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ABSTRACT

Having explored an environment, intelligent agents should be able to transfer their
knowledge to most downstream tasks within that environment. Referred to as
“zero-shot learning,” this ability remains elusive for general-purpose reinforcement
learning algorithms. While recent works have attempted to produce zero-shot RL
agents, they make assumptions about the nature of the tasks or the structure of the
MDP. We present Proto Successor Measure: the basis set for all possible solutions
of Reinforcement Learning in a dynamical system. We provably show that any
possible policy can be represented using an affine combination of these policy
independent basis functions. Given a reward function at test time, we simply need
to find the right set of linear weights to combine these basis corresponding to the
optimal policy. We derive a practical algorithm to learn these basis functions using
only interaction data from the environment and show that our approach can produce
the optimal policy at test time for any given reward function without additional
environmental interactions.

1 INTRODUCTION

A wide variety of tasks can be defined within an environment (or any dynamical system). For
instance, in navigation environments, tasks can be defined to reach a goal, path following, reach a
goal while avoiding certain states etc. Once familiar with an environment, humans have the wonderful
ability to perform new tasks in that environment without any additional practice. For example,
consider the last time you moved to a new city. At first, you may have needed to explore various
routes to figure out the most efficient way to get to the nearest supermarket or place of work. But
eventually, you could probably travel to new places efficiently the very first time you needed to get
there. Like humans, intelligent agents should be able to infer the necessary information about the
environment during exploration and use this experience for solving any downstream task efficiently.
Reinforcement Learning (RL) algorithms have seen great success in finding a sequence of decisions
that optimally solves a given task in the environment (Wurman et al., 2022; Fawzi et al., 2022). In
RL settings, tasks are defined using reward functions with different tasks having their own optimal
agent policy or behavior corresponding to the task reward. RL agents are usually trained for a given
task (reward function) or on a distribution of related tasks; most RL agents do not generalize to
solving any task, even in the same environment. While related machine learning fields like computer
vision and natural language processing have shown success in zero-shot (Ramesh et al., 2021) and
few-shot (Radford et al., 2021) adaptation to a wide range of downstream tasks, RL lags behind in
such functionalities. Unsupervised reinforcement learning aims to extract reusable information such
as skills (Eysenbach et al., 2018; Zahavy et al., 2022), representations (Ghosh et al., 2023; Ma et al.,
2022), world-model (Janner et al., 2022), goal-reaching policies (Agarwal et al., 2024; Sikchi et al.,
2023a), etc.) from the environment using data independent of the task reward to efficiently train RL
agents for any task. Recent advances in unsupervised RL (Wu et al., 2018a; Touati & Ollivier, 2021a;
Blier et al., 2021; Touati et al., 2023) have shown some promise towards achieving zero-shot RL.

Recently proposed pretraining algorithms (Stooke et al., 2020; Schwarzer et al., 2021b; Sermanet
et al., 2018; Nair et al., 2022; Ma et al., 2022) use self-supervised learning to learn representations
from large-scale data to facilitate few-shot RL but these representations are dependent on the policies
used for collecting the data. These algorithms assume that the large scale data is collected from
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Figure 1: Method Overview: Visitation distributions corresponding to any policy must obey the
Bellman Flow constraint for the dynamical system. This means they must lie on the plane defined by
the the Bellman Flow equation. Being a plane, it can be represented using a set of basis set Φ and
a bias. All valid (non negative) visitation distributions lie within a convex hull on this plane. The
boundary of this hull is defined using the non negativity constraints: Φw + b ≥ 0. Each point within
this convex hull corresponds to a visitation distribution for a valid policy and is defined simply by the
“coordinate” w.

