
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROTO SUCCESSOR MEASURE: REPRESENTING THE
SPACE OF ALL POSSIBLE SOLUTIONS OF
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Having explored an environment, intelligent agents should be able to transfer their
knowledge to most downstream tasks within that environment. Referred to as
“zero-shot learning,” this ability remains elusive for general-purpose reinforcement
learning algorithms. While recent works have attempted to produce zero-shot RL
agents, they make assumptions about the nature of the tasks or the structure of the
MDP. We present Proto Successor Measure: the basis set for all possible solutions
of Reinforcement Learning in a dynamical system. We provably show that any
possible policy can be represented using an affine combination of these policy
independent basis functions. Given a reward function at test time, we simply need
to find the right set of linear weights to combine these basis corresponding to the
optimal policy. We derive a practical algorithm to learn these basis functions using
only interaction data from the environment and show that our approach can produce
the optimal policy at test time for any given reward function without additional
environmental interactions.

1 INTRODUCTION

A wide variety of tasks can be defined within an environment (or any dynamical system). For
instance, in navigation environments, tasks can be defined to reach a goal, path following, reach a
goal while avoiding certain states etc. Once familiar with an environment, humans have the wonderful
ability to perform new tasks in that environment without any additional practice. For example,
consider the last time you moved to a new city. At first, you may have needed to explore various
routes to figure out the most efficient way to get to the nearest supermarket or place of work. But
eventually, you could probably travel to new places efficiently the very first time you needed to get
there. Like humans, intelligent agents should be able to infer the necessary information about the
environment during exploration and use this experience for solving any downstream task efficiently.
Reinforcement Learning (RL) algorithms have seen great success in finding a sequence of decisions
that optimally solves a given task in the environment (Wurman et al., 2022; Fawzi et al., 2022). In
RL settings, tasks are defined using reward functions with different tasks having their own optimal
agent policy or behavior corresponding to the task reward. RL agents are usually trained for a given
task (reward function) or on a distribution of related tasks; most RL agents do not generalize to
solving any task, even in the same environment. While related machine learning fields like computer
vision and natural language processing have shown success in zero-shot (Ramesh et al., 2021) and
few-shot (Radford et al., 2021) adaptation to a wide range of downstream tasks, RL lags behind in
such functionalities. Unsupervised reinforcement learning aims to extract reusable information such
as skills (Eysenbach et al., 2019; Zahavy et al., 2023), representations (Ghosh et al., 2023; Ma et al.,
2023), world-model (Janner et al., 2019; Hafner et al., 2020), goal-reaching policies (Agarwal et al.,
2024; Sikchi et al., 2024a), etc, from the environment using data independent of the task reward to
efficiently train RL agents for any task. Recent advances in unsupervised RL (Wu et al., 2019; Touati
& Ollivier, 2021; Blier et al., 2021b; Touati et al., 2023) have shown some promise towards achieving
zero-shot RL.

Recently proposed pretraining algorithms (Stooke et al., 2021; Schwarzer et al., 2021b; Sermanet
et al., 2017; Nair et al.; Ma et al., 2023) use self-supervised learning to learn representations from
large-scale data to facilitate few-shot RL but these representations are dependent on the policies used

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

`

All
Solutions

Valid
Solutions

Environment

Task Reward: 𝒓

𝛷
𝑤
+
𝑏
≥
0

Solutions Polytope

𝑤!

𝑤"

𝜱𝒘+ 𝒃

𝜋!

𝜋"
𝜋∗

Figure 1: Method Overview: Visitation distributions corresponding to any policy must obey the Bellman Flow
constraint for the dynamical system. This means they must lie on the plane defined by the the Bellman Flow
equation. Being a plane, it can be represented using a set of basis set Φ and a bias. All valid (non negative)
visitation distributions lie within a convex hull on this plane. The boundary of this hull is defined using the non
negativity constraints: Φw + b ≥ 0. Each point within this convex hull corresponds to a visitation distribution
for a valid policy and is defined simply by the “coordinate” w.

for collecting the data. These algorithms assume that the large scale data is collected from a “good”
policy demonstrating expert task solving behaviors. Several prior works aim to achieve generalization
in multi-task RL by building upon successor features (Dayan, 1993) which represent rewards as a
linear combination of state features. These methods have limited generalization capacity to unseen
arbitrary tasks. Other works (Mahadevan, 2005; Machado et al., 2017; 2018; Bellemare et al., 2019;
Farebrother et al., 2023) represent value functions using eigenvectors of the graph Laplacian obtained
from a random policy to approximate the global basis of value functions. However, the eigenvectors
from a random policy cannot represent all value functions. In fact, we show that an alternative
strategy of representing visitation distributions using a set of basis functions covers a larger set of
solutions than doing the same with value functions. Skill learning methods (Eysenbach et al., 2019;
Park et al., 2024b; Eysenbach et al., 2022) view any policy as combination of skills , but as shown by
Eysenbach et al. (2022), these methods do not recover all possible skills from the MDP. Some recent
works have attempted zero-shot RL by decomposing the representation of visitation distributions
(Touati & Ollivier, 2021; Touati et al., 2023), but they learn policy representations as a projection of
the reward function which can lead to loss of task relevant information. We present a stronger, more
principled approach for representing any solution of RL in the MDP.

Any policy in the environment can be represented using visitation distributions or the distributions over
states and actions that the agent visits when following a policy. We learn a basis set to represent any
possible visitation distribution in the underlying environmental dynamics. We draw our inspiration
from the linear programming view (Manne, 1960; Denardo, 1970; Nachum & Dai, 2020; Sikchi et al.,
2024b) of reinforcement learning; the objective is to find the visitation distribution that maximizes
the return (the dot-product of the visitation distribution and the reward) subject to the Bellman Flow
constraints. We show that any solution of the Bellman Flow constraint for the visitation distribution
can be represented as a linear combination of policy-independent basis functions and a bias. As
shown in Figure 1, any visitation distribution that is a solution of the Bellman Flow for a given
dynamical system lies on a plane defined using policy independent basis Φ and a bias b. On this
plane, only a small convex region defines the valid (non negative) visitations distributions. Any
visitation distribution in this convex hull can be obtained simply using the “coordinates” w. We
introduce Proto-Successor Measure, the set of basis functions and bias to represent any successor
measure (a generalization over visitation distributions) in the MDP that can be learnt using reward-
free interaction data. At test time, obtaining the optimal policy reduces to simply finding the linear
weights to combine these basis vectors that maximize its dot-product with the user-specified reward.
These basis vectors only depend on the state-action transition dynamics of the MDP, independent of
the initial state distribution, reward, or policy, and can be thought to compactly represent the entire
dynamics.

The contributions of our work are (1) a novel, mathematically complete perspective on representation
learning for Markov decision processes; (2) an efficient practical instantiation that reduces basis

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learning to a single-player optimization; and (3) evaluations of a number of tasks demonstrating the
capability of our learned representations to quickly infer optimal policies.

2 RELATED WORK

Unsupervised Reinforcement Learning: Unsupervised RL generally refers to a broad class
of algorithms that use reward-free data to improve the efficiency of RL algorithms. We focus
on methods that learn representations to produce optimal value functions for any given reward
function. Representation learning through unsupervised or self-supervised RL has been discussed
for both pre-training (Nair et al.; Ma et al., 2023) and training as auxiliary objectives (Agarwal
et al., 2021; Schwarzer et al., 2021a). While using auxiliary objectives for representation learning
does accelerate policy learning for downstream tasks, the policy learning begins from scratch for
a new task. Pre-training methods like Ma et al. (2023); Nair et al. use self-supervised learning
techniques from computer vision like masked auto-encoding to learn representations that can be used
directly for downstream tasks. These methods use large-scale datasets (Grauman et al., 2022) to learn
representations but these are fitted around the policies used for collecting data. These representations
do not represent any possible behavior nor are trained to represent Q functions for any reward
functions. A number of works in prior literature aim to discover intents or skills using a diversity
objective. These methods use the fact that the latents or skills should define the output state-visitation
distributions thus diversity can be ensured by maximizing mutual information (Warde-Farley et al.,
2019; Eysenbach et al., 2019; Achiam et al., 2018; Eysenbach et al., 2022) or minimizing Wasserstein
distance (Park et al., 2024b) between the latents and corresponding state-visitation distributions. PSM
differs from these works and takes a step towards learning representations optimal for predicting
value functions as well as a zero-shot near-optimal policy for any reward.

