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Abstract

This paper describes our team’s solution for the Meta KDD CUP
2024: CRAG Comprehensive RAG Benchmark Challenge Task 1
(Retrieval Summarization). The task involved building a retrieval-
augmented generation framework and testing it on the CRAG
benchmark. Our solution is a pipeline encompassing data process-
ing, retrieval, and chain-of-thought-based generation. In this pro-
cess, we also experimented with popular existing RAG techniques.
Our framework ultimately won the Simple_w_condition, Set, and
Aggregation questions in Task 1.

CCS Concepts

« Information systems — Information retrieval.
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1 Introduction

Retrieval-augmented generation (RAG) has proven to be an effec-
tive solution for addressing LLM hallucinations and knowledge
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update challenges in both academic research and industry [4, 10]. A
basic RAG framework involves: (1) retrieving relevant information
from a database based on a query, and (2) combining this informa-
tion with some prompts, inputting them into an LLM to generate
the final result. Currently, researchers are proposing various RAG-
related techniques for this basic scenario, such as query fusion
[6], transforming queries into documents for retrieval [3], and in-
corporating reflection mechanisms in the retrieval process [1, 9].
However, which method is more effective in practical applications
remains an open question.

To address this problem, Meta has organized the KDD Cup 2024
challenge and introduced the Comprehensive RAG Benchmark
(CRAG) [8]. This initiative aims to provide a robust benchmark
with clear metrics and evaluation protocols, facilitating rigorous
assessment of RAG systems, driving innovations, and advancing
solutions.

The challenge comprises three tasks. Our team focuses on Task
1 and has won the Simple_w_condition, Set, and Aggregation ques-
tions in Task 1. We will introduce our specific implementation
methods and some of the experiments we conducted in the follow-
ing sections.

2 Dataset & Task
2.1 Dataset

CRAG (8] contains 4,409 pairs of question-answer samples, which
encompass five domains: Finance, Sports, Music, Movies, and Open-
domain Encyclopedia. These questions exhibit various types, in-
cluding simple factual questions, conditional questions, compar-
ative questions, aggregation questions, multi-hop questions, set
queries, post-processing questions, and false premise questions. Ad-
ditionally, the questions vary in dynamics, ranging from real-time
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questions and rapidly changing questions to slowly changing ques-
tions and static questions. Table 1 and Table 2 represent a question
sample in the CRAG dataset.

query_time 03/19/2024, 23:23:54 PT

query what’s the date of birth of ben wolfinsohn...

search_results see Table 2
domain movie
question_type simple
static_or_dynamic | static
answer 1973-04-01

Table 1: A question sample from the CRAG dataset.

Ben Wolfinsohn (visual voices guide)...
https://www.behindthevoiceactors...
page_snippet Known for voicing Ben. View...
page_result <!DOCTYPE html>\n<html lang=\ ...
page_last_modified | None

page_name
page_url

Table 2: Case of search results.

2.2 Task

Meta KDD CUP 2024 ! includes three tasks, where our team focuses
on Task 1: Retrieval Summarization. In this task, each question is
given five web pages. These web pages may be relevant or irrelevant.
Our goal is to construct a Retrieval-Augmented Generation (RAG)
framework to extract potentially useful information from these web
pages and assist in answering the question.

3 Methodlogy

Our final RAG framework is a simple yet efficient model, as depicted
in Figure 1. However, during the construction of this framework,
we experimented with many methods. We will detail some of our
attempts according to different stages in the following sections.

3.1 Data Processing

3.1.1  Web Pages. Since the reference documents originate from
web pages, they contain various HTML tags. Therefore, it is crucial
to first convert this structured format into natural language text
for improved retrieval and comprehension by the large model. We
experimented with multiple HTML parsing methods and ultimately
selected BeautifulSoup from the bs4 library.

3.1.2  Query. Query augmentation is a crucial step in modern infor-
mation retrieval. Currently, various query enhancement methods
have been proposed in the RAG field. We have experimented with
these methods, including:
e Hyde [3]: Enhancing the original query by generating hy-
pothetical documents. It has been proven to significantly
improve the zero-shot performance of the retrieval step.

!https://www.aicrowd.com/challenges/meta-comprehensive-rag-benchmark-kdd-
cup-2024
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e Step-Back prompting [11]: Abstracting the original ques-
tion to obtain queries targeting high-level concepts and fun-
damental principles. This method has been validated to be
relatively effective in time-sensitive QA tasks and multi-hop
reasoning tasks. The final prompt is shown in Figure 2.

e Query rewriting [5]: Due to the lack of detail in the original
question provided by the user, the retriever finds it difficult
to understand. Query rewriting aims to enrich the query
information. We utilized a zero short llama3-8B to complete
the query rewrite.

e Query fusion [6]: This method generates multiple queries
from the original query through a large language model. It
then executes these search queries in parallel and merges
the retrieved results. This approach is very useful when a
question may depend on multiple sub-questions. We utilized
a zero short llama3-8B to complete the query fusion.

