ 5%) of all the previously251

observed data. In the below, we discuss two buffer replacement policies, which replaces a previously stored252

example if the buffer is full. Otherwise, the new instance is simply stored. For episodic memory capacity253

across various dataset, refer to Table 2.254

Loss-Aware Weighted Class Balancing Replacement (LAWCBR). In this approach, whenever a255

new sample comes and the buffer is full, we remove a sample from the class with maximum number of256

samples present in the buffer, i.e., yr = arg maxClassCount(M). However, instead of removing an example257

uniformly, we weigh each sample of the majority class inversely w.r.t their loss, i.e., wyr

i ∝ 1
lyr
i

and use these258

weights as the replacement probability; the lesser the loss, the more likely to be removed.259

Loss-Aware Weighted Random Replacement With A Reservoir (LAWRRR). In this approach,260

we propose a novel variant of reservoir sampling (Vitter, 1985) to replace an existing sample with the261

new sample when the buffer is full. We weigh each stored sample inversely w.r.t the loss, i.e., wi ∝ 1
li
,262

and proportionally to the total number of examples of that class in which the sample belongs present in263

the buffer, i.e., wi ∝ ClassCount(M, yi). Whenever a new example satisfies the replacement condition of264

reservoir sampling, we combine these two scores and use that as the replacement probability; the higher the265

weight, the more likely to be replaced.266

3.4 Efficient Buffer Update267

Loss-aware and uncertainty-aware sampling strategies require computing these quantities at every time step268

during streaming learning with all the samples stored in memory. However, this becomes computationally269

expensive with the larger replay buffer size. To overcome such limitation, we store the corresponding loss-270

values and uncertainty-scores along with the stored examples in the replay buffer. Since these quantities271

are scalar values, the additional storage requirement is negligible but saves the time to compute the loss272

and uncertainty in each incremental step. Every time a sample is selected for memory replay, its loss and273

uncertainty are replaced by the new values. We, in addition, replace the stored logits with the new logits.274

Empirically, we observe that the model’s accuracy degrades if we don’t update the logits with the new logits.275

3.5 Feature Extractor276

In this work, we separate the representation learning, i.e., learning the feature extractor G(·), and the277

classifier learning, i.e., learning the plastic network F (·). Similar to several existing continual learning ap-278

proaches (Kemker & Kanan, 2017; Hayes et al., 2019a; Xiang et al., 2019; Hayes et al., 2019b), we initialize the279

feature extractor G(·) with the weights learned through supervised visual representation learning (Krizhevsky280

et al., 2012) task, and keep them fixed throughout streaming learning. The motivation to use a pre-trained281

feature extractor is that the features learned by the first few layers of the neural networks are highly trans-282

ferable and not specific to any particular task or dataset and can be applied to several different task(s) or283

dataset(s) (Yosinski et al., 2014). Furthermore, it is hard, if not infeasible, to learn generalized visual fea-284

8

Under review as submission to TMLR

tures, that can be used across all the classes with having access to only a single example at every time (Zhu285

et al., 2021).286

In our experiments, for all the baselines along with BISLERi, we use Mobilenet-V2 (Sandler et al., 2018)287

pre-trained on ImageNet-1000 (ILSVRC-2012) (Russakovsky et al., 2015) as the base architecture for the288

visual feature extractor. It consists of a convolutional base and a classifier network. We remove the classifier289

network and use the convolutional base as the feature extractor G(·) to obtain embedding, which is fed to the290

plastic network BNN F (·). For details on the plastic network used for other baselines, refer to Section 5.5.291

4 Related Work292

Existing continual learning approaches can be broadly classified into (Parisi et al., 2019; Delange et al.,293

2021): (i) parameter isolation based approaches, (ii) regularization based approaches, and (iii) rehearsal294

based approaches.295

Parameter-isolation-based approaches train different subsets of model parameters on sequential tasks.296

PNN (Rusu et al., 2016), DEN (Yoon et al., 2017) expand the network to accommodate the new task.297

PathNet (Fernando et al., 2017), PackNet (Mallya & Lazebnik, 2018), Piggyback (Mallya et al., 2018), and298

HAT (Serra et al., 2018) train different subsets of network parameters on each task.299

Regularization-based approaches use an extra regularization term in the loss function to enable continual300

learning. LWF (Li & Hoiem, 2017) uses knowledge distillation (Hinton et al., 2015) loss to prevent catas-301

trophic forgetting. EWC (Kirkpatrick et al., 2017), IMM (Lee et al., 2017), SI (Zenke et al., 2017) and302

MAS (Aljundi et al., 2018a) regularize by penalizing changes to the important weights of the network.303

FRCL (Titsias et al., 2019) employs a functional regularizer based on Bayesian inference over the function304

space rather than the parameters of the deep neural networks to enable CL. It avoids forgetting a previ-305

ous task by constructing and memorizing an approximate posterior belief over the underlying task-specific306

function. UCB (Ebrahimi et al., 2019) based on Bayesian neural networks enables continual learning by307

controlling the learning rate of each parameter as a function of uncertainty. BGD (Zeno et al., 2018) uses308

closed-form variational Bayes to mitigate catastrophic forgetting in task agnostic scenarios. That is, (i) in309

contrast to the methods like EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018a), VCL (Nguyen310

et al., 2017) which are based on some core action taken on task-switch, BGD (Zeno et al., 2018) does not re-311

quire any information on task identity, and (ii) BGD updates the posterior over the weights in closed-form,312

unlike VCL/Coreset VCL (Nguyen et al., 2017), Coreset Only (Farquhar & Gal, 2018), BISLERi (Ours)313

which relies on BBB (Blundell et al., 2015) to update the posterior.314

Rehearsal-based approaches replay a subset of past training data during sequential learning. iCaRL (Rebuffi315

et al., 2017), SER (Isele & Cosgun, 2018), and TinyER (Chaudhry et al., 2019) use memory replay when316

training on a new task. DER/DER++ (Buzzega et al., 2020) uses knowledge distillation and memory replay317

while learning a new task. DGR (Shin et al., 2017), MeRGAN (Wu et al., 2018), and CloGAN (Rios & Itti,318

2018) retain the past task(s) distribution with a generative model and replay the synthetic samples during319

incremental learning. Our approach also leverages memory replay from a tiny episodic memory; however,320

we store the feature maps instead of raw inputs.321

Variational Continual Learning (VCL) (Nguyen et al., 2017) leverages Bayesian inference to mitigate catas-322

trophic forgetting. However, the approach, when naïvely adapted, performs poorly in the streaming learning323

setting. Additionally, it also needs task-id during inference. Furthermore, the explicit finetuning with the324

buffer samples (coreset) before inference violates the single-pass learning constraint. Moreover, it still does325

not outperform our approach even with the finetuning. More details are given in the appendix.326

REMIND (Hayes et al., 2019b) is a recently proposed rehearsal-based lifelong learning approach, which327

combats catastrophic forgetting in streaming setting. While it follows a setting close to the one proposed, the328

model stores a large number of past examples compared to the other baselines; for example, iCaRL (Rebuffi329

et al., 2017) stores 10K past examples for the ImageNet experiment, whereas REMIND stores 1M past330

examples. Further, it actually uses a lossy compression to store past samples, which is merely an engineering331

technique, not an algorithmic improvement, and can be used by any continual learning approach. For more332

details, please refer to the appendix.333

9

Under review as submission to TMLR

5 Experiments334

5.1 Datasets And Data Orderings335

Datasets. To evaluate the efficacy of the proposed model we perform extensive experiments on five standard336

datasets: CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), ImageNet100, iCubWorld337

1.0 (Fanello et al., 2013), and CORe50 (Lomonaco & Maltoni, 2017). CIFAR10 and CIFAR100 are standard338

classification datasets with 10 and 100 classes, respectively. ImageNet100 is a subset of ImageNet-1000339

(ILSVRC-2012) (Russakovsky et al., 2015) containing randomly chosen 100 classes, with each class containing340

700-1300 training samples and 50 validation samples. Since, the test data for ImageNet-1000 (ILSVRC-341

2012) (Russakovsky et al., 2015) is not provided with labels, we use the validation data for evaluating the342

model’s performance, similar to (Hayes et al., 2019b). iCubWorld 1.0 is an object recognition dataset which343

contains the sequences of video frames, with each containing a single object. There are 10 classes, with344

each containing 3 different object instances with 200-201 images each. Overall, each class contains 600-602345

samples for training and 200-201 samples for testing. CORe50 is similar to iCubWorld 1.0, containing images346

from temporally coherent sessions, with the whole dataset divided into 11 distinct sessions characterized by347

different backgrounds and lighting. There are 10 classes, with each containing 5 different object instances348

with 2393-2400 images each. Overall, each class contains 11983-12000 samples for training and 4495-4500349

samples for testing. Technically, iCubWorld and CORe50 are the ideal dataset for streaming learning, as it350

requires learning from temporally coherent image sequences, which are naturally non-i.i.d images.351

Evaluation Over Different Data Orderings. The proposed approach is robust to the various streaming352

learning setting; we evaluate the model’s streaming learning ability with the following four (Hayes et al.,353

2019a;b) challenging data ordering schemes: (i) ‘streaming iid’ : where the data-stream is organized by the354

randomly shuffled samples from the dataset, (ii) ‘streaming class iid‘: where the data-stream is organized355

by the samples from one or more classes, these samples are shuffled randomly, (iii) ‘streaming instance’ :356

where the data-stream is organized by temporally ordered samples from different object instances, and (iv)357

‘streaming class instance’ : where the data-stream is organized by the samples from different classes, the358

samples within a class are temporally ordered based on different object instances. Only iCubWorld 1.0359

and CORe50 dataset contains the temporal ordering, therefore ‘streaming instance’, and ‘streaming class360

instance’ setting are evaluated only on these two datasets. Please refer to the appendix for more details.361

5.2 Metrics362

For evaluating the performance of the streaming learner, we use Ωall metric, similar to (Kemker et al., 2018;363

Hayes et al., 2019a;b), where Ωall represents normalized incremental learning performance with respect to364

an offline learner:365

Ωall = 1
T

T∑
t=1

αt
αoffline,t

(9)

where T is the total number of testing events, αt is the performance of the incremental learner at time t,366

and αoffline,t is the performance of a traditional offline model at time t.367

5.3 Baselines And Compared Methods368

The proposed approach follows the ‘streaming learning setup’ ; to the best of our knowledge, recent works369

ExStream (Hayes et al., 2019a) and REMIND (Hayes et al., 2019b) are the only methods that follow the370

same setting. We compare our approach against these strong baselines. We also compare our model with (i)371

a network trained with one sample at a time (Fine-tuning/lower-bound) and (ii) a network trained offline,372

assuming all the data is available (Offline/upper-bound). Finally, we choose recent popular ‘batch’ (IBL) and373

‘online’ learning methods, such as EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018a), VCL (Nguyen374

et al., 2017), Coreset VCL (Nguyen et al., 2017), Coreset Only (Farquhar & Gal, 2018), TinyER (Chaudhry375

et al., 2019), GDumb (Prabhu et al., 2020), AGEM (Chaudhry et al., 2018b) and DER/DER++ (Buzzega376

et al., 2020) as baselines and rigorously evaluate our model against these approaches. For a fair comparison,377

we train all the methods in a streaming learning setup, i.e., one sample at a time. ‘Coreset VCL’ and ‘Coreset378

10

Under review as submission to TMLR

Only’ both are trained in a streaming manner; however, the network is fine-tuned with the stored samples379

before inference. Furthermore, GDumb stores samples in memory and fine-tunes the network with them380

before inference, while fine-tuning is prohibited in ‘streaming learning’. Therefore, Coreset VCL, Coreset381

Only, and GDumb have an extra advantage compared to the true ‘streaming learning’ approaches. Still,382

BISLERi outperforms these approaches by a significant margin. We provide more details about the baseline383

methods in the appendix.384

Table 3: Ωall results with their associated standard deviations. For each experiment, the method with best
performance in ‘streaming-learning-setup’ is highlighted in Bold. The reported results are average over 10
runs with different permutations of the data. Offline model is trained only once. Ôffline = 1

T

∑T
t=1αoffline,t,

where T is the total number of testing events. ‘-’ indicates experiments we are unable to run, because of
compatibility issues.
Note: Methods in Red use fine-tuning, implying that these methods violate streaming learning (SL) con-
straints and have an extra advantage over true streaming learning (SL) methods, such as ‘Ours’.

