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Abstract

Domain-specific fine-tuning of large language models (LLMs) often compromises
their safety alignment, leading to unsafe generations. Existing approaches largely
rely on distributional alignment, enforcing token-level similarity between pre-
and post-fine-tuned models. However, this neglects the semantic nature of text
generation and can weaken the model’s reasoning and robustness. To address this
limitation, we propose a preference-based alignment framework that complements
distributional alignment by biasing the fine-tuned model toward the safe outputs
of the pre-trained model, rather than strictly preserving distributional similarity.
Simulation results show that preference alignment produces consistent safe outputs
even when the underlying distributions differ. Extensive experiments on multiple
fine-tuning attack datasets and utility benchmarks further demonstrate that our
method substantially improves safety with only minor degradation in utility. This
achieves a more favorable balance between safety and utility, and significantly
enhances robustness against adversarial fine-tuning.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks,
from content creation to complex reasoning (Touvron et al., 2023a;b; Team, 2023). However, their
powerful functionality also raises significant safety concerns, as they may be misused to generate
harmful, biased, or unsafe content (Qi et al., 2023). Ensuring safety alignment—training models
to follow human values and safety standards—has thus become a central challenge in artificial
intelligence.

A widely used approach is supervised fine-tuning (SFT) (Wei et al., 2021), which improves rejection
of harmful queries by training on curated datasets. Despite its effectiveness, SFT typically yields
shallow alignment, making safety behaviors fragile and easily forgotten during downstream domain
fine-tuning, which often results in unsafe responses. To address this issue, Qi et al. proposed
constrained supervised fine-tuning (Constrained SFT) (Qi et al., 2024), which enforces deeper token-
level alignment to enhance robustness against fine-tuning attacks. Nevertheless, constrained SFT
relies mainly on distribution alignment, constraining models only at the per-token probability level
while overlooking the semantic nature of text generation. This limits robustness, leaving models
prone to merely imitating safe distributions rather than developing intrinsic safety awareness.

To overcome these limitations, we propose a new framework that integrates preference alignment
(Xu et al., 2025) with distributional alignment. Our approach introduces preference signals on top
of token-level probability constraints, encouraging fine-tuned models to favor the safe outputs of
their pre-trained counterparts rather than strictly preserving distribution similarity. An auxiliary
loss function formalizes this mechanism, enabling stronger safety alignment while preserving util-
ity. Simulation experiments show that preference alignment can produce consistent safe outputs
even when underlying distributions diverge. Furthermore, evaluations on multiple fine-tuning attack
datasets (Harmful Example Attacks that introduce toxic data to elicit unsafe responses, Identity
Shifting Attacks that alter model identity leading to biased or inaccurate outputs, and Backdoor
Poisoning Attacks—both trigger-free and trigger-based—that insert poisoned data to degrade per-
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formance on specific inputs, Qi et al. (2024)) and utility benchmarks demonstrate that our method
substantially improves safety with only minor utility degradation.

In summary, our contributions are threefold: (1) We identify the limitations of distribution-only
alignment in maintaining safety under domain fine-tuning. (2) We propose a preference-augmented
framework that combines preference and distributional alignment for robust safety. (3) Both theoret-
ical analysis and extensive experiments are provided to validate that our method achieves improved
safety with minimal loss of utility.

2 Related Work

The field of LLM safety alignment has advanced rapidly, with multiple approaches proposed to steer
models toward safe behaviors.

Reinforcement Learning from Human Feedback (RLHF): RLHF has become a dominant
paradigm for aligning LLMs with complex human values (Ouyang et al., 2022; Bai et al., 2022). It
first trains a reward model on human preference data, where annotators compare and rank different
outputs. The LLM policy is then fine-tuned using reinforcement learning to maximize the reward
model’s score. Despite its effectiveness, RLHF is a multi-stage process that can be unstable and
computationally expensive. Moreover, the reward model itself can be exploited through “reward
hacking,” where the LLM maximizes the reward signal without genuinely adhering to intended
values (Gao et al., 2023).

Direct Preference Optimization (DPO): To mitigate the complexity and instability of RLHF,
recent work has proposed Direct Preference Optimization (DPO) as a simpler and more stable
alternative (Rafailov et al., 2023). DPO reformulates alignment as a classification problem over
human preference data, allowing direct policy fine-tuning without explicit reward modeling or
complex RL loops. DPO has shown strong performance, often matching or surpassing RLHF.
However, like RLHF, its effectiveness depends heavily on the quality and coverage of the preference
dataset.

Supervised Fine-Tuning (SFT) or Constrained SFT (CSFT): Compared with RLHF and DPO,
supervised fine-tuning (SFT) offers a more direct and cost-effective approach. The core idea of SFT
is to fine-tune base models on high-quality datasets of prompt-response pairs (Wei et al., 2021).
While effective in enabling models to imitate the response patterns in training data, SFT often
struggles to generalize safety principles to unseen prompts. Its safety largely relies on fixed refusal
templates, leading to a rather shallow form of alignment. Building on this, subsequent research
proposed Constrained Supervised Fine-Tuning (CSFT) (Qi et al., 2024), specifically designed for
safety alignment. CSFT leverages datasets of harmful prompts paired with safe refusal responses and
constrains the model at the token-level probability distribution, so that its generation process more
closely matches the expected safe responses. However, since it primarily emphasizes distributional
similarity, CSFT often overlooks semantic aspects of generation, which limits its robustness in
complex attack scenarios.

Building on these insights, we further explore how to combine distributional alignment with pref-
erence alignment to achieve stronger safety robustness while preserving task utility. To further
investigate the robustness of our approach, we follow the analytical perspective introduced by Xu
(2025). He analyzes policy instability in RL-trained LLMs via reward-to-policy continuity. Brittle-
ness arises from non-unique optima in degenerate tasks, enabling discontinuous shifts from minor
reward changes. Entropy regularization restores Lipschitz continuity for robustness, at stochasticity’s
cost. Unifies explanations for failures like deceptive reasoning and instruction ignoring.

Preference-Augmented Conditional Supervised Fine-Tuning (CSFT+PA): To address these lim-
itations, we propose augmenting CSFT with preference alignment (Table 1). Our framework intro-
duces auxiliary loss terms that bias the fine-tuned model toward the safe outputs of the pre-trained
model, rather than strictly enforcing distributional similarity. This preference-based enhancement not
only strengthens safety alignment but also preserves task utility, significantly improving robustness
against fine-tuning attacks.
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Table 1: Comparison of different alignment methods, the proposed CSFT+PA considers both
distributional alignment and preference alignment.

Method Distributional Alignment Preference Alignment

SFT (Wei et al., 2021) ✓ ✗
CSFT (Qi et al., 2024) ✓ ✗
CSFT+PA (Ours) ✓ ✓

3 Method

This section provides a detailed explanation of the mathematical principles behind our approach.
We first present the overall loss function and then gradually explain the design principles and
implementation details of each component, including their theoretical motivations and practical
implications.

