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Abstract

Traditional Al systems often operate under the closed-world assumption, restricting their ability to
adapt in dynamic environments. We propose a cognitive architecture (CA) that expands its percep-
tual capabilities by generating object prototypes from user-provided natural language descriptions.
Each prototype is constructed using superellipsoid primitives, enabling structured and interpretable
shape representations. The CA employs these prototypes to train a convolutional parametric shape
encoder, using rendering parameterizations as automated ground-truth supervision. Once trained,
the CA employs the encoder to infer superellipsoid-based representations from real-world object
observations. A bidirectional mapping between superellipsoid parameters and natural language
terms allows the CA to translate inferred geometric features into human-understandable descrip-
tions. We detail the design of the prototype representations, the synthetically supervised training
pipeline, and the language—geometry mapping process. Experimental results demonstrate that the
CA enhances its perceptual repertoire through our structured, interpretable object representations.

1. Introduction

Traditional cognitive architectures like ACT-R and Soar made many simplifying assumptions about
perceptions and actions that allow modelers to focus on defining the production rules that imple-
ment the model behavior. More recently, with advance of cognitive models on robots, perceptual
(and also action) modules were augmented in cognitive robotic architectures to be able to take in
real-world inputs rather than symbolic abstractions (e.g., see Soar’s now extended vision system
Boggs| (2025)), or ACT-R/E [Trafton et al.|(2013))). While various cognitive architectures now incor-
porate visual perception via classical computer vision or deep learning models, these approaches are
typically static and inflexible (Kotseruba & Tsotsos, [2020). Even with these extensions, cognitive
architectures still require modelers to preconfigure or train vision processing modules offline before
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Figure 1. The cognitive architecture (highlighted in blue) collects object characteristics from a user and maps
them via object structure predicates S to a superellipsoid-based representation, M. These user-specified
characteristics are then used to generate object prototypes and to train a parametric shape encoder model, Es.
Once trained, the encoder can infer the superellipsoid representation M of unknown objects and generate a
corresponding natural language description or schematic visual representation from it.

task execution, so that the robot can recognize task-relevant objects and their pertinent features dur-
ing operation. In other words, these architecture are still making a closed-world assumption, even
if they are intended for showing capabilities such as one-shot object learning |Scheutz et al.| (2017)
or instruction-based task learning that involves novel objects Kirk & Laird| (2019). To achieve truly
open-world perceptual capabilities, where cognitive agents are able to detect and characterize novel
objects (Goel et al., [2024; Boult et al., 2019} 2021)), those vision processing modules need to be
configured and adapted online during task performance. The challenge here is how to make this
configuration and adaptation happen as part of the architecture and during task performance.

In this paper, we describe a novel extension of the DIARC cognitive robotic architecture (Scheutz
et al.,|2019) that enables the online configuration and adaptation of its visual object detectors based
on given task constraints that enable the detection of large classes of objects. Specifically, given
merelogical object characteristics which can be described in natural language, the algorithm syn-
thesizes compact object prototypes that reflect the intended mereological structure. Using these
self-generated examples, the architecture autonomously trains a parametric shape encoder capable
of inferring geometric object representations from input images. The proposed approach establishes
a bidirectional mapping between perception, language, and representation: the inferred represen-
tation can be translated back into human-readable descriptions or schematic visualizations. The
cognitive architecture is thus able to adapt to new tasks by synthesizing additional object prototypes
from novel descriptions, thereby continually expanding its perceptual vocabulary.

2. Background and Motivation

Traditional Al approaches assume a “closed world” where all concepts relevant to the task are
known beforehand, and the system model is considered complete. This enables agent designers to
craft algorithms based on that predefined knowledge. Consequently, such agents lack the capacity
to understand or adapt to information beyond what they were originally programmed to handle.
However, the real world is unpredictable and novelties might appear that contradict the previous
understanding of the environment. While biological intelligence demonstrates an exceptional abil-
ity to robustly adapt to novel inputs, artificial agents remain limited in their ability to replicate this
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flexibility (Goel et al. [2024; |Boult et al., 2019, 2021} Holder et al., 2025). To effectively operate
in open and dynamic environments, a cognitive agent must go beyond merely detecting novelty. It
should also be capable of characterizing unfamiliar input, i.e., analyzing and extracting its features
and properties, and incorporating this information into its recognition model. This capability en-
ables the agent to manage and respond to similar novel instances in the future (Cruz et al., 2025}
Goel et al., [2024).

