A Simple yet Effective Retrieval-Augmented Generation
Framework for the Meta KDD Cup 2024

Liyang He"
University of Science and Technology
of China
Hefei, China
heliyang@mail.ustc.edu.cn

Junyu Lu
University of Science and Technology
of China & Institute of Artificial
Intelligence Comprehensive National
Science Center
Hefei, China
lujunyu@mail.ustc.edu.cn

Rui Li*
University of Science and Technology
of China
Hefei, China
ruili2000@mail.ustc.edu.cn

Linbo Zhu
University of Science and Technology
of China & Institute of Artificial
Intelligence Comprehensive National
Science Center
Hefei, China
Ibzhu@iai.ustc.edu.cn

Zhenya Huang
University of Science and Technology
of China
Hefei, China
huangzhy@ustc.edu.cn

Shuanghong Shen
University of Science and Technology
of China
Hefei, China
closer@mail.ustc.edu.cn

Yu Su
Hefei Normal University & Institute
of Artificial Intelligence
Comprehensive National Science
Center
Hefei, China
yusu@hfnu.edu.cn

Abstract

This paper describes our team’s solution for the Meta KDD CUP
2024: CRAG Comprehensive RAG Benchmark Challenge Task 1
(Retrieval Summarization). The task involved building a retrieval-
augmented generation framework and testing it on the CRAG
benchmark. Our solution is a pipeline encompassing data process-
ing, retrieval, and chain-of-thought-based generation. In this pro-
cess, we also experimented with popular existing RAG techniques.
Our framework ultimately won the Simple_w_condition, Set, and
Aggregation questions in Task 1.

CCS Concepts

« Information systems — Information retrieval.

Keywords

retrieval-augmented generation, retrieval, ranking, large language
model

1 Introduction

Retrieval-augmented generation (RAG) has proven to be an effec-
tive solution for addressing LLM hallucinations and knowledge

“Both authors contributed equally to this research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD’24, August 25-29, 2024, Barcelona, Spain

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

update challenges in both academic research and industry [4, 10]. A
basic RAG framework involves: (1) retrieving relevant information
from a database based on a query, and (2) combining this informa-
tion with some prompts, inputting them into an LLM to generate
the final result. Currently, researchers are proposing various RAG-
related techniques for this basic scenario, such as query fusion
[6], transforming queries into documents for retrieval [3], and in-
corporating reflection mechanisms in the retrieval process [1, 9].
However, which method is more effective in practical applications
remains an open question.

To address this problem, Meta has organized the KDD Cup 2024
challenge and introduced the Comprehensive RAG Benchmark
(CRAG) [8]. This initiative aims to provide a robust benchmark
with clear metrics and evaluation protocols, facilitating rigorous
assessment of RAG systems, driving innovations, and advancing
solutions.

The challenge comprises three tasks. Our team focuses on Task
1 and has won the Simple_w_condition, Set, and Aggregation ques-
tions in Task 1. We will introduce our specific implementation
methods and some of the experiments we conducted in the follow-
ing sections.

2 Dataset & Task
2.1 Dataset

CRAG (8] contains 4,409 pairs of question-answer samples, which
encompass five domains: Finance, Sports, Music, Movies, and Open-
domain Encyclopedia. These questions exhibit various types, in-
cluding simple factual questions, conditional questions, compar-
ative questions, aggregation questions, multi-hop questions, set
queries, post-processing questions, and false premise questions. Ad-
ditionally, the questions vary in dynamics, ranging from real-time

https://orcid.org/0000-0002-1609-0747
https://orcid.org/0009-0005-3657-1133
https://orcid.org/0000-0003-1661-0420

KDD’24, August 25-29, 2024, Barcelona, Spain

questions and rapidly changing questions to slowly changing ques-
tions and static questions. Table 1 and Table 2 represent a question
sample in the CRAG dataset.

query_time 03/19/2024, 23:23:54 PT

query what’s the date of birth of ben wolfinsohn...

search_results see Table 2
domain movie
question_type simple
static_or_dynamic | static
answer 1973-04-01

Table 1: A question sample from the CRAG dataset.