Method iid Class-iid

CIFAR10 CIFAR100 ImageNet100 CIFAR10 CIFAR100 ImageNet100

Fine-Tune 0.1175 ± 0.0000 0.0180 ± 0.0035 0.0127 ± 0.0029 0.3447 ± 0.0003 0.1277 ± 0.0022 0.1223 ± 0.0052
EWC - - - 0.3446 ± 0.0003 0.1292 ± 0.0037 0.1225 ± 0.0039
MAS - - - 0.3470 ± 0.0075 0.1280 ± 0.0029 0.1234 ± 0.0046
VCL - - - 0.3442 ± 0.0006 0.1273 ± 0.0041 0.1205 ± 0.0015

Coreset VCL - - - 0.3716 ± 0.0501 0.1414 ± 0.0224 0.1259 ± 0.0122
Coreset Only - - - 0.3684 ± 0.0442 0.1432 ± 0.0256 0.1273 ± 0.0182

GDumb 0.8686 ± 0.0065 0.6067 ± 0.0119 0.8361 ± 0.0070 0.9252 ± 0.0057 0.7635 ± 0.0096 0.9197 ± 0.0081
AGEM 0.1175 ± 0.0000 0.0182 ± 0.0035 0.0139 ± 0.0041 0.3448 ± 0.0002 0.1290 ± 0.0037 0.1215 ± 0.0025
DER 0.1175 ± 0.0000 0.0165 ± 0.0003 0.0126 ± 0.0027 0.3449 ± 0.0011 0.1278 ± 0.0024 0.1217 ± 0.0038

DER++ 0.1175 ± 0.0000 0.0173 ± 0.0028 0.0130 ± 0.0039 0.3588 ± 0.0423 0.1290 ± 0.0054 0.1230 ± 0.0068
TinyER 0.9314 ± 0.0114 0.7588 ± 0.0128 0.9415 ± 0.0085 0.8926 ± 0.0158 0.7402 ± 0.0195 0.8995 ± 0.0122
ExStream 0.8866 ± 0.0244 0.7845 ± 0.0121 0.9293 ± 0.0082 0.8123 ± 0.0209 0.7176 ± 0.0208 0.8757 ± 0.0148
REMIND 0.8910 ± 0.0073 0.6457 ± 0.0091 0.9088 ± 0.0109 0.8832 ± 0.0201 0.6787 ± 0.0215 0.8803 ± 0.0157
Ours 0.9579 ± 0.0040 0.8679 ± 0.0057 0.9640 ± 0.0060 0.8991 ± 0.0089 0.7724 ± 0.0188 0.9171 ± 0.0073

Offline 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Ôffline 0.8509 0.6083 0.8520 0.8972 0.7154 0.8953

Method iid Class-iid instance Class-instance

iCubWorld 1.0 CORe50 iCubWorld 1.0 CORe50 iCubWorld 1.0 CORe50 iCubWorld 1.0 CORe50

Fine-Tune 0.1369 ± 0.0184 0.1145 ± 0.0000 0.3893 ± 0.0534 0.3485 ± 0.0171 0.1307 ± 0.0000 0.1145 ± 0.0000 0.3485 ± 0.0022 0.3430 ± 0.0003
EWC - - 0.3790 ± 0.0419 0.3508 ± 0.0243 - - 0.3487 ± 0.0034 0.3427 ± 0.0007
MAS - - 0.3912 ± 0.0613 0.3432 ± 0.0004 - - 0.3486 ± 0.0019 0.3429 ± 0.0005
VCL - - 0.3806 ± 0.0527 0.3462 ± 0.0129 - - 0.3473 ± 0.0025 0.3420 ± 0.0009

Coreset VCL - - 0.3948 ± 0.0558 0.3424 ± 0.0019 - - 0.4705 ± 0.0165 0.4715 ± 0.0054
Coreset Only - - 0.3994 ± 0.0922 0.3688 ± 0.0499 - - 0.4669 ± 0.0251 0.4748 ± 0.0035

GDumb 0.8993 ± 0.0413 0.9345 ± 0.0121 0.9660 ± 0.0201 0.9742 ± 0.0081 0.6715 ± 0.0540 0.7433 ± 0.0246 0.7908 ± 0.0329 0.6548 ± 0.0259
AGEM 0.1311 ± 0.0000 0.1145 ± 0.0000 0.4047 ± 0.0632 0.3460 ± 0.0101 0.1309 ± 0.0003 0.1145 ± 0.0000 0.3489 ± 0.0030 0.3429 ± 0.0004
DER 0.1437 ± 0.0393 0.1145 ± 0.0000 0.4057 ± 0.1046 0.3432 ± 0.0005 0.3759 ± 0.2404 0.1168 ± 0.0072 0.4082 ± 0.1662 0.3308 ± 0.0385

DER++ 0.1428 ± 0.0364 0.1145 ± 0.0000 0.4467 ± 0.1287 0.3431 ± 0.0003 0.4518 ± 0.2510 0.1145 ± 0.0000 0.4499 ± 0.2311 0.3429 ± 0.0006
TinyER 0.9590 ± 0.0378 1.0007 ± 0.0121 0.9069 ± 0.0297 0.9573 ± 0.0125 0.8726 ± 0.0649 0.8432 ± 0.0262 0.8215 ± 0.0341 0.8461 ± 0.0247
ExStream 0.9235 ± 0.0584 0.9844 ± 0.0156 0.8820 ± 0.0285 0.8760 ± 0.0166 0.8954 ± 0.0542 0.8257 ± 0.0295 0.8727 ± 0.0229 0.8837 ± 0.0211
REMIND 0.9260 ± 0.0311 0.9933 ± 0.0115 0.8553 ± 0.0349 0.9448 ± 0.0125 0.8157 ± 0.0600 0.8544 ± 0.0247 0.7615 ± 0.0319 0.7826 ± 0.0377
Ours 0.9716 ± 0.0141 1.0069 ± 0.0058 0.9480 ± 0.0215 0.9686 ± 0.0122 0.9580 ± 0.0298 0.9824 ± 0.0090 0.9585 ± 0.0223 0.9384 ± 0.0130

Offline 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Ôffline 0.7626 0.8733 0.8849 0.9070 0.7646 0.8733 0.8840 0.9079

5.4 Results385

The detailed results of BISLERi over various experimental settings along with the strong baseline methods386

are shown in Table 3. We can clearly observe that BISLERi consistently outperforms all the baseline387

by a significant margin. The proposed model is also robust to the different streaming learning scenarios388

compared to the baselines. We repeat our experiment ten times, and report the average-accuracy along389

with the standard-deviations. We observe that ‘batch-learning’ methods severely suffer from catastrophic390

forgetting. Moreover, replay-based ‘online-learning’ method such as AGEM also suffer from information loss391

badly.392

Although GDumb achieves higher accuracy on several datasets on class-i.i.d ordering, it fine-tunes the393

network parameters before each inference, ultimately violating the constraints of streaming learning (refer,394

Section 2). Therefore, we do not consider GDumb as the best-performing method, even when it achieves395

higher accuracy.396

11

Under review as submission to TMLR

VC
L

Co
re

se
t

VC
L

AG
EM D
ER

D
ER

+
+

Ti
ny

ER

RE
M

IN
D

O
u
r
s

0.2

0.4

0.6

0.8

1.0
Ω

a
ll
 R

es
ul

ts
(a) Class-iid

Batch
Online
Streaming

VC
L

Co
re
se
t

VC
L

AG
EM D
ER

D
ER

+
+

Ti
ny
ER

RE
M
IN
D

O
u
r
s

(b) Class-instance
Batch
Online
Streaming

Figure 2: Ωall results for ‘batch’, ‘online’ and ‘streaming’ versions of baselines on iCubWorld 1.0 on (a)
Class-iid, and (b) Class-instance ordering. An empty plot in AGEM indicates, we are unable to conduct
experiment due to compatibility issues.

We believe it is important to highlight that iCubWorld 1.0 and CORe50 are two challenging datasets, which397

evaluate the models in more realistic scenarios or data-orderings. Particularly, class-instance and instance398

ordering require the learner to learn from temporally ordered video frames one at a time. From Table 3,399

we observe that BISLERi obtain up to 8.58% & 6.26% improvement on iCubWorld 1.0, and 5.47% & 12.8%400

improvement on CORe50, over the state-of-the-art streaming learning approaches. Figure 4 shows the impact401

of temporal orderings on the streaming learning model’s performance. It is evident that class-instance and402

instance ordering are more difficult, and the baselines continue to suffer from severe forgetting. Figure 3403

plots the accuracy (αt) of BISLERi (Ours) and other baselines on (i) class-i.i.d and (ii) class-instance404

data-orderings on iCubWorld 1.0 and CORe50 datasets. It can be observed that BISLERi remembers the405

previous classes better than the other compared baselines. Furthermore, it can also be observed that BISLERi406

performs significantly better than the baselines in class-instance ordering, i.e., when there exists temporal407

coherance in the input data-stream.408

Finally, for completeness, we train BISLERi in ‘batch’ as well as ‘online’ learning setting to determine its409

effectiveness and compatibility in these settings. In Figure 2, we compare BISLERi with various baselines. It410

can be observed that BISLERi outperforms the baselines by a significant margin on both class-i.i.d and class-411

instance ordering on iCubWorld. It implies that, even though BISLERi designed to work in the streaming412

setting, it can be thought of as a robust method for various lifelong learning scenarios with the widest possible413

applicability. We provide more details in the appendix.414

5.5 Implementation Details415

In all the experiments, models are trained with one sample at a time. For a fair comparison, the same416

network structure is used throughout all the models. For all methods, we use fully connected single-head417

networks with two hidden layers as the plastic network F (·), where each layer contains 256 nodes with ReLU418

activations; for ‘VCL’, ‘Coreset VCL’, ‘Coreset Only’ and ‘BISLERi’, F (·) is a BNN, whereas for all other419

methods F (·) is a deterministic network. For a fair comparison, we store the same number of past examples420

for all replay-based approaches. For REMIND, we compress and store the feature-maps with Faiss (Johnson421

et al., 2019) product quantization (PQ) implementation with s = 32 sub-vectors and codebook size c = 256.422

We store the feature-map in memory for all the other methods, including our approach BISLERi. In addition,423

BISLERi also store the corresponding logits, loss-values, and uncertainty-scores. The capacity of our replay424

buffer is mentioned in Table 2. For memory-replay, we use ‘uncertainty-aware positive-negative’ sampling425

strategy (discussed in Section 3.2) throughout all data-orderings, except for ‘streaming-i.i.d’ ordering, we use426

‘uniform’ sampling. We use ‘loss-aware weighted random replacement with a reservoir’ sampling strategy as427

memory replacement policy for all the experiments. We store the same number of past examples in memory428

12

Under review as submission to TMLR

2 4 6 8 10
Number of Classes

0.2
0.4
0.6
0.8
1.0

α
t

Cl
as

s-
i.i

.d

2 4 6 8 10
Number of Classes

0.2
0.4
0.6
0.8
1.0

α
t

2 4 6 8 10
Number of Classes

0.2
0.4
0.6
0.8
1.0

α
t

Cl
as

s-
in

st
an

ce

2 4 6 8 10
Number of Classes

0.2
0.4
0.6
0.8
1.0

α
t

iCubWorld 1.0 CORe50

Offline
Ours

REMIND
TinyER

ExStream
GDumb

EWC
MAS

VCL
Coreset VCL

Coreset Only
DER

DER++
AGEM

Fine-tune

Figure 3: Performance of various incremental learning models on (i) streaming class-i.i.d (top row) and (ii)
streaming class-instance (bottom row) ordering on iCubWorld 1.0 & CORe50 dataset. The plots suggest
BISLERi (Ours) remembers earlier classes better than most existing algorithms. The performance gain
is even more pronounced in streaming class-instance ordering setting (bottom row) where the baseline in-
cremental learners suffer from severe forgetting. Recall that GDumb cannot be considered as a streaming
learning algorithm as it requires fine-tuning.

GDumb TinyER ExStream REMIND Ours
0.6
0.7
0.8
0.9
1.0
1.1

Ω
al
l R

es
ult

s

(a) iCubWorld 1.0

GDumb TinyER ExStream REMIND Ours

(b) CORe50
i.i.d instance Class-i.i.d Class-instance

Figure 4: Plots of Ωall as a function of streaming learning model and data-ordering on (a) iCubWorld 1.0,
and (b) CORe50. Only difference between i.i.d vs instance and class-i.i.d vs class-instance ordering, is the
presence of temporal ordering (ref. Sec. 5.1); however, its effect on the streaming learner’s performance is
significant.

13

Under review as submission to TMLR

Table 4: Ωall Results with their associated standard deviations. For each experiment, the method with best
performance is highlighted in Bold.

Memory Replacement Sample Selection
iCubWrold ImageNet100

instance Class-instance iid Class-iid

LAWCBR
Uni 0.8975 ± 0.0454 0.8506 ± 0.0310 0.9582 ± 0.0037 0.9014 ± 0.0073

UAPN 0.9346 ± 0.0395 0.8500 ± 0.0363 0.9327 ± 0.0052 0.9135 ± 0.0081
LAPN 0.9172± 0.0373 0.8536 ± 0.0343 0.9253 ± 0.0115 0.9122 ± 0.0091

LAWRRR
Uni 0.9269 ± 0.0383 0.9346 ± 0.0191 0.9640 ± 0.0060 0.8643 ± 0.0127

UAPN 0.9580 ± 0.0298 0.9585 ± 0.0223 0.9578 ± 0.0035 0.9171 ± 0.0073
LAPN 0.9558 ± 0.0304 0.9497 ± 0.0239 0.9575 ± 0.0047 0.9112 ± 0.0075

across all methods. For memory-replay, we use N ′1 = 16 past samples throughout all experiments across429

BISLERi, AGEM, DER/DER++, TinyER, ExStream and REMIND. For knowledge-distillation, BISLERi430

and DER++ use N ′2 = 16 samples at any time step t. We set the hyper-parameter λ1 = 1 and λ2 = 0.3431

across all experiments; however, for online/batch learning experiments, we use λ2 = 0.2 and use uniform432

sampling for memory replay. For EWC, we set hyper-parameter λ = 500, for MAS, we set hyper-parameter433

λ = 1, and for DER/DER++, we use α = β = 0.5. We repeated each experiments for 10 times with different434

permutations of the data, and reported the results by taking average of 10 runs. More details are given in435

the appendix.436

6 Ablation Study437

We perform extensive ablation to show the importance of the different components. The various ablation438

experiments validate the significance of the proposed components.439

Significance Of Different Sampling Strategies. In Table 4, we compare the performance of BISLERi440

while using various sampling strategies and memory replacement policies. We observe that for the buffer441

replacement, LAWRRR performs better compared to LAWCBR. Furthermore, for the sample replay, UAPN,442

along with LAWRRR memory buffer policy, outperforms other sampling strategies, except uniform sampling443

(Uni) performs better on i.i.d ordering. We provide more details in the appendix.444

Choice Of Hyperparameter (λ2). Figure 5 shows the effect of changing the knowledge-distillation loss445

weight λ2 on the final Ωall accuracy for iCubWorld 1.0 on instance and class-instance ordering, while using446

different sampling strategies and buffer replacement policies. We observe the best model performance for447

λ2 = 0.3, and use this value for all our experiments. We provide detailed ablation on λ2 in the appendix.448

0.0 0.1 0.2 0.3 0.4 0.5
λ2

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ω
al
l R

es
ult

s

(i) instance

0.0 0.1 0.2 0.3 0.4 0.5
λ2

(ii) class-instance

Uni + LAWCBR
UAPN + LAWCBR

LAPN + LAWCBR
Uni + LAWRRR

UAPN + LAWRRR
LAPN + LAWRRR

Figure 5: Plots of Ωall as a function of hyper-parameter λ2 and different sampling strategies and replacement
policies for (i) instance, (ii) class-instance ordering on iCubWorld 1.0.

