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ABSTRACT

Having explored an environment, intelligent agents should be able to transfer their
knowledge to most downstream tasks within that environment. Referred to as
“zero-shot learning,” this ability remains elusive for general-purpose reinforcement
learning algorithms. While recent works have attempted to produce zero-shot RL
agents, they make assumptions about the nature of the tasks or the structure of the
MDP. We present Proto Successor Measure: the basis set for all possible solutions
of Reinforcement Learning in a dynamical system. We provably show that any
possible policy can be represented using an affine combination of these policy
independent basis functions. Given a reward function at test time, we simply need
to find the right set of linear weights to combine these basis corresponding to the
optimal policy. We derive a practical algorithm to learn these basis functions using
only interaction data from the environment and show that our approach can produce
the optimal policy at test time for any given reward function without additional
environmental interactions.

1 INTRODUCTION

A wide variety of tasks can be defined within an environment (or any dynamical system). For
instance, in navigation environments, tasks can be defined to reach a goal, path following, reach a
goal while avoiding certain states etc. Once familiar with an environment, humans have the wonderful
ability to perform new tasks in that environment without any additional practice. For example,
consider the last time you moved to a new city. At first, you may have needed to explore various
routes to figure out the most efficient way to get to the nearest supermarket or place of work. But
eventually, you could probably travel to new places efficiently the very first time you needed to get
there. Like humans, intelligent agents should be able to infer the necessary information about the
environment during exploration and use this experience for solving any downstream task efficiently.
Reinforcement Learning (RL) algorithms have seen great success in finding a sequence of decisions
that optimally solves a given task in the environment (Wurman et al., 2022; Fawzi et al., 2022). In
RL settings, tasks are defined using reward functions with different tasks having their own optimal
agent policy or behavior corresponding to the task reward. RL agents are usually trained for a given
task (reward function) or on a distribution of related tasks; most RL agents do not generalize to
solving any task, even in the same environment. While related machine learning fields like computer
vision and natural language processing have shown success in zero-shot (Ramesh et al., 2021) and
few-shot (Radford et al., 2021) adaptation to a wide range of downstream tasks, RL lags behind in
such functionalities. Unsupervised reinforcement learning aims to extract reusable information such
as skills (Eysenbach et al., 2019; Zahavy et al., 2023), representations (Ghosh et al., 2023; Ma et al.,
2023), world-model (Janner et al., 2019; Hafner et al., 2020), goal-reaching policies (Agarwal et al.,
2024; Sikchi et al., 2024a), etc, from the environment using data independent of the task reward to
efficiently train RL agents for any task. Recent advances in unsupervised RL (Wu et al., 2019; Touati
& Ollivier, 2021; Blier et al., 2021b; Touati et al., 2023) have shown some promise towards achieving
zero-shot RL.

Recently proposed pretraining algorithms (Stooke et al., 2021; Schwarzer et al., 2021b; Sermanet
et al., 2017; Nair et al.; Ma et al., 2023) use self-supervised learning to learn representations from
large-scale data to facilitate few-shot RL but these representations are dependent on the policies used
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Figure 1: Method Overview: Visitation distributions corresponding to any policy must obey the Bellman Flow
constraint for the dynamical system. This means they must lie on the plane defined by the the Bellman Flow
equation. Being a plane, it can be represented using a set of basis set Φ and a bias. All valid (non negative)
visitation distributions lie within a convex hull on this plane. The boundary of this hull is defined using the non
negativity constraints: Φw + b ≥ 0. Each point within this convex hull corresponds to a visitation distribution
for a valid policy and is defined simply by the “coordinate” w.

for collecting the data. These algorithms assume that the large scale data is collected from a “good”
policy demonstrating expert task solving behaviors. Several prior works aim to achieve generalization
in multi-task RL by building upon successor features (Dayan, 1993) which represent rewards as a
linear combination of state features. These methods have limited generalization capacity to unseen
arbitrary tasks. Other works (Mahadevan, 2005; Machado et al., 2017; 2018; Bellemare et al., 2019;
Farebrother et al., 2023) represent value functions using eigenvectors of the graph Laplacian obtained
from a random policy to approximate the global basis of value functions. However, the eigenvectors
from a random policy cannot represent all value functions. In fact, we show that an alternative
strategy of representing visitation distributions using a set of basis functions covers a larger set of
solutions than doing the same with value functions. Skill learning methods (Eysenbach et al., 2019;
Park et al., 2024b; Eysenbach et al., 2022) view any policy as combination of skills , but as shown by
Eysenbach et al. (2022), these methods do not recover all possible skills from the MDP. Some recent
works have attempted zero-shot RL by decomposing the representation of visitation distributions
(Touati & Ollivier, 2021; Touati et al., 2023), but they learn policy representations as a projection of
the reward function which can lead to loss of task relevant information. We present a stronger, more
principled approach for representing any solution of RL in the MDP.

Any policy in the environment can be represented using visitation distributions or the distributions over
states and actions that the agent visits when following a policy. We learn a basis set to represent any
possible visitation distribution in the underlying environmental dynamics. We draw our inspiration
from the linear programming view (Manne, 1960; Denardo, 1970; Nachum & Dai, 2020; Sikchi et al.,
2024b) of reinforcement learning; the objective is to find the visitation distribution that maximizes
the return (the dot-product of the visitation distribution and the reward) subject to the Bellman Flow
constraints. We show that any solution of the Bellman Flow constraint for the visitation distribution
can be represented as a linear combination of policy-independent basis functions and a bias. As
shown in Figure 1, any visitation distribution that is a solution of the Bellman Flow for a given
dynamical system lies on a plane defined using policy independent basis Φ and a bias b. On this
plane, only a small convex region defines the valid (non negative) visitations distributions. Any
visitation distribution in this convex hull can be obtained simply using the “coordinates” w. We
introduce Proto-Successor Measure, the set of basis functions and bias to represent any successor
measure (a generalization over visitation distributions) in the MDP that can be learnt using reward-
free interaction data. At test time, obtaining the optimal policy reduces to simply finding the linear
weights to combine these basis vectors that maximize its dot-product with the user-specified reward.
These basis vectors only depend on the state-action transition dynamics of the MDP, independent of
the initial state distribution, reward, or policy, and can be thought to compactly represent the entire
dynamics.

The contributions of our work are (1) a novel, mathematically complete perspective on representation
learning for Markov decision processes; (2) an efficient practical instantiation that reduces basis
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learning to a single-player optimization; and (3) evaluations of a number of tasks demonstrating the
capability of our learned representations to quickly infer optimal policies.