Depending on its cognitive capabilities, an intelligent system cannot function in isolation and
requires external input to generate any form of behavior. However, realistic perception remains
challenging in the area of CAs. Notably, almost half of the reviewed architectures in |[Kotseruba &
Tsotsos|(2020) do not implement any vision. Some CAs that support visual processing rely on clas-
sical computer vision algorithms such as Scale-Invariant Feature Transform (SIFT) (Lowe, 2004),
or Local Binary Patterns (LBPs) (Pietikdinen, 2005)), sometimes in combination with support vec-
tor machines (SVMs) (Cortes & Vapnik, [1995) or mixtures of Gaussians (Reynolds, 2018). Many
CAs incorporate pre-trained neural network components for processing perceptual data (Kotseruba
& Tsotsos, 2020). For instance, convolutional neural networks (CNN5s) trained offline are used for
object recognition in the LIDA architecture (Madl et al.| 2016). NASA’s OnAIR cognitive architec-
ture integrates a deep learning model from the You Only Look Once (YOLO) (Redmon et al., 2016)
family as its onboard visual perception module (Zhang et al.,[2025)). Another model of that family is
used for object detction in combination with the OpenCog CA for semantic image retrieval (Potapov
et al., 2018)).

However, these perception modules are fundamentally static in nature. Classical computer vi-
sion methods depend on fixed feature extractors and rule-based classifiers, while even the more
advanced deep learning models are typically trained offline and therefore lack the ability to adapt.
As a result, such systems are incapable of evolving their perceptual understanding in response to
changing environmental conditions.

Open World Object Detection (OWOD) targets recognition in non-stationary environments by
flagging unknown instances as unknown without explicit supervision and incrementally learning
their categories as labels arrive, without forgetting prior classes (Joseph et all, [2021; [Bulzan &
Cernazanu-Glavan, 2025). Semi-supervised OWOD (SS-OWOD) reduces reliance on a “human
oracle" by using a partially annotated set together with unlabeled data for novel class learning during
incremental stages (Mullappilly et al., [2024).

Beyond OWOD and SS-OWOD, online object learning spans several complementary lines of
work. These include continual test-time adaptation for detectors, which prescribes when and what
to update under distribution shift (Yoo et al., [2024), fully test-time adaptation that performs single-
image, pre-prediction updates (Ruan & Tang), 2024)), streaming discovery that identifies and con-
solidates novel objects in video (Kara et al.l |2024), and incremental detection methods that stress
long-horizon class growth and prototype-based updates (Neuwirth-Trapp et al.l [2025; Wang et al.,
2025)).

While these methods establish the operational loop of detecting and integrating unknowns, they
rarely emphasize interpretable representations of object structure. Objects are often modeled as
monolithic entities rather than as structured compositions that can be flexibly recombined using
existing knowledge.
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One avenue toward greater generalizability is compositionality, the principle that complex struc-
tures can be formed from constituent parts. Compositionality has been a cornerstone of Al research
since its very origins, inspiring developments ranging from neurosymbolic reasoning to modular
neural architectures and chain-of-thought reasoning, among others. A key appeal of compositional-
ity lies in its ability to support out-of-distribution generalization while enabling efficient and diverse
representations of the world (Elmoznino et al., 2025} [Sinha et al., 2024).

Several studies apply the compositional perspective to visual perception by decomposing objects
and scenes into semantically meaningful geometric primitives. (Gao et al.| (2024) and Jiang et al.
(2024) propose a hybrid representation that combines superquadrics and 2D Gaussians to learn
part-aware 3D scene representations from multi-view images. |Alaniz et al.| (2023) introduce an
optimization based approach to recompose 3D objects into composite superquadrics from multiple
views. Ma et al.[(2024) reconstruct superquadrics from geometric structures within affordance point
clouds. [Fedele et al.| (2025)) propose a method to decompose object point clouds into superquadrics
using a neural network followed by Levenberg—Marquardt optimization.

Motivated by these challenges and principles, we develop a system within a CA that can generate
object prototypes built from superellipsoids, a flexible class of geometric primitives. From natural
language descriptions, the system derives semantic predicates capturing attributes like shape, size,
and spatial relations. These predicates are translated into parameter ranges defining the object’s
configuration, which the cognitive architecture then uses to generate compact synthetic prototypes
of the intended structure. The CA utilizes depth views of these synthetic prototypes to train a
neural parametric shape encoder, with the corresponding rendering parameters serving as ground
truth. Once trained, the encoder can estimate the superellipsoid-based parameterizations from real
observed objects. The inferred parameterizations can be mapped back into human-readable de-
scriptions or schematic visualizations of the object, closing the loop between language, perception,
and structured representation. This bidirectional mapping enables the CA to adapt to new tasks
by synthesizing additional prototypes from novel descriptions, thereby continuously expanding its
perceptual vocabulary.