a “good” policy demonstrating expert task solving behaviors. Several prior works aim to achieve
generalization in multi-task RL by building upon successor features (Dayan, 1993) which represent
rewards as a linear combination of state features. These methods have limited generalization capacity
to unseen arbitrary tasks. Other works (Mahadevan, 2005; Bellemare et al., 2019; Farebrother et al.,
2023; Machado et al., 2017a;b) represent value functions using eigenvectors of the graph Laplacian
obtained from a random policy to approximate the global basis of value functions. However, the
eigenvectors from a random policy cannot represent all value functions. In fact, we show that an
alternative strategy of representing visitation distributions using a set of basis functions covers a
larger set of solutions than doing the same with value functions. Skill learning methods (Eysenbach
et al., 2018; Park et al., 2024b; Eysenbach et al., 2021) view any policy as combination of skills , but
as shown by Eysenbach et al. (2021), these methods do not recover all possible skills from the MDP.
Some recent works have attempted zero-shot RL by decomposing the representation of visitation
distributions (Touati & Ollivier, 2021a; Touati et al., 2023), but they learn policy representations as
a projection of the reward function which leads to loss of task relevant information. We present a
stronger, more principled approach for representing any solution of RL in the MDP.

Any policy in the environment can be represented using visitation distributions or the distributions over
states and actions that the agent visits when following a policy. We learn a basis set to represent any
possible visitation distribution in the underlying environmental dynamics. We draw our inspiration
from the linear programming view (Manne, 1960; Denardo, 1970; Nachum & Dai, 2020; Sikchi et al.,
2023b) of reinforcement learning; the objective is to find the visitation distribution that maximizes
the return (the dot-product of the visitation distribution and the reward) subject to the Bellman Flow
constraints. We show that any solution of the Bellman Flow constraint for the visitation distribution
can be represented as a linear combination of policy-independent basis functions and a bias. As
shown in Figure 1, any visitation distribution that is a solution of the Bellman Flow for a given
dynamical system lies on a plane defined using policy independent basis Φ and a bias b. On this
plane, only a small convex region defines the valid (non negative) visitations distributions. Any
visitation distribution in this convex hull can be obtained simply using the “coordinates” w. We
introduce Proto-Successor Measure, the set of basis functions and bias to represent any successor
measure (a generalization over visitation distributions) in the MDP that can be learnt using reward-
free interaction data. At test time, obtaining the optimal policy reduces to simply finding the linear
weights to combine these basis vectors that maximize its dot-product with the user-specified reward.
These basis vectors only depend on the state-action transition dynamics of the MDP, independent of
the initial state distribution, reward, or policy, and can be thought to compactly represent the entire
dynamics.
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The contributions of our work are (1) a novel, mathematically complete perspective on representation
learning for Markov decision processes; (2) an efficient practical instantiation that reduces basis
learning to a single-player optimization; and (3) evaluations of a number of tasks demonstrating the
capability of our learned representations to quickly infer optimal policies.

2 RELATED WORK

Unsupervised Reinforcement Learning: Unsupervised RL generally refers to a broad class of
algorithms that use reward-free data to improve the efficiency of RL algorithms. We focus on
methods that learn representations to produce optimal value functions for any given reward function.
Representation learning through unsupervised or self-supervised RL has been discussed for both pre-
training (Nair et al., 2022; Ma et al., 2022) and training as auxiliary objectives (Agarwal et al., 2021;
Schwarzer et al., 2021a; Agarwal et al., 2021). While using auxiliary objectives for representation
learning does accelerate policy learning for downstream tasks, the policy learning begins from scratch
for a new task. Pre-training methods like Ma et al. (2022); Nair et al. (2022) use self-supervised
learning techniques from computer vision like masked auto-encoding to learn representations that
can be used directly for downstream tasks. These methods use large-scale datasets (Grauman et al.,
2022) to learn representations but these are fitted around the policies used for collecting data. These
representations do not represent any possible behavior nor are trained to represent Q functions for
any reward functions. A number of works in prior literature aim to discover intents or skills using
a diversity objective. These methods use the fact that the latents or skills should define the output
state-visitation distributions thus diversity can be ensured by maximizing mutual information (Warde-
Farley et al., 2018; Eysenbach et al., 2018; Achiam et al., 2018; Eysenbach et al., 2021) or minimizing
Wasserstein distance (Park et al., 2024b) between the latents and corresponding state-visitation
distributions. PSM differs from these works and takes a step towards learning representations optimal
for predicting value functions as well as a zero-shot near-optimal policy for any reward.