2 RELATED WORK

Unsupervised Reinforcement Learning: Unsupervised RL generally refers to a broad class
of algorithms that use reward-free data to improve the efficiency of RL algorithms. We focus
on methods that learn representations to produce optimal value functions for any given reward
function. Representation learning through unsupervised or self-supervised RL has been discussed
for both pre-training (Nair et al.; Ma et al., 2023) and training as auxiliary objectives (Agarwal
et al., 2021; Schwarzer et al., 2021a). While using auxiliary objectives for representation learning
does accelerate policy learning for downstream tasks, the policy learning begins from scratch for
a new task. Pre-training methods like Ma et al. (2023); Nair et al. use self-supervised learning
techniques from computer vision like masked auto-encoding to learn representations that can be used
directly for downstream tasks. These methods use large-scale datasets (Grauman et al., 2022) to learn
representations but these are fitted around the policies used for collecting data. These representations
do not represent any possible behavior nor are trained to represent Q functions for any reward
functions. A number of works in prior literature aim to discover intents or skills using a diversity
objective. These methods use the fact that the latents or skills should define the output state-visitation
distributions thus diversity can be ensured by maximizing mutual information (Warde-Farley et al.,
2019; Eysenbach et al., 2019; Achiam et al., 2018; Eysenbach et al., 2022) or minimizing Wasserstein
distance (Park et al., 2024b) between the latents and corresponding state-visitation distributions. PSM
differs from these works and takes a step towards learning representations optimal for predicting
value functions as well as a zero-shot near-optimal policy for any reward.

Methods that linearize RL quantities: Learning basis vectors has been leveraged in RL to allow
for transfer to new tasks. Successor features (Barreto et al., 2017) represents rewards as a linear
combination of transition features and subsequently the Q-functions are linear in successor features.
Several methods have extended successor features (Lehnert & Littman, 2020; Hoang et al., 2021;
Alegre et al., 2022; Reinke & Alameda-Pineda, 2021) to learn better policies in more complex
domains.

Spectral methods like Proto Value Functions (PVFs) (Mahadevan, 2005; Mahadevan & Maggioni,
2007) instead represent the value functions as a linear combination of basis vectors. It uses the
eigenvectors of the random walk operator (graph Laplacian) as the basis vectors. Adversarial Value
Functions (Bellemare et al., 2019) and Proto Value Networks (Farebrother et al., 2023) have attempted
to scale up this idea in different ways. However, deriving these eigenvectors from a Laplacian is
not scalable to larger state spaces. Wu et al. (2019) recently presented an approximate scalable
objective, but the Laplacian is still dependent on the policy which makes it incapable of representing
all behaviors or Q functions.

Similar to our work, Forward Backward (FB) Representations (Touati & Ollivier, 2021; Touati et al.,
2023) use an inductive bias on the successor measure to decompose it into a forward and backward
representation. Unlike FB, our representations are linear on a set of basis features. Additionally, FB
ties the reward representation with the representation of the optimal policy derived using Q function
maximization which can lead to overestimation issues and instability during training as a result of
Bellman optimality backups.

3 PRELIMINARIES

In this section we introduce some preliminaries and define terminologies that will be used in later
sections. We begin with some MDP fundamentals and RL preliminaries followed by a discussion on
affine spaces which form the basis for our representation learning paradigm.

3.1 MARKOV DECISION PROCESSES

A Markov Decision Process is defined as a tuple ⟨S,A, P, r, γ, µ⟩ where S is the state space, A
is the action space, P : S × A 7−→ ∆(S) is the transition probability (∆(·) denotes a probability
distribution over a set), γ ∈ [0, 1) is the discount factor, µ is the distribution over initial states and
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r : S × A 7−→ R is the reward function. The task is specified using the reward function r and the
initial state distribution µ. The goal for the RL agent is to learn a policy πθ : S 7−→ A that maximizes
the expected return J(πθ) = Es0∼µEπθ

[
∑∞
t=0 γ

tr(st, at)].

In this work, we consider a task-free MDP which does not provide the reward function or the initial
state distribution. Hence, a task-free or reward-free MDP is simply the tuple ⟨S,A, P, γ⟩. A task-
free MDP essentially only captures the underlying environment dynamics and can have infinite
downstream tasks specified through different reward functions.

The state-action visitation distribution, dπ(s, a) is defined as the normalized probability of being in a
state s and taking an action a if the agent follows the policy π from a state sampled from the initial state
distribution. Concretely, dπ(s, a) = (1− γ)

∑∞
t=0 γ

t
P(st = s, at = a). A more general quantity,

successor measure, Mπ(s, a, s+, a+), is defined as the probability of being in state s+ and taking
action a+ when starting from the state-action pair s, a and following the policy π. Mathematically,
Mπ(s, a, s+, a+) = (1 − γ)

∑∞
t=0 γ

t
P(st = s+, at = a+|s0 = s, a0 = a). The state-action

visitation distribution can be written as dπ(s, a) = Es0∼µ(s),a0∼π(a0|s0)[Mπ(s0, a0, s, a)].

Both these quantities, state-action visitation distribution and successor measure, follow the Bellman
Flow equations:

dπ(s, a) = (1− γ)µ(s)π(a|s) + γ
∑

s′∈S,a′∈A
P (s|s′, a′)dπ(s′, a′)π(a|s). (1)

For successor measure, the initial state distribution changes to an identity function
Mπ(s, a, s+, a+) = (1− γ)1[s = s+, a = a+]+

γ
∑

s′∈S,a′∈A
P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+). (2)

The RL objective has a well studied linear programming interpretation (Manne, 1960). Given any
task reward function r, the RL objective can be rewritten in the form of a constrained linear program:

max
d

∑
s,a

d(s, a)r(s, a), s.t. d(s, a) ≥ 0 ∀s, a,

s.t. d(s, a) = (1− γ)µ(s)π(a|s) + γ
∑

s′∈S,a′∈A
P (s|s′, a′)d(s′, a′)π(a|s)

(3)

and the unique policy corresponding to visitation d is obtained by π(a|s) = d(s,a)∑
a d(s,a)

. The Q function
can then be defined using successor measure as Qπ(s, a) =

∑
s+,a+ M

π(s, a, s+, a+)r(s+, a+) or
Qπ = Mπr. Obtaining the optimal policies requires maximizing the Q function which requires
solving argmaxπM

πr.

3.2 AFFINE SPACES

Let V be a vector space and b be a vector. An affine set is defined asA = b+V = {x|x = b+v, v ∈ V}.
Any vector in a vector space can be written as a linear combination of basis vectors, i.e., v =

∑n
i αivi

where n is the dimensionality of the vector space. This property implies that any element of an affine
space can be expressed as x = b +

∑n
i αivi. Given a system of linear equations Ax = c, with A

being an m× n matrix (m < n) and c ̸= 0, the solution x forms an affine set. Hence, there exists
alphas αi such that x = b+

∑
i αixi. The vectors {xi} form the basis set of the null space or kernel

of A. The values (αi) form the affine coordinates of x for the basis {xi}. Hence, for a given system
with known {xi} and b, any solution can be represented using only the affine coordinates (αi).

We first explain the theoretical foundations of our method in Section 4 and derive a practical algorithm
following the theory in Section 5

4 THE BASIS SET FOR ALL SOLUTIONS OF RL

In this section, we introduce the theoretical results that form the foundation for our representation
learning approach. The goal is to learn policy-independent representations that can represent any valid
visitation distribution in the environment (i.e. satisfy the Bellman Flow constraint in Equation 3). With
a compact way to represent these distributions, it is possible to reduce the policy optimization problem
to a search in this compact representation space. We will show that state visitation distributions and
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successor measures form an affine set and thus can be represented as
∑
i ϕiw

π
i + b, where ϕi are

basis functions, wπ are “coordinates” or weights to linearly combine the basis functions, and b is a
bias term. First, we build up the formal intuition for this statement and later we will use a toy example
to show how these representations can make policy search easier.