The human-language descriptions can be easily updated to different levels of user expertise,
ranging from highly technical, fine-grained terminology to more common everyday language, or
even other languages. In addition, schematic visualizations of the generated objects help accommo-
date users who have difficulty understanding human langauge.

The synthetic objects generated by the system come with automatically derived ground-truth
parameters, eliminating the need for manual annotation and enabling synthetic supervision: the
cognitive architecture can conduct the training process by itself directly on these data. Because the
model outputs superellipsoid-based object representations, their reliability, and the reliability of the
associated descriptions, can be quantitatively assessed by comparing the 3D reconstruction with the
observed object and effectively communicated to the user.

The system is modular, allowing encoder models to be easily deactivated or replaced within the
cognitive architecture when they are no longer needed. Once an object representation is computed,
it can be reused for various downstream tasks.

Our contribution can be summarized as: (i) We propose a method for designing synthetic com-
posite objects that serve as fundamental object prototypes. (ii) We formalize a compact and struc-
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tured parameterization scheme for representing these objects based on their superellipsoidal geom-
etry. (iii) We leverage this representation to train a convolutional neural network (CNN) on depth-
based renderings, using the corresponding object parameters as ground truth for supervision. (iv) We
introduce a bidirectional mapping between superellipsoid parameters and human-understandable
descriptions, mediated through semantic predicates. (v) We integrate this representation pipeline
into a modular cognitive architecture. (vi) We demonstrate the feasibility of our approach through
implementation within a CA framework.

3. Superellipsoid-Based Object Prototypes as Compact Object Abstractions

3.1 Superellipsoids as Object components

We represent 3D objects as assemblies of superellipsoids, a flexible, parametric family of shapes
derived from superquadrics (Barr, |1981). Superellipsoids enable compact descriptions of diverse
geometric forms such as spheres, cylinders, disks, and cuboids, while supporting analytic control
over shape and scale parameters.

The surface of a superellipsoid is implicitly defined by:

€

2 2\ & 2
f(xsp,a,E)—(<x_x0> 2+<y_y0> 2) +<Z_Z°> f=1, (1)
ax ay az

where x = (z,y,2) € R3is a point in space, p = (o, Y0, 20) € R3 denotes the center of the
superellipsoid, a = (ay, ay,a.) € R3 are the axis-aligned scaling factors, and € = (€1, €2) € R
are curvature exponents.

The parameter €; governs vertical curvature along the z-axis, while e2 controls curvature in the
zy-plane. Varying these parameters allows interpolation between common geometric primitives,
including spheres (¢; = €2 = 1), cubes (€1, €2 — 0), and cylinders or disks (mixed values).

To support arbitrary orientations, we extend the formulation with two Euler angles: azimuth
¢ € [—7, 5], representing rotation about the vertical z-axis, and elevation § € [—7, 7], representing
rotation about the horizontal z-axis. We denote the combined rotation vector as ¥ = (¢, ).

A point x is transformed into the component’s local frame via:

X/ = R;ller(x - p)7 (2)

where Reyler = R (0)R.(0) € SO(3) is the composite rotation matrix constructed from the
azimuth and elevation angles.

Each component is thus parameterized by its center p, axis scales a, shape exponents €, and
orientation vector 1), enabling compact and expressive descriptions of 3D parts.

3.2 Object Composition

An object O is defined as a collection of /N superellipsoidal components:

02{017025"'7CN}7 (3)
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where each component corresponds to the region:
Ci ={x e R*| f(x;pi,a;, €,%;) < 1}. “4)

To ensure geometric connectivity, we designate the first component C' as the root and require
all others to be positioned within a fixed threshold § > 0 from it:

lpi —pill <60, Vi>1 )

The final object is then constructed as the union of all components:

N
o=|]Jc. 6)
=1

To standardize alignment, each object is uniformly scaled and translated to fit inside the refer-
ence unit cube [—1, 1]? centered at the origin, providing a consistent coordinate frame.