Methods that linearize RL quantities: Learning basis vectors has been leveraged in RL to allow
for transfer to new tasks. Successor features (Barreto et al., 2017) represents rewards as a linear
combination of transition features and subsequently the Q-functions are linear in successor features.
Several methods have extended successor features (Lehnert & Littman, 2020; Hoang et al., 2021;
Alegre et al., 2022; Reinke & Alameda-Pineda, 2021) to learn better policies in more complex
domains.

Spectral methods like Proto Value Functions (PVFs) (Mahadevan, 2005; Mahadevan & Maggioni,
2007) instead represent the value functions as a linear combination of basis vectors. It uses the
eigenvectors of the random walk operator (graph Laplacian) as the basis vectors. Adversarial Value
Functions (Bellemare et al., 2019) and Proto Value Networks (Farebrother et al., 2023) have attempted
to scale up this idea in different ways. However, deriving these eigenvectors from a Laplacian is
not scalable to larger state spaces. Wu et al. (2019) recently presented an approximate scalable
objective, but the Laplacian is still dependent on the policy which makes it incapable of representing
all behaviors or Q functions.

Similar to our work, Forward Backward (FB) Representations (Touati & Ollivier, 2021; Touati et al.,
2023) use an inductive bias on the successor measure to decompose it into a forward and backward
representation. Unlike FB, our representations are linear on a set of basis features. Additionally, FB
ties the reward representation with the representation of the optimal policy derived using Q function
maximization which can lead to overestimation issues and instability during training as a result of
Bellman optimality backups.

3 PRELIMINARIES

In this section we introduce some preliminaries and define terminologies that will be used in later
sections. We begin with some MDP fundamentals and RL preliminaries followed by a discussion on
affine spaces which form the basis for our representation learning paradigm.

3.1 MARKOV DECISION PROCESSES

A Markov Decision Process is defined as a tuple ⟨S,A, P, r, γ, µ⟩ where S is the state space, A
is the action space, P : S × A 7−→ ∆(S) is the transition probability (∆(·) denotes a probability
distribution over a set), γ ∈ [0, 1) is the discount factor, µ is the distribution over initial states and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

r : S × A 7−→ R is the reward function. The task is specified using the reward function r and the
initial state distribution µ. The goal for the RL agent is to learn a policy πθ : S 7−→ A that maximizes
the expected return J(πθ) = Es0∼µEπθ

[
∑∞
t=0 γ

tr(st, at)].

In this work, we consider a task-free MDP which does not provide the reward function or the initial
state distribution. Hence, a task-free or reward-free MDP is simply the tuple ⟨S,A, P, γ⟩. A task-
free MDP essentially only captures the underlying environment dynamics and can have infinite
downstream tasks specified through different reward functions.

The state-action visitation distribution, dπ(s, a) is defined as the normalized probability of being in a
state s and taking an action a if the agent follows the policy π from a state sampled from the initial state
distribution. Concretely, dπ(s, a) = (1− γ)

∑∞
t=0 γ

t
P(st = s, at = a). A more general quantity,

successor measure, Mπ(s, a, s+, a+), is defined as the probability of being in state s+ and taking
action a+ when starting from the state-action pair s, a and following the policy π. Mathematically,
Mπ(s, a, s+, a+) = (1 − γ)

∑∞
t=0 γ

t
P(st = s+, at = a+|s0 = s, a0 = a). The state-action

visitation distribution can be written as dπ(s, a) = Es0∼µ(s),a0∼π(a0|s0)[Mπ(s0, a0, s, a)].

Both these quantities, state-action visitation distribution and successor measure, follow the Bellman
Flow equations:

dπ(s, a) = (1− γ)µ(s)π(a|s) + γ
∑

s′∈S,a′∈A
P (s|s′, a′)dπ(s′, a′)π(a|s). (1)

For successor measure, the initial state distribution changes to an identity function
Mπ(s, a, s+, a+) = (1− γ)1[s = s+, a = a+]+

γ
∑

s′∈S,a′∈A
P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+). (2)

The RL objective has a well studied linear programming interpretation (Manne, 1960). Given any
task reward function r, the RL objective can be rewritten in the form of a constrained linear program:

max
d

∑
s,a

d(s, a)r(s, a), s.t. d(s, a) ≥ 0 ∀s, a,

s.t. d(s, a) = (1− γ)µ(s)π(a|s) + γ
∑

s′∈S,a′∈A
P (s|s′, a′)d(s′, a′)π(a|s)

(3)

and the unique policy corresponding to visitation d is obtained by π(a|s) = d(s,a)∑
a d(s,a)

. The Q function
can then be defined using successor measure as Qπ(s, a) =

∑
s+,a+ M

π(s, a, s+, a+)r(s+, a+) or
Qπ = Mπr. Obtaining the optimal policies requires maximizing the Q function which requires
solving argmaxπM

πr.

3.2 AFFINE SPACES

Let V be a vector space and b be a vector. An affine set is defined asA = b+V = {x|x = b+v, v ∈ V}.
Any vector in a vector space can be written as a linear combination of basis vectors, i.e., v =

∑n
i αivi

where n is the dimensionality of the vector space. This property implies that any element of an affine
space can be expressed as x = b +

∑n
i αivi. Given a system of linear equations Ax = c, with A

being an m× n matrix (m < n) and c ̸= 0, the solution x forms an affine set. Hence, there exists
alphas αi such that x = b+

∑
i αixi. The vectors {xi} form the basis set of the null space or kernel

of A. The values (αi) form the affine coordinates of x for the basis {xi}. Hence, for a given system
with known {xi} and b, any solution can be represented using only the affine coordinates (αi).

We first explain the theoretical foundations of our method in Section 4 and derive a practical algorithm
following the theory in Section 5

4 THE BASIS SET FOR ALL SOLUTIONS OF RL

In this section, we introduce the theoretical results that form the foundation for our representation
learning approach. The goal is to learn policy-independent representations that can represent any valid
visitation distribution in the environment (i.e. satisfy the Bellman Flow constraint in Equation 3). With
a compact way to represent these distributions, it is possible to reduce the policy optimization problem
to a search in this compact representation space. We will show that state visitation distributions and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

successor measures form an affine set and thus can be represented as
∑
i ϕiw

π
i + b, where ϕi are

basis functions, wπ are “coordinates” or weights to linearly combine the basis functions, and b is a
bias term. First, we build up the formal intuition for this statement and later we will use a toy example
to show how these representations can make policy search easier.

The first constraint in Equation 3 is the Bellman Flow equation. We begin with Lemma 4.1 showing
that state visitation distributions that satisfy the Bellman Flow form affine sets.

Theorem 4.1. All possible state-action visitation distributions in an MDP form an affine set.

While Theorem 4.1 shows that any state-action visitation distribution in an MDP can be written using
a linear combination of basis and bias terms, state-action visitation distributions still depend on the
initial state distribution. Moreover, as shown in Equation 1, computing the state-action visitation
distribution requires a summation over all states and actions in the MDP which is not always possible.
Successor measures are more general than state-visitation distributions as they encode the state-action
visitation of the policy conditioned on a starting state-action pair. Using similar techniques, we show
that successor measures also form affine sets.

Corollary 4.2. Any successor measure, Mπ in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Following Corollary 4.2, for any w, the function
∑d
i ϕiw

π
i + b will be a solution of Equation 2.

Hence, given Φ (ϕi stacked together) and b, we do not need the first constraint on the linear program
(in Equation 3) anymore. The other constraint: ϕiwi + b ≥ 0 still remains which w needs to satisfy.
We discuss ways to manage this constraint in Section 5.3. The linear program given a reward function
now becomes,

max
w

Eµ[(Φw + b)r]

s.t. Φw + b ≥ 0 ∀s, a.
(4)

In fact, any visitation distribution that is a policy-independent linear transformation of Mπ, such as
state visitation distribution or future state-visitation distribution, can be represented in the same way
as shown in Corollary 4.3.

Corollary 4.3. Any quantity that is a policy-independent linear transformation of Mπ can be written
as a linear combination of policy-independent basis and bias terms.