The first constraint in Equation 3 is the Bellman Flow equation. We begin with Lemma 4.1 showing
that state visitation distributions that satisfy the Bellman Flow form affine sets.

Theorem 4.1. All possible state-action visitation distributions in an MDP form an affine set.

While Theorem 4.1 shows that any state-action visitation distribution in an MDP can be written using
a linear combination of basis and bias terms, state-action visitation distributions still depend on the
initial state distribution. Moreover, as shown in Equation 1, computing the state-action visitation
distribution requires a summation over all states and actions in the MDP which is not always possible.
Successor measures are more general than state-visitation distributions as they encode the state-action
visitation of the policy conditioned on a starting state-action pair. Using similar techniques, we show
that successor measures also form affine sets.

Corollary 4.2. Any successor measure, Mπ in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Following Corollary 4.2, for any w, the function
∑d
i ϕiw

π
i + b will be a solution of Equation 2.

Hence, given Φ (ϕi stacked together) and b, we do not need the first constraint on the linear program
(in Equation 3) anymore. The other constraint: ϕiwi + b ≥ 0 still remains which w needs to satisfy.
We discuss ways to manage this constraint in Section 5.3. The linear program given a reward function
now becomes,

max
w

Eµ[(Φw + b)r]

s.t. Φw + b ≥ 0 ∀s, a.
(4)

In fact, any visitation distribution that is a policy-independent linear transformation of Mπ, such as
state visitation distribution or future state-visitation distribution, can be represented in the same way
as shown in Corollary 4.3.

Corollary 4.3. Any quantity that is a policy-independent linear transformation of Mπ can be written
as a linear combination of policy-independent basis and bias terms.

Extension to Continuous Spaces: In continuous spaces, the basis matrices ϕ and bias b become
functions ϕ : S ×A× S → Rd and b : S ×A× S → R. The linear equation with matrix operations
becomes a linear equation with functional transformations, and any sum over states is replaced with
expectation under the data distribution.

Toy Example: Let’s consider a simple 2 state MDP (as shown in Figure 2a) to depict how the
precomputation and inference will take place. Consider the state-action visitation distribution
as in Equation 1. For this simple MDP, the Φ and b can be computed using simple algebraic
manipulations. For a given initial state-visitation distribution, µ and γ, the state-action visitation
distribution d = (d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T can be written as,

d = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (5)

The derivation for these basis vectors and the bias vector can be found in Appendix A.6. Equation 21
represents any vector that is a solution of Equation 1 for the simple MDP. Any state-action visitation
distribution possible in the MDP can now be represented using only w = (w1, w2)

T . The only
constraint in the linear program of Equation 4 is Φw + b ≥ 0. Looking closely, this constraint gives
rise to four inequalities in w and the linear program reduces to,

max
w1,w2

(
−γw1 − w2

1 + γ
,
−w1 − γw2

1 + γ
,w1, w2)

T r

s.t. w1 + γw2 ≤ µ(s0) + γµ(s1)

γw1 + w2 ≤ µ(s1) + γµ(s0)

w1 ≥ 0, w2 ≥ 0

. (6)
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The inequalities in w give rise to a simplex as shown in Figure 2b. For any specific instantiation
of µ and r, the optimal policy can be easily found. For instance, if µ = (1, 0)T and the reward
function, r = (1, 0, 1, 0)T , the optimal w will be obtained at the vertex (w1 = 1, w2 = 0) and the
corresponding state-action visitation distribution is d = (0, 0, 1, 0)T .

(a)

(b)

Figure 2: (left) A Toy MDP with 2 states and 2 actions
to depict how the linear program of RL is reduced using
precomputation. (right) The corresponding simplex for
w assuming the initial state distribution is µ = (1, 0)T .

As shown for the toy MDP, the successor mea-
sures form a simplex as discussed in Eysen-
bach et al. (2022). Spectral Methods following
Proto Value Functions (Mahadevan & Maggioni,
2007) have instead tried to learn policy inde-
pendent basis functions, Φvf to represent value
functions as a linear span, V π = Φvfwπ . Some
prior works (Dadashi et al., 2019) have already
argued that value functions do not form con-
vex polytopes. We show through Theorem 4.4
that for identical dimensionalities, the span of
value functions using basis functions represent
a smaller class of value functions than the set
of value functions that can be represented using
the span of the successor measure.

Theorem 4.4. Given a d-dimensional basis
V : Rn → Rd, define span{V} as the space of all linear combinations of the basis V. Let
span{Φvf} represents the space of the value functions spanned by Φvf i.e. V π = Φvfwπ and let
{span{Φ}r} represents the space of value functions using the successor measures spanned by Φ i.e.
V π =

∑
s+ [Φw

π.r(s+)]. For the same dimensionality of task (policy or reward) independent basis,
span{Φvf} ⊆ {span{Φ}r}.

Approaches such as Forward Backward Representations (Touati & Ollivier, 2021) have also been
based on representing successor measures but they force a latent variable z representing the policy to
be a function of the reward for which the policy is optimal. The forward map that they propose is a
function of this latent z. We, on the other hand, propose a representation that is truly independent of
the policy or the reward.

5 METHOD

In this section, we start by introducing the core practical algorithm for representation learning inspired
by the theory discussed in Section 4 for obtaining Φ and b. We then discuss the inference step, i.e.,
obtaining w for a given reward function.

5.1 LEARNING Φ AND b

For a given policy π, its successor measure under our framework is denoted by Mπ = Φwπ + b with
wπ the only object depending on policy. Given an offline dataset with density ρ, we follow prior
works (Touati & Ollivier, 2021; Blier et al., 2021b) and model densities mπ =Mπ/ρ learned with
the following objective:

Lπ(Φ, b, wπ) = −Es,a∼ρ[mΦ,b,wπ

(s, a, s, a)]

+
1

2
Es,a,s′∼ρ,s+,a+∼ρ[m

Φ,b,wπ

(s, a, s+, a+)− γm̄Φ̄,b̄,w̄π

(s′, π(s′), s+, a+)]. (7)

The above objective only requires samples (s, a, s′) from the reward-free dataset and a random
state-action pair (s+, a+) (also sampled from the same data) to compute and minimize L(π).

A Φ and b that allows for minimizing the L(π) for all π ∈ Π forms a solution to our representation
learning problem. But how do we go about learning such Φ and b? A naı̈ve way to implement
learning Φ and b is via a bi-level optimization. We sample policies from the policy space of Π, for
each policy we learn a wπ that optimizes the policy evaluation loss (Eq 7) and take a gradient update
w.r.t Φ and b. In general, the objective can be optimized by any two-player game solving strategies
with [Φ, b] as the first player and wπ as the second player. Instead, in the next section, we present an
approach to simplify learning representations to a single-player game.
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5.2 SIMPLIFYING OPTIMIZATION VIA A DISCRETE CODEBOOK OF POLICIES

Learning a new wπ for each specific sampled policy π does not leverage precomputations and
requires retraining from scratch. We propose parameterizing w to be conditional on policy, which
allows leveraging generalization between policies that induce similar visitation and as we show, will
allow us to simplify the two player game into a single player optimization. In general, policies are
high-dimensional objects and compressing them can result in additional overhead. Compression
by parameterizing policies with a latent variable z is another alternative but presents the challenge
of covering the space of all possible policies by sampling z. Instead, we propose using a discrete
codebook of policies as a way to simulate uniform sampling of all possible policies with support in
the offline dataset.