3.1 Novel Loss Function for Safety Aalignment

Our training objective combines two types of loss functions: the Constrained Supervised Fine-tuning
(CSFT) loss and the Preference Alignment (PA) loss. The CSFT loss is designed to achieve token-
level distributional alignment, ensuring that the model’s token probability distributions remain
close to those of the reference safety-aligned model. By contrast, the PA loss enforces token-
level preference alignment, encouraging the model to prefer the safety-aligned outputs over its own
generated outputs. In this sense, the PA loss naturally falls within the broader category of probabilistic
alignment.

Formally, the overall loss function is defined in Equation (1):

𝐿Total (𝜃) = 𝐿CSFT (𝜃) + 𝛿epoch · 𝐿PA (𝜃) (1)

As shown in Equation (1), the total loss is composed of two main terms: 𝐿CSFT (𝜃), the Constrained
Supervised Fine-tuning loss proposed by Qi et al. (2024) in Equation (2), and 𝐿PA (𝜃), our newly
introduced Preference Alignment loss (see Equation (5)). The balancing factor 𝛿epoch serves as
a dynamic scheduling coefficient, gradually increasing the influence of the PA loss as training
progresses, while ensuring stable optimization in the early epochs.

𝐿CSFT (𝜃) = min
𝜃

{
−E(x,y)∼D

[ |y |∑︁
𝑡=1

𝑤𝑡 · log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 )
]}

𝑤𝑡 = 2
{
1 − 𝜎

[
𝛽𝑡

(
log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) − log 𝜋aligned (𝑦𝑡 |x, y<𝑡 )

) ]} (2)

The CSFT loss (Qi et al., 2024) is defined in Equation (2), it enforces token-level distributional
alignment by minimizing the discrepancy between the log-probabilities of the current model and the
safety-aligned model.

3.2 Design PA Loss

The Preference Alignment (PA) loss is motivated by the need to make the output distribution of
the current model 𝜋𝜃 better reflect the token-level preferences of the safety-aligned model 𝜋aligned.
Concretely, for a given token position 𝑡, we want the probability assigned by the current model to
the aligned token 𝑦𝑡 ,aligned to be higher than that assigned to its own token 𝑦𝑡 , 𝜃 . This token-wise
comparison provides fine-grained guidance, complementing the broader distributional alignment
enforced by the CSFT loss.

We first define the token-level preference probability as shown in Equation (3):

P
(
𝑦𝑡 ,aligned ≻ 𝑦𝑡 , 𝜃 | x,y<𝑡

)
=

exp
(
log 𝜋𝜃

(
𝑦𝑡 ,aligned | x,y<𝑡

) )
exp

(
log 𝜋𝜃

(
𝑦𝑡 ,aligned | x, y<𝑡

) )
+ exp

(
log 𝜋𝜃

(
𝑦𝑡 , 𝜃 | x,y<𝑡

) ) (3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

By simplifying this expression, we obtain the sigmoid-based formulation in Equation (4):
P
(
𝑦𝑡 ,aligned ≻ 𝑦𝑡 , 𝜃 | x,y<𝑡

)
= 𝜎

[
log 𝜋𝜃

(
𝑦𝑡 ,aligned | x,y<𝑡

)
− log 𝜋𝜃

(
𝑦𝑡 , 𝜃 | x, y<𝑡

) ]
(4)

This formulation indicates that the preference score increases as the log-probability difference be-
tween the aligned token and the model’s own token increases.

Based on this token-wise preference probability, we define the PA loss as in Equation (5):

𝐿PA (𝜃) = min
𝜃

{
−E(x,y)∼𝐷

[ |y |∑︁
𝑡=1

log𝜎
(
𝜇𝑡 ·

(
log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 )

) ) ]}
(5)

As shown in Equation (5), the PA loss penalizes the model when it fails to assign higher probability
mass to the aligned token. Importantly, this mechanism only activates when there is a discrepancy
between the outputs of the current model and the reference model, thereby avoiding redundant
constraints.

Adaptive Weight 𝜇𝑡 . The adaptive weight 𝜇𝑡 plays a critical role in modulating the strength of the
PA loss. As defined in Equation (6), it is determined by the KL divergence between the current
model distribution and the safety-aligned model distribution:

𝜇𝑡 = 𝐷KL
(
𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) ∥ 𝜋aligned (𝑦𝑡 |x, y<𝑡 )

)
(6)

As shown in Equation (6), if the discrepancy between the two distributions is large, 𝜇𝑡 increases, am-
plifying the gradient contribution of the PA loss at that token. Conversely, when the two distributions
are already similar, 𝜇𝑡 decreases, allowing the CSFT loss to dominate the learning process.

Scheduling Coefficient 𝛿epoch. To control the relative importance of the PA loss throughout training,
we introduce the scheduling coefficient 𝛿epoch, defined in Equation (7):

𝛿epoch = 0.1 + 0.2 × epoch
max epoch

(7)

As Equation (7) shows, 𝛿epoch increases linearly with the number of epochs, gradually raising the
contribution of the PA loss. In the initial epochs, training relies primarily on the CSFT loss, ensuring
stability. As training progresses, the PA loss plays a larger role, but its maximum contribution is
capped at 30% of the total loss.

3.3 Discussion and Summary

The combination of the CSFT loss and the PA loss provides a complementary training mechanism.
On the one hand, the CSFT loss (2) focuses on distributional alignment, ensuring that the probability
distributions of the current model remain close to those of the safety-aligned model across all tokens.
This enforces global stability and prevents the model from deviating excessively during the early
stages of training. On the other hand, the PA loss (5) emphasizes preference alignment at the
token level, directly encouraging the model to prefer outputs chosen by the safety-aligned model.
By incorporating the adaptive weight 𝜇𝑡 (6) and the scheduling coefficient 𝛿epoch (7), the PA loss
adaptively modulates its influence based on both distributional divergence and training progress.

In summary, the CSFT loss serves as a stabilizing force that maintains consistency with the reference
distribution, while the PA loss introduces fine-grained, preference-based guidance that enhances
alignment at the token level. Their integration within the total loss function (1) enables the model to
balance stability and flexibility: it first learns robust distributional patterns under CSFT supervision
and then progressively incorporates token-level preferences through the PA mechanism. This synergy
constitutes the core of our probabilistic alignment framework and underpins the effectiveness of our
training approach.

4 Theoretical Results: Convergence and Robustness

4.1 Convergence Analysis

To establish convergence guarantees, we impose the following standard assumptions in stochastic
optimization:

4
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1. Assumptions on the Objective Function and Gradients: These assumptions ensure the
smoothness and reliability of the gradients, preventing explosions and modeling stochasticity
in approximations, which are essential for convergence in stochastic settings, as used in
Bottou et al. (2018) and Garrigos & Gower (2023).

• Bounded Gradients: For some constant 𝐺 > 0, ∥∇𝜃 log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 )∥ ≤ 𝐺.
• Lipschitz Continuity of Gradients: For some 𝐿 > 0, ∥∇𝐿Total (𝜃1) − ∇𝐿Total (𝜃2)∥ ≤
𝐿∥𝜃1 − 𝜃2∥.