Significance Of Knowledge-Distillation Loss. Figure 5 with λ2 = 0.0 represents the model without449

knowledge distillation. We can observe that the model performance significantly degrades without knowledge450

14

Under review as submission to TMLR

distillation. Therefore, knowledge distillation is a key component to the model’s performance. More details451

are given in the appendix.452

Choice Of Buffer Capacity. We perform an ablation for the different buffer capacities, i.e., |M|. The453

results are shown in Figure 6. It is evident that, with the longer sequence of incoming data, the model’s454

(BISLERi) performance improves with the increase in the buffer capacity, as it helps minimize the confusion455

in the output prediction.456

CIFAR10 CIFAR100
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ω
al
l R

es
ul

ts 0.84

0.67

0.90

0.77

0.93

0.81

0.94

0.82

0.95

0.83

|M|=500

|M|=1000

|M|=1500

|M|=2000

|M|=2500

Figure 6: Plots of Ωall as a function of buffer capacity |M| for class-i.i.d data-ordering on CIFAR10 and
CIFAR100.

7 Conclusion457

Streaming continual learning (SCL) is the most challenging and realistic framework for continual learning;458

most of the recent promising models for the CL are unable to handle this above setting. Our work proposes459

a dual regularization and loss-aware buffer replacement to handle the SCL scenario. The proposed model is460

highly efficient since it learns a joint likelihood from the current and replay samples without leveraging any461

external finetuning. Also, to improve the training efficiency further, the proposed model selects a few most462

informative samples from the buffer instead of using the entire buffer for the replay. We have conducted463

a rigorous experiment over several challenging datasets and showed that BISLERi outperforms the recent464

state-of-the-art approaches in this setting by a significant margin. To disentangle the importance of the465

various components, we perform extensive ablation studies and observe that the proposed components are466

essential to handle the SCL setting.467

References468

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a network469

of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.470

3366–3375, 2017.471

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory472

aware synapses: Learning what (not) to forget. In Proceedings of the European Conference on Computer473

Vision (ECCV), pp. 139–154, 2018a.474

Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. Selfless sequential learning. arXiv preprint475

arXiv:1806.05421, 2018b.476

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and477

Tinne Tuytelaars. Online continual learning with maximally interfered retrieval. arXiv preprint478

arXiv:1908.04742, 2019.479

Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of class incremental learning480

algorithms for visual tasks. Neural Networks, 2020.481

15

Under review as submission to TMLR

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural482

networks. arXiv preprint arXiv:1505.05424, 2015.483

Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan. Streaming484

variational bayes. arXiv preprint arXiv:1307.6769, 2013.485

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience486

for general continual learning: a strong, simple baseline. arXiv preprint arXiv:2004.07211, 2020.487

Lucy R Chai. Uncertainty estimation in bayesian neural networks and links to interpretability. Master of488

Philosophy (University of Cambridge), 2018.489

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk490

for incremental learning: Understanding forgetting and intransigence. In Proceedings of the European491

Conference on Computer Vision (ECCV), pp. 532–547, 2018a.492

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong493

learning with a-gem. arXiv preprint arXiv:1812.00420, 2018b.494

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,495

Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiv496

preprint arXiv:1902.10486, 2019.497

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive498

learning. arXiv preprint arXiv:2003.04297, 2020.499

Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh,500

and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE501

Transactions on Pattern Analysis and Machine Intelligence, 2021.502

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided continual503

learning with bayesian neural networks. arXiv preprint arXiv:1906.02425, 2019.504

Sean Fanello, Carlo Ciliberto, Matteo Santoro, Lorenzo Natale, Giorgio Metta, Lorenzo Rosasco, and505

Francesca Odone. icub world: Friendly robots help building good vision data-sets. In Proceedings of506

the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 700–705, 2013.507

Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. arXiv preprint508

arXiv:1805.09733, 2018.509

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu, Alexander510

Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural networks. arXiv511

preprint arXiv:1701.08734, 2017.512

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3(4):513

128–135, 1999.514

João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. On evaluating stream learning algorithms.515

Mach. Learn., 90(3):317–346, March 2013.516

Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Structured variational learning of bayesian neural517

networks with horseshoe priors. In International Conference on Machine Learning, pp. 1744–1753. PMLR,518

2018.519

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation520

of catastrophic forgetting in gradient-based neural networks, 2015.521

Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience replay for streaming522

learning. In 2019 International Conference on Robotics and Automation (ICRA), pp. 9769–9776. IEEE,523

2019a.524

16

Under review as submission to TMLR

Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Remind your neural525

network to prevent catastrophic forgetting. arXiv preprint arXiv:1910.02509, 2019b.526

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In527

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.528

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint529

arXiv:1503.02531, 2015.530

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. arXiv preprint531

arXiv:1802.10269, 2018.532

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. IEEE533

transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.534

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Transactions535

on Big Data, 2019.536

Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mohammed Bennamoun. Hands-537

on bayesian neural networks–a tutorial for deep learning users. arXiv preprint arXiv:2007.06823, 2020.538

Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning. arXiv539

preprint arXiv:1711.10563, 2017.540

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christopher Kanan. Measuring541

catastrophic forgetting in neural networks. In Thirty-second AAAI conference on artificial intelligence,542

2018.543

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,544

2013.545

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,546

Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic547

forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.548

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.549

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional550

neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.551

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming catastrophic552

forgetting by incremental moment matching. In Advances in neural information processing systems, pp.553

4652–4662, 2017.554

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and555

machine intelligence, 40(12):2935–2947, 2017.556

Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous object557

recognition. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg (eds.), Proceedings of the 1st Annual558

Conference on Robot Learning, volume 78 of Proceedings of Machine Learning Research, pp. 17–26. PMLR,559

13–15 Nov 2017. URL https://proceedings.mlr.press/v78/lomonaco17a.html.560

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances561

in Neural Information Processing Systems, pp. 6467–6476, 2017.562

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning.563

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773, 2018.564

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple tasks565

by learning to mask weights. In Proceedings of the European Conference on Computer Vision (ECCV),566

pp. 67–82, 2018.567

17

https://proceedings.mlr.press/v78/lomonaco17a.html

Under review as submission to TMLR

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential568

learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165. Elsevier, 1989.569

Hossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett. Self-distillation amplifies regularization in570

hilbert space. In NIPS, 2020.571

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,572

2012.573

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning. arXiv574

preprint arXiv:1710.10628, 2017.575

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong576

learning with neural networks: A review. Neural Networks, 113:54–71, 2019.577

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,578

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep579

learning library. In Advances in neural information processing systems, pp. 8026–8037, 2019.580

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions our581

progress in continual learning. In European Conference on Computer Vision, pp. 524–540. Springer, 2020.582

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental583

classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and584

Pattern Recognition, pp. 2001–2010, 2017.585

Amanda Rios and Laurent Itti. Closed-loop memory gan for continual learning. arXiv preprint586

arXiv:1811.01146, 2018.587

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej588

Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.589

International journal of computer vision, 115(3):211–252, 2015.590

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray591

Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint592

arXiv:1606.04671, 2016.593

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:594

Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and595

pattern recognition, pp. 4510–4520, 2018.596

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting597

with hard attention to the task. arXiv preprint arXiv:1801.01423, 2018.598

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay.599

In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.600

Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and Yee Whye Teh.601

Functional regularisation for continual learning with gaussian processes. arXiv preprint arXiv:1901.11356,602

2019.603

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS),604

11(1):37–57, 1985.605

Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, Bogdan Raducanu, et al. Memory replay gans:606

Learning to generate new categories without forgetting. In Advances In Neural Information Processing607

Systems, pp. 5962–5972, 2018.608

Ye Xiang, Ying Fu, Pan Ji, and Hua Huang. Incremental learning using conditional adversarial networks.609

In Proceedings of the IEEE International Conference on Computer Vision, pp. 6619–6628, 2019.610

18

Under review as submission to TMLR

Chenglin Yang, Lingxi Xie, Chi Su, and Alan L Yuille. Snapshot distillation: Teacher-student optimization in611

one generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,612

pp. 2859–2868, 2019.613

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically expand-614

able networks. arXiv preprint arXiv:1708.01547, 2017.615

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural616

networks? In Advances in neural information processing systems, pp. 3320–3328, 2014.617

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In618

Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3987–3995. JMLR.619

org, 2017.620

Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual learning using online621

variational bayes. arXiv preprint arXiv:1803.10123, 2018.622

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and self-623

supervision for incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision624

and Pattern Recognition, pp. 5871–5880, 2021.625

19

Under review as submission to TMLR

A Preliminaries626

A.1 ‘Class Incremental Learning’ V/S ‘Task Incremental Learning’627

‘Class incremental learning’ (Rebuffi et al., 2017; Chaudhry et al., 2018a; Hayes et al., 2019a;b; Rios &628

Itti, 2018; Belouadah et al., 2020), is a challenging variant of lifelong learning, where the classifier needs629

to learn to discriminate between different class labels from different tasks. The key distinction between630

‘class incremental learning’ and ‘task incremental learning’ (Kirkpatrick et al., 2017; Aljundi et al., 2018a;b;631

Nguyen et al., 2017; Zenke et al., 2017), lies in how the classifier’s accuracy is evaluated at the test time.632

In ‘class incremental learning’, at the test time, the task identifier t is not specified, and the accuracy is633

computed over all the observed classes with 1
C chance, where C is the total number of classes accumulated634

so far. However, in ‘task incremental learning’, the task identifier t is known.635

For example, consider MNIST divided into 5 tasks: {{0, 1} , . . . , {8, 9}}, which are used for sequential learning636

of a classifier. Then, at the end of 5-th task, in ‘task incremental setting’, the classifier needs to predict a637

class out of {8, 9} only. However, in ‘class incremental setting’, a class label is predicted over all the ten638

classes that is observed so far, i.e., {0, . . . , 9} with 1
10 chance for each class.639

A.2 Variational Continual Learning (VCL)640

Variational Continual Learning (VCL) (Nguyen et al., 2017) is a recently proposed continual learning ap-641

proach that mitigates catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999) in neural networks642

in a Bayesian framework (Neal, 2012; Jospin et al., 2020). It sets the posterior of parameters distribution643

as the prior before training on the next task, i.e., pt(θ) = qt−1(θ), the new task reuses the previous task’s644

posterior as the new prior. VCL solves the following KL divergence minimization problem while training on645

task t with the new data Dt:646

qt(θ) = arg min
qεQ

KL
(
q(θ) || 1

Zt
qt−1(θ) p(Dt|θ)

)
(10)

While offering a principled way of continual learning, VCL follows task incremental learning setting, and uses647

‘task specific head networks’, for each task t, such that, p(θ|D1:t) = p(θt|Dt)p(θS |D1:t), where θ = {θS ,θt},648

θs is shared between all the tasks, whereas θt kept fixed after training on task t. This configuration prohibits649

knowledge transfer across tasks, and results in a poor accuracy in class incremental setting (Farquhar & Gal,650

2018) for both VCL with or without Coreset.651

Coreset VCL (Nguyen et al., 2017) withhold some data points from the task data before training and keeps652

them in a coreset. These data points are not used for the network training and are only used for finetuning653

the network before each inference. However, in streaming learning, finetuning the network at any time654

is prohibited, as it makes the training process a two-step learning process instead of single-pass learning.655

Furthermore, the coreset is created by sampling data points from the entire task data, whereas in streaming656

setting, each instance arrives one at a time. Finally, the performance of Coreset VCL is heavily dependent657

on the finetuning with the coreset samples before inference (Farquhar & Gal, 2018), and still not comparable658

enough to our proposed method (BISLERi).659

A.3 REMIND660

REMIND (Hayes et al., 2019b) is a recently proposed rehearsal-based lifelong learning approach which661

combats catastrophic forgetting (French, 1999) in deep neural network in streaming setting. While following662

such a challenging setting, it separates the convolutional neural network into two networks: (i) a frozen663

feature extractor and (ii) a plastic neural network. Learning involves the following steps: (i) compression of664

each new input using product quantization (PQ) (Jegou et al., 2010), (ii) reconstruction of the previously665

stored compressed representations using PQ, and (iii) mixing the reconstructed past examples with the new666

input and updating the parameters of the plastic layers of the network.667

While it combats catastrophic forgetting and achieves state-of-the-art performance, there are few concerns668

that can be limiting in the continual learning setup. It stores considerably a large number of past examples669

