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ABSTRACT

Domain-specific fine-tuning of large language models (LLMs) often compromises
their safety alignment, leading to unsafe generations. Existing approaches largely
rely on distributional alignment, enforcing token-level similarity between pre-
and post-fine-tuned models. However, this neglects the semantic nature of text
generation and can weaken the model’s reasoning and robustness. To address this
limitation, we propose a preference-based alignment framework that complements
distributional alignment by biasing the fine-tuned model toward the safe outputs
of the pre-trained model, rather than strictly preserving distributional similarity.
Simulation results show that preference alignment produces consistent safe outputs
even when the underlying distributions differ. Extensive experiments on multiple
fine-tuning attack datasets and utility benchmarks further demonstrate that our
method substantially improves safety with only minor degradation in utility. This
achieves a more favorable balance between safety and utility, and significantly
enhances robustness against adversarial fine-tuning.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks,
from content creation to complex reasoning (Touvron et al., 2023a:bj [Team, 2023). However, their
powerful functionality also raises significant safety concerns, as they may be misused to generate
harmful, biased, or unsafe content (Q1 et al.l 2023). Ensuring safety alignment—training models
to follow human values and safety standards—has thus become a central challenge in artificial
intelligence.

A widely used approach is supervised fine-tuning (SFT) (Wei et al.,[202 1)), which improves rejection
of harmful queries by training on curated datasets. Despite its effectiveness, SFT typically yields
shallow alignment, making safety behaviors fragile and easily forgotten during downstream domain
fine-tuning, which often results in unsafe responses. To address this issue, Qi et al. proposed
constrained supervised fine-tuning (Constrained SFT) (Qi1 et al., 2024)), which enforces deeper token-
level alignment to enhance robustness against fine-tuning attacks. Nevertheless, constrained SFT
relies mainly on distribution alignment, constraining models only at the per-token probability level
while overlooking the semantic nature of text generation. This limits robustness, leaving models
prone to merely imitating safe distributions rather than developing intrinsic safety awareness.

To overcome these limitations, we propose a new framework that integrates preference alignment
(Xu et al.|, 2025) with distributional alignment. Our approach introduces preference signals on top
of token-level probability constraints, encouraging fine-tuned models to favor the safe outputs of
their pre-trained counterparts rather than strictly preserving distribution similarity. An auxiliary
loss function formalizes this mechanism, enabling stronger safety alignment while preserving util-
ity. Simulation experiments show that preference alignment can produce consistent safe outputs
even when underlying distributions diverge. Furthermore, evaluations on multiple fine-tuning attack
datasets (Harmful Example Attacks that introduce toxic data to elicit unsafe responses, Identity
Shifting Attacks that alter model identity leading to biased or inaccurate outputs, and Backdoor
Poisoning Attacks—both trigger-free and trigger-based—that insert poisoned data to degrade per-
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formance on specific inputs, Qi et al.|(2024)) and utility benchmarks demonstrate that our method
substantially improves safety with only minor utility degradation.

In summary, our contributions are threefold: (1) We identify the limitations of distribution-only
alignment in maintaining safety under domain fine-tuning. (2) We propose a preference-augmented
framework that combines preference and distributional alignment for robust safety. (3) Both theoret-
ical analysis and extensive experiments are provided to validate that our method achieves improved
safety with minimal loss of utility.

2  RELATED WORK

The field of LLM safety alignment has advanced rapidly, with multiple approaches proposed to steer
models toward safe behaviors.

Reinforcement Learning from Human Feedback (RLHF): RLHF has become a dominant
paradigm for aligning LLMs with complex human values (Ouyang et al., 2022; |Bai et al., [2022)). It
first trains a reward model on human preference data, where annotators compare and rank different
outputs. The LLM policy is then fine-tuned using reinforcement learning to maximize the reward
model’s score. Despite its effectiveness, RLHF is a multi-stage process that can be unstable and
computationally expensive. Moreover, the reward model itself can be exploited through “reward
hacking,” where the LLM maximizes the reward signal without genuinely adhering to intended
values (Gao et al., 2023)).

Direct Preference Optimization (DPO): To mitigate the complexity and instability of RLHF,
recent work has proposed Direct Preference Optimization (DPO) as a simpler and more stable
alternative (Rafailov et al [2023). DPO reformulates alignment as a classification problem over
human preference data, allowing direct policy fine-tuning without explicit reward modeling or
complex RL loops. DPO has shown strong performance, often matching or surpassing RLHF.
However, like RLHF, its effectiveness depends heavily on the quality and coverage of the preference
dataset.