Extension to Continuous Spaces: In continuous spaces, the basis matrices ϕ and bias b become
functions ϕ : S ×A× S → Rd and b : S ×A× S → R. The linear equation with matrix operations
becomes a linear equation with functional transformations, and any sum over states is replaced with
expectation under the data distribution.

Toy Example: Let’s consider a simple 2 state MDP (as shown in Figure 2a) to depict how the
precomputation and inference will take place. Consider the state-action visitation distribution
as in Equation 1. For this simple MDP, the Φ and b can be computed using simple algebraic
manipulations. For a given initial state-visitation distribution, µ and γ, the state-action visitation
distribution d = (d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T can be written as,

d = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (5)

The derivation for these basis vectors and the bias vector can be found in Appendix A.6. Equation 21
represents any vector that is a solution of Equation 1 for the simple MDP. Any state-action visitation
distribution possible in the MDP can now be represented using only w = (w1, w2)

T . The only
constraint in the linear program of Equation 4 is Φw + b ≥ 0. Looking closely, this constraint gives
rise to four inequalities in w and the linear program reduces to,

max
w1,w2

(
−γw1 − w2

1 + γ
,
−w1 − γw2

1 + γ
,w1, w2)

T r

s.t. w1 + γw2 ≤ µ(s0) + γµ(s1)

γw1 + w2 ≤ µ(s1) + γµ(s0)

w1 ≥ 0, w2 ≥ 0

. (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The inequalities in w give rise to a simplex as shown in Figure 2b. For any specific instantiation
of µ and r, the optimal policy can be easily found. For instance, if µ = (1, 0)T and the reward
function, r = (1, 0, 1, 0)T , the optimal w will be obtained at the vertex (w1 = 1, w2 = 0) and the
corresponding state-action visitation distribution is d = (0, 0, 1, 0)T .

(a)

(b)

Figure 2: (left) A Toy MDP with 2 states and 2 actions
to depict how the linear program of RL is reduced using
precomputation. (right) The corresponding simplex for
w assuming the initial state distribution is µ = (1, 0)T .

As shown for the toy MDP, the successor mea-
sures form a simplex as discussed in Eysen-
bach et al. (2022). Spectral Methods following
Proto Value Functions (Mahadevan & Maggioni,
2007) have instead tried to learn policy inde-
pendent basis functions, Φvf to represent value
functions as a linear span, V π = Φvfwπ . Some
prior works (Dadashi et al., 2019) have already
argued that value functions do not form con-
vex polytopes. We show through Theorem 4.4
that for identical dimensionalities, the span of
value functions using basis functions represent
a smaller class of value functions than the set
of value functions that can be represented using
the span of the successor measure.

Theorem 4.4. Given a d-dimensional basis
V : Rn → Rd, define span{V} as the space of all linear combinations of the basis V. Let
span{Φvf} represents the space of the value functions spanned by Φvf i.e. V π = Φvfwπ and let
{span{Φ}r} represents the space of value functions using the successor measures spanned by Φ i.e.
V π =

∑
s+ [Φw

π.r(s+)]. For the same dimensionality of task (policy or reward) independent basis,
span{Φvf} ⊆ {span{Φ}r}.

Approaches such as Forward Backward Representations (Touati & Ollivier, 2021) have also been
based on representing successor measures but they force a latent variable z representing the policy to
be a function of the reward for which the policy is optimal. The forward map that they propose is a
function of this latent z. We, on the other hand, propose a representation that is truly independent of
the policy or the reward.

5 METHOD

In this section, we start by introducing the core practical algorithm for representation learning inspired
by the theory discussed in Section 4 for obtaining Φ and b. We then discuss the inference step, i.e.,
obtaining w for a given reward function.

5.1 LEARNING Φ AND b

For a given policy π, its successor measure under our framework is denoted by Mπ = Φwπ + b with
wπ the only object depending on policy. Given an offline dataset with density ρ, we follow prior
works (Touati & Ollivier, 2021; Blier et al., 2021b) and model densities mπ =Mπ/ρ learned with
the following objective:

Lπ(Φ, b, wπ) = −Es,a∼ρ[mΦ,b,wπ

(s, a, s, a)]

+
1

2
Es,a,s′∼ρ,s+,a+∼ρ[m

Φ,b,wπ

(s, a, s+, a+)− γm̄Φ̄,b̄,w̄π

(s′, π(s′), s+, a+)]. (7)

The above objective only requires samples (s, a, s′) from the reward-free dataset and a random
state-action pair (s+, a+) (also sampled from the same data) to compute and minimize L(π).

A Φ and b that allows for minimizing the L(π) for all π ∈ Π forms a solution to our representation
learning problem. But how do we go about learning such Φ and b? A naı̈ve way to implement
learning Φ and b is via a bi-level optimization. We sample policies from the policy space of Π, for
each policy we learn a wπ that optimizes the policy evaluation loss (Eq 7) and take a gradient update
w.r.t Φ and b. In general, the objective can be optimized by any two-player game solving strategies
with [Φ, b] as the first player and wπ as the second player. Instead, in the next section, we present an
approach to simplify learning representations to a single-player game.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 SIMPLIFYING OPTIMIZATION VIA A DISCRETE CODEBOOK OF POLICIES

Learning a new wπ for each specific sampled policy π does not leverage precomputations and
requires retraining from scratch. We propose parameterizing w to be conditional on policy, which
allows leveraging generalization between policies that induce similar visitation and as we show, will
allow us to simplify the two player game into a single player optimization. In general, policies are
high-dimensional objects and compressing them can result in additional overhead. Compression
by parameterizing policies with a latent variable z is another alternative but presents the challenge
of covering the space of all possible policies by sampling z. Instead, we propose using a discrete
codebook of policies as a way to simulate uniform sampling of all possible policies with support in
the offline dataset.

Discrete Codebook of Policies: Denote z as a compact representation of policies. We propose
to represent z as a random sampling seed that will generate a deterministic policy from the set of
supported policies as follows:

π(a|s, z) = Uniform Sample(seed = z + hash(s)). (8)
The above sampling strategy defines a unique mapping from a seed to a policy. If the seed generator
is unbiased, the approach provably samples from among all possible deterministic policies uniformly.
Now, with policy πz and wz parameterized as a function of z we derive the following single-player
reduction to learn Φ, b, w jointly.

PSM-objective: argmin
Φ,b,w(z)

Ez[Lπz (Φ, b, w(z))]. (9)

5.3 FAST OPTIMAL POLICY INFERENCE ON DOWNSTREAM TASKS

After obtaining Φ and b via the pretraining step, the only parameter to compute for obtaining
the optimal Q function for a downstream task in the MDP is w. As discussed earlier, Q∗ =
maxw(Φw + b)r but simply maximizing this objective will not yield a Q function. The linear
program still has a constraint of Φw + b ≥ 0,∀s, a. We solve the constrained linear program by
constructing the Lagrangian dual using Lagrange multipliers λ(s, a). The dual problem is shown in
Equation 10. Here, we write the corresponding loss for the constraint as min(Φw + b, 0).

max
λ≥0

min
w

−Φwr −
∑
s,a

λ(s, a)min(Φw + b, 0). (10)

Once w∗ is obtained, the corresponding M∗ and Q∗ can be easily computed. The policy can be
obtained as π∗ = argmaxaQ

∗(s, a) for discrete action spaces and via DDPG style policy learning
for continuous action spaces.

6 CONNECTIONS TO SUCCESSOR FEATURES

In this section, we uncover the theoretical connections between PSM and successor features. Succes-
sor Features (Barreto et al., 2017) (ψπ(s, a)) are defined as the discounted sum of state features φ(s),
ψπ(s, a) = Eπ[

∑
t γ

tφ(st)]. These state features can be used to span reward functions as r = φz.
Using this construction, the Q function is linear in z as Q(s, a) = ψπ(s, a)z. We can establish a
simple relation between Mπ and ψπ, ψπ(s, a) =

∫
s′
Mπ(s, a, s′)φ(s′)ds′. This connection shows

that, like successor measures, successor features can also be represented using a similar basis.

Theorem 6.1. Successor Features ψπ(s, a) belong to an affine set and can be represented using a
linear combination of basis functions and a bias.