20

Under review as submission to TMLR

compared to the baselines; for example, iCaRL (Rebuffi et al., 2017) stores 10K past examples for Ima-670

geNet (ILSVRC-2012) (Russakovsky et al., 2015) experiment, whereas REMIND stores 1M past examples.671

Furthermore, REMIND actually uses a lossy compression method (PQ) to store the past samples, which672

is merely an engineering technique far from any algorithmic improvement and can be used by any lifelong673

learning approach.674

A.4 Bayesian Neural Network675

Bayesian neural networks (Neal, 2012; Jospin et al., 2020) are discriminative models, which extend the676

standard deep neural networks with Bayesian inference. The network parameters are assumed to have a prior677

distribution, p(θ), and it infers the posterior given the observed data D, that is, p(θ|D). However, the exact678

posterior inference is computationally intractable for any complex models, and an approximation is needed.679

One such scheme is ‘Bayes-by-Backprop’ (BBB) (Blundell et al., 2015). It uses a mean-field variational680

posterior q(θ) over the network parameters and uses reparameterization-trick (Kingma & Welling, 2013)681

to sample from the posterior, which are then used to approximate the evidence lower bound (ELBO) via682

Monte-Carlo sampling.683

In our proposed method (BISLERi), we have used a Bayesian neural network (BNN) as the plastic network684

F (·). We have discussed training the plastic network (BNN) F (·) with a single step posterior update without685

catastrophic forgetting (French, 1999) in class-incremental streaming learning (CISL) setup in Section 3.1.686

B Differences Between VCL/Coreset VCL and BISLERi687

In this section, we describe the differences between VCL/Coreset VCL (Nguyen et al., 2017; Farquhar &688

Gal, 2018) and the proposed method (BISLERi). The differences are as follows -689

• While BISLERi and VCL/Coreset VCL both utilizes Bayesian framework to enable continual learn-690

ing in the deep neural networks, VCL/Coreset VCL is a ‘incremental batch learning’ (IBL) mathod691

in nature, whereas BISLERi is a streaming/online learning method. That is, in order to approxi-692

mate the posterior in each incremental step, VCL/Coreset VCL requires visiting the data multiple693

times, whereas BISLERi approximates the posterior with a single gradient update. In doing so we694

need to obtain important modifications to obtain correct estimates of likelihood and updation of the695

posterior. Naively using VCL can be observed to perform quite inferior to the proposed solution.696

Our work is a principled adaptation of the formulation to the streaming learning setting and this is697

quite different from the continual learning based on ‘batch-based updates’.698

• Both VCL and Coreset VCL do not utilize any memory replay, while approximating the new pos-699

terior, whereas BISLERi replays a subset of the past stored samples along with the newly available700

sample in order to approximate the new posterior to enable continual learning. Approximating the701

posterior in this way, i.e., replaying a subset of past samples with the new sample, allows BISLERi to702

achieve ‘any-time-inference’ ability, which is a key-requirement in streaming learning, as fine-tuning703

the network parameters with the stored samples is forbidden in the streaming learning setup.704

• While VCL do not use coreset samples during any step of the learning, Coreset VCL withholds705

a few past samples in memory (coreset), which are then used for fine-tuning the network before706

inference. However, Coreset VCL stores the samples in the coreset in a task-specific manner, unlike707

the methods like GDumb (Prabhu et al., 2020), TinyER (Chaudhry et al., 2019), REMIND (Hayes708

et al., 2019b), BISLERi (Ours). We explain this with the below example.709

Consider MNIST divided into 5 tasks: {{0, 1}, {2, 3}, . . . , {8, 9}}, which are used for sequential710

learning of a classifier. Therefore, in each incremental step, the classifier observes sample from only711

two classes. In this case, Coreset VCL stores samples in memory (coreset) in a task-specific manner.712

That is, it divides the coreset into 5 partitions, where each partition is used to store samples from713

a single task. Before inference, samples corresponding to the current task is utilized to fine-tune714

the network parameters to improve performance. For example, at the end of 5-th task, since the715

21

Under review as submission to TMLR

classifier only needs to predict a class out of {8, 9}, Coreset VCL fine-tunes the network with the716

withheld samples corresponding to only class {8, 9}. While this strategy works nicely in case of717

‘task-incremental learning’, it suffers severely in ‘class-incremental learning’ setup.718

In contrast methods like GDumb (Prabhu et al., 2020), TinyER (Chaudhry et al., 2019), RE-719

MIND (Hayes et al., 2019b), BISLERi (Ours), do not store the samples in memory in a ‘task-specific’720

manner, instead it is populated with the samples from all the classes. Therefore, when methods like721

GDumb, REMIND, BISLERi replays the past samples, it observe samples across all the classes irre-722

spective of the tasks, whereas Coreset VCL only observes samples corresponding to the specific task,723

which causes Coreset VCL to suffer from poor generalization in case of ‘class-incremental learning’724

setup.725

• Coreset VCL withhold few data-points from the dataset, and do not utilize them during the incre-726

mental learning. These withheld samples are only used for fine-tuing the network parameters before727

inference. In contrast BISLERi maintains a replay buffer which is updated in an online manner as728

mentioned in Section 3.3. During streaming learning, in each incremental step a subset of samples729

are selected (Section 3.2) and combined with the newly available sample to compute the new poste-730

rior, which enables the network with the ‘any-time-inference’ ability, a crucial property required in731

streaming learning.732

B.1 How VCL/Coreset VCL is adapted in the Streaming Learning?733

In this subsection, we describe how the actual VCL/Coreset VCL (Nguyen et al., 2017) is adapted, so that it734

can be trained incrementally with a single training example in each incremental step in streaming learning.735

For both VCL and Coreset VCL, we have used a single-headed Bayesian network as the plastic network (F), as736

also mentioned in Section 5.5. We follow the same strategy as mentioned by Nguyen et al. (2017); Farquhar &737

Gal (2018) to approximate the new posterior in each incremental step by combining the previously computed738

posterior with the new data-likelihood. For Coreset VCL, the samples are stored in memory (coreset) in739

a task-specific manner, while arriving one datum at a time in each incremental step. At the end of each740

task, Coreset VCL selects the samples specific to the current task and fine-tunes the network parameters.741

While fine-tuning the network is forbidden in streaming learning, it does not improve the network’s overall742

performance in ‘class-incremental learning’ setup due to the above mentioned reasons.743

C Various Columns Of Table 1 In Detail744

In this section, we describe the various columns that we have used to categorize the existing continual745

learning approaches on the basis of underlying assumptions as they impose. That is, we categorize each746

continual learning according to various constraints that they follow/mention in the respective literature.747

• Type. Each CL approach is classified into one of three types: (i) incremental batch learning748

(IBL/Batch), (ii) online learning (Online), and (iii) streaming learning (Streaming).749

The key difference between IBL and online/streaming learning approaches is that IBL approaches750

visit the data multiple times, perform multiple gradient update to adapt to the newly available751

data. While these approaches works nicely in a static environment, these methods can be applied752

in a dynamic non-stationary environment. In contrast, online/streaming learning approaches adapt753

to the newly available data in a single gradient update.754

The key difference between an online learning and a streaming learning approaches mainly lies on755

whether a method is allowed to do fine-tuning or not. While both the approaches learns with a single756

gradient update, in online learning, it is permitted to fine-tune the network parameters with the757

stored samples any time. However, this would also imply that an online learning approach involves758

multiple gradient updates to improve its performance, which is forbidden in streaming learning. For759

example, GDumb (Prabhu et al., 2020) requires fine-tuning before each inference, therefore, it uses760

multiple gradient updated, ultimately violating the single-pass learning constraint of the streaming761

22

Under review as submission to TMLR

learning. On the other hand, in streaming learning, no single method is allowed to use any additional762

computation, such as fine-tuning, to improve its performance. For example, BISLERi, REMIND do763

not use any fine-tuning at any stage of learning.764

• Bayesian Framework. Whether a method uses a Bayesian framework/formulation or not.765

• Batch Size. IBL and online learning method assumes that a batch of samples arrive in each766

incremental step, where the batch size: Nt � 1. In constrast, streaming learning approaches assume767

that incremental step, only a single training example arrives, such that, the batch size: Nt = 1.768

• Fine-tunes. Whether a method requires fine-tuning or not.769

• Single Pass Learning. In online/streaming learning, each newly available (training) sample(s) is770

only allowed to observe only once without storing it in a memory (replay buffer), and requires to771

be adapted in a single gradient update. This is refered as single-pass learning. In each incremental772

step, however, it is allowed to replay past observed samples stored in memory along with the newly773

available data. Please also refer to REMIND (Hayes et al., 2019b) (Section 2), where they have774

defined this single pass learning formulation to emphasize that we have not invented a new problem775

formulation, it was already existing.776

In addition, in online learning, it is allowed to fine-tune the network with the stored samples by777

repeating the fine-tuning for multiple epochs, multiple times. However, this implies that the network778

would use multiple gradient update instead of a single gradient update to improve its performance,779

which is essentially forbidden in streaming learning.780

MIR (Aljundi et al., 2019) violates the single pass learning constraint of streaming learning, by781

employing a two step/pass learning strategy. Initially, it uses the newly available sample(s) to782

perform a parameter update to select the maximally interfered past stored samples from memory to783

be used for experience replay. Finally, it combines the new available sample(s), already used once784

for a gradient update, with the selected maximally interfered samples to perform another (final)785

gradient update. Therefore, MIR essentially uses a two step/pass learning, instead of a single pass786

learning as required in streaming learning. For more details on the streaming learning constraints787

refer to Section 2.788

GDumb (Prabhu et al., 2020) requires fine-tuning the network parameters for multiple epochs,789

multiple times with the stored replay buffer samples before each inference, as it does not employ any790

learning when it observes a new sample in each incremental step. It implies that GDumb requires791

multiple gradient update to improve its performance, ultimately violates the single pass learning792

constraint.793

• Class Incremental Learning (CIL). Whether supports class-incremental learning or not.794

• Subset Buffer Replay. Whether replays a subset of samples selected from memory or replays all795

the samples stored in memory in each incremental step.796

For example, ExStream (Hayes et al., 2019a) uses memory-replay to enable streaming learning,797

however, in doing so, it replays all the stored samples along with the newly available sample in each798

incremental step. While it mitigates catastrophic forgetting in the network, it limits its practical799

applicability due to obvious reasons. That is, if the buffer capacity is considerably large then time800

required to complete a single gradient update will also be large. On the other hand, the methods801

like REMIND (Hayes et al., 2019b), DER/DER++ (Buzzega et al., 2020), BISLERi (Ours) uses802

subset buffer replay to enable streaming learning. That is, it select only a few samples from memory,803

combines them with the newly available sample in order to perform single gradient update to enable804

continual learning, which is computationally an efficient choice.805

• Training Time. Training time column denotes the number of gradient updates required by the806

corresponding method according to the underlying assumption that method impose. Therefore, ζ(n)807

denotes that the corresponding method would require n gradient update in order to enable continual808

learning.809

23

Under review as submission to TMLR

For example, EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018a), VCL/Coreset810

VCL (Nguyen et al., 2017) visits the data multiple times, performs multiple gradient update, to811

enable continual learning, therefore, its training time is represented with ζ(n). On the other hand,812

methods such as DER/DER++ (Buzzega et al., 2020), REMIND (Hayes et al., 2019b), BISLERi813

(Ours) can adapt to the newly available in a single gradient update, hence, the training time is ζ(1).814

• Inference Time. Similar to Training time column, it denotes the number of gradient updates815

required by the corresponding method according to the underlying assumption that method impose.816

Methods which do not require fine-tuning can be evaluated directly, therefore, inference time817

is represented as ζ(1). However, methods which require fine-tuning before inference, such as818

GDumb (Prabhu et al., 2020), uses multiple gradient updates to improve its performance, therefore,819

inference time is represented as ζ(n), where n denotes the number of gradient updates used during820

fine-tuning the network.821

• Violates Any CISL Constraint. Whether violates any ‘class-incremental streaming learning’822

(CISL) constraints or not.823

• Memory Capacity. It denotes the number of past observed samples are stored in the replay buffer824

(memory).825

• Regularization Based. Whether a method uses parameter regularization or not. That is, if a826

method qualifies as a regularization based method, then it uses parameters regularization to enable827

continual learning.828

Parisi et al. (2019), Delange et al. (2021) have classified the existing continual learning approaches829

on the basis of the mechanisms for mitigating catastrophic forgetting into three main categories,830

namely: (i) parameter isolation based approaches, (ii) regularization based approaches, and (iii)831

rehearsal / memory-replay based approaches. In this paper, we have followed this same classification832

to classify the existing CL approaches into one of those three classes.833

• Memory Based. Whether a method uses memory-replay or not to enable continual learning.834

D Importance Of Streaming Learning835

Importance of ‘class-incremental streaming learning’ (CISL) or ‘streaming learning’ (SL) can be described836

as follows:837

• It enables practical deployment of the AI agents in real world scenarios, where an AI agent might838

need to learn from as few as a single (training) example without suffering from the catastrophic839

forgetting. For example, consider an autonomous car might meet with a rare incident/accident,840

then it could be lifesaving if it can be trained continuously with that single example without any841

forgetting. It would be impractical, if not infeasible, to wait and aggregate a batch of samples to842

train the autonomous agent, as we may not collect a batch of such examples due to its rare nature.843