• Unbiased and Bounded Gradient Noise: For stochastic gradient 𝑔(𝜃),

E[𝑔(𝜃) | 𝜃] = ∇𝐿Total (𝜃), E[∥𝑔(𝜃) − ∇𝐿Total (𝜃)∥2 | 𝜃] ≤ 𝜎2.

2. Learning Rate Schedule: The step sizes {𝜂𝑘} satisfy
∑∞
𝑘=1 𝜂𝑘 = ∞, ∑∞𝑘=1 𝜂

2
𝑘
< ∞. This

schedule allows the algorithm to explore the parameter space sufficiently while ensuring the
steps diminish to promote convergence, a foundational condition in stochastic approximation
methods, as introduced in Robbins & Monro (1951), and applied in Bottou et al. (2018).

3. Model-Specific Bounds: These bounds prevent degenerate probabilities and divergences
in the policy, ensuring well-behaved importance weights and non-zero action probabilities,
which are critical in policy-based reinforcement learning and related methods, as assumed
in Schulman et al. (2017) and Xie et al. (2021).

• Bounded Weights and Divergences: There exist constants 𝑊, 𝐷, 𝐾 > 0 such that
|𝑤𝑡 | ≤ 𝑊 , | log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 ) | ≤ 𝐷, and 𝜇𝑡 ≤ 𝐾 .

• Probability Lower Bound: For some 𝜖 > 0, 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) ≥ 𝜖 .
Theorem 4.1 (Convergence Guarantee). Under Assumptions 1–3, the stochastic gradient descent
updates

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝑔(𝜃𝑘)
satisfy

lim inf
𝑘→∞

E
[
∥∇𝐿Total (𝜃𝑘)∥2

]
= 0.

That is, the algorithm converges to a stationary point of 𝐿Total (𝜃) in expectation.

The proof follows the standard stochastic optimization framework with bounded gradients and
diminishing learning rates. All technical derivations are deferred to the Appendix.

4.2 Robustness Analysis

Definition 4.1 (Robustness). A loss function 𝐿 (𝜃) is said to be robust if, under perturbations of
the training distribution 𝐷 with intensity 𝜖 > 0, the perturbed minimizer 𝜃∗, 𝜖 remains close to the
original minimizer 𝜃∗. Formally, robustness holds if there exists a constant 𝐾 > 0 such that

∥𝜃∗, 𝜖 − 𝜃∗∥ ≤ 𝐾𝜖,

where ∥ · ∥ is the Euclidean norm in parameter space. This ensures that the induced policy 𝜋𝜃 exhibits
bounded deviation under perturbations, preventing abrupt ’policy cliffs’ as studied in reward-policy
mappings of large language models. This definition aligns with broader notions of robustness
in machine learning, where stability is maintained under varying conditions or perturbations, as
discussed in Bousquet & Elisseeff (2002).

To establish robustness guarantees, we make the following standard assumptions, weaker than strong
convexity:

• Convexity. The loss function 𝐿Total (𝜃) is convex. This assumption ensures that the opti-
mization landscape has no spurious local minima and that any local minimum is global,
simplifying convergence analysis in theoretical settings. Convexity is a foundational as-
sumption in many optimization studies, though relaxed in practice for deep learning; it has
been extensively used in works such as Boyd & Vandenberghe (2004).

• Lipschitz gradient. Its gradient is 𝐿-Lipschitz continuous, i.e.,

∥∇𝐿Total (𝜃1) − ∇𝐿Total (𝜃2)∥ ≤ 𝐿∥𝜃1 − 𝜃2∥.
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This condition, also known as L-smoothness, bounds the rate of change of the gradient,
which is crucial for controlling step sizes in gradient-based methods and deriving conver-
gence rates. It is a standard assumption in convergence proofs for deep learning optimizers,
as seen in Nesterov (2004) and Bottou et al. (2018).

• Polyak- Lojasiewicz (PL) inequality. There exists 𝜇 > 0 such that
1
2 ∥∇𝐿Total (𝜃)∥2 ≥ 𝜇

(
𝐿Total (𝜃) − 𝐿Total (𝜃∗)

)
.

The PL inequality provides a sufficient condition for linear convergence of gradient descent
without requiring strong convexity, making it suitable for analyzing non-convex objectives
that behave well locally. It was originally introduced by Polyak (1963) and Lojasiewicz
(1963), and has been applied to deep learning optimization in Karimi et al. (2016).

These assumptions are more general than strong convexity and are commonly used to analyze deep
learning objectives that are not globally strongly convex but satisfy local well-behaved properties.
Importantly, the inclusion of the alignment regularizer 𝐿PA (𝜃) increases the effective PL constant 𝜇,
thereby strengthening robustness guarantees.

We now formalize the robustness bound for 𝐿Total (𝜃).
Theorem 4.2 (Robustness Bound). Let 𝜃∗ be the minimizer of 𝐿Total (𝜃), and 𝜃∗, 𝜖 the minimizer
under perturbed data distribution 𝐷 𝜖 with noise intensity 𝜖 > 0. Suppose the gradient of 𝐿Total (𝜃)
is 𝐿-Lipschitz and the gradient perturbation satisfies

∥∇𝐿 𝜖Total (𝜃) − ∇𝐿Total (𝜃)∥ ≤ 𝜖𝐺.
Then,

∥𝜃∗, 𝜖 − 𝜃∗∥ ≤ 𝜖𝐺
𝐿
.

At the minimizers, ∇𝐿Total (𝜃∗) = 0 and ∇𝐿 𝜖Total (𝜃
∗, 𝜖 ) = 0. Combining the gradient perturbation

bound with Lipschitz gradient continuity yields
∥∇𝐿Total (𝜃∗, 𝜖 )∥ ≤ 𝜖𝐺 ≤ 𝐿∥𝜃∗, 𝜖 − 𝜃∗∥,

which implies the stated inequality. The inclusion of 𝐿PA (𝜃) further improves robustness by reducing
effective sensitivity to noise, tightening the bound. This result demonstrates that the proposed loss
function is robust to bounded perturbations, with solution deviations scaling linearly in 𝜖 . The
regularizer 𝐿PA strengthens robustness by mitigating degeneracies in the solution space, thereby
preventing discontinuous shifts in the learned policy under small distributional changes. This aligns
with recent theoretical analyses on preventing ’policy cliffs’ in large-scale models.

5 Experiments

5.1 Pre-experiment 1: Effectiveness of PA Loss

In Pre-experiment 1, we aim to verify that PA loss can achieve effective probability alignment even
when the architectures of the policy model and the reference model differ significantly. Specifically,
the policy model (𝜋𝜃 ) adopts an LSTM with a single fully connected layer, while the reference model
(𝜋aligned) adopts an LSTM with multiple fully connected layers and residual connections, with about
twice as many parameters. The comparison groups consist of Group 1 (training without PA loss,
using only cross-entropy loss) and Group 2 (training with PA loss).

The results are shown in Table 2 and Figures 1. With PA loss, KL divergence is reduced from 1.4575 to
0.2562 (82.4% improvement relative to baseline), and the per-token probability difference decreases
from 0.0169 to 0.0051 (69.8% improvement relative to baseline). These findings demonstrate the
effectiveness of PA loss in probability alignment: even with substantial architectural differences, PA
loss significantly narrows the gap between predictive distributions.