Methods that linearize RL quantities: Learning basis vectors has been leveraged in RL to allow
for transfer to new tasks. Successor features (Barreto et al., 2018) represents rewards as a linear
combination of transition features and subsequently the Q-functions are linear in successor features.
Several methods have extended successor features (Lehnert & Littman, 2020; Hoang et al., 2021;
Alegre et al., 2022; Reinke & Alameda-Pineda, 2023) to learn better policies in more complex
domains.

Spectral methods like Proto Value Functions (PVFs) (Mahadevan, 2005; Mahadevan & Maggioni,
2007) instead represent the value functions as a linear combination of basis vectors. It uses the
eigenvectors of the random walk operator (graph Laplacian) as the basis vectors. Adversarial Value
Functions (Bellemare et al., 2019) and Proto Value Networks (Farebrother et al., 2023) have attempted
to scale up this idea in different ways. However, deriving these eigenvectors from a Laplacian is
not scalable to larger state spaces. Wu et al. (2018a) recently presented an approximate scalable
objective, but the Laplacian is still dependent on the policy which makes it incapable of representing
all behaviors or Q functions.

Similar to our work, Forward Backward (FB) Representations (Touati & Ollivier, 2021a; Touati et al.,
2023) use an inductive bias on the successor measure to decompose it into a forward and backward
representation. Unlike FB, our representations are linear on a set of basis features. Additionally, FB
ties the reward representation with the representation of the optimal policy derived using Q function
maximization which can lead to overestimation issues and instability during training as a result of
Bellman optimality backups.

3 PRELIMINARIES

In this section we introduce some preliminaries and define terminologies that will be used in later
sections. We begin with some MDP fundamentals and RL preliminaries followed by a discussion on
affine spaces which form the basis for our representation learning paradigm.
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3.1 MARKOV DECISION PROCESSES

A Markov Decision Process is defined as a tuple ⟨S,A, P, r, γ, µ⟩ where S is the state space, A
is the action space, P : S × A 7−→ ∆(S) is the transition probability (∆(·) denotes a probability
distribution over a set), γ ∈ [0, 1) is the discount factor, µ is the distribution over initial states and
r : S × A 7−→ R is the reward function. The task is specified using the reward function r and the
initial state distribution µ. The goal for the RL agent is to learn a policy πθ : S 7−→ A that maximizes
the expected return J(πθ) = Es0∼µEπθ

[
∑∞

t=0 γ
tr(st, at)].

In this work, we consider a task-free MDP which does not provide the reward function or the initial
state distribution. Hence, a task-free or reward-free MDP is simply the tuple ⟨S,A, P, γ⟩. A task-
free MDP essentially only captures the underlying environment dynamics and can have infinite
downstream tasks specified through different reward functions.

The state-action visitation distribution, dπ(s, a) is defined as the normalized probability of being in a
state s and taking an action a if the agent follows the policy π from a state sampled from the initial state
distribution. Concretely, dπ(s, a) = (1− γ)

∑∞
t=0 γ

t
P(st = s, at = a). A more general quantity,

successor measure, Mπ(s, a, s+, a+), is defined as the probability of being in state s+ and taking
action a+ when starting from the state-action pair s, a and following the policy π. Mathematically,
Mπ(s, a, s+, a+) = (1 − γ)

∑∞
t=0 γ

t
P(st = s+, at = a+|s0 = s, a0 = a). The state-action

visitation distribution can be written as dπ(s, a) = Es0∼µ(s),a0∼π(a0|s0)[M
π(s0, a0, s, a)].

Both these quantities, state-action visitation distribution and successor measure, follow the Bellman
Flow equations:

dπ(s, a) = (1− γ)µ(s)π(a|s) + γ
∑

s′,a′∈SA
P (s|s′, a′)dπ(s′, a′)π(a|s). (1)

For successor measure, the initial state distribution changes to an identity function

Mπ(s, a, s+, a+) = (1− γ)1[s = s+, a = a+]+

γ
∑

s′,a′∈SA
P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+). (2)

The RL objective has a well studied linear programming interpretation (Manne, 1960). Given any
task reward function r, the RL objective can be rewritten in the form of a constrained linear program:

max
d

∑
s,a

d(s, a)r(s, a)

s.t. d(s, a) = (1− γ)µ(s)π(a|s) + γ
∑

s′,a′∈SA
P (s|s′, a′)d(s′, a′)π(a|s)

d(s, a) ≥ 0 ∀s, a,

(3)

and the unique policy corresponding to visitation d is obtained by π(a|s) = d(s,a)∑
a d(s,a) . The Q function

can then be defined using successor measure as Qπ(s, a) =
∑

s+,a+ Mπ(s, a, s+, a+)r(s+, a+) or
Qπ = Mπr. Obtaining the optimal policies requires maximizing the Q function which requires
solving argmaxπM

πr.