Ben Wolfinsohn (visual voices guide)...
https://www.behindthevoiceactors...
page_snippet Known for voicing Ben. View...
page_result <!DOCTYPE html>\n<html lang=\ ...
page_last_modified | None

page_name
page_url

Table 2: Case of search results.

2.2 Task

Meta KDD CUP 2024 ! includes three tasks, where our team focuses
on Task 1: Retrieval Summarization. In this task, each question is
given five web pages. These web pages may be relevant or irrelevant.
Our goal is to construct a Retrieval-Augmented Generation (RAG)
framework to extract potentially useful information from these web
pages and assist in answering the question.

3 Methodlogy

Our final RAG framework is a simple yet efficient model, as depicted
in Figure 1. However, during the construction of this framework,
we experimented with many methods. We will detail some of our
attempts according to different stages in the following sections.

3.1 Data Processing

3.1.1 Web Pages. Since the reference documents originate from
web pages, they contain various HTML tags. Therefore, it is crucial
to first convert this structured format into natural language text
for improved retrieval and comprehension by the large model. We
experimented with multiple HTML parsing methods and ultimately
selected BeautifulSoup from the bs4 library.

3.1.2 Query. Query augmentation is a crucial step in modern infor-
mation retrieval. Currently, various query enhancement methods
have been proposed in the RAG field. We have experimented with
these methods, including:
e Hyde [3]: Enhancing the original query by generating hy-
pothetical documents. It has been proven to significantly
improve the zero-shot performance of the retrieval step.

!https://www.aicrowd.com/challenges/meta-comprehensive-rag-benchmark-kdd-
cup-2024

Trovato et al.

e Step-Back prompting [11]: Abstracting the original ques-
tion to obtain queries targeting high-level concepts and fun-
damental principles. This method has been validated to be
relatively effective in time-sensitive QA tasks and multi-hop
reasoning tasks. The final prompt is shown in Figure 2.

e Query rewriting [5]: Due to the lack of detail in the original
question provided by the user, the retriever finds it difficult
to understand. Query rewriting aims to enrich the query
information. We utilized a zero short llama3-8B to complete
the query rewrite.

e Query fusion [6]: This method generates multiple queries
from the original query through a large language model. It
then executes these search queries in parallel and merges
the retrieved results. This approach is very useful when a
question may depend on multiple sub-questions. We utilized
a zero short llama3-8B to complete the query fusion.

In this competition, some of the query enhancement strategies were
beneficial to the results, but due to the increased time overhead of
these enhancement strategies and the diversity of questions in the
CRAG, we did not adopt the above query enhancement strategies
in our final solution. Detailed results can be found in section 4.3.

3.2 Retreival

The retrieval process is a critical component of the RAG framework.
A poor retriever will result in incorrect information input, affecting
the final output of the LLM. We experimented with various methods
in the retrieval process, including:

e An individual recall model: After splitting the web pages
into chunks of 512 in length, we used the bge-m3 model [2]
to map these chunks into vector representations. We then
performed a brute-force search to calculate the relevance
between the query and the web page fragments, selecting
the top 10 results as evidence for the LLM input.

e An individual ranking model: Considering the character-
istics of Task 1, where a small range of web page candidates
is already provided, we can directly use a ranking model
without worrying about timeout issues. We employed the
bge-m3-reranker [2] to calculate the similarity between the
query and the web page fragments. We selected the top 10
results with a similarity greater than 0 as evidence for the
LLM input.

e Recall-then-ranking: Combining the aforementioned ap-
proaches, we first use the beg-m3 model to recall 10 candidate
sets. Then, we employ the beg-m3-reranker to rank these 10
candidates, selecting the top 5 results.

e Hierarchical Index: The previous methods utilized fixed-
length chunks, which may limit the length of retrieval results
and hinder the correct retrieval of evidence due to semantic
segmentation. Therefore, we also experimented with the
Hierarchical Index approach, setting chunk sizes to 256, 128,
and 64 to construct a hierarchical indexing structure.