Hayes et al. (2019b) refered to streaming learning as the closest alternative to the biological learning844

than the other existing lifelong learning approaches, due to the fact that it enables continual learning845

from a single example with no forgetting.846

• IBL methods assume the data available in batches and can visit the data multiple times to enable847

CL. While it can be applicable in a static environment, it lacks the applicability in a rapidly chang-848

ing dynamic environment, where a learner needs to adapt quickly in a single pass, such that, it849

achieves ‘any-time-inference’ ability. Although, the existing online learning approaches aim to en-850

able continual learning in a dynamic environment from a non-stationary data-stream, these methods851

have number of limitations, such as: (i) require batch-size, (ii) require fine-tuning before each infer-852

ence, (iii) require large replay buffer, etc., which limits their applicability in a restrictive streaming853

lifelong learning. Streaming learning approaches addresses the limitations of the existing IBL and854

online learning approaches and enables lifelong learning following various constraints: (i) single pass855

24

Under review as submission to TMLR

learning, (ii) subset buffer replay, (iii) tiny replay buffer, etc. It further enables ‘any-time-inference’856

ability in a continual learner, which enables practical applicability in real world scenarios. Finally,857

it also enables lifelong learning from a temporally coherent video sequences (images), which are nat-858

urally non-i.i.d images. Please refer to Section 2 in REMIND (Hayes et al., 2019b) paper that has859

defined this problem formulation to emphasize that we have not invented a new problem formulation,860

it was already existing.861

E Baselines And Compared Methods In Detail862

The proposed approach (BISLERi) follows ‘class-incremental streaming learning’ setup, to the best of our863

knowledge, recent works ExStream (Hayes et al., 2019a), and REMIND (Hayes et al., 2019b) are the only864

method that trains a deep neural network following the same learning setting. We compared BISLERi against865

these strong baselines. In addition, we have compared various ‘batch’ and ‘online’ learning methods, which866

we describe below.867

For a fair comparison, we follow a similar network structure throughout all the methods. We separate a868

convolutional neural network (CNN) into two networks: (i) non-plastic feature extractor G(·), and (ii) plastic869

neural network F (·). For a given input image x, the predicted class label is computed as: y = F (G(x)).870

Across all the methods, we use the same initialization step for the feature extractor G(·) (discussed in871

Section 3.5) and keep it frozen throughout the streaming learning. For all the methods, only the plastic872

network F (·) is trained with one sample at a time in streaming manner. For details on the structure of the873

plastic network F (·) across baselines along with BISLERi, refer to Section 5.5.874

In the below, we describe the baselines which we have evaluated along with BISLERi in class-incremental875

streaming setting:876

1. EWC (Kirkpatrick et al., 2017): It is a regularization-based incremental learning method, which877

penalizes any changes to the network parameters by the important weight measure, the diagonal of878

the Fisher information matrix.879

2. MAS (Aljundi et al., 2018a): It is another regularization-based lifelong learning method, where880

the importance weight of the network parameters are estimated by measuring the magnitude of the881

gradient of the learned function.882

3. VCL (Nguyen et al., 2017): It uses variational inference (VI) with a Bayesian neural network (Neal,883

2012; Jospin et al., 2020) to mitigate catastrophic forgetting, where it uses the previously learned884

posterior as the prior while learning incrementally with the sequentially coming data. For more885

details, please refer to Section A.2.886

4. Coreset VCL (Nguyen et al., 2017): This method is the same as the pure VCL as mentioned887

above, except, at the end of training on each task, the network is finetuned with the coreset samples.888

We adapted the coreset selection in streaming setting and stored data points in coreset in an online889

manner; before inference, the network is fine-tuned with the coreset samples.890

5. Coreset Only (Farquhar & Gal, 2018): This method is exactly similar to Coreset VCL (Nguyen891

et al., 2017), except the prior which is used for variational inference is the initial prior each time,892

i.e., it is not updated with the previous posterior before training on a new task.893

6. GDumb (Prabhu et al., 2020): It is an online learning method. It stores data points with a greedy894

sampler and retrains the network from scratch each time with stored samples before inference.895

7. AGEM (Chaudhry et al., 2018b): It is another online learning approach. It uses past task data896

stored in memory to build an optimization constraint to be satisfied by each new update. If the897

gradient violates the constraint, then it is projected such that the constraint is satisfied.898

8. DER (Buzzega et al., 2020): It stores the past logits in memory and matches them while learning899

on the new data.900

25

Under review as submission to TMLR

9. DER++ (Buzzega et al., 2020): It stores the past task data points along with the corresponding901

logits in memory. It uses memory-replay and knowledge-distillation to enable continual learning902

while learning on the new data.903

10. TinyER (Chaudhry et al., 2019): It stores past task data points in a tiny episodic memory and904

replays them with the current training data to enable continual learning.905

11. ExStream (Hayes et al., 2019a): It is a streaming learning method, which uses memory replay to906

enable continual learning. It maintains buffers of prototypes to store the input vectors. Once the907

buffer is full, it combines the two nearest prototypes in the buffer and stores the new input vector.908

12. REMIND (Hayes et al., 2019b): Similar to ExStream, it is another streaming learning method,909

which enables lifelong learning with memory replay. For more details on REMIND, please refer to910

Section A.3.911

13. Fine-tuning: It is a streaming learning baseline and serves as the lower bound on the network’s912

performance. In this scenario, the network parameters are fine-tuned with one instance through the913

whole dataset for a single epoch.914

14. Offline: It serves as the upper bound on the network’s performance, where the network is trained in915

the traditional way, that is, the complete dataset is divided into multiple batches, and the network916

loops over them multiple times.917

Note: In streaming learning, fine-tuning the network parameters at any time is prohibited (refer Section 2),918

and thus, any method which uses fine-tuning has an extra advantage over the true streaming learning919

methods, and cannot be considered as the best performing method even when they are achieving the best920

accuracy. Coreset VCL (Nguyen et al., 2017), Coreset Only (Farquhar & Gal, 2018) and GDumb (Prabhu921

et al., 2020), however, requires fine-tuning before each inference, therefore, we do not consider these methods922

as the best performing method over the true streaming learning methods.923

26

Under review as submission to TMLR

Bananas

Bottles

Boxes

Bread

Cans

Lemons

Pears

Peppers

Potatoes

Yogurt

Figure 7: The iCubWorld 1.0 (Fanello et al., 2013) dataset. 10 categories: Bananas, Bottles, Boxes, Bread,
Cans, Lemons, Pears, Peppers, Potatoes, Yogurt. Each category contains 3 different instances.

27

Under review as submission to TMLR

Figure 8: Example images of the 50 object instances in CORe50 (Lomonaco & Maltoni, 2017). Each column
denotes one of the 10 categories.

F Ablation Study Additional Results924

In this section, we provide additional results for the ablation studies.925

• CIFAR10/100. Table 5 compares the final Ωall accuracy of the proposed model (BISLERi) for (i)926

i.i.d and (ii) class-i.i.d ordering on CIFAR10 and CIFAR100 respectively while using different values927

for the knowledge-distillation hyper-parameter λ2, and different memory replacement policies and928

various sample selection strategies.929

• iCubWorld 1.0. Table 6 and Table 7 compares the final Ωall accuracy of BISLERi for (i) i.i.d,930

(ii) class-i.i.d, (iii) instance, and (iv) class-instance ordering on iCubWorld 1.0 dataset while using931

different knowledge-distillation hyper-parameter λ2 and different sampling strategies. For memory932

replacement policy, Table 6 uses ‘loss-aware weighted class balancing replacement (LAWCBR)’ strat-933

egy, whereas Table 7 uses ‘loss-aware weighted random replacement with a reservoir (LAWRRR)’934

strategy.935

• CORe50. In Table 8, we compare the final Ωall accuracy of BISLERi for (i) i.i.d, (ii) class-i.i.d,936

(iii) instance, and (iv) class-instance ordering on CORe50 dataset while using different memory937

replacement policy and past sample selection strategies.938

28

Under review as submission to TMLR

Table 5: Ωall Results as a function of knowledge-distillation hyper-parameter λ2 and different memory
replacement policies and sample selection strategies for (i) i.i.d ordering, and (ii) class-i.i.d ordering on
CIFAR10 and CIFAR100 datasets.

λ2
Memory

Replacement
Sample

Selection
iid class-iid

CIFAR10 CIFAR100 CIFAR10 CIFAR100

0.2

LAWCBR
Uni 0.9542 ± 0.0053 0.8135 ± 0.0054 0.8942 ± 0.0062 0.7343 ± 0.0131

UAPN 0.9084 ± 0.0121 0.4760 ± 0.0136 0.8957 ± 0.0125 0.6448 ± 0.0257
LAPN 0.8462 ± 0.0414 0.3834 ± 0.0335 0.8797 ± 0.0149 0.5332 ± 0.0310

LAWRRR
Uni 0.9584 ± 0.0035 0.8617 ± 0.0091 0.8792 ± 0.0104 0.7221 ± 0.0149

UAPN 0.9567 ± 0.0031 0.8366 ± 0.0107 0.8978 ± 0.0107 0.7589 ± 0.0185
LAPN 0.9530 ± 0.0037 0.8273 ± 0.0141 0.8986 ± 0.0127 0.7478 ± 0.0191

0.3

LAWCBR
Uni 0.9529 ± 0.0062 0.8134 ± 0.0077 0.8970 ± 0.0088 0.7369 ± 0.0106

UAPN 0.9145 ± 0.0071 0.5096 ± 0.0088 0.8944 ± 0.0093 0.6836 ± 0.0231
LAPN 0.9046 ± 0.0152 0.4376 ± 0.0220 0.8798 ± 0.0230 0.6275 ± 0.0291

LAWRRR
Uni 0.9579 ± 0.0040 0.8679 ± 0.0057 0.8838 ± 0.0088 0.7307 ± 0.0122

UAPN 0.9567 ± 0.0031 0.8542 ± 0.0066 0.8991 ± 0.0089 0.7724 ± 0.0188
LAPN 0.9538 ± 0.0044 0.8453 ± 0.0120 0.9024 ± 0.0116 0.7573 ± 0.0193

Table 6: Ωall Results as a function of knowledge-distillation hyper-parameter λ2, and ‘loss-aware weighted
class balancing replacement’ (LAWCBR) and different sampling strategies for (i) i.i.d, (ii) class-i.i.d, (iii)
instance, and (iv) class-instance ordering on iCubWorld 1.0 dataset.

λ2
Sample

Selection
iCubWorld 1.0

iid Class-iid Instance Class-instance

0.0
Uni 0.9431 ± 0.0418 0.9105 ± 0.0333 0.8414 ± 0.0541 0.8259 ± 0.0316

UAPN 0.8775 ± 0.0753 0.8863 ± 0.0529 0.6777 ± 0.0764 0.7711 ± 0.0574
LAPN 0.8975 ± 0.0697 0.8675 ± 0.0498 0.7576 ± 0.0739 0.7524 ± 0.0655

0.1
Uni 0.9885 ± 0.0245 0.9163 ± 0.0237 0.9257 ± 0.0299 0.8369 ± 0.0329

UAPN 0.9781 ± 0.0318 0.9167 ± 0.0263 0.9124 ± 0.0525 0.8627 ± 0.0285
LAPN 0.9779 ± 0.0206 0.9224 ± 0.0332 0.8988 ± 0.0544 0.8543 ± 0.0288

0.2
Uni 0.9841 ± 0.0178 0.9154 ± 0.0217 0.9219 ± 0.0333 0.8454 ± 0.0283

UAPN 0.9868 ± 0.0181 0.9293 ± 0.0306 0.9152 ± 0.0229 0.8712 ± 0.0266
LAPN 0.9645 ± 0.0189 0.9310 ± 0.0227 0.9030 ± 0.0503 0.8516 ± 0.0400

0.3
Uni 0.9777 ± 0.0264 0.9257 ± 0.0288 0.8975 ± 0.0454 0.8506 ± 0.0310

UAPN 0.9868 ± 0.0125 0.9309 ± 0.0355 0.9346 ± 0.0395 0.8500 ± 0.0363
LAPN 0.9745 ± 0.0174 0.9352 ± 0.0266 0.9172 ± 0.0373 0.8536 ± 0.0343

0.4
Uni 0.9782 ± 0.0200 0.9278 ± 0.0295 0.9112 ± 0.0327 0.8377 ± 0.0292

UAPN 0.9815 ± 0.0178 0.9160 ± 0.0464 0.8988 ± 0.0419 0.8509 ± 0.0350
LAPN 0.9718 ± 0.0271 0.9325 ± 0.0401 0.9243 ± 0.0512 0.8499 ± 0.0650

0.5
Uni 0.9742 ± 0.0183 0.8858 ± 0.1505 0.9341 ± 0.0350 0.7787 ± 0.2008

UAPN 0.9692 ± 0.0197 0.8587 ± 0.2278 0.9082 ± 0.0758 0.7914 ± 0.2033
LAPN 0.9725 ± 0.0184 0.9006 ± 0.0635 0.9129 ± 0.0467 0.8357 ± 0.0334

29

Under review as submission to TMLR

Table 7: Ωall Results as a function of knowledge-distillation hyper-parameter λ2, and ‘loss-aware weighted
random replacement with a reservoir’ (LAWRRR) and different sampling strategies for (i) i.i.d, (ii) class-i.i.d,
(iii) instance, and (iv) class-instance ordering on iCubWorld 1.0 dataset.