Discrete Codebook of Policies: Denote z as a compact representation of policies. We propose
to represent z as a random sampling seed that will generate a deterministic policy from the set of
supported policies as follows:

π(a|s, z) = Uniform Sample(seed = z + hash(s)). (8)
The above sampling strategy defines a unique mapping from a seed to a policy. If the seed generator
is unbiased, the approach provably samples from among all possible deterministic policies uniformly.
Now, with policy πz and wz parameterized as a function of z we derive the following single-player
reduction to learn Φ, b, w jointly.

PSM-objective: argmin
Φ,b,w(z)

Ez[Lπz (Φ, b, w(z))]. (9)

5.3 FAST OPTIMAL POLICY INFERENCE ON DOWNSTREAM TASKS

After obtaining Φ and b via the pretraining step, the only parameter to compute for obtaining
the optimal Q function for a downstream task in the MDP is w. As discussed earlier, Q∗ =
maxw(Φw + b)r but simply maximizing this objective will not yield a Q function. The linear
program still has a constraint of Φw + b ≥ 0,∀s, a. We solve the constrained linear program by
constructing the Lagrangian dual using Lagrange multipliers λ(s, a). The dual problem is shown in
Equation 10. Here, we write the corresponding loss for the constraint as min(Φw + b, 0).

max
λ≥0

min
w

−Φwr −
∑
s,a

λ(s, a)min(Φw + b, 0). (10)

Once w∗ is obtained, the corresponding M∗ and Q∗ can be easily computed. The policy can be
obtained as π∗ = argmaxaQ

∗(s, a) for discrete action spaces and via DDPG style policy learning
for continuous action spaces.

6 CONNECTIONS TO SUCCESSOR FEATURES

In this section, we uncover the theoretical connections between PSM and successor features. Succes-
sor Features (Barreto et al., 2017) (ψπ(s, a)) are defined as the discounted sum of state features φ(s),
ψπ(s, a) = Eπ[

∑
t γ

tφ(st)]. These state features can be used to span reward functions as r = φz.
Using this construction, the Q function is linear in z as Q(s, a) = ψπ(s, a)z. We can establish a
simple relation between Mπ and ψπ, ψπ(s, a) =

∫
s′
Mπ(s, a, s′)φ(s′)ds′. This connection shows

that, like successor measures, successor features can also be represented using a similar basis.

Theorem 6.1. Successor Features ψπ(s, a) belong to an affine set and can be represented using a
linear combination of basis functions and a bias.

Interestingly, instead of learning the basis of successor measures, we show below that PSM can also
be used to learn the basis of successor features. While traditional successor feature-based methods
assume that the state features φ are provided, PSM can be used to jointly learn the successor feature
and the state feature. We begin by introducing the following Lemma 6.2 from (Touati et al., 2023)
which connects an a specific decomposition for successor measures to the ability of jointly learning
state features and successor representations,

Lemma 6.2. (Theorem 13 of Touati et al. (2023)) For an offline dataset with density ρ, if the successor
measure is represented as Mπ(s, a, s+) = ψπ(s, a)φ(s+)ρ(s+), then ψ is the successor feature
ψπ(s, a) = Eπ[

∑
t γ

tφ(st+1)
T ] for state feature φ(s)T (Eρ(φφT ))−1

7
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According to Lemma 6.2, if Mπ(s, a, s+) = ψπ(s, a)φ(s+)ρ(s+), then the corresponding successor
feature is ψπ(s, a) and the state feature is φ(s)T (Eρ(φφT ))−1. PSM represents successor measures
as Mπ(s, a, s+) = ϕ(s, a, s+)wπρ(s+) (for simplicity, combining the bias within the basis without
loss of generality). It can be shown that if the basis learned for successor measure using PSM,
ϕ(s, a, s+) is represented as a decomposition ϕψ(s, a)Tφ(s+), ϕψ(s, a) forms the basis for successor
features for the state features φ(s)T (Eρ(φφT ))−1. Formally, we present the following theorem,

Theorem 6.3. For the PSM representation Mπ(s, a, s+) = ϕ(s, a, s+)wπ and ϕ(s, a, s+) =
ϕψ(s, a)

Tφ(s+), the successor feature ψπ(s, a) = ϕψ(s, a)w
π for the state feature

φ(s)T (Eρ(φφT ))−1.

Thus, successor features can be obtained by enforcing a particular inductive bias to decompose ϕ in
PSM. For rewards linear in state features (r(s) = ⟨φ(s) · z⟩ for some weights z), the Q-functions
remain linear given by Qπ(s, a) = ϕψ(s, a)w

πEρ[φ(s)z]. A natural question to ask is, with this
decomposition, do we lose the expressibility of PSM compared to the methods that compute basis
spanning value functions, thus contradicting Theorem 4.4? The answer is negative, since (1) even
though the value function seems to be linear combination of some basis with weights wπ, these
weights are not tied to z or the reward. The relationship between the optimal weights wπ

∗
and

z defining the reward function is not necessarily linear as the prior works assume, and (2) the
decomposition ϕ(s, a, s+) = ϕψ(s, a)φ(s

+) reduces the representation capacity of the basis. While
prior works are only able to recover features pertaining to this reduced representation capacity, PSM
does not assume this decomposition and can learn a larger representation space.

7 EXPERIMENTAL STUDY

Our experiments evaluate how PSM can be used to encapsulate a task-free MDP into a representation
that will enable zero-shot inference on any downstream task. In the experiments we investigate a) the
quality of value functions learned by PSM, b) the zero-shot performance of PSM in contrast to other
baselines, and finally on robot manipulation task c) the ability to learn general goal-reaching skills
arising from the PSM objective d) Quality of learned PSM representations in enabling zero-shot RL
for continuous state-action space tasks.

Baselines We compare to the methods that have stood the test of time and perform best: Laplacian
features (Wu et al., 2018) and Forward-Backward (Touati et al., 2023). Laplacian features learn
features of a state by considering eigenvectors of a graph Laplacian induced by a random walk. These
features ψ(s) ∈ Rd obtained for each state are used to define a reward function conditioned on a
reward r(s;ψ) = ψ(s) · z where z is sampled uniformly from a unit d-dimensional sphere. For each
z an optimal policy is pretrained from the dataset on the induced reward function. During inference
the corresponding z for a given reward function is obtained as a solution to the following linear
regression: minz Es[(ψ⊤ · z − r(s))2]. Forward-backward (FB) learns both the optimal policy and
state features jointly for all reward that are in the linear span of state-features. FB methods typically
assume a goal-conditioned prior during pretraining which typically helps in learning policies that
reach various states in the dataset. HILP (Park et al., 2024a) makes two changes to FB: a) Reduces
the tasks to be goal reaching to learn the features of a state and b) Uses a more performant offline RL
method, IQL (Kostrikov et al., 2021) to learn features. We provide detailed experimental setup and
hyperparameters in Appendix B.3.