3.2 AFFINE SPACES

Let V be a vector space and b be a vector. An affine set is defined asA = b+V = {x|x = b+v, v ∈ V}.
Any vector in a vector space can be written as a linear combination of basis vectors, i.e., v =

∑n
i αivi

where n is the dimensionality of the vector space. This property implies that any element of an affine
space can be expressed as x = b +

∑n
i αivi. Given a system of linear equations Ax = c, with A

being an m× n matrix (m < n) and c ̸= 0, the solution x forms an affine set. Hence, there exists
alphas αi such that x = b+

∑
i αixi. The vectors {xi} form the basis set of the null space or kernel

of A. The values (αi) form the affine coordinates of x for the basis {xi}. Hence, for a given system
with known {xi} and b, any solution can be represented using only the affine coordinates (αi).
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4 THE BASIS SET FOR ALL SOLUTIONS OF RL

In this section, we introduce the theoretical results that form the foundation for our representation
learning approach. The goal is to learn policy-independent representations that can represent any valid
visitation distribution in the environment (i.e. satisfy the Bellman Flow constraint in Equation 3). With
a compact way to represent these distributions, it is possible to reduce the policy optimization problem
to a search in this compact representation space. We will show that state visitation distributions and
successor measures form an affine set and thus can be represented as

∑
i ϕiw

π
i + b, where ϕi are

basis functions, wπ are “coordinates” or weights to linearly combine the basis functions, and b is a
bias term. First, we build up the formal intuition for this statement and later we will use a toy example
to show how these representations can make policy search easier.

The first constraint in Equation 3 is the Bellman Flow equation. We begin with Lemma 4.1 showing
that state visitation distributions that satisfy the Bellman Flow form affine sets.

Lemma 4.1. All possible state-action visitation distributions in an MDP form an affine set.

While Lemma 4.1 shows that any state-action visitation distribution in an MDP can be written using
a linear combination of basis and bias terms, state-action visitation distributions still depend on the
initial state distribution. Moreover, as shown in Equation 1, computing the state-action visitation
distribution requires a summation over all states and actions in the MDP which is not always possible.
Successor measures are more general than state-visitation distributions as they encode the state-action
visitation of the policy conditioned on a starting state-action pair. Using similar techniques, we show
that successor measures also form affine sets.

Theorem 4.2. Any successor measure, Mπ in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Following Theorem 4.2, for any w, the function
∑d

i ϕiw
π
i +b will be a solution of Equation 2. Hence,

given Φ (ϕi stacked together) and b, we do not need the first constraint on the linear program (in
Equation 3) anymore. The other constraint: ϕiwi + b ≥ 0 still remains which w needs to satisfy. We
discuss ways to manage this constraint in Section 5.3. The linear program given a reward function
now becomes,

max
w

Eµ[(Φw + b)r]

s.t. Φw + b ≥ 0 ∀s, a.
(4)

In fact, any visitation distribution that is a policy-independent linear transformation of Mπ, such as
state visitation distribution or future state-visitation distribution, can be represented in the same way
as shown in Corollary 4.3.

Corollary 4.3. Any quantity that is a policy-independent linear transformation of Mπ can be written
as a linear combination of policy-independent basis and bias terms.