We experimented with various approaches and their combina-
tions, discovering some insightful results. First, an individual rank-
ing model outperformed both an individual recall model and the
recall-then-ranking method. However, this was only feasible with
the llama3-8B model. When we scaled up to the 70B model, it often

https://www.aicrowd.com/challenges/meta-comprehensive-rag-benchmark-kdd-cup-2024
https://www.aicrowd.com/challenges/meta-comprehensive-rag-benchmark-kdd-cup-2024

A Simple yet Effective Retrieval-Augmented Generation Framework for the Meta KDD Cup 2024 KDD’24, August 25-29, 2024, Barcelona, Spain

Hvde Step-Back Query Query CoT
Y Prompting Rewriting Fusion %
> Prompt — Answer
Generation
t Directl
query \ Recall 10 Promp);
References bge-
rerank # Top 5 references
—) er-m3
ReAct
Web pages /
html parse | Hierachical Self-RAG
Index

Data Process Retrieval

Generation

Figure 1: The pipeline of our solution consists of three stages: data processing, retrieval, and generation. We designed a simple
yet effective framework while experimenting with various approaches. The orange blocks indicate methods that improve
performance for certain question types but often incur additional time overhead. The gray blocks represent methods with
negligible improvement or those that may lead to negative outcomes.

resulted in memory overflow or inference timeout issues. Conse-
quently, we ultimately chose the recall-then-ranking method. Addi-
tionally, employing a Hierarchical Index did not yield significant
performance improvements and sometimes even led to considerable
performance degradation, indicating that the Hierarchical Index is
not a universally effective method for enhancing performance.

3.3 Generation

We experimented with the following methods to prompt or guide
the language model to answer questions, including:

¢ Directly prompt: By adding the retrieved content to the
context and prompting the language model to output as little
content as possible (with a competition limit of a maximum
of 75 words), and responding with "Tdon’t know" to questions
for which no relevant information was retrieved, our chosen
prompt is shown in Figure 3.

e Chain-of-thought prompting [7]: Chain-of-thought prompts

have been proven to greatly enhance language models’ rea-
soning ability. In competitions, due to the need to handle
complex questions, it is crucial to enhance the reasoning
ability of LLMs. Here, we prompt the language model to
output answers step by step and extract the final answer.
Our chosen prompt is shown in Figure 4.

e ReAct [9]: ReAct uses LLM to generate reasoning trajectories
and actions for specific tasks in an interleaved manner. For
this task, we created a web retrieval tool that allows LLM to
make tool calls through prompts. The final prompt is shown
in Figure 5.

o Self-RAG [1]: Self-RAG is an adaptive rag technology that
allows LLM to combine its own knowledge and references
to respond to questions, and it will evaluate the relevance

Step-back prompt

You are a helpful assistant. Your task is to
step back and paraphrase a question to a more
generic step-back question, which is easier to
answer. Here are a few examples:

Query: Who was the spouse of Anna Karina from
1968 to 19742

Step Back Query: Who were the spouses of Anna
Karina?

Query: Estella Leopold went to whichschool
between Aug 1954and Nov 19547

Step Back Query: What was Estella
Leopold'seducation history?

Figure 2: Step-Back prompt.

of the retrieval results to the question and whether they can
help with the response. Here, we directly use the checkpoint
2 provided in the original text to conduct experiments in the
competition.

After weighing performance and time, we ultimately used chain-
of-thought prompting as the final submission version for the com-
petition. Detailed results can be found in section 4.4.

4 Experiments

In this section, we analyze the effectiveness of our model, especially
for some methods that could not be used in the challenge due
to timeout issues. In the following experiments, unless otherwise

Zhttps://huggingface.co/selfrag

https://huggingface.co/selfrag

KDD’24, August 25-29, 2024, Barcelona, Spain

Directly prompt

You are a helpful assistant. For the given questions,
please reply with as few words as possible.