7.1 ZERO SHOT VALUE FUNCTION AND OPTIMAL POLICY PREDICTION

In this section, we consider goal-conditioned rewards on discrete gridworld and the classic four-room
environments. Since the goal-conditioned rewards are state-only reward functions, we learn represen-
tations for Mπ(s, a, s+) instead of Mπ(s, a, s+, a+) using the learning objectives in Equation 9.

Task Setup: Both environments have discrete state and action spaces. The action space consists
of five actions: {up, right, down, left, stay}. We collect transitions in the environment by uni-
formly spawning the agent and taking a random-uniform action.This allows us to form our offline
reward-free dataset will full coverage to train Φ and b. During inference, we sample a goal and
infer the optimal Q function on the goal. Since the reward function is given by r(s) = 1s=g, the in-
ference looks like Q(s, a) = maxw Φ(s, a, g)w s.t. Φ(s, a, s′)w + b(s, a, s′) ≥ 0 ∀s, a, s′.

8
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(b) Four-room

Figure 3: Qualitative results on a gridworld and four-room: G denotes the goal sampled for every episode.
The black regions are the boundaries/obstacles. The agent needs to navigate across the grid and through the
small opening (in case of four-room) to reach the goal. We visualize the optimal Q-functions inferred at test
time for the given goal in the image. The arrows denote the optimal policy. (Top row) Results for PSM, (Middle
Row) Results for FB, (Bottom row) Results for Laplacian Eigenfunctions.

Figure 3 shows the Q function and the corresponding optimal policy (when executed from a
fixed start state) on the gridworld and the four-room environment. As illustrated clearly, for
both the environments, the optimal Q function and policy can be obtained zero-shot for any
given goal-conditioned downstream task. We observe a 100% success rate on both these tasks.

Figure 4: Quantitative results on FetchReach: The
success rates (averaged over 3 seeds) are plotted (along
with the standard deviation as shaded) with respect to
the training updates for PSM, FB and Laplacian. PSM
quickly reaches optimal performance while FB shows
instability in maintaining its optimality. Laplacian is far
from the optimal performance.

Comparison to baselines: We can draw a cou-
ple of conclusions from the visualization of the
Q functions inferred by the different methods.
First, the Q function learnt by PSM is more
sharply concentrated on optimal state-action
pairs compared to the two baselines. Both base-
lines have more uniform value estimates, leav-
ing only a minor differential over state values.
Secondly, the baselines produce far more incor-
rect optimal actions (represented by the green
arrows) compared to PSM.

7.2 LEARNING
ZERO-SHOT POLICIES FOR MANIPULATION

We consider the Fetch-Reach environment with
continuous states and discrete actions (Touati
& Ollivier, 2021). A dataset of size 1M is con-
structed using DQN+RND. FB, Laplacian and
PSM all use this dataset to learn pretrained objects that can be used for zero-shot RL.

We observe that PSM outperforms baselines FB and Laplacian in its ability to learn a zero-shot
policy. One key observation is that PSM learning is stable whereas FB exhibits a drop in performance,
likely due to the use of Bellman optimality backups resulting in overestimation bias during training.
Laplacian’s capacity to output zero-shot policies is far exceeded by PSM because Laplacian methods
construct the graph Laplacian for random policies and may not be able to represent optimal value
functions for all rewards.

9
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7.3 LEARNING ZERO-SHOT POLICIES FOR CONTINUOUS CONTROL

We use the ExoRL suite (Yarats et al., 2022) for obtaining exploratory datasets collected by running
RND (Burda et al., 2019). PSM objective in Equation 9 directly enables learning the basis for
successor measures. We decompose the basis representation ϕ(s, a, s+) to ϕψ(s, a)

Tφ(s+) as
discussed in detail in Section 6. PSM thus ensures that φ(s+) can be used to construct basic features
to span any reward function. Note that this is not a limiting assumption, as the features can be
arbitrarily non-linear in states. In these experiments, we compare the ability of PSM to obtain these
representations as compared to prior zero-shot RL methods. Additional experimental details can be
found in Appendix B.3.

Table 1 compares PSM’s zero-shot performance in continuous state-action spaces to representa-

Environment Task Laplace FB HILP PSM

Walker Stand 243.70 ± 151.40 902.63± 38.94 607.07 ± 165.28 872.61 ± 38.81
Run 63.65 ± 31.02 392.76 ± 31.29 107.84 ± 34.24 351.50 ± 19.46
Walk 190.53 ± 168.45 877.10 ± 81.05 399.67 ±39.31 891.44 ± 46.81
Flip 48.73 ± 17.66 206.22 ± 162.27 277.95 ± 59.63 640.75 ± 31.88

Average 136.65 594.67 348.13 689.07

Cheetah Run 96.32 ± 35.69 257.59 ± 58.51 68.22 ±47.08 276.41 ± 70.23
Run Backward 106.38 ± 29.4 307.07 ± 14.91 37.99 ±25.16 286.13 ± 25.38
Walk 409.15 ± 56.08 799.83 ±67.51 318.30 ± 168.42 887.02 ± 59.87
Walk Backward 654.29 ± 219.81 980.76 ± 2.32 349.61 ± 236.29 980.90 ± 2.04

Average 316.53 586.31 193.53 607.61

Quadruped Stand 854.50 ± 41.47 740.05 ± 107.15 409.54 ± 97.59 842.86 ± 82.18
Run 412.98 ± 54.03 386.67 ± 32.53 205.44 ± 47.89 431.77 ± 44.69
Walk 494.56 ± 62.49 566.57 ± 53.22 218.54 ±86.67 603.97±73.67
Jump 642.84 ± 114.15 581.28 ± 107.38 325.51 ±93.06 596.37 ±94.23

Average 601.22 568.64 289.75 618.74

Pointmass Reach Top Left 713.46 ± 58.90 897.83 ± 35.79 944.46 ± 12.94 831.43 ± 69.51
Reach Top Right 581.14 ± 214.79 274.95 ± 197.90 96.04 ± 166.34 730.27 ± 58.10
Reach Bottom Left 689.05 ± 37.08 517.23 ± 302.63 192.34 ± 177.48 451.38 ± 73.46
Reach Bottom Right 21.29 ± 42.54 19.37±33.54 0.17 ± 0.29 43.29 ± 38.40

Average 501.23 427.34 308.25 514.09

Table 1: Table shows comparison (averaged over 5 seeds) between zero-shot RL performance of different
methods with representation size of d = 128. PSM demonstrates a marked improvement over prior methods.

tive methods - Laplacian, FB, and HILP. We note that to make the comparisons fair, we use the
same representation dimension of d = 128, the same discount factor, and the same inference and
policy extraction across environments for a particular method. Overall, PSM demonstrates marked
improvement over baselines across most environments. Further ablations studying effect of latent
dimensionality can be found in Appendix C.

8 CONCLUSION

In this work, we propose Proto Successor Measures (PSM), a zero-shot RL method that compresses
any MDP to allow for optimal policy inference for any reward function without additional environ-
mental interactions. This framework marks a step in the direction of moving away from common
idealogy in RL to solve single tasks optimally, and rather pretraining reward-free agents that are
able to solve an infinite number of tasks. PSM is based on the principle that successor measures are
solutions to an affine set and proposes an efficient and mathematically grounded algorithm to extract
the basis for the affine set. Our empirical results show that PSM can produce the optimal Q function
and the optimal policy for a number of goal-conditioned as well as reward-specified tasks in a number
of environments outperforming prior baselines.