Toy Example: Let’s consider a simple 2 state MDP (as shown in Figure ??) to depict how the
precomputation and inference will take place. Consider the state-action visitation distribution
as in Equation 1. For this simple MDP, the Φ and b can be computed using simple algebraic
manipulations. For a given initial state-visitation distribution, µ and γ, the state-action visitation
distribution d = (d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T can be written as,

d = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (5)

The derivation for these basis vectors and the bias vector is in the supplementary material. Equation 5
represents any vector that is a solution of Equation 1 for the simple MDP. Any state-action visitation
distribution possible in the MDP can now be represented using only w = (w1, w2)

T . The only
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constraint in the linear program of Equation 4 is Φw + b ≥ 0. Looking closely, this constraint gives
rise to four inequalities in w and the linear program reduces to,

max
w1,w2

(
−γw1 − w2

1 + γ
,
−w1 − γw2

1 + γ
,w1, w2)

T r

s.t. w1 + γw2 ≤ µ(s0) + γµ(s1)

γw1 + w2 ≤ µ(s1) + γµ(s0)

w1 ≥ 0, w2 ≥ 0

. (6)

The inequalities in w give rise to a simplex as shown in Figure ??. For any specific instantiation
of µ and r, the optimal policy can be easily found. For instance, if µ = (1, 0)T and the reward
function, r = (1, 0, 1, 0)T , the optimal w will be obtained at the vertex (w1 = 1, w2 = 0) and the
corresponding state-action visitation distribution is d = (0, 0, 1, 0)T .

(a)

(b)

Figure 2: (left) A Toy MDP with 2 states and 2 actions
to depict how the linear program of RL is reduced using
precomputation. (right) The corresponding simplex for
w assuming the initial state distribution is µ = (1, 0)T .

As shown for the toy MDP, the successor mea-
sures form a simplex as discussed in Eysen-
bach et al. (2021). Spectral Methods follow-
ing Proto Value Functions (Mahadevan & Mag-
gioni, 2007) have tried to represent value func-
tions using a linear combination of basis vectors,
V = Φvfw for some Φvf . Some prior works
(Dadashi et al., 2019) have argued that value
functions do not form convex polytopes. We
show through Theorem 4.4 that for identical
dimensionalities of basis, the span of value func-
tions using basis functions is a subset of the set
of value functions that can be represented using
the span of the successor measure.
Theorem 4.4. For the same dimensionality,
span{Φvf} represents the set of the value func-
tions spanned by Φvf and {span{Φ}r} represents the set of value functions using the successor
measures spanned by Φ, span{Φvf} ⊆ {span{Φ}r}.

Approaches such as Forward Backward Representations (Touati & Ollivier, 2021a) have also been
based on representing successor measures but they force a latent variable z representing the policy to
be a function of the reward for which the policy is optimal. The forward map that they propose is a
function of this latent z. We, on the other hand, propose a representation that is truly independent of
the policy or the reward.

5 METHOD

In this section, we start by introducing the practical algorithm inspired from the theory discussed in
Section 4 for obtaining Φ and b. We will also discuss the inference step, i.e., obtaining w for a given
reward function.

5.1 LEARNING Φ AND b

For a given policy π, its successor measure under our framework is denoted by Mπ = Φwπ + b with
wπ the only object depending on policy. Given an offline dataset with density ρ, we follow prior
works (Touati & Ollivier, 2021a; Blier et al., 2021) and model densities mπ =Mπ/ρ learned with
the following objective:

Lπ(Φ, b, wπ) = −Es,a∼ρ[m
Φ,b,wπ

(s, a, s, a)]

+
1

2
Es,a,s′∼ρ,s+,a+∼ρ[m

Φ,b,wπ

(s, a, s+, a+)− γm̄Φ̄,b̄,w̄π

(s′, π(s′), s+, a+)]. (7)

The above objective only requires samples (s, a, s′) from the reward-free dataset and a random
state-action pair (s+, a+) (also sampled from the same data) to compute and minimize L(π).

6
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A Φ and b that allows for minimizing the L(π) for all π ∈ Π forms a solution to our representation
learning problem. But how do we go about learning such Φ and b? A naı̈ve way to implement
learning Φ and b is via a bi-level optimization. We sample policies from the policy space of Π, for
each policy we learn a wπ that optimizes the policy evaluation loss (Eq 7) and take a gradient update
w.r.t Φ and b. In general, the objective can be optimized by any two-player game solving strategies
with [Φ, b] as the first player and wπ as the second player. Instead, in the next section, we present an
approach to simplify learning representations to a single-player game.