5.2 Pre-experiment 2: Effectiveness of CSFT + PA Loss

In Pre-experiment 2, we further evaluate whether combining CSFT with PA loss achieves better
alignment compared to CSFT loss alone. Similar to Pre-experiment 1, two neural networks with
different architectures are used to simulate 𝜋𝜃 and 𝜋aligned.
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Table 2: Impact of PA Loss on Model Alignment and the developed PA shows lower KL divergence
and token probability difference.

Metric Cross-Entropy PA (ours) Rel. Change vs. Baseline (%)

KL Divergence 1.4575 0.2562 +82.4
Per-Token Probability Diff. 0.0169 0.0051 +69.8

a . KL Divergence (lower is better) b . Token Probability Difference (lower is better)

Figure 1: Results of Pre-experiment 1 (lower is better). With PA loss, both KL divergence and
token probability difference are significantly reduced compared to the Cross-Entropy baseline (cf.
Table 2).

The setup features architectural differences with the policy model using a two-layer LSTM and width-
preserving fully connected layers, versus the reference model’s three-layer LSTM and dimension-
expanded fully connected layers, alongside comparison groups: Group 1 (training with CSFT loss
only) and Group 2 (training with CSFT + PA loss).

The results, illustrated in Figures 2 and 3, show that CSFT + PA loss significantly improves cosine
similarity, Pearson correlation, distribution overlap, and KL similarity compared to CSFT alone (vs.
CSFT baseline); meanwhile, it also achieves smaller KL divergence. This indicates that CSFT + PA
loss achieves superior per-token probability alignment.

a . Pearson Correlation b . Cosine Similarity

Figure 2: Results of Pre-experiment 2 (higher is better). CSFT+PA consistently outperforms CSFT
across Pearson Correlation and Cosine Similarity metrics (vs. CSFT baseline).

5.3 CSFT + PA Loss Evaluation on Large Language Models

To assess the safety and utility of the proposed method in real-world LLM fine-tuning tasks, we
conduct evaluations under adversarial attack scenarios and downstream datasets. The performance
of Llama-2-7B-Chat fine-tuned with our approach is reported in Table 3 and Table 4.

• Safety evaluation: We test under Harmful Example (pure bad) attacks, Identity Shifting
(aoa) attacks, and Backdoor Poisoning attacks, measuring the Attack Success Rate (ASR).

• Utility evaluation: We evaluate on the Samsum dataset and the SQL Create Context dataset
to measure downstream task performance.
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a . Distribution Overlap b . KL Similarity

Figure 3: Results of Pre-experiment 2 (higher is better for Distribution Overlap and KL Similarity).
CSFT+PA outperforms CSFT in terms of distribution-based metrics (vs. CSFT baseline).

Figure 4: KL Divergence (lower is better). CSFT+PA loss leads to smaller distributional differences
compared to CSFT alone (vs. CSFT baseline).

5.3.1 Adversarial Attack Methods

We evaluate the effectiveness of CSFT + PA loss against three types of adversarial attacks: Harmful
Example Attacks, Identity Shifting Attacks, and Backdoor Poisoning Attacks.

• Harmful Example Attacks: These attacks introduce harmful examples into the training
data, which attempt to mislead the model into generating unsafe or toxic responses.

• Identity Shifting Attacks: These attacks involve altering the model’s output to shift its
identity, leading to biased or inaccurate outputs.

• Backdoor Poisoning Attacks: These attacks involve inserting poisoned data points into
the training set, which cause the model to perform poorly on certain inputs. We consider
both trigger-free and trigger-based backdoor attacks.

5.3.2 Safety Evaluation Against Fine-tuning Attacks

The effectiveness of combining CSFT with PA loss in defending against adversarial attacks is
summarized in Table 3, where we report the Attack Success Rate (ASR) for each attack category.
Overall, the results demonstrate that CSFT + PA loss consistently and substantially improves safety
across diverse threat models compared to both standard SFT and CSFT baselines.

More specifically, the results indicate that:

• Harmful Example Attacks: CSFT + PA loss reduces ASR from 88.9% with SFT to
2.7%, corresponding to an additional 25.0% relative improvement over CSFT. This finding
highlights that the proposed PA component is particularly effective in suppressing direct
harmful behaviors that are often missed by naive supervision.

• Identity Shifting Attacks: CSFT + PA loss decreases ASR to 7.5%, achieving a 7.4%
relative improvement compared to CSFT. Although the relative margin is smaller than in
other settings, the consistent reduction underscores the complementary role of PA loss in
enhancing safety even when CSFT already provides strong distributional alignment.

• Backdoor Poisoning Attacks: Substantial improvements are observed in both trigger-free
and trigger-based scenarios. In particular, for the trigger-based case, ASR drops sharply
from 90.9% with SFT to 3.3% with CSFT + PA loss, yielding a 52.3% relative improvement.
This result demonstrates that the adaptive weighting in PA loss effectively amplifies the
defense signal when the model’s behavior deviates most from the safety-aligned reference.
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Table 3: Evaluation of Attack Success Rate (ASR) under Fine-tuning Attacks

Attack Type SFT CSFT CSFT+PA (ours)

Harmful Example (pure bad) 88.9 ± 0.5 3.6 ± 0.5 2.7 ± 0.5
Identity Shifting (aoa) 79.5 ± 0.5 8.1 ± 0.5 7.5 ± 0.5
Backdoor Poisoning (w/o trigger) 7.6 ± 0.5 1.9 ± 0.5 1.5 ± 0.5
Backdoor Poisoning (w/ trigger) 90.9 ± 0.5 6.9 ± 0.5 3.3 ± 0.5

Table 4: Evaluation of Downstream Task Performance

Dataset SFT CSFT CSFT+PA (ours)

Samsum 51.7 ± 0.5 50.1 ± 0.5 47.1 ± 0.5
SQL Create Context 99.1 ± 0.2 98.5 ± 0.5 96.3 ± 0.5

Taken together, these findings underscore that the proposed method provides safe and stable defense
across attack categories. Importantly, the improvements are not confined to a specific type of
adversarial manipulation but generalize to both data-poisoning and behavioral attacks, which is a
key desideratum for practical safety alignment. Table 3 highlights these results in detail.

5.3.3 Utility Evaluation

In addition to safety, we also evaluate the utility of the proposed approach on downstream tasks.
Table 4 presents results on the Samsum and SQL Create Context datasets. Compared to
CSFT, CSFT + PA loss incurs only minor performance degradation (within 6%), indicating that the
improvements in safety do not come at the cost of substantial utility loss.

In particular, the largest relative drop is observed on Samsum (from 50.1 to 47.1, a 6.0% decrease),
while the performance on SQL Create Context decreases marginally by 2.2%. Such modest
trade-offs are common in safety-alignment methods, and the observed magnitudes are well within
acceptable bounds for practical deployment. The overall pattern suggests that CSFT + PA loss
achieves a favorable safety–utility balance: it yields strong adversarial resistance while retaining
high task competence.