Supervised Fine-Tuning (SFT) or Constrained SFT (CSFT): Compared with RLHF and DPO,
supervised fine-tuning (SFT) offers a more direct and cost-effective approach. The core idea of SFT
is to fine-tune base models on high-quality datasets of prompt-response pairs (Wei et al., [2021).
While effective in enabling models to imitate the response patterns in training data, SFT often
struggles to generalize safety principles to unseen prompts. Its safety largely relies on fixed refusal
templates, leading to a rather shallow form of alignment. Building on this, subsequent research
proposed Constrained Supervised Fine-Tuning (CSFT) (Q1 et al.| 2024), specifically designed for
safety alignment. CSFT leverages datasets of harmful prompts paired with safe refusal responses and
constrains the model at the token-level probability distribution, so that its generation process more
closely matches the expected safe responses. However, since it primarily emphasizes distributional
similarity, CSFT often overlooks semantic aspects of generation, which limits its robustness in
complex attack scenarios.

Building on these insights, we further explore how to combine distributional alignment with pref-
erence alignment to achieve stronger safety robustness while preserving task utility. To further
investigate the robustness of our approach, we follow the analytical perspective introduced by Xu
(2025)). He analyzes policy instability in RL-trained LLMs via reward-to-policy continuity. Brittle-
ness arises from non-unique optima in degenerate tasks, enabling discontinuous shifts from minor
reward changes. Entropy regularization restores Lipschitz continuity for robustness, at stochasticity’s
cost. Unifies explanations for failures like deceptive reasoning and instruction ignoring.

Preference-Augmented Conditional Supervised Fine-Tuning (CSFT+PA): To address these lim-
itations, we propose augmenting CSFT with preference alignment (Table[I). Our framework intro-
duces auxiliary loss terms that bias the fine-tuned model toward the safe outputs of the pre-trained
model, rather than strictly enforcing distributional similarity. This preference-based enhancement not
only strengthens safety alignment but also preserves task utility, significantly improving robustness
against fine-tuning attacks.
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Table 1: Comparison of different alignment methods, the proposed CSFT+PA considers both
distributional alignment and preference alignment.

Method Distributional Alignment Preference Alignment
SFT (Wei et al., 2021) v
CSFT (Qi et al., [2024) v X
CSFT+PA (Ours) v v

3 METHOD

This section provides a detailed explanation of the mathematical principles behind our approach.
We first present the overall loss function and then gradually explain the design principles and
implementation details of each component, including their theoretical motivations and practical
implications.

3.1 NoveL Loss FUNCTION FOR SAFETY AALIGNMENT

Our training objective combines two types of loss functions: the Constrained Supervised Fine-tuning
(CSFT) loss and the Preference Alignment (PA) loss. The CSFT loss is designed to achieve token-
level distributional alignment, ensuring that the model’s token probability distributions remain
close to those of the reference safety-aligned model. By contrast, the PA loss enforces token-
level preference alignment, encouraging the model to prefer the safety-aligned outputs over its own
generated outputs. In this sense, the PA loss naturally falls within the broader category of probabilistic
alignment.

Formally, the overall loss function is defined in Equation (IJ):
Lo (8) = Lespr(6) + Sepoch + Lea(0) (1

As shown in Equation , the total loss is composed of two main terms: Lcspr(6), the Constrained
Supervised Fine-tuning loss proposed by [Qi et al.| (2024) in Equation (2)), and Lpa (), our newly
introduced Preference Alignment loss (see Equation @). The balancing factor depoch serves as
a dynamic scheduling coefficient, gradually increasing the influence of the PA loss as training
progresses, while ensuring stable optimization in the early epochs.

} @

wy =2 {1 - [ﬁt (IOgn’H()’thﬁ Y<r) — log mutigned (V¢ |, y<t))]}

|yl
Z w; - log g (ye |2, Y<t)

Lesrr(6) = mgin {_E(m,y)~D
=1

The CSFT loss (Q1 et al) [2024) is defined in Equation , it enforces token-level distributional
alignment by minimizing the discrepancy between the log-probabilities of the current model and the
safety-aligned model.

3.2 DesioN PA Loss

The Preference Alignment (PA) loss is motivated by the need to make the output distribution of
the current model 7g better reflect the token-level preferences of the safety-aligned model maigneq-
Concretely, for a given token position ¢, we want the probability assigned by the current model to
the aligned token y; aligned to be higher than that assigned to its own token y; g. This token-wise
comparison provides fine-grained guidance, complementing the broader distributional alignment
enforced by the CSFT loss.

We first define the token-level preference probability as shown in Equation (3):

exXp (IOg T (yt,aligned | z, y<t))
exp (log o (yt,aligned | x, y<t)) +exp (log o (yt,e | x, y<t))

P (yr.atigned > Yr.0 | & Y<;) = ®)
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By simplifying this expression, we obtain the sigmoid-based formulation in Equation ():

P (yr.atigned = Ye,0 | T, Y<) = 0 [log 7 (yr atigned | T, Y<i) —logmo (i | T, y<)] @)

This formulation indicates that the preference score increases as the log-probability difference be-
tween the aligned token and the model’s own token increases.

)
As shown in Equation (3)), the PA loss penalizes the model when it fails to assign higher probability
mass to the aligned token. Importantly, this mechanism only activates when there is a discrepancy
between the outputs of the current model and the reference model, thereby avoiding redundant
constraints.