3.3 Structured Object Encodings for Parametric Shape Encoder Training via Synthetic
Supervision

To encode the object structure in a learnable form, we construct a semantic matrix M &€ R10xN
that captures the parameters of all superellipsoidal components in a spatially consistent format.
Each component C; is parameterized by its center position p; = (x0,, yo,, 20;,) € R3, shape ex-
ponents €, = (€1,,€2,) € R2, scale parameters a; = (ag,,ay,,az) € R3, and rotation angles
¥; = (¢i,0;) € R?, representing azimuth and elevation. For consistent representation, we define
a permutation o : 1,..., N — 1,... N that orders components lexicographically based on their
spatial centers. Specifically, a component p; is considered to precede p; (denoted p; > p;) if it lies
higher along the z-axis, or, if tied, closer along the y-axis, and subsequently along the z-axis:

pi = Pj <~ 20; > %0; V (Zoi = 20; NYo; < y(]j) V (Zoi = 20; NYo;, = Yo; N To; < .Z‘g].). (7)

The semantic matrix M € R10%N s then constructed as:

Ps(1)  Po(nN)
M= | e 7 €@) (8)
ag(1) " agn) |’

Yoy 0 Yo

where each column corresponds to a single superellipsoid component, ordered according to the
spatial permutation o. This structured representation guides the training of a convolutional neu-
ral network (CNN), the parametric shape encoder E, enabling it to predict a superellipsoid-based
parmetrization from an object observation.
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3.4 Predicate-Grounded Bidirectional Mapping Between Superellipsoid Parameters and
Natural language

The object representation in the semantic matrix M offers a compact, structured description of an
object’s geometry. However, the encoded parameters are not inherently intuitive for human inter-
pretation. To facilitate a more natural understanding of superellipsoid representations, we translate
these parameters into semantic predicates that capture the object’s geometric characteristics. We
first define a COMPOSITION predicate, HasComp(O, C;), indicating whether an object O includes
a specific component C; with j € 1,..., N. This predicate reflects the number of components
an object consists of. Notably, HasComp(O, C7) is always true, since every object has at least
one component. For each identified component C;, we define SHAPE predicates like Disk(C;) or
Rod(C;), based on the component’s principal axes a; and curvature €;. If a component does not fit
any specific shape predicate, we assign a generic Part(C;) predicate as a placeholder for undefined
shapes. For components that are not the first identified component, we categorize their parame-
ters encoding position into POSITION predicates such as OnTop(C;, Cy) or ToT heLeft(C;, C1),
relative to the first component C;. Similarly, we use the SIZE predicates to represent the relative
differences in size between the components, such as Smaller(C;, Cy) or Larger(C;, C1), based
on the comparison of their volumes derived from the primary axes scales a; and a;.

For instance, consider an object composed of two components: a flat, circular base and a tall,
cylindrical extension. The object’s structure can be represented by the combination of the pred-
icate Disk(C1), which captures the base’s curvature and axis proportions, and Rod(Cs2) for the
second component, reflecting its elongated cylindrical shape. Their relative vertical arrangement is
expressed through the spatial predicate OnTop(Cs, C1). A full list of our predicates grounded in su-
perellipsoid parameters is given in Table[I] These predicates are readily adaptable to varying levels
of user expertise. Specifically, we use Rod(C;) as a more familiar alternative to the C'ylinder(C;)
predicate, and Block(C;) as a more accessible equivalent to the Cuboid(C;) predicate.

4. Cognitive Architecture Integration Framework

We integrate our method into the Distributed Interactive Affect Reflection Cognition (DIARC) ar-
chitecture (Scheutz et al., 2019), a cognitive robotic architecture composed of specialized compo-
nents that communicate via messages expressed in logical form. Fig. 2|illustrates the DIARC con-
figuration used in this work. The language understanding components derive logical expressions
interpretable by other modules of the system. The dialogue manager coordinates communication
with the user and submits goals to the goal manager, which can issue action scripts or forward search
requests to the vision component. A knowledge base stores what the system knows about the en-
vironment. Within the vision component, we embed prototype object generation, encoder training,
and the mapping from superellipsoid parameters to natural language predicates.

4.1 Autonomous Synthetic Object Generation and Encoder Training from User Instructions

To enable autonomous training data generation, the system accepts high-level instructions that spec-
ify an object structure S. We define S as the geometric description of an object’s composition using
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Table 1. Criteria for mapping superellipsoid parameters to semantic predicates. Here, O represents the object
being described, composed of components C;.