In summary, Tables 3 and 4 demonstrate that CSFT + PA loss substantially strengthens safety against
a wide range of adversarial attacks, with the maximum reduction in ASR reaching 52.3%. At the
same time, the approach preserves downstream task performance with only minimal degradation.
This balance between safety and utility is crucial for real-world applications, where adversarial
resistance must be achieved without sacrificing core capabilities.

6 Conclusion

We introduced a preference-augmented alignment framework for mitigating the safety degradation
of LLMs under domain-specific fine-tuning. By complementing token-level distributional alignment
with preference signals, our method encourages models to favor the safe outputs of their pre-trained
counterparts rather than merely imitating distributions. Extensive experiments demonstrate that this
approach achieves a more favorable trade-off between safety and utility, and substantially improves
robustness against adversarial fine-tuning.

Our findings suggest that preference signals can play a crucial role in strengthening intrinsic safety
alignment, pointing toward a new direction for fine-tuning resistant safeguards. Future work may
explore scaling our framework to broader alignment objectives, integrating human feedback more
directly, and extending it to multi-modal or continual fine-tuning settings.
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Ethics Statement

This work investigates methods to improve the safety of large language models. We only use publicly
available datasets and avoid personal or sensitive information. While safety research may reveal
potential risks, our intention is to strengthen responsible and trustworthy AI deployment.

Reproducibility Statement

We are committed to ensuring the reproducibility of our results. All datasets used in this work are
publicly available, and we provide a detailed description of the improved methods in the main text.
The experimental settings, including model architectures and training procedures, are outlined in the
corresponding sections. To further facilitate reproducibility, we will release our source code upon
the publication of the paper.
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A Appendix

A.1 Proof of Loss Function Convergence

A.1.1 Problem Setup and Notation

Consider the total loss function:
𝐿Total (𝜃) = 𝐿CSFT (𝜃) + 𝛿epoch · 𝐿PA (𝜃)

where:

𝐿CSFT (𝜃) = −E(x,y)∼D

[ |y |∑︁
𝑡=1

𝑤𝑡 · log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 )
]

𝑤𝑡 = 2
{
1 − 𝜎

[
𝛽𝑡

(
log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) − log 𝜋aligned (𝑦𝑡 |x, y<𝑡 )

) ]}
𝐿PA (𝜃) = −E(x,y)∼D

[ |y |∑︁
𝑡=1

log𝜎
(
𝜇𝑡 ·

(
log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 )

) ) ]
𝜇𝑡 = 𝐷KL

(
𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) ∥ 𝜋aligned (𝑦𝑡 |x, y<𝑡 )

)
𝛿epoch = 0.1 + 0.2 × epoch

max epoch
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A.1.2 Basic Assumptions

To establish convergence, we adopt the following relatively mild assumptions, which are standard in
stochastic optimization and align with practical deep learning settings:

1. Bounded Gradients: There exists a constant 𝐺 > 0 such that for any 𝜃 and any sample
(𝑥, 𝑦),

∥∇𝜃 log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 )∥ ≤ 𝐺.

2. Lipschitz Continuity of Gradients: There exists a constant 𝐿 > 0 such that for any 𝜃1, 𝜃2,

∥∇𝐿Total (𝜃1) − ∇𝐿Total (𝜃2)∥ ≤ 𝐿∥𝜃1 − 𝜃2∥.

3. Learning Rate Decay: The learning rate sequence {𝜂𝑘} satisfies
∞∑︁
𝑘=1

𝜂𝑘 = ∞,
∞∑︁
𝑘=1

𝜂2
𝑘 < ∞.

4. Bounded Gradient Noise: The stochastic gradient 𝑔(𝜃) satisfies

E[𝑔(𝜃) | 𝜃] = ∇𝐿Total (𝜃), E[∥𝑔(𝜃) − ∇𝐿Total (𝜃)∥2 | 𝜃] ≤ 𝜎2.

5. Bounded Weights: There exists a constant𝑊 > 0 such that for all 𝑡, |𝑤𝑡 | ≤ 𝑊 .
6. Bounded Log-Probability Differences: There exists a constant 𝐷 > 0 such that for all 𝑡

and 𝜃, | log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 ) | ≤ 𝐷.
7. Probability Lower Bound: There exists a constant 𝜖 > 0 such that for all 𝑦𝑡 , 𝑥, 𝑦<𝑡 , and 𝜃,
𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) ≥ 𝜖 . This can be enforced via logit clipping or label smoothing.

8. Bounded KL Divergence: There exists a constant 𝐾 > 0 such that for all 𝑡 and 𝜃, 𝜇𝑡 ≤ 𝐾 .
This holds in finite-vocabulary settings or can be enforced via KL clipping.

Discussion of Assumption Validity

Assumption 2 (Lipschitz continuity) ensures the smoothness of the loss gradient, a standard condition
in stochastic optimization for deriving descent inequalities. It is not overly restrictive: in deep learning
models like Transformers, the loss is a composition of smooth functions (e.g., softmax and cross-
entropy), satisfying local Lipschitz properties in bounded parameter spaces. Unbounded parameters
can be handled via weight decay or gradient clipping. Many activation functions, such as the sigmoid
in 𝐿PA, have inherently Lipschitz gradients. In practice, gradient clipping enforces this condition,
and learning rates are typically chosen smaller than 1/𝐿 for stability.

Assumption 7 (probability lower bound) ensures well-defined KL divergences and gradients. It can
be practically achieved through logit clipping or label smoothing, common in language models.

Assumption 8 (bounded KL) is reasonable in finite-vocabulary models, where KL has a natural upper
bound log(1/min 𝑞(𝑦)). In practice, KL regularization or clipping ensures numerical stability.

A.1.3 Convergence Proof

Gradient Computation and Analysis

First, analyze the gradient of the total loss:

∇𝐿Total (𝜃) = ∇𝐿CSFT (𝜃) + 𝛿epoch∇𝐿PA (𝜃).

CSFT Gradient

The gradient of the CSFT loss is:

∇𝐿CSFT (𝜃) = −E(x,y)∼D

[ |y |∑︁
𝑡=1

𝑤𝑡 · ∇𝜃 log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 )
]
.
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Since 𝑤𝑡 is treated as a constant via detachment, and by Assumption 5, |𝑤𝑡 | ≤ 𝑊 , combined with
Assumption 1, we have:

∥∇𝐿CSFT (𝜃)∥ ≤ 𝑊 · 𝐺 · 𝑇max,

where 𝑇max = max |y | is the maximum sequence length.

PA Gradient

The gradient of the PA loss is:

∇𝐿PA (𝜃) = −E(x,y)∼D

[ |y |∑︁
𝑡=1
∇𝜃 log𝜎 (𝜇𝑡 · Δ𝑡 )

]
,

where Δ𝑡 = log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 ).
The gradient expands as:

∇𝜃 log𝜎(𝑧𝑡 ) = (1 − 𝜎(𝑧𝑡 ))∇𝜃 𝑧𝑡 , 𝑧𝑡 = 𝜇𝑡Δ𝑡 .