Interestingly, instead of learning the basis of successor measures, we show below that PSM can also
be used to learn the basis of successor features. While traditional successor feature-based methods
assume that the state features φ are provided, PSM can be used to jointly learn the successor feature
and the state feature. We begin by introducing the following Lemma 6.2 from (Touati et al., 2023)
which connects an a specific decomposition for successor measures to the ability of jointly learning
state features and successor representations,

Lemma 6.2. (Theorem 13 of Touati et al. (2023)) For an offline dataset with density ρ, if the successor
measure is represented as Mπ(s, a, s+) = ψπ(s, a)φ(s+)ρ(s+), then ψ is the successor feature
ψπ(s, a) = Eπ[

∑
t γ

tφ(st+1)
T] for state feature φ(s)T (Eρ(φφT))−1

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

According to Lemma 6.2, if Mπ(s, a, s+) = ψπ(s, a)φ(s+)ρ(s+), then the corresponding successor
feature is ψπ(s, a) and the state feature is φ(s)T (Eρ(φφT))−1. PSM represents successor measures
as Mπ(s, a, s+) = ϕ(s, a, s+)wπρ(s+) (for simplicity, combining the bias within the basis without
loss of generality). It can be shown that if the basis learned for successor measure using PSM,
ϕ(s, a, s+) is represented as a decomposition ϕψ(s, a)Tφ(s+), ϕψ(s, a) forms the basis for successor
features for the state features φ(s)T (Eρ(φφT))−1. Formally, we present the following theorem,

Theorem 6.3. For the PSM representation Mπ(s, a, s+) = ϕ(s, a, s+)wπ and ϕ(s, a, s+) =
ϕψ(s, a)

Tφ(s+), the successor feature ψπ(s, a) = ϕψ(s, a)w
π for the state feature

φ(s)T (Eρ(φφT))−1.

Thus, successor features can be obtained by enforcing a particular inductive bias to decompose ϕ in
PSM. For rewards linear in state features (r(s) = ⟨φ(s) · z⟩ for some weights z), the Q-functions
remain linear given by Qπ(s, a) = ϕψ(s, a)w

πEρ[φ(s)z]. A natural question to ask is, with this
decomposition, do we lose the expressibility of PSM compared to the methods that compute basis
spanning value functions, thus contradicting Theorem 4.4? The answer is negative, since (1) even
though the value function seems to be linear combination of some basis with weights wπ, these
weights are not tied to z or the reward. The relationship between the optimal weights wπ

∗
and

z defining the reward function is not necessarily linear as the prior works assume, and (2) the
decomposition ϕ(s, a, s+) = ϕψ(s, a)φ(s

+) reduces the representation capacity of the basis. While
prior works are only able to recover features pertaining to this reduced representation capacity, PSM
does not assume this decomposition and can learn a larger representation space.

7 EXPERIMENTAL STUDY

Our experiments evaluate how PSM can be used to encapsulate a task-free MDP into a representation
that will enable zero-shot inference on any downstream task. In the experiments we investigate a) the
quality of value functions learned by PSM, b) the zero-shot performance of PSM in contrast to other
baselines, and finally on robot manipulation task c) the ability to learn general goal-reaching skills
arising from the PSM objective d) Quality of learned PSM representations in enabling zero-shot RL
for continuous state-action space tasks.

Baselines We compare to the methods that have stood the test of time and perform best: Laplacian
features (Wu et al., 2018) and Forward-Backward (Touati et al., 2023). Laplacian features learn
features of a state by considering eigenvectors of a graph Laplacian induced by a random walk. These
features ψ(s) ∈ Rd obtained for each state are used to define a reward function conditioned on a
reward r(s;ψ) = ψ(s) · z where z is sampled uniformly from a unit d-dimensional sphere. For each
z an optimal policy is pretrained from the dataset on the induced reward function. During inference
the corresponding z for a given reward function is obtained as a solution to the following linear
regression: minz Es[(ψ⊤ · z − r(s))2]. Forward-backward (FB) learns both the optimal policy and
state features jointly for all reward that are in the linear span of state-features. FB methods typically
assume a goal-conditioned prior during pretraining which typically helps in learning policies that
reach various states in the dataset. HILP (Park et al., 2024a) makes two changes to FB: a) Reduces
the tasks to be goal reaching to learn the features of a state and b) Uses a more performant offline RL
method, IQL (Kostrikov et al., 2021) to learn features. We provide detailed experimental setup and
hyperparameters in Appendix B.3.

7.1 ZERO SHOT VALUE FUNCTION AND OPTIMAL POLICY PREDICTION

In this section, we consider goal-conditioned rewards on discrete gridworld and the classic four-room
environments. Since the goal-conditioned rewards are state-only reward functions, we learn represen-
tations for Mπ(s, a, s+) instead of Mπ(s, a, s+, a+) using the learning objectives in Equation 9.

Task Setup: Both environments have discrete state and action spaces. The action space consists
of five actions: {up, right, down, left, stay}. We collect transitions in the environment by uni-
formly spawning the agent and taking a random-uniform action.This allows us to form our offline
reward-free dataset will full coverage to train Φ and b. During inference, we sample a goal and
infer the optimal Q function on the goal. Since the reward function is given by r(s) = 1s=g, the in-
ference looks like Q(s, a) = maxw Φ(s, a, g)w s.t. Φ(s, a, s′)w + b(s, a, s′) ≥ 0 ∀s, a, s′.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PS
M

FB
La

pl
ac

e

(a) Gridworld

PS
M

FB
La

pl
ac

e

(b) Four-room

Figure 3: Qualitative results on a gridworld and four-room: G denotes the goal sampled for every episode.
The black regions are the boundaries/obstacles. The agent needs to navigate across the grid and through the
small opening (in case of four-room) to reach the goal. We visualize the optimal Q-functions inferred at test
time for the given goal in the image. The arrows denote the optimal policy. (Top row) Results for PSM, (Middle
Row) Results for FB, (Bottom row) Results for Laplacian Eigenfunctions.

Figure 3 shows the Q function and the corresponding optimal policy (when executed from a
fixed start state) on the gridworld and the four-room environment. As illustrated clearly, for
both the environments, the optimal Q function and policy can be obtained zero-shot for any
given goal-conditioned downstream task. We observe a 100% success rate on both these tasks.

Figure 4: Quantitative results on FetchReach: The
success rates (averaged over 3 seeds) are plotted (along
with the standard deviation as shaded) with respect to
the training updates for PSM, FB and Laplacian. PSM
quickly reaches optimal performance while FB shows
instability in maintaining its optimality. Laplacian is far
from the optimal performance.

Comparison to baselines: We can draw a cou-
ple of conclusions from the visualization of the
Q functions inferred by the different methods.
First, the Q function learnt by PSM is more
sharply concentrated on optimal state-action
pairs compared to the two baselines. Both base-
lines have more uniform value estimates, leav-
ing only a minor differential over state values.
Secondly, the baselines produce far more incor-
rect optimal actions (represented by the green
arrows) compared to PSM.

7.2 LEARNING
ZERO-SHOT POLICIES FOR MANIPULATION

We consider the Fetch-Reach environment with
continuous states and discrete actions (Touati
& Ollivier, 2021). A dataset of size 1M is con-
structed using DQN+RND. FB, Laplacian and
PSM all use this dataset to learn pretrained objects that can be used for zero-shot RL.

We observe that PSM outperforms baselines FB and Laplacian in its ability to learn a zero-shot
policy. One key observation is that PSM learning is stable whereas FB exhibits a drop in performance,
likely due to the use of Bellman optimality backups resulting in overestimation bias during training.
Laplacian’s capacity to output zero-shot policies is far exceeded by PSM because Laplacian methods
construct the graph Laplacian for random policies and may not be able to represent optimal value
functions for all rewards.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7.3 LEARNING ZERO-SHOT POLICIES FOR CONTINUOUS CONTROL

We use the ExoRL suite (Yarats et al., 2022) for obtaining exploratory datasets collected by running
RND (Burda et al., 2019). PSM objective in Equation 9 directly enables learning the basis for
successor measures. We decompose the basis representation ϕ(s, a, s+) to ϕψ(s, a)

Tφ(s+) as
discussed in detail in Section 6. PSM thus ensures that φ(s+) can be used to construct basic features
to span any reward function. Note that this is not a limiting assumption, as the features can be
arbitrarily non-linear in states. In these experiments, we compare the ability of PSM to obtain these
representations as compared to prior zero-shot RL methods. Additional experimental details can be
found in Appendix B.3.