Predicate Type Predicate Predicate Constraints
COMPOSITION HasComp(O, Ch) Always true (T)
HasComp(O, C;) S my > tey wherei € {2,...,N}
SHAPE Disk(C;) HasComp(O,Ci) Ner; RONe, ® 1Aaz; > 2az, Nag;, = ay,
Rod(C;) | Cylinder(C;)  HasComp(O,C;) ANe1; R 0N e, = 1A az; > 2az; Nag; = ay,;
Block(C;) | Cuboid(C;)  HasComp(O,C;) Ae1; 0N ez, =0
Plate(C;) HasComp(O,C;) Ner, 0N ez, R OAag; > 2az; Nag; = ay,
Sphere(C;) HasComp(O,C;) ANer, ®1Aex, R 1A az; = ay, = az,
Capsule(C;) HasComp(O,C;) Ner; ®1Aeg; & 1AAaz; > 2az; A az; = ay,
Part(C;) HasComp(O, C;) A —~(Disk(C;)V Rod(C;) V Block(C;) V Plate(C;) V
Sphere(C;) V Capsule(Ch))
where i € {1,..., N}
ROTATION Unrotated(C;,) HasComp(O,C;) A (Rod(C;) V Block(C;) V Disk(C;) V Plate(Cy)) A
¢ =~0ANE; =0
Horizontal(Cy,) HasComp(O, C;) A (Rod(C;) V Block(C;)) A ¢; = 90
Vertical(C;,) HasComp(O, C;) A (Rod(C;) V Block(C;)) A ¢; = 0
where i € {1,..., N}
POSITION ToTheLeft(Cy,Ch) HasComp(O,C;) Ayo, S Yo,
ToTheRight(C;,C1) HasComp(O, C;) Ayo, 2 Yo,
AtTheBottom(Cy, Ch) HasComp(O,C;) A z0; S 20,
OnTop(C;,C1) HasComp(O, C;) A z0,; 2 20,
wherei € {2,..., N}
ECCENTRICITY = Long(C;) HasComp(O, C;) A (Rod(C;) V Block(C3)) A az, > 2.5az,
wherei € {1,...,N}
S1ZE Smaller(C;, C1) HasComp(O,Ci) A ag,ay;0z; S Gz Gy, Gz,

Larger(C;,Ch)
SimilarSized(C;, C1)

HasComp(O,C;) NGz, ay,az; 2 Gzy Gy, Gzy
HasComp(O, C;) A ag;ay;az; = Ggq Gyq azq
wherei € {2,...,N}
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Figure 2. Our object generation, encoder training and natural language mapping are integrated into the vision
component of the illustrated DIARC configuration.

the semantic predicates defined in Sec.[3.4] Users provide these specifications through a template-
based dialogue interface. From this input, the system extracts semantic predicates (see Tab.[I)) and
maps them to the corresponding rendering parameters for generating synthetic objects.

When certain attributes of S are left unspecified, the system samples them from predefined
uniform distributions. For example, if the SHAPE predicate is omitted for a component C; g, the
superellipsoid curvature exponents €; s and scale parameters a; g are drawn from /(0, 1). If the
spatial POSITION of C; is unspecified, the center coordinates p; s are sampled independently along
each axis from ¢/(—1, 1). If no SIZE predicate is given, a; g is again sampled from /(0, 1) with-
out constraints. However, when a size predicate specifies a relative size with respect to the first
component C g, sampling is restricted so that the resulting volumes satisfy the stated relation.

Rotation constraints are handled similarly. If the user specifies Unrotated(C; g), the azimuth
and elevation angles ‘Pi, s are fixed to zero (¢; s = 0, 0; 5 = 0), otherwise they are drawn from
U(—75,%). Based on the combination of user-specified constraints and sampled parameters, the
system generates a dataset of synthetic object instances that conform to .S.

The system supports varying levels of specification, from fully defined structures to partially
constrained or entirely unconstrained objects. Table [2] illustrates four example categories. Object
structure category .51 contains generic three-component objects with no additional constraints. Ob-
ject structure Syp specifies the first component as an unrotated disk and the second as an unrotated
rod, both without position constraints. Object structure Sty consists of two rod components with
unconstrained positions and orientations. Object structure Sty features a block base, a sphere posi-
tioned to its right, and a disk placed on top, all with random rotations.

The three-dimensional prototype objects are rendered in Blender (Blender Online Communityl,
2018)), with rendering parameters stored alongside the corresponding object mesh data. For each
object, a depth image I € R?°0%250 i5 generated using a simple orthogonal projection onto a plane
aligned with the x- and y-axes. The blender depth sensor is positioned along the z-axis at a distance
equal to twice the side length of the reference cube the prototype object is places into. Depth images
capture the geometric structure of the objects while remaining unaffected by appearance attributes
such as color, texture, or lighting.