5.2 SIMPLIFYING OPTIMIZATION VIA A DISCRETE CODEBOOK OF POLICIES

Learning a new wπ for each specific sampled policy π does not leverage precomputations and
requires retraining from scratch. We propose parameterizing w to be conditional on policy, which
allows leveraging generalization between policies that induce similar visitation and as we show, will
allow us to simplify the two player game into a single player optimization. In general, policies are
high-dimensional objects and compressing them can result in additional overhead. Compression
by parameterizing policies with a latent variable z is another alternative but presents the challenge
of covering the space of all possible policies by sampling z. Instead, we propose using a discrete
codebook of policies as a way to simulate uniform sampling of all possible policies with support in
the offline dataset.

Discrete Codebook of Policies: Denote z as a compact representation of policies. We propose
to represent z as a random sampling seed that will generate a deterministic policy from the set of
supported policies as follows:

π(a|s, z) = Uniform Sample(seed = z + hash(s)). (8)

The above sampling strategy defines a unique mapping from a seed to a policy. If the seed generator
is unbiased, the approach provably samples from among all possible deterministic policies uniformly.
Now, with policy πz and wz parameterized as a function of z we derive the following single-player
reduction to learn Φ, b, w jointly.

PSM-objective: argmin
Φ,b,w(z)

Ez[L
πz (Φ, b, w(z))]. (9)

5.3 FAST OPTIMAL POLICY INFERENCE ON DOWNSTREAM TASKS

After obtaining Φ and b via the pretraining step, the only parameter to compute for obtaining
the optimal Q function for a downstream task in the MDP is w. As discussed earlier, Q∗ =
maxw(Φw + b)r but simply maximizing this objective will not yield a Q function. The linear
program still has a constraint of Φw + b ≥ 0,∀s, a. We solve the constrained linear program by
constructing the Lagrangian dual using Lagrange multipliers λ(s, a). The dual problem is shown in
Equation 10. Here, we write the corresponding loss for the constraint as min(Φw + b, 0).

max
λ≥0

min
w

−Φwr −
∑
s,a

λ(s, a)min(Φw + b, 0). (10)

Once w∗ is obtained, the corresponding M∗ and Q∗ can be easily computed. The policy can be
obtained as π∗ = argmaxaQ

∗(s, a) for discrete action spaces and via DDPG style policy learning
for continuous action spaces.

6 EXPERIMENTAL STUDY

Our experiments evaluate how PSM can be used to encapsulate a task-free MDP into a representation
that will enable zero-shot inference on any downstream task. In the experiments we investigate a) the
quality of value functions learned by PSM, b) the zero-shot performance of PSM in contrast to other
baselines, and finally on robot manipulation task c) the ability to learn general goal-reaching skills
arising from the PSM objective.
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Figure 3: Qualitative results on a gridworld and four-room: G denotes the goal sampled for every
episode. The black regions are the boundaries/obstacles. The agent needs to navigate across the grid
and through the small opening (in case of four-room) to reach the goal. We visualize the optimal
Q-functions inferred at test time for the given goal in the image. The arrows denote the optimal
policy. (Top row) Results for PSM, (Middle Row) Results for FB, (Bottom row) Results for Laplacian
Eigenfunctions.

Baselines We compare to the methods that have stood the test of time and perform best: Laplacian
features (Wu et al., 2018b) and Forward-Backward (Touati et al., 2022). Laplacian features learn
features of a state by considering eigenvectors of a graph Laplacian induced by a random walk. These
features ψ(s) ∈ Rd obtained for each state are used to define a reward function conditioned on a
reward r(s;ψ) = ψ(s) · z where z is sampled uniformly from a unit d-dimensional sphere. For each
z an optimal policy is pretrained from the dataset on the induced reward function. During inference
the corresponding z for a given reward function is obtained as a solution to the following linear
regression: minz Es[(ψ

⊤ · z − r(s))2]. Forward-backward (FB) learns both the optimal policy and
state features jointly for all reward that are in the linear span of state-features. FB methods typically
assume a goal-conditioned prior during pretraining which typically helps in learning policies that
reach various states in the dataset. HILP (Park et al., 2024a) makes two changes to FB: a) Reduces
the tasks to be goal reaching to learn the features of a state and b) Uses a more performant offline RL
method, IQL (Kostrikov et al., 2021) to learn features. We do not compare to HILP as it has been
shown to have comparable performance with FB and innovates on an orthogonal axis of using a better
base RL algorithm.