Table 1 compares PSM’s zero-shot performance in continuous state-action spaces to representa-

Environment Task Laplace FB HILP PSM

Walker Stand 243.70 ± 151.40 902.63± 38.94 607.07 ± 165.28 872.61 ± 38.81
Run 63.65 ± 31.02 392.76 ± 31.29 107.84 ± 34.24 351.50 ± 19.46
Walk 190.53 ± 168.45 877.10 ± 81.05 399.67 ±39.31 891.44 ± 46.81
Flip 48.73 ± 17.66 206.22 ± 162.27 277.95 ± 59.63 640.75 ± 31.88

Average 136.65 594.67 348.13 689.07

Cheetah Run 96.32 ± 35.69 257.59 ± 58.51 68.22 ±47.08 276.41 ± 70.23
Run Backward 106.38 ± 29.4 307.07 ± 14.91 37.99 ±25.16 286.13 ± 25.38
Walk 409.15 ± 56.08 799.83 ±67.51 318.30 ± 168.42 887.02 ± 59.87
Walk Backward 654.29 ± 219.81 980.76 ± 2.32 349.61 ± 236.29 980.90 ± 2.04

Average 316.53 586.31 193.53 607.61

Quadruped Stand 854.50 ± 41.47 740.05 ± 107.15 409.54 ± 97.59 842.86 ± 82.18
Run 412.98 ± 54.03 386.67 ± 32.53 205.44 ± 47.89 431.77 ± 44.69
Walk 494.56 ± 62.49 566.57 ± 53.22 218.54 ±86.67 603.97±73.67
Jump 642.84 ± 114.15 581.28 ± 107.38 325.51 ±93.06 596.37 ±94.23

Average 601.22 568.64 289.75 618.74

Pointmass Reach Top Left 713.46 ± 58.90 897.83 ± 35.79 944.46 ± 12.94 831.43 ± 69.51
Reach Top Right 581.14 ± 214.79 274.95 ± 197.90 96.04 ± 166.34 730.27 ± 58.10
Reach Bottom Left 689.05 ± 37.08 517.23 ± 302.63 192.34 ± 177.48 451.38 ± 73.46
Reach Bottom Right 21.29 ± 42.54 19.37±33.54 0.17 ± 0.29 43.29 ± 38.40

Average 501.23 427.34 308.25 514.09

Table 1: Table shows comparison (averaged over 5 seeds) between zero-shot RL performance of different
methods with representation size of d = 128. PSM demonstrates a marked improvement over prior methods.

tive methods - Laplacian, FB, and HILP. We note that to make the comparisons fair, we use the
same representation dimension of d = 128, the same discount factor, and the same inference and
policy extraction across environments for a particular method. Overall, PSM demonstrates marked
improvement over baselines across most environments. Further ablations studying effect of latent
dimensionality can be found in Appendix C.

8 CONCLUSION

In this work, we propose Proto Successor Measures (PSM), a zero-shot RL method that compresses
any MDP to allow for optimal policy inference for any reward function without additional environ-
mental interactions. This framework marks a step in the direction of moving away from common
idealogy in RL to solve single tasks optimally, and rather pretraining reward-free agents that are
able to solve an infinite number of tasks. PSM is based on the principle that successor measures are
solutions to an affine set and proposes an efficient and mathematically grounded algorithm to extract
the basis for the affine set. Our empirical results show that PSM can produce the optimal Q function
and the optimal policy for a number of goal-conditioned as well as reward-specified tasks in a number
of environments outperforming prior baselines.

Limitations and Future Work: PSM shows that any MDP can be compressed to a representation
space that allows zero-shot RL, but it remains unclear as to what the size of the representation
space should be. A large representational dimension can lead to increased compute requirements
and training time with a possible chance of overfitting, and a small representation dimension can
fail to capture nuances about environments that have non-smooth environmental dynamics. It is
also an interesting future direction to study the impact that dataset coverage has on zero-shot RL
performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. CoRR, abs/1807.10299, 2018. URL http://arxiv.org/abs/1807.10299.

Siddhant Agarwal, Aaron Courville, and Rishabh Agarwal. Behavior predictive representations
for generalization in reinforcement learning. In Deep RL Workshop NeurIPS 2021, 2021. URL
https://openreview.net/forum?id=b5PJaxS6Jxg.

Siddhant Agarwal, Ishan Durugkar, Peter Stone, and Amy Zhang. f-policy gradients: A general
framework for goal-conditioned rl using f-divergences. Advances in Neural Information Processing
Systems, 36, 2024.

Lucas Nunes Alegre, Ana Bazzan, and Bruno C Da Silva. Optimistic linear support and successor
features as a basis for optimal policy transfer. In International conference on machine learning, pp.
394–413. PMLR, 2022.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nicolas
Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on optimal
representations for reinforcement learning. Advances in neural information processing systems,
32, 2019.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021a.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. CoRR, abs/2101.07123, 2021b. URL https://arxiv.
org/abs/2101.07123.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Robert Dadashi, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans, and Marc G Bellemare.
The value function polytope in reinforcement learning. In International Conference on Machine
Learning, pp. 1486–1495. PMLR, 2019.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural computation, 5(4):613–624, 1993.

Eric V Denardo. On linear programming in a markov decision problem. Management Science, 16(5):
281–288, 1970.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=SJx63jRqFm.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. The information geometry of
unsupervised reinforcement learning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=3wU2UX0voE.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel
Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learning with
auxiliary tasks. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=oGDKSt9JrZi.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47–53, 2022.

11

http://arxiv.org/abs/1807.10299
https://openreview.net/forum?id=b5PJaxS6Jxg
https://arxiv.org/abs/2101.07123
https://arxiv.org/abs/2101.07123
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=3wU2UX0voE
https://openreview.net/forum?id=oGDKSt9JrZi

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dibya Ghosh, Chethan Anand Bhateja, and Sergey Levine. Reinforcement learning from passive
data via latent intentions. In International Conference on Machine Learning, pp. 11321–11339.
PMLR, 2023.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18995–19012, 2022.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS.

Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Torrico Carvalho, and Honglak Lee. Suc-
cessor feature landmarks for long-horizon goal-conditioned reinforcement learning. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=rD6ulZFTbf.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Yehuda Koren. On spectral graph drawing. In International Computing and Combinatorics Confer-
ence, pp. 496–508. Springer, 2003.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Lucas Lehnert and Michael L. Littman. Successor features combine elements of model-free and
model-based reinforcement learning. Journal of Machine Learning Research, 21(196):1–53, 2020.
URL http://jmlr.org/papers/v21/19-060.html.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. VIP: Towards universal visual reward and representation via value-implicit pre-training.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=YJ7o2wetJ2.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning. In International Conference on Machine Learning, pp.
2295–2304. PMLR, 2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=Bk8ZcAxR-.

Sridhar Mahadevan. Proto-value functions: Developmental reinforcement learning. In Proceedings
of the 22nd international conference on Machine learning, pp. 553–560, 2005.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learning
representation and control in markov decision processes. Journal of Machine Learning Research,
8(10), 2007.

Alan S Manne. Linear programming and sequential decisions. Management Science, 6(3):259–267,
1960.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality. arXiv preprint
arXiv:2001.01866, 2020.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. In 6th Annual Conference on Robot Learning.

12

https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=rD6ulZFTbf
http://jmlr.org/papers/v21/19-060.html
https://openreview.net/forum?id=YJ7o2wetJ2
https://openreview.net/forum?id=YJ7o2wetJ2
https://openreview.net/forum?id=Bk8ZcAxR-
https://openreview.net/forum?id=Bk8ZcAxR-
http://arxiv.org/abs/1312.5602

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert represen-
tations. In Forty-first International Conference on Machine Learning, 2024a. URL https:
//openreview.net/forum?id=LhNsSaAKub.

Seohong Park, Oleh Rybkin, and Sergey Levine. METRA: Scalable unsupervised RL with metric-
aware abstraction. In The Twelfth International Conference on Learning Representations, 2024b.
URL https://openreview.net/forum?id=c5pwL0Soay.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. CoRR, abs/2103.00020,
2021. URL https://arxiv.org/abs/2103.00020.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. CoRR, abs/2102.12092, 2021. URL
https://arxiv.org/abs/2102.12092.