The depth images are processed by a small convolutional network, the parametric shape encoder
Eg. The encoder is trained to predict the semantic matrix M = Eg(I). As supervision, we use
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the ground-truth matrix M € R0*N | constructed from the rendering parameters (see Sec. .

Training minimizes the mean squared error (MSE) between M and M, thereby aligning the encoder
output with the superellipsoid object parametrization.

In our current integration, the cognitive architecture (CA) generates 50 prototype objects for
each specified object structure, allocating 40 samples for training and 10 for validation. The encoder
architecture consists of three convolutional layers followed by two fully connected layers. Each
convolutional block includes a convolutional layer with a kernel size of 3 x 3 and unit padding,
followed by a LeakyReLU activation and a 2 X 2 max-pooling operation to progressively reduce
spatial dimensionality while capturing hierarchical spatial features.

The flattened output from the final convolutional layer is passed through a fully connected layer
with LeakyReLU activation, followed by a second linear layer that projects the features into the
same embedding space as M. Optimization is performed using the Adam optimizer (Kingma &
Ba, [2014) with a learning rate of 10~5 and a batch size of 16. Training runs for 2000 epochs, after
which the user is notified upon completion.

4.2 From Superellipsoid Parameters to Multimodal Object Descriptions

After training the parametric shape encoder Es and notifying the user, the system can be queried
with the prompt “What do you see?" to produce descriptions of the observed objects.

4.2.1 Generating Human-Readable Descriptions from Superellipsoid Representations

The system acquires visual input via a depth sensor, using the RGB stream for object segmenta-
tion with the Fast Segment Anything Model (Zhao et al., 2023)), which produces real-time two-
dimensional masks for each frame. These masks are then fused with the sensor’s depth data to
construct three-dimensional object point clouds. A depth view of the object is produced by repli-
cating the same process used for training data generation. Specifically, the object’s point cloud is
translated and uniformly scaled to fit within a reference unit cube. Depth views are then obtained
through orthogonal projection onto a plane aligned with the x and y axes.

The CA employs the trained encoder model Eg to infer a superellipsoid-based representa-
tion of the observed object in the depth image I. For interpretability, the information captured
in M = Eg(I) is mapped back to our predefined set of semantic predicates. These predicates are
subsequently used to populate predefined text templates. Template selection is determined by the
COMPOSITION predicates, while additional attributes, such as SHAPE and POSITION, are used to
fill the corresponding entries. An object with a single component is described by its eccentricity,
rotation, and shape. If two components are present, the second is added with its eccentricity, ro-
tation, shape, relative size and position. Descriptions of objects with three or more components
are constructed analogously, by successively including each additional component together with
its determined attributes. The same mapping procedure can be easily adapted to other languages.
Note that in our current implementation, the system uses the most recently added parametric shape
encoder if a user prompts it to describe an object.
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4.2.2 Rendering Superellipsoids as Schematic Visual Representations

The semantic matrix M comprises the full set of estimated parameters describing an object’s su-
perellipsoid components. Leveraging these parameters, a 3D model of the object can be generated
based on superellipsoid geometry (refer to Eq. [I)). For simpler visualization, the three-dimensional
shape is projected onto the x — y plane, resulting in a two-dimensional representation. Such vi-
sual abstractions serve as an alternative approach to communicate object features, which may be
particularly helpful for individuals who find interpreting verbal or textual descriptions challenging.

4.3 Estimating Description Confidence

The structured object representation provides a foundation for assessing the reliability of the com-
puted parametrization. By comparing it with the actual object it models, one can quantify the
system’s confidence in its computed description.

The parameters in the semantic matrix M can be used to reconstruct a three-dimensional object
based on superellipsoids. This is achieved by generating a point cloud Cny = {ux = (zk, Y, 2k) |
k=1,...,K} by sampling K points from the surface of the superellipsoids defined by M. Each
point uy, lies in R3,

Similarly, the point cloud Cy = {v; = (x;,y;,21) | | = 1,..., L} represents the L points
obtained from the object depicted in the depth image I.

The geometric discrepancy between these two point clouds is quantified using the Chamfer
distance (Dubuisson & Jain, |1994):

11 . 1 .
d(Cw,Cn) = 5 | 22 minfu—v[*+ 2 > min v —ul?

ueCnm veCt

A smaller Chamfer distance d(Cn, C1) indicates that the parameters in M closely match the
true object geometry, leading to a more reliable description. This uncertainty metric is applicable to
any object, whether known or novel, synthetic or real. Its deterministic formulation ensures a trans-
parent and reproducible confidence measure. For consistency, the object point cloud Cf is scaled
and translated to fit within the reference cube, i.e., the coordinate frame in which the superellipsoid
representation resides. This normalization constrains the Chamfer distance to a predictable range.
Therefore, the system can flag a computed description with low-confidence statement whenever
the distance exceeds a predefined threshold ¢y, selected based on the dimensions of the refer-
ence cube. In such cases, the system explicitly reports: “I have low confidence in my generated
description.” in addition to the generated description.