In this competition, some of the query enhancement strategies were
beneficial to the results, but due to the increased time overhead of
these enhancement strategies and the diversity of questions in the
CRAG, we did not adopt the above query enhancement strategies
in our final solution. Detailed results can be found in section 4.3.

3.2 Retreival

The retrieval process is a critical component of the RAG framework.
A poor retriever will result in incorrect information input, affecting
the final output of the LLM. We experimented with various methods
in the retrieval process, including:

e An individual recall model: After splitting the web pages
into chunks of 512 in length, we used the bge-m3 model [2]
to map these chunks into vector representations. We then
performed a brute-force search to calculate the relevance
between the query and the web page fragments, selecting
the top 10 results as evidence for the LLM input.

e An individual ranking model: Considering the character-
istics of Task 1, where a small range of web page candidates
is already provided, we can directly use a ranking model
without worrying about timeout issues. We employed the
bge-m3-reranker [2] to calculate the similarity between the
query and the web page fragments. We selected the top 10
results with a similarity greater than 0 as evidence for the
LLM input.

e Recall-then-ranking: Combining the aforementioned ap-
proaches, we first use the beg-m3 model to recall 10 candidate
sets. Then, we employ the beg-m3-reranker to rank these 10
candidates, selecting the top 5 results.

e Hierarchical Index: The previous methods utilized fixed-
length chunks, which may limit the length of retrieval results
and hinder the correct retrieval of evidence due to semantic
segmentation. Therefore, we also experimented with the
Hierarchical Index approach, setting chunk sizes to 256, 128,
and 64 to construct a hierarchical indexing structure.

We experimented with various approaches and their combina-
tions, discovering some insightful results. First, an individual rank-
ing model outperformed both an individual recall model and the
recall-then-ranking method. However, this was only feasible with
the llama3-8B model. When we scaled up to the 70B model, it often
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Figure 1: The pipeline of our solution consists of three stages: data processing, retrieval, and generation. We designed a simple
yet effective framework while experimenting with various approaches. The orange blocks indicate methods that improve
performance for certain question types but often incur additional time overhead. The gray blocks represent methods with
negligible improvement or those that may lead to negative outcomes.

resulted in memory overflow or inference timeout issues. Conse-
quently, we ultimately chose the recall-then-ranking method. Addi-
tionally, employing a Hierarchical Index did not yield significant
performance improvements and sometimes even led to considerable
performance degradation, indicating that the Hierarchical Index is
not a universally effective method for enhancing performance.

3.3 Generation

We experimented with the following methods to prompt or guide
the language model to answer questions, including:

¢ Directly prompt: By adding the retrieved content to the
context and prompting the language model to output as little
content as possible (with a competition limit of a maximum
of 75 words), and responding with "Tdon’t know" to questions
for which no relevant information was retrieved, our chosen
prompt is shown in Figure 3.

e Chain-of-thought prompting [7]: Chain-of-thought prompts

have been proven to greatly enhance language models’ rea-
soning ability. In competitions, due to the need to handle
complex questions, it is crucial to enhance the reasoning
ability of LLMs. Here, we prompt the language model to
output answers step by step and extract the final answer.
Our chosen prompt is shown in Figure 4.

e ReAct [9]: ReAct uses LLM to generate reasoning trajectories
and actions for specific tasks in an interleaved manner. For
this task, we created a web retrieval tool that allows LLM to
make tool calls through prompts. The final prompt is shown
in Figure 5.

o Self-RAG [1]: Self-RAG is an adaptive rag technology that
allows LLM to combine its own knowledge and references
to respond to questions, and it will evaluate the relevance

Step-back prompt

You are a helpful assistant. Your task is to
step back and paraphrase a question to a more
generic step-back question, which is easier to
answer. Here are a few examples:

Query: Who was the spouse of Anna Karina from
1968 to 19742

Step Back Query: Who were the spouses of Anna
Karina?

Query: Estella Leopold went to whichschool
between Aug 1954and Nov 19547

Step Back Query: What was Estella
Leopold'seducation history?

Figure 2: Step-Back prompt.

of the retrieval results to the question and whether they can
help with the response. Here, we directly use the checkpoint
2 provided in the original text to conduct experiments in the
competition.

After weighing performance and time, we ultimately used chain-
of-thought prompting as the final submission version for the com-
petition. Detailed results can be found in section 4.4.