Note:

- The user's question may contain factual errors, in
which case you must reply “invalid question.®

- If you don't know the answer, simply respond "I
don't know.”

Figure 3: Direct prompt.

COT prompt

You are a helpful assistant. For the given question and
multiple references from web pages, think step by
step, then provide the final answer.

Current Date: {query_time}

Note:

- The user's question may contain factual errors (a
false premise that can be inferred from the
references), in which case you MUST reply “invalid
question.’

- If you don't know the answer, you MUST respond
with 'l don't know.’

- For your final answer, please use as few words as
possible.

- Your output format needs to meet the requirements:
First, start with “## Thought\n" and then output the
thought process regarding the user's question. After
you finish thinking, you MUST reply with the final
answer on the last line, starting with “## Final
Answer\n" and using as few words as possible.

Figure 4: Chain-of-thought prompt.

specified, we used a 4-bit GPTQ quantized Llama3-70B model. Using
data provided by the Meta KDD Cup 2024, we performed stratified
sampling for each type of problem, obtaining 371 samples as the
validation set, with the remaining samples serving as the training
set.

4.1 Metrics

Meta KDD CUP 2024 employs both automated (auto-eval) and hu-
man (human-eval) evaluations. In this section, we adopt the same
automatic evaluation method as the competition to analyze our
approach. Specifically, automatic evaluation employs rule-based
matching and GPT-4 assessment to check answer correctness. It
assigns three scores: correct (1 point), missing (0 points), and incor-
rect (-1 point). Missing denotes that the answer does not provide
the requested information and should use the standard response
"I don’t know" as the answer. All false premise questions should

Trovato et al.

ReAct prompt

You are a helpful and honest assistant. You are given a
quesition and references which may or may not help
answer the question. Your goal is to answer the
question in as few words as possible.

Tools

You can utilize web_search tools to gather the
necessary information for answering questions.
Moreover, you may need to break down complex
question into sub-questions and invoke tools for each
sub-question to gather relevant information.

The detailed information of the web search tool is as
follows:

{tool_desc}

Figure 5: React prompt.

be answered with the standard response "invalid question.” The
ground truth is the answer that was correct at the time the question
was posed and data were collected.

4.2 Main Result

As shown in Table 3, we provide the results of our final pipeline
evaluated locally. From the experimental results, it can be observed
that we performed relatively well in solving Simple_with_condition,
Set, and Aggregation questions. The multi-hop questions are the
most challenging to answer correctly.

Question Type Accuracy Missing Hallucination
simple 0.31 0.51 0.18
simple_w_condition 0.34 0.53 0.13
post-processing 0.27 0.55 0.18
aggregation 0.35 0.34 0.31
false_premise 0.35 0.33 0.33
set 0.38 0.35 0.26
multi-hop 0.13 0.58 0.29
comparison 0.21 0.6 0.19

Table 3: Results of all types of questions in our pipeline.

4.3 Analysis on Query Augmentation

As previously mentioned, we employed various methods for query
augmentation. Utilizing the Hyde method, we observed a notable im-
provement for set and false_premise type questions, with the accu-
racy for set questions at 0.41 (+0.03) and for false_premise questions
at 0.38 (+0.03). The Step-Back prompting method demonstrated
some enhancement for simple_w_condition type questions (Accu-
racy: 0.43 (+0.09), Missing: 0.4 (-0.13), Hallucination: 0.17 (+0.04)).
However, these methods invariably increased the time overhead

A Simple yet Effective Retrieval-Augmented Generation Framework for the Meta KDD Cup 2024

for this challenge. Additionally, we found that query rewriting and
query fusion did not result in significant improvements, and in
some cases, even led to a decline in overall performance.