Chris Reinke and Xavier Alameda-Pineda. Xi-learning: Successor feature transfer learning for
general reward functions. CoRR, abs/2110.15701, 2021. URL https://arxiv.org/abs/
2110.15701.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman.
Data-efficient reinforcement learning with self-predictive representations. In International Confer-
ence on Learning Representations, 2021a. URL https://openreview.net/forum?id=
uCQfPZwRaUu.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,
2021b.

Pierre Sermanet, Corey Lynch, Jasmine Hsu, and Sergey Levine. Time-contrastive networks: Self-
supervised learning from multi-view observation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 14–15, 2017.

Harshit Sikchi, Rohan Chitnis, Ahmed Touati, Alborz Geramifard, Amy Zhang, and Scott Niekum.
Score models for offline goal-conditioned reinforcement learning. In The Twelfth International
Conference on Learning Representations, 2024a. URL https://openreview.net/forum?
id=oXjnwQLcTA.

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual RL: Unification and new meth-
ods for reinforcement and imitation learning. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=xt9Bu66rqv.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International conference on machine learning, pp. 9870–9879.
PMLR, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. CoRR, abs/1801.00690, 2018. URL http://arxiv.org/abs/
1801.00690.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances in
Neural Information Processing Systems, 34:13–23, 2021.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=MYEap_OcQI.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=r1eVMnA9K7.

13

https://openreview.net/forum?id=LhNsSaAKub
https://openreview.net/forum?id=LhNsSaAKub
https://openreview.net/forum?id=c5pwL0Soay
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2110.15701
https://arxiv.org/abs/2110.15701
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=oXjnwQLcTA
https://openreview.net/forum?id=oXjnwQLcTA
https://openreview.net/forum?id=xt9Bu66rqv
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
https://openreview.net/forum?id=MYEap_OcQI
https://openreview.net/forum?id=MYEap_OcQI
https://openreview.net/forum?id=r1eVMnA9K7
https://openreview.net/forum?id=r1eVMnA9K7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations. arXiv preprint arXiv:1810.04586, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in RL: Learning representations with
efficient approximations. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HJlNpoA5YQ.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al.
Outracing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):
223–228, 2022.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.

Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebastian Flennerhag, Shaobo
Hou, and Satinder Singh. Discovering policies with DOMiNO: Diversity optimization maintaining
near optimality. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=kjkdzBW3b8p.

14

https://openreview.net/forum?id=HJlNpoA5YQ
https://openreview.net/forum?id=kjkdzBW3b8p

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

Our code is provided in the supplementary material to facilitate reproducibility.

A THEORETICAL RESULTS

In this section, we will present the proofs for all the Theorems and Corollaries stated in Section 4 and
6.

A.1 PROOF OF THEOREM 4.1

Theorem 4.1. All possible state-action visitation distributions in an MDP form an affine set.

Proof. Any state-action visitation distribution, dπ(s, a) must satsify the Bellman Flow equation:∑
a

dπ(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P(s|s′, a′)dπ(s′, a′). (11)

This equation can be written in matrix notation as:∑
a

dπ = (1− γ)µ+ γPT dπ. (12)

Rearranging the terms,
(S − γPT)dπ = (1− γ)µ, (13)

where S is the matrix for
∑
a of size |S| × |S||A| with only |A| entries set to 1 corresponding to the

state denoted by the row. This equation is an affine equation of the form Ax = b whose solution set
forms an affine set. Hence all state-visitation distributions dπ form an affine set.

In the continuous spaces, the visitation distributions would be represented as functions: dπ : S×A→
R rather than vectors in [0, 1]S×A. The state-action visitation distribution dπ(s, a) will satisfy the
following continuous Bellman Flow Equation,∫

A

dπ(s, a)da = (1− γ)µ(s) + γ

∫
S

∫
A

P(s|s′, a′)dπ(s′, a′)ds′da′. (14)

This equation is the same as Equation 11 except, the vectors representing distributions are replaced
by functions and the discrete operator

∑
is replaced by

∫
.

The Bellman Flow operator can be defined as T that acts on dπ as,

T [dπ](s) =

∫
A

dπ(s, a)da− γ

∫
S

∫
A

P(s|s′, a′)dπ(s′, a′)ds′da′. (15)

From Equation 14, T [dπ](s) = (1 − γ)µ(s). The operator T is a linear operator, hence dπ(s, a)
forms an affine space.

A.2 PROOF OF COROLLARY 4.2

Corollary 4.2. Any successor measure, Mπ , in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Proof. Using Theorem 4.1, we have shown that state-action visitation distributions form affine sets.
Similarly, successor measures, Mπ(s, a, s+, a+) are solutions of the Bellman Flow equation:
Mπ(s, a, s+, a+) = (1−γ)1[s = s+, a = a+]+γ

∑
s′,a′∈SA

P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+).

(16)
Taking summation over a+ on both sides gives us an equation very similar to Equation 11 and so can
be written by rearranging as,

(S − γPT)Mπ = (1− γ)1[s = s+]. (17)
With similar arguments as in Lemma 4.1, Mπ also forms an affine set.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Following the previous proof, in continuous spaces,Mπ becomes a functionMπ : S×A×S×A→ R
and the Bellman Flow equation transforms to,

Mπ(s, a, s+, a+) = (1−γ)p(s = s+, a = a+)+γ

∫
S

∫
A

P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+)ds′da′.
(18)

Integrating both sides over a+, the Bellman Flow operator T can be constructed that acts on Mπ ,

T [Mπ](s, a, s+) =

∫
A

Mπ(s, a, s+, a+)da+ − γ

∫
S

∫
A

P (s+|s′, a′)Mπ(s, a, s′, a′)ds′da′

(19)

=⇒ T [Mπ](s, a, s+) = (1− γ)p(s = s+, a = a+) (20)
As T is a linear operator, Mπ belongs to an affine set.

Any element x of an affine set of dimensionality d, can be written as
∑d
i ϕiwi + b where ⟨ϕi⟩ are the

basis and b is a bias vector. The basis is given by the null space of the matrix operator (S − γPT) (T
in case of continuous spaces). Since the operator (S−γPT) (and T) and the vector (1−γ)1[s = s+]
(and function (1− γ)p(s = s+, a = a+)) are independent of the policy, the basis Φ and the bias b
are also independent of the policy.

A.3 PROOF OF THEOREM 4.4

Theorem 4.4. For the same dimensionality, span{Φvf} represents the set of the value functions
spanned by Φvf and {span{Φ}r} represents the set of value functions using the successor measures
spanned by Φ, span{Φvf} ⊆ {span{Φ}r}.

Proof. We need to show that any element that belongs to the set {span{Φ}r} also belongs to the set
span{Φvf}.

If we assume a special Φi(s, s′) = σi(s)ηi(s
′),

V π(s) =
∑
i

wπi
∑
s′

Φ(s, s′)r(s′)

=
∑
i

[
wπi

∑
s′

ηi(s
′)r(s′)

]
σi(s).

The two equations match with βπi = wπi
∑
s′ ηi(s

′)r(s′) and σi(s) = Φvfi (s). This implies for every
instance in the span of Φvf , there exists some instance in the span of Φ.

A.4 PROOF OF THEOREM 6.1

Theorem 6.1. Successor Features ψπ(s, a) belong to an affine set and can be represented using a
linear combination of basis functions and a bias.

Proof. Given basic state features, φ : S → R|d|, the successor feature is defined as, ψπ(s, a) =
Eπ[

∑
t γ

tφ(st+1)]. It can be correspondingly connected to successor measures as ψπ(s, a) =∑
s′ M(s, a, s′)φ(s′) (replace

∑
s′ with

∫
s′

for continuous domains). In Linear algebra notations, let
Mπ be a (S ×A)× S dimensional matrix representing successor measure. Define Φs as the S × d
matrix containing φ for each state concatenated row-wise. The (S ×A)× d matrix representing Ψπ

can be given as,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ψπ =MπΦs

=⇒ Ψπ =
∑
i

ϕiw
π
i Φs (Mπ is affine for basis ϕ)

=⇒ Ψπ =
∑
s′

∑
i

ϕi(·, ·, s′)wπi φ(s′)

=⇒ Ψπ =
∑
i

∑
s′

ϕi(·, ·, s′)φ(s′)wπi

=⇒ Ψπ =
∑
i

ϕψ,iw
π
i (ϕψ =

∑
s′

ϕi(·, ·, s′)φ(s′))

=⇒ Ψπ = Φψw
π

Hence, the successor features are affine with policy independent basis Φψ .