Thus,
∇𝜃 𝑧𝑡 = 𝜇𝑡∇𝜃Δ𝑡 + Δ𝑡∇𝜃 𝜇𝑡 ,

where
∇𝜃Δ𝑡 = ∇𝜃 log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − ∇𝜃 log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 ).

By Assumption 1, ∥∇𝜃Δ𝑡 ∥ ≤ 2𝐺.

For ∇𝜃 𝜇𝑡 , since 𝜇𝑡 = 𝐷KL (𝑝∥𝑞) with 𝑝 = 𝜋𝜃 (·|x, y<𝑡 ) and fixed 𝑞 = 𝜋aligned (·|x, y<𝑡 ), the gradient
is:

∇𝜃 𝜇𝑡 = E(x,y)∼D [∇𝜃 log 𝑝(𝑦) · (log 𝑝(𝑦) − log 𝑞(𝑦))] .

By Assumption 1, ∥∇𝜃 log 𝑝(𝑦)∥ ≤ 𝐺. By Assumption 7, and assuming a lower bound on min 𝑞(𝑦)
(common in finite vocabularies), there exists 𝐵 > 0 such that | log 𝑝(𝑦) − log 𝑞(𝑦) | ≤ 𝐵, yielding
∥∇𝜃 𝜇𝑡 ∥ ≤ 𝐺𝐵.

By Assumption 8, 𝜇𝑡 ≤ 𝐾 , and by Assumption 6, |Δ𝑡 | ≤ 𝐷. Since |1 − 𝜎(𝑧𝑡 ) | ≤ 1,

∥∇𝜃 log𝜎(𝑧𝑡 )∥ ≤ 𝜇𝑡 · 2𝐺 + |Δ𝑡 | · 𝐺𝐵 ≤ 2𝐾𝐺 + 𝐷𝐺𝐵.

Thus, there exists a constant 𝐶 = 𝑇max · (2𝐾𝐺 + 𝐷𝐺𝐵) such that

∥∇𝐿PA (𝜃)∥ ≤ 𝐶.

Bounded Total Gradient

Since 𝛿epoch ≤ 0.3, the total gradient is bounded:

∥∇𝐿Total (𝜃)∥ ≤ 𝑊𝐺𝑇max + 0.3𝐶 = 𝑀.

Convergence Framework

Consider the stochastic gradient descent update:

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝑔(𝜃𝑘),

where 𝑔(𝜃𝑘) is an unbiased estimator of ∇𝐿Total (𝜃𝑘).
By Assumption 2, the pointwise descent lemma holds:

𝐿Total (𝜃𝑘+1) ≤ 𝐿Total (𝜃𝑘) + ∇𝐿Total (𝜃𝑘)⊤ (𝜃𝑘+1 − 𝜃𝑘) +
𝐿

2
∥𝜃𝑘+1 − 𝜃𝑘 ∥2.

Substituting the update:

𝐿Total (𝜃𝑘+1) ≤ 𝐿Total (𝜃𝑘) − 𝜂𝑘∇𝐿Total (𝜃𝑘)⊤𝑔(𝜃𝑘) +
𝐿

2
𝜂2
𝑘 ∥𝑔(𝜃𝑘)∥

2. (*)
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A.1.4 Detailed Derivation of the Expected Descent Inequality

In stochastic optimization, deriving the expected descent from the pointwise inequality requires
careful handling of expectations. This section provides a rigorous derivation.

Monotonicity of Expectations
Theorem A.1 (Monotonicity of Conditional Expectations). Let 𝑋 and 𝑌 be random variables on a
probability space, and let F be a sub-𝜎-algebra. If 𝑋 ≤ 𝑌 almost surely, then E[𝑋 | F ] ≤ E[𝑌 | F ]
almost surely.

Proof. This follows from the definition of conditional expectation. For a detailed proof, see Billings-
ley (1995, Probability and Measure). □

Application to Derive Conditional Expectation

Define 𝑋 = 𝐿Total (𝜃𝑘+1) and

𝑌 = 𝐿Total (𝜃𝑘) − 𝜂𝑘∇𝐿Total (𝜃𝑘)⊤𝑔(𝜃𝑘) +
𝐿

2
𝜂2
𝑘 ∥𝑔(𝜃𝑘)∥

2,

with F the 𝜎-algebra generated by 𝜃𝑘 . By Equation (*), 𝑋 ≤ 𝑌 a.s. Thus, by Theorem 1,

E[𝑋 | 𝜃𝑘] ≤ E[𝑌 | 𝜃𝑘] a.s.

By linearity of conditional expectations:

E[𝑌 | 𝜃𝑘] = 𝐿Total (𝜃𝑘) − 𝜂𝑘∇𝐿Total (𝜃𝑘)⊤E[𝑔(𝜃𝑘) | 𝜃𝑘] +
𝐿

2
𝜂2
𝑘E[∥𝑔(𝜃𝑘)∥

2 | 𝜃𝑘] .

By Assumption 4, E[𝑔(𝜃𝑘) | 𝜃𝑘] = ∇𝐿Total (𝜃𝑘), so

∇𝐿Total (𝜃𝑘)⊤E[𝑔(𝜃𝑘) | 𝜃𝑘] = ∥∇𝐿Total (𝜃𝑘)∥2.

For the variance term:

E[∥𝑔(𝜃𝑘)∥2 | 𝜃𝑘] = E[∥𝑔 − ∇ + ∇∥2 | 𝜃𝑘]
= E[∥𝑔 − ∇∥2 | 𝜃𝑘] + ∥∇∥2 + 2E[(𝑔 − ∇)⊤∇ | 𝜃𝑘]
≤ 𝜎2 + ∥∇𝐿Total (𝜃𝑘)∥2,

since the cross term is zero by unbiasedness.

Thus:
E[𝐿Total (𝜃𝑘+1) | 𝜃𝑘] ≤ 𝐿Total (𝜃𝑘) − 𝜂𝑘

(
1 − 𝐿𝜂𝑘

2

)
∥∇𝐿Total (𝜃𝑘)∥2 +

𝐿

2
𝜂2
𝑘𝜎

2.

Taking full expectation (law of total expectation):

E[𝐿Total (𝜃𝑘+1)] ≤ E[𝐿Total (𝜃𝑘)] − 𝜂𝑘
(
1 − 𝐿

2
𝜂𝑘

)
E[∥∇𝐿Total (𝜃𝑘)∥2] +

𝐿

2
𝜂2
𝑘𝜎

2. (**)

A.1.5 Detailed Derivation of the Convergence Conclusion

From Equation (**), sum from 𝑘 = 1 to 𝐾:
𝐾∑︁
𝑘=1
(E[𝐿Total (𝜃𝑘+1)] − E[𝐿Total (𝜃𝑘)]) ≤ −

𝐾∑︁
𝑘=1

𝜂𝑘

(
1 − 𝐿

2
𝜂𝑘

)
E[∥∇∥2] + 𝐿𝜎

2

2

𝐾∑︁
𝑘=1

𝜂2
𝑘 .