Limitations and Future Work: PSM shows that any MDP can be compressed to a representation
space that allows zero-shot RL, but it remains unclear as to what the size of the representation
space should be. A large representational dimension can lead to increased compute requirements
and training time with a possible chance of overfitting, and a small representation dimension can
fail to capture nuances about environments that have non-smooth environmental dynamics. It is
also an interesting future direction to study the impact that dataset coverage has on zero-shot RL
performance.
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APPENDIX

Our code is provided in the supplementary material to facilitate reproducibility.

A THEORETICAL RESULTS

In this section, we will present the proofs for all the Theorems and Corollaries stated in Section 4 and
6.

A.1 PROOF OF THEOREM 4.1

Theorem 4.1. All possible state-action visitation distributions in an MDP form an affine set.

Proof. Any state-action visitation distribution, dπ(s, a) must satsify the Bellman Flow equation:∑
a

dπ(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P(s|s′, a′)dπ(s′, a′). (11)

This equation can be written in matrix notation as:∑
a

dπ = (1− γ)µ+ γPT dπ. (12)

Rearranging the terms,
(S − γPT )dπ = (1− γ)µ, (13)

where S is the matrix for
∑
a of size |S| × |S||A| with only |A| entries set to 1 corresponding to the

state denoted by the row. This equation is an affine equation of the form Ax = b whose solution set
forms an affine set. Hence all state-visitation distributions dπ form an affine set.

In the continuous spaces, the visitation distributions would be represented as functions: dπ : S×A→
R rather than vectors in [0, 1]S×A. The state-action visitation distribution dπ(s, a) will satisfy the
following continuous Bellman Flow Equation,∫

A

dπ(s, a)da = (1− γ)µ(s) + γ

∫
S

∫
A

P(s|s′, a′)dπ(s′, a′)ds′da′. (14)

This equation is the same as Equation 11 except, the vectors representing distributions are replaced
by functions and the discrete operator

∑
is replaced by

∫
.

The Bellman Flow operator can be defined as T that acts on dπ as,

T [dπ](s) =

∫
A

dπ(s, a)da− γ

∫
S

∫
A

P(s|s′, a′)dπ(s′, a′)ds′da′. (15)

From Equation 14, T [dπ](s) = (1 − γ)µ(s). The operator T is a linear operator, hence dπ(s, a)
forms an affine space.

A.2 PROOF OF COROLLARY 4.2

Corollary 4.2. Any successor measure, Mπ , in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Proof. Using Theorem 4.1, we have shown that state-action visitation distributions form affine sets.
Similarly, successor measures, Mπ(s, a, s+, a+) are solutions of the Bellman Flow equation:
Mπ(s, a, s+, a+) = (1−γ)1[s = s+, a = a+]+γ

∑
s′,a′∈SA

P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+).

(16)
Taking summation over a+ on both sides gives us an equation very similar to Equation 11 and so can
be written by rearranging as,

(S − γPT )Mπ = (1− γ)1[s = s+]. (17)
With similar arguments as in Lemma 4.1, Mπ also forms an affine set.
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Following the previous proof, in continuous spaces,Mπ becomes a functionMπ : S×A×S×A→ R
and the Bellman Flow equation transforms to,

Mπ(s, a, s+, a+) = (1−γ)p(s = s+, a = a+)+γ

∫
S

∫
A

P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+)ds′da′.
(18)

Integrating both sides over a+, the Bellman Flow operator T can be constructed that acts on Mπ ,

T [Mπ](s, a, s+) =

∫
A

Mπ(s, a, s+, a+)da+ − γ

∫
S

∫
A

P (s+|s′, a′)Mπ(s, a, s′, a′)ds′da′

(19)

=⇒ T [Mπ](s, a, s+) = (1− γ)p(s = s+, a = a+) (20)
As T is a linear operator, Mπ belongs to an affine set.

Any element x of an affine set of dimensionality d, can be written as
∑d
i ϕiwi + b where ⟨ϕi⟩ are the

basis and b is a bias vector. The basis is given by the null space of the matrix operator (S − γPT ) (T
in case of continuous spaces). Since the operator (S−γPT ) (and T ) and the vector (1−γ)1[s = s+]
(and function (1− γ)p(s = s+, a = a+)) are independent of the policy, the basis Φ and the bias b
are also independent of the policy.

A.3 PROOF OF THEOREM 4.4

Theorem 4.4. For the same dimensionality, span{Φvf} represents the set of the value functions
spanned by Φvf and {span{Φ}r} represents the set of value functions using the successor measures
spanned by Φ, span{Φvf} ⊆ {span{Φ}r}.

Proof. We need to show that any element that belongs to the set {span{Φ}r} also belongs to the set
span{Φvf}.

If we assume a special Φi(s, s′) = σi(s)ηi(s
′),

V π(s) =
∑
i

wπi
∑
s′

Φ(s, s′)r(s′)

=
∑
i

[
wπi

∑
s′

ηi(s
′)r(s′)

]
σi(s).

The two equations match with βπi = wπi
∑
s′ ηi(s

′)r(s′) and σi(s) = Φvfi (s). This implies for every
instance in the span of Φvf , there exists some instance in the span of Φ.

A.4 PROOF OF THEOREM 6.1

Theorem 6.1. Successor Features ψπ(s, a) belong to an affine set and can be represented using a
linear combination of basis functions and a bias.

Proof. Given basic state features, φ : S → R|d|, the successor feature is defined as, ψπ(s, a) =
Eπ[

∑
t γ

tφ(st+1)]. It can be correspondingly connected to successor measures as ψπ(s, a) =∑
s′ M(s, a, s′)φ(s′) (replace

∑
s′ with

∫
s′

for continuous domains). In Linear algebra notations, let
Mπ be a (S ×A)× S dimensional matrix representing successor measure. Define Φs as the S × d
matrix containing φ for each state concatenated row-wise. The (S ×A)× d matrix representing Ψπ

can be given as,
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Ψπ =MπΦs

=⇒ Ψπ =
∑
i

ϕiw
π
i Φs (Mπ is affine for basis ϕ)

=⇒ Ψπ =
∑
s′

∑
i

ϕi(·, ·, s′)wπi φ(s′)

=⇒ Ψπ =
∑
i

∑
s′

ϕi(·, ·, s′)φ(s′)wπi

=⇒ Ψπ =
∑
i

ϕψ,iw
π
i (ϕψ =

∑
s′

ϕi(·, ·, s′)φ(s′))

=⇒ Ψπ = Φψw
π

Hence, the successor features are affine with policy independent basis Φψ .

A.5 PROOF OF THEOREM 6.3

Theorem 6.3. If Mπ(s, a, s+) = ϕ(s, a, s+)wπ and ϕ(s, a, s+) = ϕψ(s, a)
Tϕs(s

+), the successor
feature ψπ(s, a) = ϕψ(s, a)w

π for the basic feature ϕs(s)T (ϕsϕTs )
−1.