A.5 PROOF OF THEOREM 6.3

Theorem 6.3. If Mπ(s, a, s+) = ϕ(s, a, s+)wπ and ϕ(s, a, s+) = ϕψ(s, a)
Tϕs(s

+), the successor
feature ψπ(s, a) = ϕψ(s, a)w

π for the basic feature ϕs(s)T (ϕsϕTs)
−1.

Proof. Consider ϕ(s, a, s+) ∈ Rd as the set of d− 1 basis vectors and the bias with wπ ∈ Rd being
the d− 1 weights to combine the basis and wπd = 1. Clearly from Theorem 4.2, Mπ(s, a, s+) can be
represented as ϕ(s, a, s+)wπ . Further, ϕ(s, a, s+) = ϕψ(s, a)

Tϕs(s
+) where ϕψ(s, a) ∈ Rd×d and

ϕs(s
+) ∈ Rd. So,

Mπ(s, a, s+) =
∑
i

∑
j

ϕψ(s, a)ijϕs(s
+)jw

π
i

=⇒ Mπ(s, a, s+) =
∑
j

∑
i

ϕψ(s, a)ijw
π
i ϕs(s

+)j

=⇒ Mπ(s, a, s+) =
∑
j

ϕψ(s, a)
T
j w

πϕs(s
+)j

=⇒ Mπ(s, a, s+) =
∑
j

ψπ(s, a)jϕs(s
+)j (Writing ϕψ(s, a)Twπ as ψπ(s, a))

=⇒ Mπ(s, a, s+) = ψπ(s, a)Tϕs(s
+)

From Lemma 6.2, ψπ(s, a) is the successor feature for the basic feature ϕs(s)T (ϕsϕTs)
−1.

Note: In continuous settings, we can use the dataset marginal density as described in Section 5. The
basic features become ϕs(s)T (Eρ[ϕsϕTs])−1.

A.6 DERIVING A BASIS FOR THE TOY EXAMPLE

Figure 5: The Toy MDP described in Section 4.

Consider the MDP shown in Figure 5. The state action visitation distribution is written as d =
(d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T . The corresponding dynamics can be written as,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

P =

s0, a0 s1, a0 s0, a1 s0, a1[]
s0 0 1 1 0
s1 1 0 0 1

The Bellman Flow equation thus becomes,

∑
a

d(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)

=⇒
[
1 1 0 0
0 0 1 1

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)
+ γ

[
0 1 1 0
1 0 0 1

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)



=⇒
[
1 1− γ −γ 0
−γ 0 1 1− γ

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)

This affine equation can be solved in closed form using Gauss Elimination to obtaind(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (21)

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

B.1.1 GRIDWORLDS

We use https://github.com/facebookresearch/controllable_agent code-base
to build upon the gridworld and 4 room experiments. The task is to reach a goal state that is randomly
sampled at the beginning of every episode. The reward function is 0 at all non-goal states while 1 at
goal states. The episode length for these tasks are 200.

The state representation is given by (x, y) which are scaled down to be in [0, 1]. The action space
consists of five actions: {up, right, down, left, stay}.

B.1.2 FETCH

We build on top of https://github.com/ahmed-touati/controllable_agent
which contains the Fetch environments with discretized action spaces. The state space is unchanged
but the action space is discretized to produce manhattan style movements i.e. move one-coordinate at
a time. These six actions are mapped to the true actions of Fetch as: {0 : [1, 0, 0, 0], 1 : [0, 1, 0, 0], 2 :
[0, 0, 1, 0], 3 : [−1, 0, 0, 0], 4 : [0,−1, 0, 0], 5 : [0, 0,−1, 0]}. Fetch has an episode length of 50.

B.1.3 DM-CONTROL ENVIRONMENTS

These continuous control environments have been discussed in length in DeepMind Control Suite
(Tassa et al., 2018). We use these environments to provide evaluations for PSM on larger and
continuous state and action spaces. The following four environments are used:

Walker: It has 24 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
planar walker. At test time, we test the following four tasks: Walk, Run, Stand and Flip, each with
complex dense rewards.

18

https://github.com/facebookresearch/controllable_agent
https://github.com/ahmed-touati/controllable_agent

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: DM Control Environments: Visual rendering of each of the four DM Control environments
we use: (from left to right) Walker, Cheetah, Quadruped, Pointmass

Cheetah: It has 17 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
planar biped “cheetah”. At test time, we test the following four tasks: Run, Run Backward, Walk and
Walk Backward, each with complex dense rewards.

Quadruped: It has 78 dimensional state space consisting of joint positions and velocities and 12
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
3-dimensional ant with 4 legs. At test time, we test the following four tasks: Walk, Run, Stand and
Jump, each with complex dense rewards.

Pointmass: The environment represents a 4-room planar grid with 4-dimensional state space
(x, y, vx, vy) and 2-dimensional action space. The four tasks that we test on are Reach Top Left,
Reach Top Right, Reach Bottom Left and Reach Bottom Right each being goal reaching tasks for the
four room centers respectively.

All DM Control tasks have an episode length of 1000.

B.2 DATASETS

Gridworld: The exploratory data is collected by uniformly spawning the agent and taking a random
action. Each of the three method is trained on the reward-free exploratory data. At test time, a random
goal is sampled and the optimal Q function is inferred by each.

Fetch: The exploratory data is collected by running DQN (Mnih et al., 2013) training
with RND reward (Burda et al., 2019) taken from https://github.com/iDurugkar/
adversarial-intrinsic-motivation. 20000 trajectories, each of length 50, are collected.

DM Control: We use publically available datasets from ExoRL Suite (Yarats et al., 2022) collected
using RND exploration.

B.3 IMPLEMENTATION DETAILS

B.3.1 BASELINES

We consider a variety of baselines that represent different state of the art approaches for zero-shot
reinforcement learning. In particular, we consider Laplacian, Forward-Backward, and HILP.

1. Laplacian (Wu et al., 2018; Koren, 2003): This method constructs a graph Laplacian for the
MDP induced by a random policy. Eigenfunctions of this graph Laplacian gives a representation for
each state ϕ(s), or the state feature. These state-features are used to learn the successor features; and
trained to optimize a family of reward functions r(s) = ⟨ϕ(s) · z⟩, where z is usually sampled from a
unit hypersphere uniformly (same for all baselines). The reward functions are optimized via TD3.

2. Forward-Backward (Blier et al., 2021a; Touati & Ollivier, 2021; Touati et al., 2023): Forward-
backward algorithm takes a slightly different perspective: instead of training a state-representation
first, a mapping is defined between reward function to a latent variable (z =

∑
s ϕ(s).r(s)) and the

optimal policy for the reward function is set to πz , i.e the policy conditioned on the corresponding
latent variable z. Training for optimizing all reward functions in this class allows for state-features
and successor-features to coemerge. The reward functions are optimized via TD3.

19

https://github.com/iDurugkar/adversarial-intrinsic-motivation
https://github.com/iDurugkar/adversarial-intrinsic-motivation

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

3. HILP (Park et al., 2024a): Instead of letting the state-features coemerge as in FB, HILP proposes
to learn features from offline datasets that are sufficient for goal reaching. Thus, two states are close
to each other if they are reachable in a few steps according to environmental dynamics. HILP uses a
specialized offline RL algorithm with different discounting to learn these state features which could
explain its benefit in some datasets where TD3 is not suitable for offline learning.

Implementation: We build upon the codebase for FB https://github.com/
facebookresearch/controllable_agent and implement all the algorithms under
a uniform setup for network architectures and same hyperparameters for shared modules across
the algorithms. We keep the same method agnostic hyperparameters and use the author-suggested
method-specfic hyperparameters. The hyperparameters for all methods can be found here:

Table 2: Hyperparameters for baselines and PSM.