The left side telescopes to E[𝐿Total (𝜃𝐾+1)] − E[𝐿Total (𝜃1)]. Rearranging:
𝐾∑︁
𝑘=1

𝜂𝑘

(
1 − 𝐿

2
𝜂𝑘

)
E[∥∇𝐿Total (𝜃𝑘)∥2] ≤ E[𝐿Total (𝜃1)] − E[𝐿Total (𝜃𝐾+1)] +

𝐿𝜎2

2

𝐾∑︁
𝑘=1

𝜂2
𝑘 .
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Since 𝐿Total ≥ 0 (as a negative log-likelihood), E[𝐿Total (𝜃𝐾+1)] ≥ 0, so the sum is bounded above by
a term that remains finite as 𝐾 →∞ (due to

∑
𝜂2
𝑘
< ∞). Thus:

∞∑︁
𝑘=1

𝜂𝑘

(
1 − 𝐿

2
𝜂𝑘

)
E[∥∇𝐿Total (𝜃𝑘)∥2] < ∞.

Assume for contradiction that lim inf E[∥∇∥2] > 0. Then there exists 𝜖 > 0 and subsequence {𝑘𝑗 }
with E[∥∇(𝜃𝑘𝑗 )∥2] ≥ 𝜖 . For large 𝑗 , 1 − (𝐿/2)𝜂𝑘𝑗 > 1/2, so the subsum diverges, contradicting the
finite sum. Hence:

lim inf
𝑘→∞

E[∥∇𝐿Total (𝜃𝑘)∥2] = 0.

A.2 Proof of Loss Function Robustness

A.2.1 Introduction

In this proof, we consider the given loss function form and rigorously prove its robustness. First,
we clearly define ’robustness’ in the context of optimization. Subsequently, through mathematical
derivations, we analyze the optimization process, particularly focusing on what quantity’s variation
causes the policy 𝜋𝜃 to approach 𝜋aligned. Finally, we provide a quantitative proof using weaker
assumptions (such as convexity, Lipschitz gradient continuity, and the Polyak- Lojasiewicz (PL)
inequality, rather than strong convexity). These assumptions are more general and applicable to
certain non-strongly convex but locally well-behaved loss functions, as commonly encountered in
deep learning scenarios.

To align with theoretical analyses in related literature, such as ’The Policy Cliff: A Theoretical
Analysis of Reward-Policy Maps in Large Language Models,’ we emphasize how regularization
terms like 𝐿PA (𝜃) resolve degeneracies in optima, preventing ’policy cliffs’ (discontinuous policy
shifts under perturbations) by acting as tie-breakers in cases of non-unique optimal actions.

A.2.2 Definition of Robustness

Definition A.1 (Robustness). In optimization problems, the robustness of the loss function 𝐿 (𝜃)
refers to the system’s ability to maintain its performance and stability in the face of uncertainty or
perturbations. Specifically, uncertainty may manifest as noise perturbations in the input data 𝐷
(such as label noise or input variations). We quantify the perturbation size through the noise intensity
𝜖 > 0, representing the maximum amplitude of data deviation.

Quantitatively, the loss function 𝐿 (𝜃) is considered robust if, for a noise perturbation 𝜖 , the perturbed
optimal solution 𝜃∗, 𝜖 and the original optimal solution 𝜃∗ satisfy:

∥𝜃∗, 𝜖 − 𝜃∗∥ ≤ 𝐾𝜖,

where 𝐾 is a Lipschitz-related constant. Here, we uniformly use the Euclidean norm ∥ · ∥ in the
parameter space to measure changes in solutions, ensuring consistency. This ensures that changes
in the output (optimal solution or policy 𝜋𝜃 ) are linearly bounded by the perturbation size.

In cases where optima are non-unique (degenerate), perturbations can lead to discontinuous shifts,
akin to ’policy cliffs’ in reward-policy maps. Our assumptions (e.g., PL inequality) ensure uniqueness,
mitigating such issues.

In this context, uncertainty primarily refers to noise in the data distribution 𝐷, characterized by 𝜖 .
We will prove that the total loss 𝐿Total (𝜃), by incorporating the 𝐿PA (𝜃) term, enhances robustness to
noise. Specifically, 𝐿PA acts as a regularization term that strengthens the PL inequality constant 𝜇,
thereby tightening the robustness bound.

A.2.3 Review of the Loss Function

The total loss function is:
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𝐿Total (𝜃) = 𝐿CSFT (𝜃) + 𝛿epoch · 𝐿PA (𝜃),

where

𝐿CSFT (𝜃) = −E(x,y)∼D

[ |y |∑︁
𝑡=1

𝑤𝑡 · log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 )
]
,

𝑤𝑡 = 2
{
1 − 𝜎

[
𝛽𝑡

(
log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) − log 𝜋aligned (𝑦𝑡 |x, y<𝑡 )

) ]}
,

𝐿PA (𝜃) = −E(x,y)∼D

[ |y |∑︁
𝑡=1

log𝜎
(
𝜇𝑡 ·

(
log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 )

) ) ]
,

𝜇𝑡 = 𝐷KL
(
𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) ∥ 𝜋aligned (𝑦𝑡 |x, y<𝑡 )

)
.

Note that 𝑦𝑡 ,aligned and 𝑦𝑡 , 𝜃 are the argmax predictions of 𝜋aligned and 𝜋𝜃 at position 𝑡 (assuming
softmax outputs as probability distributions, taking the maximum probability class). To handle the
non-differentiability of argmax, we implicitly use a softened version (such as temperature-scaled
softmax approximation) to ensure gradient flow. 𝑤𝑡 is treated as a constant in gradient computations
(via detach operation) to avoid overfitting to noise. 𝛿epoch is a scheduling parameter that increases
with epochs, used to gradually strengthen the regularization effect.

A.2.4 Analysis of the Optimization Process: The Key Factor Driving Policy Alignment

During optimization, we use gradient descent to minimize 𝐿Total (𝜃). The update rule is 𝜃 ←
𝜃 − 𝜂∇𝜃𝐿Total (𝜃), where 𝜂 is the learning rate.

The key question is: what quantity’s variation causes 𝜋𝜃 to approach 𝜋aligned. The answer lies in the
gradient contribution of 𝐿PA (𝜃). Specifically, the variation in 𝜇𝑡 (i.e., changes in KL divergence)
drives this process. We will compute the gradients in detail to demonstrate this.

First, consider the gradient of 𝐿PA (𝜃):

∇𝜃𝐿PA (𝜃) = −E(x,y)∼D

[ |y |∑︁
𝑡=1
∇𝜃 log𝜎 (𝜇𝑡 · Δ𝑡 )

]
,

where Δ𝑡 = log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 ).
Let 𝑧𝑡 = 𝜇𝑡 · Δ𝑡 , then the gradient of log𝜎(𝑧𝑡 ) is:

∇𝜃 log𝜎(𝑧𝑡 ) =
1

𝜎(𝑧𝑡 )
· 𝜎′ (𝑧𝑡 ) · ∇𝜃 𝑧𝑡 .