Proof. Consider ϕ(s, a, s+) ∈ Rd as the set of d− 1 basis vectors and the bias with wπ ∈ Rd being
the d− 1 weights to combine the basis and wπd = 1. Clearly from Theorem 4.2, Mπ(s, a, s+) can be
represented as ϕ(s, a, s+)wπ . Further, ϕ(s, a, s+) = ϕψ(s, a)

Tϕs(s
+) where ϕψ(s, a) ∈ Rd×d and

ϕs(s
+) ∈ Rd. So,

Mπ(s, a, s+) =
∑
i

∑
j

ϕψ(s, a)ijϕs(s
+)jw

π
i

=⇒ Mπ(s, a, s+) =
∑
j

∑
i

ϕψ(s, a)ijw
π
i ϕs(s

+)j

=⇒ Mπ(s, a, s+) =
∑
j

ϕψ(s, a)
T
j w

πϕs(s
+)j

=⇒ Mπ(s, a, s+) =
∑
j

ψπ(s, a)jϕs(s
+)j (Writing ϕψ(s, a)Twπ as ψπ(s, a))

=⇒ Mπ(s, a, s+) = ψπ(s, a)Tϕs(s
+)

From Lemma 6.2, ψπ(s, a) is the successor feature for the basic feature ϕs(s)T (ϕsϕTs )
−1.

Note: In continuous settings, we can use the dataset marginal density as described in Section 5. The
basic features become ϕs(s)T (Eρ[ϕsϕTs ])−1.

A.6 DERIVING A BASIS FOR THE TOY EXAMPLE

Figure 5: The Toy MDP described in Section 4.

Consider the MDP shown in Figure 5. The state action visitation distribution is written as d =
(d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T . The corresponding dynamics can be written as,
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P =

s0, a0 s1, a0 s0, a1 s0, a1[ ]
s0 0 1 1 0
s1 1 0 0 1

The Bellman Flow equation thus becomes,

∑
a

d(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)

=⇒
[
1 1 0 0
0 0 1 1

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)
+ γ

[
0 1 1 0
1 0 0 1

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)



=⇒
[
1 1− γ −γ 0
−γ 0 1 1− γ

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)

This affine equation can be solved in closed form using Gauss Elimination to obtaind(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (21)

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

B.1.1 GRIDWORLDS

We use https://github.com/facebookresearch/controllable_agent code-base
to build upon the gridworld and 4 room experiments. The task is to reach a goal state that is randomly
sampled at the beginning of every episode. The reward function is 0 at all non-goal states while 1 at
goal states. The episode length for these tasks are 200.

The state representation is given by (x, y) which are scaled down to be in [0, 1]. The action space
consists of five actions: {up, right, down, left, stay}.

B.1.2 FETCH

We build on top of https://github.com/ahmed-touati/controllable_agent
which contains the Fetch environments with discretized action spaces. The state space is unchanged
but the action space is discretized to produce manhattan style movements i.e. move one-coordinate at
a time. These six actions are mapped to the true actions of Fetch as: {0 : [1, 0, 0, 0], 1 : [0, 1, 0, 0], 2 :
[0, 0, 1, 0], 3 : [−1, 0, 0, 0], 4 : [0,−1, 0, 0], 5 : [0, 0,−1, 0]}. Fetch has an episode length of 50.

B.1.3 DM-CONTROL ENVIRONMENTS

These continuous control environments have been discussed in length in DeepMind Control Suite
(Tassa et al., 2018). We use these environments to provide evaluations for PSM on larger and
continuous state and action spaces. The following four environments are used:

Walker: It has 24 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
planar walker. At test time, we test the following four tasks: Walk, Run, Stand and Flip, each with
complex dense rewards.
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Figure 6: DM Control Environments: Visual rendering of each of the four DM Control environments
we use: (from left to right) Walker, Cheetah, Quadruped, Pointmass

Cheetah: It has 17 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
planar biped “cheetah”. At test time, we test the following four tasks: Run, Run Backward, Walk and
Walk Backward, each with complex dense rewards.

Quadruped: It has 78 dimensional state space consisting of joint positions and velocities and 12
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
3-dimensional ant with 4 legs. At test time, we test the following four tasks: Walk, Run, Stand and
Jump, each with complex dense rewards.

Pointmass: The environment represents a 4-room planar grid with 4-dimensional state space
(x, y, vx, vy) and 2-dimensional action space. The four tasks that we test on are Reach Top Left,
Reach Top Right, Reach Bottom Left and Reach Bottom Right each being goal reaching tasks for the
four room centers respectively.

All DM Control tasks have an episode length of 1000.

B.2 DATASETS

Gridworld: The exploratory data is collected by uniformly spawning the agent and taking a random
action. Each of the three method is trained on the reward-free exploratory data. At test time, a random
goal is sampled and the optimal Q function is inferred by each.

Fetch: The exploratory data is collected by running DQN (Mnih et al., 2013) training
with RND reward (Burda et al., 2019) taken from https://github.com/iDurugkar/
adversarial-intrinsic-motivation. 20000 trajectories, each of length 50, are collected.

DM Control: We use publically available datasets from ExoRL Suite (Yarats et al., 2022) collected
using RND exploration.

B.3 IMPLEMENTATION DETAILS

B.3.1 BASELINES

We consider a variety of baselines that represent different state of the art approaches for zero-shot
reinforcement learning. In particular, we consider Laplacian, Forward-Backward, and HILP.

1. Laplacian (Wu et al., 2018; Koren, 2003): This method constructs a graph Laplacian for the
MDP induced by a random policy. Eigenfunctions of this graph Laplacian gives a representation for
each state ϕ(s), or the state feature. These state-features are used to learn the successor features; and
trained to optimize a family of reward functions r(s) = ⟨ϕ(s) · z⟩, where z is usually sampled from a
unit hypersphere uniformly (same for all baselines). The reward functions are optimized via TD3.

2. Forward-Backward (Blier et al., 2021a; Touati & Ollivier, 2021; Touati et al., 2023): Forward-
backward algorithm takes a slightly different perspective: instead of training a state-representation
first, a mapping is defined between reward function to a latent variable (z =

∑
s ϕ(s).r(s)) and the

optimal policy for the reward function is set to πz , i.e the policy conditioned on the corresponding
latent variable z. Training for optimizing all reward functions in this class allows for state-features
and successor-features to coemerge. The reward functions are optimized via TD3.
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3. HILP (Park et al., 2024a): Instead of letting the state-features coemerge as in FB, HILP proposes
to learn features from offline datasets that are sufficient for goal reaching. Thus, two states are close
to each other if they are reachable in a few steps according to environmental dynamics. HILP uses a
specialized offline RL algorithm with different discounting to learn these state features which could
explain its benefit in some datasets where TD3 is not suitable for offline learning.

Implementation: We build upon the codebase for FB https://github.com/
facebookresearch/controllable_agent and implement all the algorithms under
a uniform setup for network architectures and same hyperparameters for shared modules across
the algorithms. We keep the same method agnostic hyperparameters and use the author-suggested
method-specfic hyperparameters. The hyperparameters for all methods can be found here:

Table 2: Hyperparameters for baselines and PSM.