4 Experiments

In this section, we analyze the effectiveness of our model, especially
for some methods that could not be used in the challenge due
to timeout issues. In the following experiments, unless otherwise

Zhttps://huggingface.co/selfrag
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Directly prompt

You are a helpful assistant. For the given questions,
please reply with as few words as possible.

Note:

- The user's question may contain factual errors, in
which case you must reply “invalid question.®

- If you don't know the answer, simply respond "I
don't know.”

Figure 3: Direct prompt.

COT prompt

You are a helpful assistant. For the given question and
multiple references from web pages, think step by
step, then provide the final answer.

Current Date: {query_time}

Note:

- The user's question may contain factual errors (a
false premise that can be inferred from the
references), in which case you MUST reply “invalid
question.’

- If you don't know the answer, you MUST respond
with 'l don't know.’

- For your final answer, please use as few words as
possible.

- Your output format needs to meet the requirements:
First, start with “## Thought\n" and then output the
thought process regarding the user's question. After
you finish thinking, you MUST reply with the final
answer on the last line, starting with “## Final
Answer\n" and using as few words as possible.

Figure 4: Chain-of-thought prompt.

specified, we used a 4-bit GPTQ quantized Llama3-70B model. Using
data provided by the Meta KDD Cup 2024, we performed stratified
sampling for each type of problem, obtaining 371 samples as the
validation set, with the remaining samples serving as the training
set.

4.1 Metrics

Meta KDD CUP 2024 employs both automated (auto-eval) and hu-
man (human-eval) evaluations. In this section, we adopt the same
automatic evaluation method as the competition to analyze our
approach. Specifically, automatic evaluation employs rule-based
matching and GPT-4 assessment to check answer correctness. It
assigns three scores: correct (1 point), missing (0 points), and incor-
rect (-1 point). Missing denotes that the answer does not provide
the requested information and should use the standard response
"I don’t know" as the answer. All false premise questions should

Trovato et al.

ReAct prompt

You are a helpful and honest assistant. You are given a
quesition and references which may or may not help
answer the question. Your goal is to answer the
question in as few words as possible.

## Tools

You can utilize web_search tools to gather the
necessary information for answering questions.
Moreover, you may need to break down complex
question into sub-questions and invoke tools for each
sub-question to gather relevant information.

The detailed information of the web search tool is as
follows:

{tool_desc}

Figure 5: React prompt.

be answered with the standard response "invalid question.” The
ground truth is the answer that was correct at the time the question
was posed and data were collected.

4.2 Main Result

As shown in Table 3, we provide the results of our final pipeline
evaluated locally. From the experimental results, it can be observed
that we performed relatively well in solving Simple_with_condition,
Set, and Aggregation questions. The multi-hop questions are the
most challenging to answer correctly.

Question Type Accuracy Missing Hallucination
simple 0.31 0.51 0.18
simple_w_condition 0.34 0.53 0.13
post-processing 0.27 0.55 0.18
aggregation 0.35 0.34 0.31
false_premise 0.35 0.33 0.33
set 0.38 0.35 0.26
multi-hop 0.13 0.58 0.29
comparison 0.21 0.6 0.19

Table 3: Results of all types of questions in our pipeline.

4.3 Analysis on Query Augmentation

As previously mentioned, we employed various methods for query
augmentation. Utilizing the Hyde method, we observed a notable im-
provement for set and false_premise type questions, with the accu-
racy for set questions at 0.41 (+0.03) and for false_premise questions
at 0.38 (+0.03). The Step-Back prompting method demonstrated
some enhancement for simple_w_condition type questions (Accu-
racy: 0.43 (+0.09), Missing: 0.4 (-0.13), Hallucination: 0.17 (+0.04) ).
However, these methods invariably increased the time overhead
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for this challenge. Additionally, we found that query rewriting and
query fusion did not result in significant improvements, and in
some cases, even led to a decline in overall performance.

4.4 Analysis on Generation Pipeline

In this competition, we employed various prompts and generation
pipelines. The overall score using the original prompt was 0.11
lower compared to the CoT prompt, and the final score using ReAct
was 0.1 lower than the CoT prompt, despite achieving a higher
multi-hop accuracy of 0.21. However, there were significant timeout
issues with ReAct. We just got the Self-RAG with llama-2-7b and
llama-2-13b versions during the competition, thus its performance
was relatively poor.

5 Conclusion

The Meta KDD Cup 2024 competition was a unique challenge due
to the diversity of problems and the efficiency requirements. We
have presented how we addressed Task 1. We explored numerous
relevant techniques for this task; however, due to gaps between
research and practical application, we found that some techniques
could not be applied effectively or efficiently. Ultimately, we pro-
posed an elegant yet effective Retrieval-Augmented Generation
Framework to tackle this challenge, achieving victory in the Sim-
ple_w_condition, Set, and Aggregation questions in Task 1.
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