Hyperparameter Value
Replay buffer size 5× 106 (10× 106 for maze)
Representation dimension 128
Batch size 1024
Discount factor γ 0.98 (0.99 for maze)
Optimizer Adam
Learning rate 3× 10−4

Momentum coefficient for target networks 0.99
Stddev σ for policy smoothing 0.2
Truncation level for policy smoothing 0.3
Number of gradient steps 2× 106

Batch size for task inference 104

Regularization weight for orthonormality loss (ensures diversity) 1
FB specific hyperparameters
Hidden units (F) 1024
Number of layers (F) 3
Hidden units (b) 256
Number of layers (b) 2
HILP specific hyperparameters
Hidden units (ϕ) 256
Number of layers (ϕ) 2
Hidden units (ψ) 1024
Number of layers (ψ) 3
Discount Factor for ϕ 0.96
Discount Factor for ψ 0.98 (0.99 for maze)
Loss type Q-loss
PSM specific hyperparameters
Hidden units (ϕ, b) 1024
Number of layers (ϕ, b) 3
Hidden units (w) 1024
Number of layers (w) 3
Double GD lr 1e-4

Proto Successor Measures (PSM): PSM differs from baselines in that we learn richer representations
compared to Laplacian or HILP as we are not biased by behavior policy or only learn representations
sufficient for goal reaching. Compared to FB, our representation learning phase is more stable as we
learn representations by Bellman evaluation backups and do not need Bellman optimality backups.
Thus, our approach is not susceptible to learning instabilities that arise from overestimation that is
common in Deep RL and makes stabilizing FB hard.The hyperparameters are discussed in Appendix
Table 2.

20

https://github.com/facebookresearch/controllable_agent
https://github.com/facebookresearch/controllable_agent

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.3.2 PSM REPRESENTATION LEARNING PSUEDOCODE

1 def psm_loss(
2 self,
3 obs: torch.Tensor,
4 action: torch.Tensor,
5 discount: torch.Tensor,
6 next_obs: torch.Tensor,
7 next_goal: torch.Tensor,
8 z: torch.Tensor,
9 step: int

10) -> tp.Dict[str, float]:
11 metrics: tp.Dict[str, float] = {}
12 # Create a batch_size x batch_size for learning Mˆ\pi(s,a,s+)
13 idx = torch.arange(obs.shape[0]).to(obs.device)
14 mesh = torch.stack(torch.meshgrid(idx, idx, indexing=’xy’)).T.

reshape(-1, 2)
15 m_obs = obs[mesh[:, 0]]
16 m_next_obs = next_obs[mesh[:, 0]]
17 m_action = action[mesh[:, 0]]
18 m_next_goal = next_goal[mesh[:, 1]]
19 perm = torch.randperm(obs.shape[0])
20

21 # compute PSM loss
22 with torch.no_grad():
23 target_phi, target_b = self.psm_target(m_next_obs,

m_next_goal)
24 target_w = self.w_target(z)
25 target_phi = target_phi[torch.arange(target_phi.shape[0]),

next_actions.squeeze(1)]
26 target_b = target_b[torch.arange(target_b.shape[0]),

next_actions.squeeze(1)]
27 target_M = torch.einsum("sd, sd -> s", target_phi, target_w)

+ target_b
28

29

30 phi, b = self.psm(m_obs, m_next_goal)
31 phi = phi[torch.arange(phi.shape[0]), m_action.squeeze(1)]
32 b = b[torch.arange(b.shape[0]), m_action.squeeze(1)]
33 M = torch.einsum("sd, sd -> s", phi, self.w(z)) + b
34 M = M.reshape(obs.shape[0], obs.shape[0])
35 target_M = target_M.reshape(obs.shape[0], obs.shape[0])
36 I = torch.eye(*M.size(), device=M.device)
37 off_diag = ˜I.bool()
38 psm_offdiag: tp.Any = 0.5 * (M - discount * target_M)[off_diag].

pow(2).mean()
39 psm_diag: tp.Any = -((1 - discount) * (M.diag().unsqueeze(1))).

mean()
40 psm_loss = psm_offdiag + psm_diag
41

42

43 # optimize PSM
44 self.opt.zero_grad(set_to_none=True)
45 self.actor_opt.zero_grad(set_to_none=True)
46 psm_loss.backward()
47 self.opt.step()
48 self.actor_opt.step()

Compute: All our experiments were trained on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
CPUS and NVIDIA GeForce GTX TITAN GPUs. Each training run took around 10-12 hours.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTS

C.1 ABLATION ON DIMENSION OF THE AFFINE SPACE: d

We perform the experiments described in Section 7.3 for two of the conitnuous environments with
varying dimensionality of the affine space (or corresponding successor feature in the inductive
construction), d. Interestingly, the performance of PSM does not change much across different values
of d ranging from 32 to 256. This is in contrast to methods like HILP which sees significant drop in
performance by modifying d.

Environment Task d = 32 d = 50 d = 128 d = 256

Walker Stand 898.98 ± 48.64 942.85 ± 19.43 872.61 ± 38.81 911.25 ± 32.86
Run 359.51 ± 70.66 392.76 ± 31.29 351.50 ± 19.46 372.39 ± 41.29
Walk 825.66 ± 60.14 822.39 ± 60.14 891.44 ± 46.81 886.03 ± 28.96
Flip 628.92 ± 94.95 521.78 ± 29.06 640.75 ± 31.88 593.78 ± 27.14

Average 678.27 669.45 689.07 690.86

Cheetah Run 298.98 ± 95.63 386.75 ± 55.79 276.41 ± 70.23 268.91 ± 79.07
Run Backward 295.43 ± 19.72 260.13 ± 24.93 286.13 ± 25.38 290.89 ± 14.36
Walk 942.12 ± 84.25 893.89 ± 91.69 887.02 ± 59.87 920.50 ± 68.98
Walk Backward 978.64 ± 8.74 916.68 ± 124.34 980.90 ± 2.04 982.29 ± 0.70

Average 628.79 615.61 607.61 615.64

Table 3: Table shows comparison (averaged over 5 seeds) between different representation sizes (or affine space
dimensionality d) for PSM.

C.2 QUANTITATIVE RESULTS ON GRIDWORLD AND DISCRETE MAZE

We provide quantitative results for the experiments performed in Section 7.1.

Environment Laplace FB PSM

Gridworld 19.28 ± 2.34 14.53 ± 0.68 2.05 ± 1.20

Discrete Maze 38.47 ± 7.01 28.80 ± 10.50 11.54 ± 1.07

Table 4: Table shows average error (averaged over 3
seeds) for the predicted policy from different zero-shot
RL methods with respect to the oracle optimal policy.

Quantitative Experiment Description: For
each randomly sampled goal, we obtain the in-
ferred value function and the inferred policy us-
ing PSM and the baselines. At every state in the
discrete space, we check if the policy inferred by
these algorithms is optimal or not. The oracle
or the optimal policy can be obtained by run-
ning the Bellman Ford algorithm in the discrete
gridworld or maze. We report (in Table 4) the
average error (# incorrect policy predictions/Total # of states) for 10 randomly sampled goal (over 3
seeds).

As clearly seen, the average error for PSM is significantly less than the baselines which augments the
qualitative results presented in Section 7.1.

22

	Introduction
	Related Work
	Preliminaries
	Markov Decision Processes
	Affine Spaces

	The Basis Set for All Solutions of RL
	Method
	Learning and b
	Simplifying Optimization via a Discrete Codebook of Policies
	Fast Optimal Policy Inference on Downstream Tasks

	Connections to Successor Features
	Experimental Study
	Zero shot Value function and Optimal Policy prediction
	Learning zero-shot policies for manipulation
	Learning Zero-shot Policies for Continuous Control

	Conclusion
	Theoretical Results
	Proof of Theorem 4.1
	Proof of Corollary 4.2
	Proof of Theorem 4.4
	Proof of Theorem 6.1
	Proof of Theorem 6.3
	Deriving a basis for the Toy Example

	Experimental Details
	Environments
	Gridworlds
	Fetch
	DM-control environments

	Datasets
	Implementation Details
	Baselines
	PSM representation learning psuedocode

	Additional Experiments
	Ablation on dimension of the affine space: d
	Quantitative Results on Gridworld and Discrete Maze