λ2
Sample

Selection
iCubWorld 1.0

iid Class-iid Instance Class-instance

0.0
Uni 0.9298 ± 0.0329 0.9063 ± 0.0396 0.8837 ± 0.0544 0.9168 ± 0.0312

UAPN 0.9184 ± 0.0379 0.8818 ± 0.0396 0.7507 ± 0.0732 0.8384 ± 0.0675
LAPN 0.9285 ± 0.0357 0.8912 ± 0.0430 0.7735 ± 0.0458 0.8657 ± 0.0521

0.1
Uni 0.9830 ± 0.0207 0.9240 ± 0.0276 0.9292 ± 0.0344 0.9162 ± 0.0255

UAPN 0.9644 ± 0.0260 0.9368 ± 0.0228 0.9439 ± 0.0362 0.9411 ± 0.0224
LAPN 0.9541 ± 0.0280 0.9402 ± 0.0368 0.9241 ± 0.0401 0.9345 ± 0.0235

0.2
Uni 0.9600 ± 0.0312 0.9351 ± 0.0315 0.9155 ± 0.0299 0.9229 ± 0.0284

UAPN 0.9640 ± 0.0236 0.9415 ± 0.0307 0.9254 ± 0.0331 0.9468 ± 0.0273
LAPN 0.9684 ± 0.0160 0.9382 ± 0.0361 0.9368 ± 0.0376 0.9454 ± 0.0263

0.3
Uni 0.9716 ± 0.0141 0.9118 ± 0.0344 0.9269 ± 0.0383 0.9346 ± 0.0191

UAPN 0.9454 ± 0.0239 0.9480 ± 0.0215 0.9580 ± 0.0298 0.9585 ± 0.0223
LAPN 0.9667 ± 0.0174 0.9538 ± 0.0303 0.9558 ± 0.0304 0.9497 ± 0.0239

0.4
Uni 0.9611 ± 0.0153 0.9243 ± 0.0524 0.9350 ± 0.0319 0.9222 ± 0.0403

UAPN 0.9647 ± 0.0257 0.9387 ± 0.0315 0.9476 ± 0.0264 0.9005 ± 0.1257
LAPN 0.9615 ± 0.0194 0.9323 ± 0.0421 0.9257 ± 0.0212 0.9509 ± 0.0323

0.5
Uni 0.9615 ± 0.0301 0.9391 ± 0.0268 0.9001 ± 0.0555 0.9145 ± 0.0649

UAPN 0.9526 ± 0.0179 0.9390 ± 0.0267 0.9275 ± 0.0322 0.8766 ± 0.2320
LAPN 0.9495 ± 0.0215 0.9085 ± 0.1230 0.9369 ± 0.0187 0.9533 ± 0.0248

Table 8: Ωall Results as a function of different memory replacement policies and sample selection strategies
for (i) i.i.d, (ii) class-i.i.d, (iii) instance, and (iv) class-instance ordering on CORe50.

Memory
Replacement

Sample
Selection

CORe50

iid Class-iid instance Class-instance

LAWCBR
Uni 1.0069 ± 0.0058 0.9686 ± 0.0122 0.8644 ± 0.0237 0.7913 ± 0.0434

UAPN 1.0079 ± 0.0047 0.8890 ± 0.1965 0.8976 ± 0.0189 0.7835 ± 0.0701
LAPN 1.0065 ± 0.0045 0.8871 ± 0.2356 0.8888 ± 0.0198 0.6979 ± 0.2043

LAWRRR
Uni 0.9974 ± 0.0075 0.9146 ± 0.0275 0.9711 ± 0.0077 0.9093 ± 0.0222

UAPN 0.9935 ± 0.0050 0.9200 ± 0.0408 0.9824 ± 0.0090 0.9384 ± 0.0130
LAPN 0.9933 ± 0.0056 0.9101 ± 0.0538 0.9835 ± 0.0046 0.8932 ± 0.0671

30

Under review as submission to TMLR

G ImageNet-100939

In this paper, we used a subset of ImageNet-1000 (ILSVRC-2012) (Russakovsky et al., 2015) that contains940

randomly chosen 100 classes. To ease a relevant study, we release the list of these 100 classes that we used941

to evaluate the streaming learner’s performance in our experiments, as mentioned in Table 9.942

Table 9: The list of classes from ImageNet-100, which are randomly chosen from the original ImageNet-1000
(ILSVRC-2012) (Russakovsky et al., 2015).

List Of ImageNet-100 Classes

n01632777 n01667114 n01744401 n01753488
n01768244 n01770081 n01798484 n01829413
n01843065 n01871265 n01872401 n01981276
n02006656 n02012849 n02025239 n02085620
n02086079 n02089867 n02091831 n02094258
n02096294 n02100236 n02100877 n02102040
n02105251 n02106550 n02110627 n02120079
n02130308 n02168699 n02169497 n02177972
n02264363 n02417914 n02422699 n02437616
n02483708 n02488291 n02489166 n02494079
n02504013 n02667093 n02687172 n02788148
n02791124 n02794156 n02814860 n02859443
n02895154 n02910353 n03000247 n03208938
n03223299 n03271574 n03291819 n03347037
n03445777 n03529860 n03530642 n03602883
n03627232 n03649909 n03666591 n03761084
n03770439 n03773504 n03788195 n03825788
n03866082 n03877845 n03908618 n03916031
n03929855 n03954731 n04009552 n04019541
n04141327 n04147183 n04235860 n04285008
n04286575 n04328186 n04347754 n04355338
n04423845 n04442312 n04456115 n04485082
n04486054 n04505470 n04525038 n07248320
n07716906 n07730033 n07768694 n07836838
n07860988 n07871810 n11939491 n12267677

H Average Accuracy (µall)943

In the main paper, we use Ωall metric to compare the performance of streaming learners across datasets944

and data-orderings. However, it can hide the raw performance, since it provides a relative performance with945

respect to an Offline model. Therefore, in this section, we provide average accuracy metric over all testing946

events, similar to (Rebuffi et al., 2017; Hayes et al., 2019b; Kemker et al., 2018):947

µall = 1
T

T∑
t=1

αt (11)

where T is the total number of testing events, and αt is the accuracy of the streaming learner at time t.948

In Table 14, we provide µall results with their associated standard-deviations (for corresponding Ωall results,949

refer Table 3) comparing the performance of BISLERi (Ours) and other baselines in different streaming950

learning scenarios on different datasets. We do not consider GDumb (Prabhu et al., 2020) as the best951

performing model even when it achieves higher accuracy on several datasets on class-i.i.d ordering, since it952

violates the streaming learning constraints (refer Section 2).953

31

Under review as submission to TMLR

Figure 10, 11, 12 plots the accuracy (αt) of BISLERi (Ours) and other baselines on (i) CIFAR10, (ii)954

CIFAR100, (iii) ImageNet100 dataset. Figure 13 is the (partial) zoom-in version of the plot in Figure 3955

comparing the accuracy (αt) of BISLERi (Ours) and other baselines on iCubWorld 1.0 & CORe50 datasets.956

I Ablation Study: µall Results As A Function Of Feature-Extractor957

In this section, we compare the performance of various baselines (in Table 10) for (i) class-instance and (ii)958

instance ordering on iCubWorld 1.0 using a feature extractor trained with (i) supervised image-classification959

loss, and (ii) self-supervised loss. For this experiment, we have used ResNet-50 (He et al., 2016) as the960

base architecture of the feature-extractor. In supervised setup, ResNet-50 is trained with cross-entropy loss,961

whereas in self-supervised setup, ResNet-50 is trained with momentum contrastive loss (MoCoV2 (Chen962

et al., 2020)).963

It can be observed that in both ordering the final accuracy drops across streaming learning methods including964

BISLERi (Ours), if we use a feature-extractor trained with self-supervised loss. However, it is worth men-965

tioning that BISLERi (Ours) still achieves superior performance compared to the other streaming learning966

baselines.967

Table 10: µall results as a function of feature-extractor trained with (i) supervised loss and (ii) self-supervised
loss on iCubWorld 1.0.
Note: Methods in Red use fine-tuning, implying that these methods violate streaming learning (SL) con-
straints and have an extra advantage over true streaming learning (SL) methods, such as ‘Ours’.

Method
Class-instace instace

Resnet50
Supervised

Resnet50
Self-Supervised (MoCoV2)

Resnet50
Supervised

Resnet50
Self-Supervised (MoCoV2)

Fine tune 0.3282 ± 0.0003 0.3276 ± 0.0008 0.1000 ± 0.0000 0.1000 ± 0.0002
VCL 0.3281 ± 0.0003 0.3269 ± 0.0014 - -

Coreset VCL 0.4331 ± 0.0296 0.3949 ± 0.0309 - -
GDumb 0.7455 ± 0.0219 0.4623 ± 0.0638 0.5442 ± 0.0475 0.1821 ± 0.0274
AGEM 0.3280 ± 0.0006 0.3277 ± 0.0008 0.1000 ± 0.0000 0.1000 ± 0.0000
TinyER 0.7369 ± 0.0282 0.6859 ± 0.0273 0.6503 ± 0.0302 0.6331 ± 0.0363
ExStream 0.7919 ± 0.0200 0.6863 ± 0.0305 0.6470 ± 0.0325 0.6026 ± 0.0319
REMIND 0.6754 ± 0.0293 0.6584 ± 0.0258 0.6114 ± 0.0391 0.5355 ± 0.0750

Ours 0.8303 ± 0.0313 0.7596 ± 0.0419 0.6926 ± 0.0120 0.6872 ± 0.0207
Offline 0.8676 0.8368 0.7311 0.7741

J Ablation Study: µall Results As A Function Of Learning-Rate968

In this section, we compare the performance (µall Results) of the baselines including BISLERi (Ours) (in969

Table 11) as a function of learning rate (lr) across: (i) class-instance and (ii) instance ordering on iCubWorld970

1.0 dataset. We can observe that BISLERi (Ours) achieves superior performance compared to the baselines971

while trained with different learning rates.972

Table 11: µall results as a function of learning rate (lr) on iCubWorld 1.0.
Note: Methods in Red use fine-tuning, implying that these methods violate streaming learning (SL) con-
straints and have an extra advantage over true streaming learning (SL) methods, such as ‘Ours’.

Method
Class-instace instace

lr = 0.01 lr = 0.001 lr = 0.003 lr = 0.01 lr = 0.001 lr = 0.003

Fine tune 0.3258 ± 0.0022 0.3264 ± 0.0039 0.3267 ± 0.0013 0.1000 ± 0.0000 0.1121 ± 0.0265 0.1070 ± 0.0221
VCL 0.3246 ± 0.0024 0.3242 ± 0.0016 0.3248 ± 0.0020 - - -

Coreset VCL 0.4319 ± 0.0148 0.4316 ± 0.0161 0.4288 ± 0.0157 - - -
GDumb 0.7077 ± 0.0293 0.6983 ± 0.0273 0.6989 ± 0.0255 0.5134 ± 0.0413 0.4646 ± 0.0732 0.5332 ± 0.0408
TinyER 0.7346 ± 0.0287 0.7177 ± 0.0157 0.7082 ± 0.0172 0.6672 ± 0.0496 0.6982 ± 0.0392 0.7071 ± 0.0251
ExStream 0.7740 ± 0.0198 0.7842 ± 0.0171 0.7848 ± 0.0149 0.6846 ± 0.0414 0.6964 ± 0.0232 0.7138 ± 0.0160
REMIND 0.6843 ± 0.0270 0.6783 ± 0.0227 0.6597 ± 0.0206 0.6237 ± 0.0459 0.6582 ± 0.0358 0.6518 ± 0.0411

Ours 0.8497 ± 0.0191 0.8416 ± 0.0262 0.8458 ± 0.0186 0.7325 ± 0.0228 0.7141 ± 0.0271 0.7280 ± 0.0268
Offline 0.8840 0.8877 0.8912 0.7646 0.7681 0.7551

32

Under review as submission to TMLR

K Ablation Study: GPU Memory And Computation Time Requirements For The973

Tested Methods974

In this section, we provide: (i) gpu memory consumption, and (ii) total time required by the corresponding975

method for streaming learning (in Table 12) on iCubWorld 1.0 for class-instance ordering.976

Table 12: Comparison of baselines w.r.t (i) gpu memory consumption, and (ii) total time required in
streaming learning on iCubWorld 1.0 for class-instance ordering.