6.1 ZERO SHOT VALUE FUNCTION AND OPTIMAL POLICY PREDICTION

In this section, we consider goal-conditioned rewards on discrete gridworld and the classic four-room
environments. Since the goal-conditioned rewards are state-only reward functions, we learn represen-
tations for Mπ(s, a, s+) instead of Mπ(s, a, s+, a+) using the learning objectives in Equation 9.

Task Setup: Both environments have discrete state and action spaces. The action space consists of
five actions: {up, right, down, left, stay}. We collect transitions in the environment by uniformly
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spawning the agent and taking a random-uniform action.This allows us toform our offline reward-free
dataset will full coverage to train Φ and b. During inference, we sample a goal and infer the optimal
Q function on the goal. Since the reward function is given by r(s) = 1s=g, the inference looks
like Q(s, a) = maxw Φ(s, a, g)w s.t. Φ(s, a, s′)w + b(s, a, s′) ≥ 0 ∀s, a, s′. Figure 3 shows
the Q function and the corresponding optimal policy (when executed from a fixed start state) on
the gridworld and the four-room environment. As illustrated clearly, for both the environments, the
optimal Q function and policy can be obtained zero-shot for any given goal-conditioned downstream
task. We observe a 100% success rate on both these tasks.

Comparison to baselines: We can draw a couple of conclusions from the visualization of the Q
functions inferred by the different methods. First, the Q function learnt by PSM is more sharply
concentrated on optimal state-action pairs compared to the two baselines. Both baselines have more
uniform value estimates, leaving only a minor differential over state values. Secondly, the baselines
produce far more incorrect optimal actions (represented by the green arrows) compared to PSM.

Figure 4: Quantitative results on FetchReach: The success rates
(averaged over 3 seeds) are plotted (along with the standard devi-
ation as shaded) with respect to the training updates for PSM, FB
and Laplacian. PSM quickly reaches optimal performance while
FB shows instability in maintaining its optimality. Laplacian is far
from the optimal performance.

6.2 LEARNING
ZERO-SHOT POLICIES
FOR MANIPULATION

We consider the Fetch-Reach
environment with contin-
uous states and discrete
actions (Touati & Ollivier,
2021b). A dataset of size
1M is constructed using
DQN+RND. FB, Laplacian
and PSM all use this dataset
to learn pretrained objects that
can be used for zero-shot RL.

We observe that PSM outper-
forms baselines FB and Lapla-
cian in its ability to learn a
zero-shot policy. One key ob-
servation is that PSM learning is stable whereas FB exhibits a drop in performance, likely due to
the use of Bellman optimality backups resulting in overestimation bias during training. Laplacian’s
capacity to output zero-shot policies is far exceeded by PSM because Laplacian methods construct
the graph Laplacian for random policies and may not be able to represent optimal value functions for
all rewards.

7 CONCLUSION

In this work, we propose Proto Successor Measures (PSM), a zero-shot RL method that compresses
any MDP to allow for optimal policy inference for any reward function without additional environ-
mental interactions. This framework marks a step in the direction of moving away from common
idealogy in RL to solve single tasks optimally, and rather pretraining reward-free agents that are
able to solve an infinite number of tasks. PSM is based on the princple that successor measures are
solutions to an affine set and proposes an efficient and mathematically grounded algorithm to extract
the basis for the affine set. We show that PSM can produce the optimal Q function and the optimal
policy for any goal conditioned task in a number of environments outperforming prior baselines.

9
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APPENDIX

A THEORETICAL RESULTS

In this section, we will present the proofs for all the Lemmas and Theorems stated in Section 4.

A.1 PROOF OF LEMMA 4.1

Lemma 4.1. All possible state-action visitation distributions in an MDP form an affine set.

Proof. Any state-action visitation distribution, d(s, a) must satsify the Bellman Flow equation:

∑
a

dπ(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P(s|s′, a′)dπ(s′, a′). (11)

This equation can be written in matrix notation as:

∑
a

dπ = (1− γ)µ+ γPT dπ. (12)

Rearranging the terms,

(S − γPT )dπ = (1− γ)µ, (13)

where S is the matrix for
∑

a. This equation is an affine equation of the form Ax = b whose solution
set forms an affine set. Hence all state-visitation distributions dπ form an affine set.