5. Experimental Demonstration

We demonstrate the ability of our system to adapt to different configurations of an unknown object.
Specifically, we consider a tennis ball launcher machine, which can be physically configured in two
ways: either as a single unit, denoted as object O 4, or as a two-part assembly, denoted as object Op,
formed by manually attaching or detaching an additional component. Our DIARC configuration
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Figure 3. After automated training on a single-cylinder object structure S 4, the system generates an accurate
description for object O 4 using its trained parametric encoder model Es,. When presented with the two-
cylindrical object Op, the system’s inferred representation can not generate an adequate description and it
communicates its uncertainty. After training on the two-cylinder object structure Sp, the system uses the
newly trained model Eg, to generate an accurate description of Op.
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runs on a laptop connected to a Intel RealSense depth sensor. User interaction with the system is
mediated through a graphical user interface (GUI), where the user can define object structures by
answering system queries via predefined button selections and prompt the system as needed.

The process begins when the user selects “"define new object structure”. The sys-
tem then prompts the user to specify the number of object parts and their corresponding shapes.

In a first dialogue-based instruction, the user defines an object structure S4 consisting of a
single cylindrical part. Based on this specification, the system generates prototype objects, i.e.
varieties of one-cylinder objects with randomly sampled orientations. It then trains the encoder on
these prototype objects and notifies the user upon completion. Once training is finished, the user
presents object O 4 in front of the depth sensor. When queried with “What do you see?”,the
system uses the trained model Eg, to generate both a visual representation and a natural-language
description:

“I see an unknown object that is a long vertical rod.”

Next, the user places object Op, the two-part version of the object, in front of the sensor and
again prompts the system with “What do you see?”. The system uses the available parametric
shape encoder Eg,, which was trained only on the single-part structure .S 4, to process the object
and responds:

“I see an unknown object that is a long horizontal rod, but
I have low confidence in my description.”

This response illustrates that object Op does not match the object structure S4 that the system
was trained on. The system attempts to capture the presented object using its single-cylinder repre-
sentation from Eg ,. However, the resulting reconstruction fails to match the observed object closely
enough and the system indicates this misalignment with low confidence. Since it has only encoun-
tered single-cylinder objects during training, it cannot produce an accurate enough description of
the two-part object with the current representation.

In a second interaction, the user defines an object structure S composed of two cylindrical
components. Based on this specification, the system generates multiple prototype objects consist-
ing of two cylinders with randomly sampled spatial arrangements, orientations, and sizes. After
generating these prototypes and training the corresponding encoder model Eg,, the user places a
new object Op in front of the sensor and again asks, "What do you see?" This time, the sys-
tem utilizes the newly trained parametric shape encoder Fg,,, enabling it to produce an accurate
description of the observed object:

“I see an unknown object, which consists of a long horizontal
rod and a long vertical rod to the left.”

This illustrates the system’s ability to adapt its perceptual processing based on user input and to
explicitly communicate uncertainty when its generated object representation, and consequently its
description, does not adequately capture the observed object.
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Note that the full data generation and encoder training runs entirely on the laptop’s 12th Gener-
ation Intel Core i7-12800H central processing unit (CPU) in under 20 minutes.

A video demonstration of the experiments can be accessed at https://tufts.box.com/
v/ACSDemoVideol

6. Qualitative Results

We present additional qualitative results on recorded point clouds of two objects from the Yale-
CMU-Berkeley (YCB) dataset (Calli et al., [2017)), namely a skillet and a toy power drill, and a
3D replica of a screw object from the Fetchlt! Challenge (Han et all 2020). For the toy power
drill, the system was trained on object structure Sy, consisting of two rod components with un-
constrained positions and orientations. For the skillet and screw objects, the system was trained on
object structure Sy, comprising one rod and one disk with unconstrained positions and orientations.
Table [3] shows RGB images of the objects, visual descriptions inferred from the superellipsoid pa-
rameters, Chamfer distances between reconstructed and ground-truth point clouds, and generated
human-language descriptions.