4.4 Analysis on Generation Pipeline

In this competition, we employed various prompts and generation
pipelines. The overall score using the original prompt was 0.11
lower compared to the CoT prompt, and the final score using ReAct
was 0.1 lower than the CoT prompt, despite achieving a higher
multi-hop accuracy of 0.21. However, there were significant timeout
issues with ReAct. We just got the Self-RAG with llama-2-7b and
llama-2-13b versions during the competition, thus its performance
was relatively poor.

5 Conclusion

The Meta KDD Cup 2024 competition was a unique challenge due
to the diversity of problems and the efficiency requirements. We
have presented how we addressed Task 1. We explored numerous
relevant techniques for this task; however, due to gaps between
research and practical application, we found that some techniques
could not be applied effectively or efficiently. Ultimately, we pro-
posed an elegant yet effective Retrieval-Augmented Generation
Framework to tackle this challenge, achieving victory in the Sim-
ple_w_condition, Set, and Aggregation questions in Task 1.

References

[1] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. 2023.
Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

KDD’24, August 25-29, 2024, Barcelona, Spain

arXiv:2310.11511 [cs.CL] https://arxiv.org/abs/2310.11511

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. 2024.

Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text

embeddings through self-knowledge distillation. arXiv preprint arXiv:2402.03216

(2024).

[3] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2022. Precise Zero-
Shot Dense Retrieval without Relevance Labels. arXiv:2212.10496 [cs.IR] https:
//arxiv.org/abs/2212.10496

[4] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, and Haofen Wang. 2023. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

[5] Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan.
2023. Query Rewriting for Retrieval-Augmented Large Language Models.
arXiv:2305.14283 [cs.CL] https://arxiv.org/abs/2305.14283

[6] Zackary Rackauckas. 2024. Rag-Fusion: A New Take on Retrieval Augmented
Generation. International Journal on Natural Language Computing 13, 1 (Feb.
2024), 37-47. https://doi.org/10.5121/ijnlc.2024.13103

[7] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei

Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting

Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL] https:

//arxiv.org/abs/2201.11903

Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla, Xiangsen Chen, Sajal

Choudhary, Rongze Daniel Gui, Ziran Will Jiang, Ziyu Jiang, Lingkun Kong, Brian

Moran, Jiaqi Wang, Yifan Ethan Xu, An Yan, Chenyu Yang, Eting Yuan, Hanwen

Zha, Nan Tang, Lei Chen, Nicolas Scheffer, Yue Liu, Nirav Shah, Rakesh Wanga,

Anuj Kumar, Wen tau Yih, and Xin Luna Dong. 2024. CRAG - Comprehensive

RAG Benchmark. arXiv:2406.04744 [cs.CL] https://arxiv.org/abs/2406.04744

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,

and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language

Models. arXiv:2210.03629 [cs.CL] https://arxiv.org/abs/2210.03629

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng,

Fangcheng Fu, Ling Yang, Wentao Zhang, and Bin Cui. 2024. Retrieval-augmented

generation for ai-generated content: A survey. arXiv preprint arXiv:2402.19473

(2024).

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H.

Chi, Quoc V Le, and Denny Zhou. 2024. Take a Step Back: Evoking Reasoning

via Abstraction in Large Language Models. arXiv:2310.06117 [cs.LG] https:

//arxiv.org/abs/2310.06117

[2

—
&

[9

[10

[11

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2305.14283
https://arxiv.org/abs/2305.14283
https://doi.org/10.5121/ijnlc.2024.13103
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.04744
https://arxiv.org/abs/2406.04744
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2310.06117

	Abstract
	1 Introduction
	2 Dataset & Task
	2.1 Dataset
	2.2 Task

	3 Methodlogy
	3.1 Data Processing
	3.2 Retreival
	3.3 Generation

	4 Experiments
	4.1 Metrics
	4.2 Main Result
	4.3 Analysis on Query Augmentation
	4.4 Analysis on Generation Pipeline

	5 Conclusion
	References