Hyperparameter Value
Replay buffer size 5× 106 (10× 106 for maze)
Representation dimension 128
Batch size 1024
Discount factor γ 0.98 (0.99 for maze)
Optimizer Adam
Learning rate 3× 10−4

Momentum coefficient for target networks 0.99
Stddev σ for policy smoothing 0.2
Truncation level for policy smoothing 0.3
Number of gradient steps 2× 106

Batch size for task inference 104

Regularization weight for orthonormality loss (ensures diversity) 1
FB specific hyperparameters
Hidden units (F ) 1024
Number of layers (F ) 3
Hidden units (b) 256
Number of layers (b) 2
HILP specific hyperparameters
Hidden units (ϕ) 256
Number of layers (ϕ) 2
Hidden units (ψ) 1024
Number of layers (ψ) 3
Discount Factor for ϕ 0.96
Discount Factor for ψ 0.98 (0.99 for maze)
Loss type Q-loss
PSM specific hyperparameters
Hidden units (ϕ, b) 1024
Number of layers (ϕ, b) 3
Hidden units (w) 1024
Number of layers (w) 3
Double GD lr 1e-4

Proto Successor Measures (PSM): PSM differs from baselines in that we learn richer representations
compared to Laplacian or HILP as we are not biased by behavior policy or only learn representations
sufficient for goal reaching. Compared to FB, our representation learning phase is more stable as we
learn representations by Bellman evaluation backups and do not need Bellman optimality backups.
Thus, our approach is not susceptible to learning instabilities that arise from overestimation that is
common in Deep RL and makes stabilizing FB hard.The hyperparameters are discussed in Appendix
Table 2.
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B.3.2 PSM REPRESENTATION LEARNING PSUEDOCODE

1 def psm_loss(
2 self,
3 obs: torch.Tensor,
4 action: torch.Tensor,
5 discount: torch.Tensor,
6 next_obs: torch.Tensor,
7 next_goal: torch.Tensor,
8 z: torch.Tensor,
9 step: int

10 ) -> tp.Dict[str, float]:
11 metrics: tp.Dict[str, float] = {}
12 # Create a batch_size x batch_size for learning Mˆ\pi(s,a,s+)
13 idx = torch.arange(obs.shape[0]).to(obs.device)
14 mesh = torch.stack(torch.meshgrid(idx, idx, indexing=’xy’)).T.

reshape(-1, 2)
15 m_obs = obs[mesh[:, 0]]
16 m_next_obs = next_obs[mesh[:, 0]]
17 m_action = action[mesh[:, 0]]
18 m_next_goal = next_goal[mesh[:, 1]]
19 perm = torch.randperm(obs.shape[0])
20

21 # compute PSM loss
22 with torch.no_grad():
23 target_phi, target_b = self.psm_target(m_next_obs,

m_next_goal)
24 target_w = self.w_target(z)
25 target_phi = target_phi[torch.arange(target_phi.shape[0]),

next_actions.squeeze(1)]
26 target_b = target_b[torch.arange(target_b.shape[0]),

next_actions.squeeze(1)]
27 target_M = torch.einsum("sd, sd -> s", target_phi, target_w)

+ target_b
28

29

30 phi, b = self.psm(m_obs, m_next_goal)
31 phi = phi[torch.arange(phi.shape[0]), m_action.squeeze(1)]
32 b = b[torch.arange(b.shape[0]), m_action.squeeze(1)]
33 M = torch.einsum("sd, sd -> s", phi, self.w(z)) + b
34 M = M.reshape(obs.shape[0], obs.shape[0])
35 target_M = target_M.reshape(obs.shape[0], obs.shape[0])
36 I = torch.eye(*M.size(), device=M.device)
37 off_diag = ˜I.bool()
38 psm_offdiag: tp.Any = 0.5 * (M - discount * target_M)[off_diag].

pow(2).mean()
39 psm_diag: tp.Any = -((1 - discount) * (M.diag().unsqueeze(1))).

mean()
40 psm_loss = psm_offdiag + psm_diag
41

42

43 # optimize PSM
44 self.opt.zero_grad(set_to_none=True)
45 self.actor_opt.zero_grad(set_to_none=True)
46 psm_loss.backward()
47 self.opt.step()
48 self.actor_opt.step()

Compute: All our experiments were trained on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
CPUS and NVIDIA GeForce GTX TITAN GPUs. Each training run took around 10-12 hours.
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C ADDITIONAL EXPERIMENTS

C.1 ABLATION ON DIMENSION OF THE AFFINE SPACE: d

We perform the experiments described in Section 7.3 for two of the conitnuous environments with
varying dimensionality of the affine space (or corresponding successor feature in the inductive
construction), d. Interestingly, the performance of PSM does not change much across different values
of d ranging from 32 to 256. This is in contrast to methods like HILP which sees significant drop in
performance by modifying d.

Environment Task d = 32 d = 50 d = 128 d = 256

Walker Stand 898.98 ± 48.64 942.85 ± 19.43 872.61 ± 38.81 911.25 ± 32.86
Run 359.51 ± 70.66 392.76 ± 31.29 351.50 ± 19.46 372.39 ± 41.29
Walk 825.66 ± 60.14 822.39 ± 60.14 891.44 ± 46.81 886.03 ± 28.96
Flip 628.92 ± 94.95 521.78 ± 29.06 640.75 ± 31.88 593.78 ± 27.14

Average 678.27 669.45 689.07 690.86

Cheetah Run 298.98 ± 95.63 386.75 ± 55.79 276.41 ± 70.23 268.91 ± 79.07
Run Backward 295.43 ± 19.72 260.13 ± 24.93 286.13 ± 25.38 290.89 ± 14.36
Walk 942.12 ± 84.25 893.89 ± 91.69 887.02 ± 59.87 920.50 ± 68.98
Walk Backward 978.64 ± 8.74 916.68 ± 124.34 980.90 ± 2.04 982.29 ± 0.70

Average 628.79 615.61 607.61 615.64

Table 3: Table shows comparison (averaged over 5 seeds) between different representation sizes (or affine space
dimensionality d) for PSM.

C.2 QUANTITATIVE RESULTS ON GRIDWORLD AND DISCRETE MAZE

We provide quantitative results for the experiments performed in Section 7.1.

Environment Laplace FB PSM

Gridworld 19.28 ± 2.34 14.53 ± 0.68 2.05 ± 1.20

Discrete Maze 38.47 ± 7.01 28.80 ± 10.50 11.54 ± 1.07

Table 4: Table shows average error (averaged over 3
seeds) for the predicted policy from different zero-shot
RL methods with respect to the oracle optimal policy.

Quantitative Experiment Description: For
each randomly sampled goal, we obtain the in-
ferred value function and the inferred policy us-
ing PSM and the baselines. At every state in the
discrete space, we check if the policy inferred by
these algorithms is optimal or not. The oracle
or the optimal policy can be obtained by run-
ning the Bellman Ford algorithm in the discrete
gridworld or maze. We report (in Table 4) the
average error (# incorrect policy predictions/Total # of states) for 10 randomly sampled goal (over 3
seeds).

As clearly seen, the average error for PSM is significantly less than the baselines which augments the
qualitative results presented in Section 7.1.
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