The Chamfer distances are computed within the reference cube, defined as the 3D region [—1, 1]3,
as described in Sec. This ensures a consistent scale for computing Chamfer distances. Over-
all, the system captures the primary geometric features of all objects. Finer details, such as the
drill’s screw attachment and push button or the skillet lid’s handle, are not explicitly captured by
the superellipsoid-based model. This is expected, as the training prototypes do not include such
fine-grained elements. For more complex objects, the system produces simplified approximations,
effectively generating a coarse-grained representation. For instance, the skillet lid handle and the
drill’s button and screw attachment are represented as part of an “enveloping rod component.”

The Chamfer distances range from 0.029 to 0.076. These small values indicate that the system
accurately captures the fundamental geometry of the objects. Slightly higher distances occur in
regions corresponding to fine-grained features, such as the drill’s screw attachment or push button,
which are simplified in the superellipsoid reconstruction.

7. Conclusion

In this work, we address the challenge of enabling cognitive architectures to adapt their visual
processing in dynamic environments. We extend the DIARC cognitive robotic architecture with a
mechanism that dynamically adapts its perceptual vocabulary based on task-specific user instruc-
tions. By leveraging natural-language descriptions of object characteristics, the system synthesizes
object prototypes that capture the intended structure.

These prototypes enable DIARC to autonomously train a parametric shape encoder, which in-
fers geometric representations from depth observations of objects. The system establishes a bidi-
rectional mapping between superellipsoid-based object representations and human language. User
instructions are translated into mereological representations, while the inferred representations can
be converted back into human-readable descriptions or schematic visualizations. This bidirectional
mapping supports transparent and adaptive interaction with human users.
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Table 3. Visual and human-language description for four different objects.

Object | Toy Power Drill | Skillet | Screw 1 | Screw 2
| el
Object [ oal !
(RGB) ; h |
l |
Object HasComp(Omr, Chm)| HasComp(Ov,Ci,v)| HasComp(Ov,Civ)| HasComp(Ov,Chv)
Structure | HasComp(Omur, C2,m1)| HasComp(Ov,Cav)| HasComp(Ov,Cav)| HasComp(Ov,Cs,v)
Instruc- | Cylinder(Cq ) Cylinder(C1,v) Cylinder(C1,v) Cylinder(C1,v)
tions Cylinder(Ca,111) Disk(Ca,v) Disk(Ca,v) Disk(Ca,v)
Vlsu?l
Descrip-
tion
Chamfer |, 176 0.041 0.042 0.029
Distance
I see an unknown I see an unknown I see an unknown
Human- . . I see an unknown . . . .
object that consists of a . . object that consists of | object that consists of
language . object that consists of . . .
. long vertical rod and a . a long vertical rod a disk with a long
Descrip- . a long horizontal rod . .
. long horizontal rod to . and a disk at the vertical rod at the
tion . and a disk to the left.
the right on top. bottom. bottom.

We demonstrate the feasibility of our approach in an experimental scenario, illustrating how the
system leverages user instructions to expand its object description capabilities. Additionally, we
show how the system communicates uncertainty when its internal object representation does not
adequately match an observed object, indicated by a low-confidence statement.

8. Limitations and Future Work

Our mapping from continuous superellipsoids to discrete semantic predicate labels is inherently
affected by the vagueness and context-dependence of human language (Lim & Wul [2023)). For
instance, different users may interpret the same shape labels differently, some shapes may be appro-
priate in certain contexts but not others, and some shapes may fall between categories. A promising
direction for future work is to replace discrete predicate assignments with a continuous assessment
of predicate applicability, enabling the system to generate more nuanced descriptions.

Objects often contain details at multiple scales. For example, the screw attachment of a toy
power drill is currently represented simply as part of the overall rod structure. Our current object
prototypes are relatively simplified, capturing an “enveloping representation” of the object. While
this approach works well for a coarse-grained descriptions, it can over-simplify certain objects by
omitting distinctive features. Nevertheless, the modular design of the proposed system is highly
extensible and could be adapted to process components at different scales recursively, enabling
more detailed representations in future work.
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Currently, the system relies on meaningful user input to define the structure of a new object. A
more user-friendly future direction would be to develop a workflow in which the system leverages
its existing vision processing models to analyze the point cloud of a novel object and propose can-
didate superellipsoidal representations. The user could then review and validate these suggestions,
selecting the most appropriate representation. Furthermore, the reconstruction error between the
original point cloud and the reconstructed superellipsoid-based point cloud could be exploited to
suggest new object structures or to guide the automated generation of prototype objects.
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