A.2 PROOF OF THEOREM 4.2

Theorem 4.2. Any successor measure, Mπ , in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Proof. Using Lemma 4.1, we have shown that state-action visitation distributions form affine sets.
Similarly, successor measures, Mπ(s, a, s+, a+) are solutions of the Bellman Flow equation:

Mπ(s, a, s+, a+) = (1−γ)1[s = s+, a = a+]+γ
∑

s′,a′∈SA
P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+).

(14)

Taking summation over a+ on both sides gives us an equation very similar to Equation 11 and so can
be written by rearranging as,

(S − γPT )Mπ = (1− γ)1[s = s+]. (15)

With similar arguments as in Lemma 4.1, Mπ also forms an affine set. Any element x of an affine
set can be written as

∑d
i ϕiwi + b where ⟨ϕi⟩ are the basis and b is a bias vector. The basis is given

by the null space of the matrix operator (S − γPT ). Since the operator (S − γPT ) and the vector
(1− γ)1[s = s+] are independent of the policy, the basis Φ and the bias b are also independent of the
policy.
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A.3 PROOF OF THEOREM 4.4

Theorem 4.4. For the same dimensionality, span{Φvf} represents the set of the value functions
spanned by Φvf and {span{Φ}r} represents the set of value functions using the successor measures
spanned by Φ, span{Φvf} ⊆ {span{Φ}r}.

Proof. We need to show that any element that belongs to the set {span{Φ}r} also belongs to the set
span{Φvf}.

V π(s) =
∑
i

βπ
i Φ

vf
i (s).

If we assume a special Φi(s, s
′) = σi(s)ηi(s

′),

V π(s) =
∑
i

wπ
i

∑
s′

Φ(s, s′)r(s′)

=
∑
i

[
wπ

i

∑
s′

ηi(s
′)r(s′)

]
σi(s).

The two equations match with βπ
i = wπ

i

∑
s′ ηi(s

′)r(s′) and σi(s) = Φvf
i (s). This implies for every

instance in the span of Φvf , there exists some instance in the span of Φ.

B EXPERIMENTAL DETAILS

B.1 GRIDWORLDS

We use https://github.com/facebookresearch/controllable_agent code-base
to build upon the gridworld and 4 room experiments. The baseline FB is already implemented in
the repository. As discused in Touati et al. (2023), implementing the Laplacian baselines require a
few lines of modification to the FB code. We implement the Laplacian method accordingly in the
code-base. The exploratory data is collected by uniformly spawning the agent and taking a random
action. Each of the three method is trained on the reward-free exploratory data. At test time, a random
goal is sampled and the optimal Q function is inferred by each. The plots in Figure 3 show the optimal
value V ∗(s) = maxaQ

∗(s, a) for every state and the optimal action a∗ = argmaxaQ
∗(s, a) is

marked using a green arrow.

The state representation is given by (x, y) which are scaled down to be in [0, 1]. The action space
consists of five actions: {up, right, down, left, stay}.

B.2 FETCH

We build on top of https://github.com/ahmed-touati/controllable_agent
which contains the Fetch environments with discretized action spaces. The state space is unchanged
but the action space is discretized to produce manhattan style movements i.e. move one-coordinate at
a time. These six actions are mapped to the true actions of Fetch as: {0 : [1, 0, 0, 0], 1 : [0, 1, 0, 0], 2 :
[0, 0, 1, 0], 3 : [−1, 0, 0, 0], 4 : [0,−1, 0, 0], 5 : [0, 0,−1, 0]}. The exploratory data is collected
by running DQN (Mnih et al., 2013) training with RND reward (Burda et al., 2018) taken from
https://github.com/iDurugkar/adversarial-intrinsic-motivation. 20000
trajectories, each of length 50, are collected.

For the quantitative analysis, the dimensionality of the basis (in case of PSM) or the embedding
space (in case of FB, Laplacian) is set to 100. All the methods use the learning rate is 0.0001 and
γ = 0.99.
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