Method GPU Memory Consumption (Mb) Time
Fine-Tune 933 34m 03s

EWC 933 41m 23s
MAS 933 54m 16s
VCL 933 53m 25s

DER/DER++ 933 61m 25s
TinyER 933 54m 19s
REMIND 933 63m 21s

Ours 986 73m 25s

It can be observed that the gpu memory consumption and required time to train in streaming learning, is977

not significantly higher than the other baselines. However, it results in superior performance compared to978

the baselines.979

L Ablation Study: µall Results As A Function Of Hyperparameters (α & β) On980

DER/DER++981

While in the main paper, we use hyperparameters: α = β = 0.5, to evalaute the performance of982

DER/DER++ (Buzzega et al., 2020), in this section (Figure 9), we compare the performance (µall) of983

DER/DER++ w.r.t the different values of hyperparameters: α and β. and learning rate (lr) on class-instace984

ordering on iCubWorld 1.0.985

0.0 0.1 0.2 0.3 0.4 0.5
β

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α

0.3286 0.3759 0.4515 0.5312 0.5576 0.6043

0.4883 0.5244 0.4993 0.5018 0.5172 0.5368

0.4077 0.4783 0.5121 0.5530 0.4949 0.5240

0.4560 0.4637 0.4519 0.4877 0.5096 0.4490

0.4579 0.3940 0.4875 0.4947 0.5312 0.5176

0.3787 0.4913 0.4537 0.4527 0.4786 0.4141

lr = 0.01

0.0 0.1 0.2 0.3 0.4 0.5
β

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

α

0.3246 0.3269 0.3791 0.4406 0.5122 0.5718

0.3468 0.3275 0.3273 0.5502 0.5748 0.3940

0.3393 0.3280 0.3511 0.3832 0.3935 0.3992

0.3283 0.3467 0.3819 0.3861 0.4074 0.4344

0.3276 0.3831 0.3928 0.4149 0.4352 0.4744

0.3261 0.3982 0.4188 0.4262 0.4520 0.4796

lr = 0.001

0.35

0.40

0.45

0.50

0.55

0.60

0.35

0.40

0.45

0.50

0.55

Figure 9: µall results as a function of hyperparameters (α & β) and learning rate (lr) on DER/DER++.

33

Under review as submission to TMLR

Table 13: µall results as a function of hyperparameters (α&β) and learning rate (lr) on DER/DER++ over
class-instace ordering on iCubWorld 1.0.

DER++ lr = 0.01 lr = 0.001

α = 0.0, β = 0.0 0.3268 ± 0.0010 0.3246 ± 0.0060
α = 0.0, β = 0.1 0.3759 ± 0.0148 0.3269 ± 0.0017
α = 0.0, β = 0.2 0.4515 ± 0.0322 0.3791 ± 0.0154
α = 0.0, β = 0.3 0.5312 ± 0.0380 0.4406 ± 0.0236
α = 0.0, β = 0.4 0.5576 ± 0.0516 0.5122 ± 0.0406
α = 0.0, β = 0.5 0.6043 ± 0.0437 0.5718 ± 0.0354
α = 0.0, β = 0.6 0.6449 ± 0.0568 0.5745 ± 0.0349
α = 0.0, β = 0.7 0.6442 ± 0.0704 0.5995 ± 0.0385
α = 0.0, β = 0.8 0.6817 ± 0.0709 0.6078 ± 0.0396
α = 0.0, β = 0.9 0.6846 ± 0.0603 0.6127 ± 0.0466
α = 0.0, β = 1.0 0.7419 ± 0.0523 0.6276 ± 0.0408

Ours 0.8497 ± 0.0191 0.8416 ± 0.0262

Offline 0.8840 0.8877

• For β = 0.0 and α = 0.0, DER++ behaves similar to Fine-Tune model (lower bound). It simply updates the986

parameters of the network with the gradient computed against the newly available single training example987

in each incremental step.988

• For β = 0.0 and α > 0.0, DER++ becomes DER (left most column in both sides in Figure 9), and it uses989

only knowledge-distillation to mitigate catastrophic forgetting.990

• For α = 0.0 and β > 0.0, DER++ behaves similar to a method using only experience replay to mit-991

igate catastrophic forgetting (top row in both sides in Figure 9). In Table 13, we have compared the992

performance (µall Results) of DER++ for α = 0.0, β ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and lr993

∈ {0.01, 0.001}. It can be observed that DER++ behaves similar to an experience replay based model with994

increasing value of β, and achieves the highest final accuracy when α = 0.0, β = 1.0, for both learning rates995

(lr ∈ {0.01, 0.001}).996

• For α > 0.0 and β > 0.0, DER++ (Buzzega et al., 2020) uses both knowledge-distillation and experience997

replay to circumvent the catastrophic forgetting (French, 1999).998

M Additional Implementation Details999

We use Mobilenet-V2 (Sandler et al., 2018) pre-trained on ImageNet (Russakovsky et al., 2015) available in1000

PyTorch (Paszke et al., 2019) TorchVision package as the base architecture for the feature extractor G(·).1001

We use the convolutional base of Mobilenet-V2 (Sandler et al., 2018) as the feature extractor G(·) to obtain1002

embeddings from the raw pixels; we keep it frozen throughout the streaming learning. We use ‘loss-aware1003

weighted class balancing replacement’ as memory replacement policy and ‘uniform sampling’ strategy to1004

select informative past samples for training on CORe50 on streaming i.i.d and streaming class-i.i.d ordering.1005

We provide the parameter settings for the proposed method (BISLERi) and the offline models in Table 15.1006

34

Under review as submission to TMLR

Table 14: µall results with their associated standard deviations. For each experiment, the method with best
performance in ‘streaming-setting’ is highlighted in Bold. The reported results are average over 10 runs
with different permutations of the data. Offline model is trained only once. ‘-’ indicates experiments we are
unable to run, because of compatibility issues.
Note: Methods in Red use fine-tuning, implying that these methods violate streaming learning (SL) con-
straints and have an extra advantage over true streaming learning (SL) methods, such as ‘Ours’.

Method iid Class-iid

CIFAR10 CIFAR100 ImageNet100 CIFAR10 CIFAR100 ImageNet100

Fine-Tune 0.1000 ± 0.0000 0.0109 ± 0.0021 0.0108 ± 0.0025 0.3250 ± 0.0003 0.1099 ± 0.0017 0.1138 ± 0.0048
EWC - - - 0.3249 ± 0.0002 0.1111 ± 0.0027 0.1139 ± 0.0036
MAS - - - 0.3271 ± 0.0070 0.1102 ± 0.0022 0.1148 ± 0.0043
VCL - - - 0.3245 ± 0.0005 0.1095 ± 0.0029 0.1121 ± 0.0014

Coreset VCL - - - 0.3488 ± 0.0445 0.1204 ± 0.0170 0.1170 ± 0.0112
Coreset Only - - - 0.3462 ± 0.0394 0.1216 ± 0.0194 0.1182 ± 0.0166

GDumb 0.7391 ± 0.0056 0.3690 ± 0.0072 0.7124 ± 0.0059 0.8324 ± 0.0050 0.5560 ± 0.0069 0.8248 ± 0.0072
AGEM 0.1000 ± 0.0000 0.0111 ± 0.0021 0.0118 ± 0.0035 0.3251 ± 0.0002 0.1109 ± 0.0026 0.1130 ± 0.0023
DER 0.1000 ± 0.0000 0.0101 ± 0.0002 0.0107 ± 0.0023 0.3252 ± 0.0010 0.1101 ± 0.0019 0.1132 ± 0.0035

DER++ 0.1000 ± 0.0000 0.0105 ± 0.0017 0.0111 ± 0.0034 0.3374 ± 0.0374 0.1111 ± 0.0042 0.1144 ± 0.0062
TinyER 0.7925 ± 0.0097 0.4616 ± 0.0078 0.8021 ± 0.0073 0.8046 ± 0.0138 0.5410 ± 0.0137 0.8070 ± 0.0108
ExStream 0.7544 ± 0.0208 0.4772 ± 0.0074 0.7918 ± 0.0070 0.7345 ± 0.0185 0.5239 ± 0.0146 0.7854 ± 0.0132
REMIND 0.7581 ± 0.0062 0.3928 ± 0.0056 0.7743 ± 0.0093 0.7962 ± 0.0176 0.4984 ± 0.0152 0.7901 ± 0.0139
Ours 0.8151 ± 0.0034 0.5279 ± 0.0035 0.8213 ± 0.0051 0.8099 ± 0.0079 0.5611 ± 0.0135 0.8224 ± 0.0065

Offline 0.8509 0.6083 0.8520 0.8972 0.7154 0.8953

Method iid Class-iid instance Class-instance

iCubWorld 1.0 CORe50 iCubWorld 1.0 CORe50 iCubWorld 1.0 CORe50 iCubWorld 1.0 CORe50

Fine-Tune 0.1044 ± 0.0141 0.1000 ± 0.0000 0.3625 ± 0.0467 0.3261 ± 0.0157 0.1000 ± 0.0000 0.1000 ± 0.0000 0.3258 ± 0.0022 0.3212 ± 0.0003
EWC - - 0.3539 ± 0.0378 0.3281 ± 0.0221 - - 0.3260 ± 0.0033 0.3209 ± 0.0007
MAS - - 0.3644 ± 0.0541 0.3212 ± 0.0004 - - 0.3259 ± 0.0018 0.3212 ± 0.0004
VCL - - 0.3550 ± 0.0466 0.3237 ± 0.0114 - - 0.3246 ± 0.0024 0.3203 ± 0.0009

Coreset VCL - - 0.3674 ± 0.0487 0.3204 ± 0.0018 - - 0.4319 ± 0.0148 0.4366 ± 0.0050
Coreset Only - - 0.3711 ± 0.0813 0.3443 ± 0.0451 - - 0.4287 ± 0.0226 0.4396 ± 0.0032

GDumb 0.6858 ± 0.0315 0.8161 ± 0.0106 0.8571 ± 0.0175 0.8842 ± 0.0074 0.5134 ± 0.0413 0.6491 ± 0.0215 0.7077 ± 0.0293 0.6005 ± 0.0233
AGEM 0.1000 ± 0.0000 0.1000 ± 0.0000 0.3758 ± 0.0555 0.3238 ± 0.0093 0.1001 ± 0.0002 0.1000 ± 0.0000 0.3262 ± 0.0029 0.3211 ± 0.0004
DER 0.1096 ± 0.0300 0.1000 ± 0.0000 0.3779 ± 0.0940 0.3212 ± 0.0004 0.2875 ± 0.1838 0.1020 ± 0.0063 0.3787 ± 0.1466 0.3102 ± 0.0347

DER++ 0.1089 ± 0.0278 0.1000 ± 0.0000 0.4143 ± 0.1146 0.3211 ± 0.0003 0.3454 ± 0.1919 0.1000 ± 0.0000 0.4141 ± 0.2016 0.3211 ± 0.0005
TinyER 0.7313 ± 0.0289 0.8739 ± 0.0106 0.8062 ± 0.0257 0.8693 ± 0.0111 0.6672 ± 0.0496 0.7364 ± 0.0229 0.7346 ± 0.0287 0.7715 ± 0.0221
ExStream 0.7043 ± 0.0445 0.8597 ± 0.0137 0.7839 ± 0.0247 0.7970 ± 0.0148 0.6846 ± 0.0414 0.7211 ± 0.0258 0.7740 ± 0.0198 0.8044 ± 0.0188
REMIND 0.7062 ± 0.0237 0.8675 ± 0.0100 0.7623 ± 0.0297 0.8584 ± 0.0111 0.6237 ± 0.0459 0.7462 ± 0.0215 0.6843 ± 0.0270 0.7152 ± 0.0337
Ours 0.7409 ± 0.0107 0.8794 ± 0.0050 0.8417 ± 0.0187 0.8793 ± 0.0109 0.7325 ± 0.0228 0.8579 ± 0.0079 0.8497 ± 0.0191 0.8531 ± 0.0117

Offline 0.7626 0.8733 0.8849 0.9070 0.7646 0.8733 0.8840 0.9079

Table 15: Training parameters used for BISLERi and Offline model.

Parameters Datasets

CIFAR10 CIFAR100 ImageNet100 iCubWorld 1.0 CORe50

Optimizer SGD SGD SGD SGD SGD
Learning Rate 0.01 0.01 0.01 0.01 0.01
Momentum 0.9 0.9 0.9 0.9 0.9

Weight Decay 1e-05 1e-05 1e-05 1e-05 1e-05
Hidden Layer [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
Activation ReLU ReLU ReLU ReLU ReLU

Offline Batch Size 128 128 256 16 256
Offline Epoch 50 50 100 30 50
Buffer Capacity 1000 1000 1000 180 100
Train-Set Size 50000 50000 127778 6002 119894

35

Under review as submission to TMLR

2 4 6 8 10
Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

α
t

2 4 6 8 10
Number of Classes

0.6

0.7

0.8

0.9

1.0

Offline
Ours

REMIND
TinyER

ExStream
GDumb

EWC
MAS

VCL
Coreset VCL

Coreset Only
DER

DER++
AGEM

Fine-tune

Figure 10: Performance of various incremental learning methods in streaming class iid setting on CIFAR10
dataset. The plot on the right is a (partial) zoom-in version of the left plot. It can be observed that BISLERi
(Ours) remembers earlier classes better than most existing models as examples from new classes arrive in a
streaming fashion. Recall that GDumb cannot be considered as a streaming learning algorithm as it requires
fine-tuning.

10 20 30 40 50 60 70 80 90 100
Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

α
t

10 20 30 40 50 60 70 80 90 100
Number of Classes

0.4

0.6

0.8

Offline
Ours

REMIND
TinyER

ExStream
GDumb

EWC
MAS

VCL
Coreset VCL

Coreset Only
DER

DER++
AGEM

Fine-tune

Figure 11: Performance of various incremental learning methods in streaming class iid setting on CIFAR100
dataset. The plot on the right is a (partial) zoom-in version of the left plot. It can be observed that
BISLERi (Ours) remembers earlier classes better than existing models as examples from new classes arrive
in a streaming fashion. Recall that GDumb cannot be considered as a streaming learning algorithm as it
requires fine-tuning.