Since 𝜎′ (𝑧) = 𝜎(𝑧) (1 − 𝜎(𝑧)), we have:

𝜎′ (𝑧𝑡 )
𝜎(𝑧𝑡 )

= 1 − 𝜎(𝑧𝑡 ),

thus:

∇𝜃 log𝜎(𝑧𝑡 ) = (1 − 𝜎(𝑧𝑡 ))∇𝜃 𝑧𝑡 .

Next, compute ∇𝜃 𝑧𝑡 :

∇𝜃 𝑧𝑡 = Δ𝑡 · ∇𝜃 𝜇𝑡 + 𝜇𝑡 · ∇𝜃Δ𝑡 .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Here, 𝜇𝑡 = 𝐷KL (𝜋𝜃 ∥𝜋aligned), and its gradient is:

∇𝜃𝐷KL (𝜋𝜃 ∥𝜋aligned) = E(x,y)∼D

[
∇𝜃 log 𝜋𝜃 (𝑦𝑡 |x, y<𝑡 ) log

𝜋𝜃 (𝑦𝑡 |x, y<𝑡 )
𝜋aligned (𝑦𝑡 |x, y<𝑡 )

]
.

For ∇𝜃Δ𝑡 :

∇𝜃Δ𝑡 = ∇𝜃 log 𝜋𝜃 (𝑦𝑡 ,aligned |x, y<𝑡 ) − ∇𝜃 log 𝜋𝜃 (𝑦𝑡 , 𝜃 |x, y<𝑡 ).

When 𝜇𝑡 is large (high KL divergence, misaligned positions), theΔ𝑡∇𝜃 𝜇𝑡 term dominates, amplifying
the gradient to push for KL reduction. Conversely, low 𝜇𝑡 weakens the gradient. 𝛿epoch controls the
weight of this term.

Thus, the quantity driving 𝜋𝜃 toward 𝜋aligned is the variation in 𝜇𝑡 , i.e., the reduction in KL divergence,
achieved through the dynamic adjustment of the regularization effect in 𝐿PA.

This mechanism aligns with tie-breaking in degenerate optima: high KL indicates non-unique actions,
and 𝐿PA resolves this by favoring aligned policies, preventing rational exploitation of incomplete
losses (similar to ’clever slacker’ behaviors in policy cliffs literature).

A.2.5 Quantitative Proof of Robustness

We assume the loss function 𝐿Total (𝜃) satisfies convexity, its gradient ∇𝜃𝐿Total (𝜃) is 𝐿-Lipschitz
continuous, and the Polyak- Lojasiewicz (PL) inequality:

1
2
∥∇𝐿Total (𝜃)∥2 ≥ 𝜇(𝐿Total (𝜃) − 𝐿Total (𝜃∗)),

where 𝜇 > 0 is a constant. The PL inequality and convexity ensure the existence and uniqueness
of minimizers, as well as convergence rates in optimization, while not directly required for the
parameter bound derivation below. Introducing 𝐿PA (𝜃) can increase 𝜇, as the KL divergence
regularization enhances the lower bound on the gradient norm. Specifically, through Hessian analysis,
𝐿PA contributes positive definite terms to the second derivatives, increasing the effective curvature
lower bound (refer to optimization literature such as Karimi et al.). For a sketch: the Hessian of
𝐿PA involves terms like ∇2𝐷KL, which is positive semi-definite for entropy-like regularizers, thus
boosting the minimal eigenvalue related to 𝜇.
Lemma A.1 (Perturbation Bounds). Consider noisy data 𝐷 𝜖 = 𝐷 + 𝜖𝜉, where 𝜉 is bounded noise,
∥𝜉∥ ≤ 1. Then 𝐿 𝜖Total (𝜃) = 𝐿Total (𝜃) + 𝜖 · 𝑔(𝜃, 𝜉), where 𝑔 is a bounded function, |𝑔 | ≤ 𝑀 .

Additionally, for the gradients, ∥∇𝜃𝐿 𝜖Total (𝜃) − ∇𝜃𝐿Total (𝜃)∥ ≤ 𝜖𝐺, where 𝐺 is the bound on gradient
perturbations.

Proof: By the linearity of expectations and the Lipschitz nature of continuous functions, the noise
linearly affects the loss and gradients. Specifically, for each expectation term, the difference due to
perturbation is linearly controlled by 𝜖 , yielding |𝐿 𝜖Total (𝜃) −𝐿Total (𝜃) | ≤ 𝜖𝑀 . Applying the chain rule
to gradients, each derivative term’s perturbation is also linear, so ∥∇𝜃𝐿 𝜖Total (𝜃) − ∇𝜃𝐿Total (𝜃)∥ ≤ 𝜖𝐺.
Theorem A.2 (Robustness Bound). Let 𝜃∗ be the minimizer of 𝐿Total (𝜃), and 𝜃∗, 𝜖 the minimizer of
𝐿 𝜖Total (𝜃). Assuming the gradient ∇𝜃𝐿Total (𝜃) is 𝐿-Lipschitz continuous and the gradient perturbation
satisfies ∥∇𝜃𝐿 𝜖Total (𝜃) − ∇𝜃𝐿Total (𝜃)∥ ≤ 𝜖𝐺, then

∥𝜃∗, 𝜖 − 𝜃∗∥ ≤ 𝜖𝐺
𝐿
.

Proof: Since 𝜃∗ and 𝜃∗, 𝜖 are minimizers, we have ∇𝐿Total (𝜃∗) = 0 and ∇𝐿 𝜖Total (𝜃
∗, 𝜖 ) = 0. From the

gradient perturbation assumption,

∥∇𝐿Total (𝜃∗, 𝜖 )∥ = ∥∇𝐿Total (𝜃∗, 𝜖 ) − ∇𝐿 𝜖Total (𝜃
∗, 𝜖 )∥ ≤ 𝜖𝐺.

By Lipschitz gradient continuity,
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∥∇𝐿Total (𝜃∗, 𝜖 ) − ∇𝐿Total (𝜃∗)∥ ≤ 𝐿∥𝜃∗, 𝜖 − 𝜃∗∥.

Since ∇𝐿Total (𝜃∗) = 0,

∥∇𝐿Total (𝜃∗, 𝜖 )∥ ≤ 𝐿∥𝜃∗, 𝜖 − 𝜃∗∥.

Combining the inequalities,

∥∇𝐿Total (𝜃∗, 𝜖 )∥ ≤ 𝜖𝐺 ≤ 𝐿∥𝜃∗, 𝜖 − 𝜃∗∥,

thus

∥𝜃∗, 𝜖 − 𝜃∗∥ ≤ 𝜖𝐺
𝐿
.

This bound shows that parameter changes are linearly related to the perturbation size 𝜖 , proving
robustness. Introducing 𝐿PA can reduce the effective Lipschitz constant 𝐿 (through smoothing)
or decrease 𝐺 (reducing noise sensitivity), thereby tightening the bound. The PL inequality and
convexity ensure minimizer existence and uniqueness but do not directly participate in deriving the
parameter bound.

A.3 The Use of Large Language Models

In this work, we employ large language models (LLMs) primarily as assistants for writing. Their
role is limited to aiding the authors in polishing the presentation and improving readability.
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