36

Under review as submission to TMLR

10 20 30 40 50 60 70 80 90 100
Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

α
t

10 20 30 40 50 60 70 80 90 100
Number of Classes

0.7

0.8

0.9

Offline
Ours

REMIND
TinyER

ExStream
GDumb

EWC
MAS

VCL
Coreset VCL

Coreset Only
DER

DER++
AGEM

Fine-tune

Figure 12: Performance of various incremental learning methods in streaming class iid setting on Ima-
geNet100 dataset. The plot on the right is a (partial) zoom-in version of the left plot. It can be observed
that BISLERi (Ours) remembers earlier classes better than existing models as examples from new classes
arrive in a streaming fashion. Recall that GDumb cannot be considered as a streaming learning algorithm as
it requires fine-tuning.

2 4 6 8 10
Number of Classes

0.5
0.6
0.7
0.8
0.9
1.0

α
t

Cl
as
s-
i.i
.d

2 4 6 8 10
Number of Classes

0.6

0.7

0.8

0.9

1.0

α
t

2 4 6 8 10
Number of Classes

0.4

0.6

0.8

1.0

α
t

Cl
as
s-
in
st
an
ce

2 4 6 8 10
Number of Classes

0.4

0.6

0.8

1.0

α
t

iCubWorld 1.0 CORe50

Offline
Ours

REMIND
TinyER

ExStream
GDumb

EWC
MAS

VCL
Coreset VCL

Coreset Only
DER

DER++
AGEM

Fine-tune

Figure 13: The patial zoon-in version of the plot in Figure 3. It shows the performance of various incremental
learning models on (i) streaming class-i.i.d (top row) and (ii) streaming class-instance (bottom row) ordering
on iCubWorld 1.0 & CORe50 dataset. The plots suggest BISLERi (Ours) remembers earlier classes better
than most existing algorithms. The performance gain is even more pronounced in streaming class-instance
ordering setting (bottom row) where the baseline incremental learners suffer from severe forgetting. Recall
that GDumb cannot be considered as a streaming learning algorithm as it requires fine-tuning.

37

Under review as submission to TMLR

N Evaluation Over Different Data Orderings Additional Details1007

The proposed approach (BISLERi) is robust to various streaming learning scenarios that can induce catas-1008

trophic forgetting (French, 1999; McCloskey & Cohen, 1989). We evalaute the model’s class-incremental1009

streaming learning ability with the four challenging data ordering (Hayes et al., 2019b;a) schemes: (i)1010

‘streaming iid’, (ii) ‘streaming class iid’, (iii) ‘streaming instance’, and (iv) ‘streaming class instance’. We1011

described this four data ordering schemes in Section 5.1.1012

Note: Only iCubWorld 1.0 (Fanello et al., 2013), and CORe50 (Lomonaco & Maltoni, 2017) contain the1013

temporal coherent image sequences, therefore, ‘streaming instance’ ‘streaming class instance’ setting are1014

evaluated only on this two datasets.1015

In the below, we describe the following: (i) how the base initialization is performed, and (ii) how the network1016

is trained in streaming setting according to various data ordering schemes on different datasets.1017

N.1 CIFAR101018

CIFAR10 (Krizhevsky et al., 2009) is a standard image classification dataset. It contains 10 classes with1019

each consists of 5000 training images and 1000 testing images. Since, it does not contain any temporally1020

ordered image sequence, we use CIFAR10 to evaluate the streaming learner’s ability in streaming i.i.d and1021

streaming class-i.i.d orderings.1022

• streaming i.i.d: For the base initialization, we randomly select 2% samples from the dataset and1023

train the model in offline manner. Then we randomly shuffle the remaining samples and train the1024

model incrementally with these samples by feeding one at a time in a streaming manner.1025

• streaming class-i.i.d: In base initialization, the model is trained in a typical offline mode with1026

the samples from the first two classes. Then, in each incremental step, we select the samples from1027

the next two classes, which are not included earlier. These samples are randomly shuffled and fed1028

into the model in a streaming manner.1029

N.2 CIFAR1001030

CIFAR100 (Krizhevsky et al., 2009) is another standard image classification dataset. It contains 100 classes1031

with each consists of 500 training images and 100 testing images. We use CIFAR100 to evaluate the model’s1032

ability in streaming i.i.d and streaming class-i.i.d orderings.1033

• streaming i.i.d: In this setting, we follow the similar approach as mentioned for the CIFAR101034

dataset, with the only exception is that the base initialization is performed with 10% randomly1035

chosen samples, and the remaining samples are used for streaming learning.1036

• streaming class-i.i.d: This approach also follows the similar approach as mentioned for the CI-1037

FAR10 dataset. However, in each incremental step, including the base initialization, we use samples1038

from 10 classes. For the base initialization, we select samples from the first ten classes, and in each1039

incremental step, we select samples from the succeeding ten classes which are not observed earlier.1040

N.3 ImageNet1001041

ImageNet100 is a subset of ImageNet-1000 (ILSVRC-2012) (Russakovsky et al., 2015) that contains randomly1042

chosen 100 classes, with each classes containing 700−1300 training samples and 50 validation samples. Since,1043

for test samples, we do not have the ground truth labels, we use the validation data for testing the model’s1044

accuracy. We provide more details on ImageNet100 in Section G.1045

We use ImageNet100 dataset to evaluate the model’s ability in streaming i.i.d and streaming class-i.i.d1046

orderings.1047

38

Under review as submission to TMLR

• streaming i.i.d: In this case, we follow the similar approach as mentioned for CIFAR100 streaming1048

i.i.d ordering.1049

• streaming class-i.i.d: We follow the similar approach as has been mentioned for CIFAR1001050

streaming class-i.i.d ordering.1051

N.4 iCubWorld 1.01052

iCubWorld 1.0 (Fanello et al., 2013) is an object recognition dataset containing the sequence of video frames,1053

with each frame containing only a single object. It is a more challenging and realistic dataset w.r.t the1054

other standard datasets such as CIFAR10, CIFAR100, and ImageNet100. Technically, it is an ideal dataset1055

to evaluate a model’s performance in streaming learning scenarios that are known to induce catastrophic1056

forgetting (French, 1999; McCloskey & Cohen, 1989), as it requires learning from temporally ordered image1057

sequences, which are naturally non-i.i.d images.1058

It contains 10 classes, each with 3 different object instances with 200− 201 images each. Overall, each class1059

contains 600− 602 samples for training and 200− 201 samples for testing. Figure 7 shows example images1060

of the 30 object instances in iCubWorld 1.0, where each row denotes one of the 10 categories.1061

We use iCubWorld 1.0 to evaluate the performance of the streaming learning models in all the four data1062

ordering schemes, i.e., (i) streaming i.i.d, (ii) streaming class-i.i.d, (iii) streaming instance, and (iv) streaming1063

class-instance.1064

• streaming i.i.d: In this setting, we follow the similar approach as mentioned for the CIFAR101065

dataset, with the only exception, that is, 10% randomly selected samples are used for the base1066

initialization, and the rest are used for streaming learning.1067

• streaming class-i.i.d: In this case, we follow the same strategy as mentioned for CIFAR10 stream-1068

ing class-i.i.d ordering.1069

• streaming class-instance: In base initialization, the model is trained in a typical offline mode1070

with the samples from the first two classes. In each incremental step, the network is trained in a1071

streaming manner with the samples from the succeeding two classes which were not observed earlier.1072

However, in this case, (i) samples within a class are temporally ordered based on different object1073

instances, and (ii) all samples from one class are fed into the network before feeding any samples1074

from the other class.1075

• streaming instance: For the base initialization, 10% randomly chosen samples are used, and the1076

remaining samples are used to train the model incrementally with one sample at a time. In streaming1077

setting, the samples are temporally ordered based on different object instances. Specifically, we1078

organize the data stream by putting temporally ordered 50 frames of an object instance, then we1079

put temporally ordered 50 frames of the second object instance, and so on. In this way, after1080

putting 50 temporally ordered frames from each object instance, we put the next 50 temporally1081

ordered frames of the first object instance and follow the earlier approach until all the frames of each1082

instance have been exhausted.1083

N.5 CORe501084

CORe50 (Lomonaco & Maltoni, 2017), specifically designed for Continual Object Recognition, contains a1085

collection of 50 domestic object instances belonging to 10 different catagories: plug adapters, mobile phones,1086

scissors, light bulbs, cans, glasses, balls, markers, cups and remote controls. Each object instance contains1087

2393-2400 sample images for training. Overall, each class contains 11983-12000 samples for training and1088

4495-4500 samples for testing. Figure 8 shows example images of the 50 object instances in CORe50, where1089

each column denotes one of the 10 categories.1090

CORe50 is a challenging dataset, similar to iCubWorld 1.0 (Fanello et al., 2013). It contains temporally1091

coherent image sequences, which are divided into 11 distinct sessions (8 indoors and 3 outdoors) character-1092

ized by different backgrounds and lighting. Technically, it is also an ideal dataset for streaming learning1093

39

Under review as submission to TMLR

evaluations, aside from iCubWorld 1.0 (Fanello et al., 2013). It can be used to evaluate a model’s robustness1094

in all four streaming learning scenarios, i.e., i.i.d, class-i.i.d, class-instace and instance ordering.1095

We use CORe50 to evaluate the performance of the streaming learning models in all four data ordering1096

schemes, i.e., (i) streaming i.i.d, (ii) streaming class-i.i.d, (iii) streaming instance, and (iv) streaming class-1097

instance ordering.1098

• streaming i.i.d: In this case, we follow the similar approach as mentioned for iCubWorld 1.01099

streaming i.i.d ordering.1100

• streaming class-i.i.d: We follow the similar approach as has been mentioned for iCubWorld 1.01101

streaming class-i.i.d ordering.1102

• streaming class-instance: In this case, we follow the similar strategy as we use for iCubWorld1103

1.0 streaming class-instance ordering.1104

• streaming instance: For base initialization, 10% randomly chosen samples are used, and the1105

remaining samples are used to train the model incrementally with one sample at a time. In streaming1106

setting, the samples are temporally ordered based on different sessions and different object instances.1107

Specifically, the dataset is divided into 11 sessions depending on different backgrounds and lighting1108

with each session containing temporally coherent image of from various object instances one after1109

another. We use the data-ordering as provided in paths.pkl file with CORe50 dataset for training1110

with remaining samples in the streaming manner.1111

O Derivation of Joint Posterior1112

L1
t (θ) = arg min

qεQ
KL
[
qt(θ) || 1

Zt
qt−1(θ)p(Dt|θ)p(DM,t|θ)

]
w arg min

qεQ
KL [qt(θ)||qt−1(θ)p(Dt|θ)p(DM,t|θ)]

=
∫
qt(θ) log qt(θ)

qt−1(θ)p(Dt|θ)p(DM,t|θ)dθ

= −
∫
qt(θ) log qt−1(θ)p(Dt|θ)p(DM,t|θ)

qt(θ) dθ

= arg max
∫
qt(θ) log qt−1(θ)p(Dt|θ)p(DM,t|θ)

qt(θ) dθ

=
∫
qt(θ) log p(Dt|θ)p(DM,t|θ)dθ +

∫
qt(θ) log qt−1(θ)

qt(θ) dθ

=
∫
qt(θ) log p(Dt|θ)dθ +

∫
qt(θ) log p(DM,t|θ)dθ −

∫
qt(θ) log qt(θ)

qt−1(θ)dθ

= Eθ∼qt(θ) [log p(Dt|θ)] + Eθ∼qt(θ) [log p(DM,t|θ)]−KL [qt(θ)||qt−1(θ)]
= Eθ∼qt(θ) [log p(Dt|θ)] + Eθ∼qt(θ) [log p(DM,t|θ)]− λ1KL [qt(θ)||qt−1(θ)]

= arg maxEθ∼qt(θ) [log p(yt|θ, G(xt))] +
N ′

1∑
n=1

Eθ∼qt(θ)

[
log p(y(n)

M,t|θ, z
(n)
M,t)

]
− λ1 ·KL (qt(θ) || qt−1(θ))

(12)

where: (i) Dt = {dt} = {(xt, yt)}, (ii) DM,t = {d(n)
M,t}

N ′
1

n=1 =
{

(z(n)
M,t, y

(n)
M,t)

}N ′
1

n=1
, (iii) |DM,t| = N ′1 � |M|,1113

(iv) DM,t ⊂M, and (v) λ1 is a hyper-parameter.1114

40

	Introduction
	Problem Formulation
	Proposed Streaming Learning Framework
	Streaming Learning With A Single Example
	Informative Past Sample Selection For Replay
	Memory Buffer Replacement Policy
	Efficient Buffer Update
	Feature Extractor

	Related Work
	Experiments
	Datasets And Data Orderings
	Metrics
	Baselines And Compared Methods
	Results
	Implementation Details

	Ablation Study
	Conclusion
	Preliminaries
	`Class Incremental Learning' V/S `Task Incremental Learning'
	Variational Continual Learning (VCL)
	REMIND
	Bayesian Neural Network

	Differences Between VCL/Coreset VCL and BISLERi
	How VCL/Coreset VCL is adapted in the Streaming Learning?

	Various Columns Of Table 1 In Detail
	Importance Of Streaming Learning
	Baselines And Compared Methods In Detail
	Ablation Study Additional Results
	ImageNet-100
	Average Accuracy (all)
	Ablation Study: all Results As A Function Of Feature-Extractor
	Ablation Study: all Results As A Function Of Learning-Rate
	Ablation Study: GPU Memory And Computation Time Requirements For The Tested Methods
	Ablation Study: all Results As A Function Of Hyperparameters (&) On DER/DER++
	Additional Implementation Details
	Evaluation Over Different Data Orderings Additional Details
	CIFAR10
	CIFAR100
	ImageNet100
	iCubWorld 1.0
	CORe50

	Derivation of Joint Posterior