Based on this token-wise preference probability, we define the PA loss as in Equation (5):

|yl
Zlogo- (1s - (log 7o (s aligned &, Y<i) — log o (1,0l y<1)))

t=1

LPA(Q) = H}gin {_E(w,y)~D

Adaptive Weight p,. The adaptive weight u, plays a critical role in modulating the strength of the
PA loss. As defined in Equation (6), it is determined by the KL divergence between the current
model distribution and the safety-aligned model distribution:

e = Dxe (mo (yel@, y<i) || Matignea (vel 2, y<i)) (6)

As shown in Equation (6), if the discrepancy between the two distributions is large, y, increases, am-
plifying the gradient contribution of the PA loss at that token. Conversely, when the two distributions
are already similar, i, decreases, allowing the CSFT loss to dominate the learning process.

Scheduling Coefficient 6epocn. To control the relative importance of the PA loss throughout training,
we introduce the scheduling coeflicient depocn, defined in Equation :

epoch

Sepoch = 0.1+ 0.2 x 7)

max_epoch
As Equation shows, Oepoch increases linearly with the number of epochs, gradually raising the
contribution of the PA loss. In the initial epochs, training relies primarily on the CSFT loss, ensuring
stability. As training progresses, the PA loss plays a larger role, but its maximum contribution is
capped at 30% of the total loss.

3.3 DISCUSSION AND SUMMARY

The combination of the CSFT loss and the PA loss provides a complementary training mechanism.
On the one hand, the CSFT loss (2) focuses on distributional alignment, ensuring that the probability
distributions of the current model remain close to those of the safety-aligned model across all tokens.
This enforces global stability and prevents the model from deviating excessively during the early
stages of training. On the other hand, the PA loss (5) emphasizes preference alignment at the
token level, directly encouraging the model to prefer outputs chosen by the safety-aligned model.
By incorporating the adaptive weight @ and the scheduling coefficient depoch , the PA loss
adaptively modulates its influence based on both distributional divergence and training progress.

In summary, the CSFT loss serves as a stabilizing force that maintains consistency with the reference
distribution, while the PA loss introduces fine-grained, preference-based guidance that enhances
alignment at the token level. Their integration within the total loss function (1)) enables the model to
balance stability and flexibility: it first learns robust distributional patterns under CSFT supervision
and then progressively incorporates token-level preferences through the PA mechanism. This synergy
constitutes the core of our probabilistic alignment framework and underpins the effectiveness of our
training approach.

4 THeorETICAL RESuLTS: CONVERGENCE AND ROBUSTNESS

4.1 CONVERGENCE ANALYSIS

To establish convergence guarantees, we impose the following standard assumptions in stochastic
optimization:
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1. Assumptions on the Objective Function and Gradients: These assumptions ensure the
smoothness and reliability of the gradients, preventing explosions and modeling stochasticity
in approximations, which are essential for convergence in stochastic settings, as used in
Bottou et al.[(2018)) and |Garrigos & Gower| (2023).

* Bounded Gradients: For some constant G > 0, |Vg log 7 (y; |, y</)|| £ G.

¢ Lipschitz Continuity of Gradients: For some L > 0, ||V L1y (01) — VLo (62)] <
L||6; - 6]|.

* Unbiased and Bounded Gradient Noise: For stochastic gradient g(8),

E[g(0) | 6] = Vi (0), E[llg(6) — Vit (O)[I* | 6] < o2

2. Learning Rate Schedule: The step sizes {n} satisfy ;> 7k = o0, X7, ni < oo, This
schedule allows the algorithm to explore the parameter space sufficiently while ensuring the
steps diminish to promote convergence, a foundational condition in stochastic approximation
methods, as introduced in|Robbins & Monro| (1951)), and applied in|Bottou et al.| (2018).

3. Model-Specific Bounds: These bounds prevent degenerate probabilities and divergences
in the policy, ensuring well-behaved importance weights and non-zero action probabilities,
which are critical in policy-based reinforcement learning and related methods, as assumed
in|Schulman et al.| (2017} and |Xie et al.| (2021).

* Bounded Weights and Divergences: There exist constants W, D, K > 0 such that
Iwe| < W, [log g (yr,aligned| T, Y<i) — log mo (ys,012, Y<)| < D, and p; < K.
 Probability Lower Bound: For some € > 0, 7y (y;|T, y<;) > €.

Theorem 4.1 (Convergence Guarantee). Under Assumptions 1-3, the stochastic gradient descent
updates
Ok+1 = Ok — kg (Ok)
satisfy
lim inf B[V L (91| = 0.

That is, the algorithm converges to a stationary point of Lyya(6) in expectation.

The proof follows the standard stochastic optimization framework with bounded gradients and
diminishing learning rates. All technical derivations are deferred to the Appendix.

4.2 ROBUSTNESS ANALYSIS

Definition 4.1 (Robustness). A loss function L(0) is said to be robust if, under perturbations of
the training distribution D with intensity € > 0, the perturbed minimizer 0" € remains close to the
original minimizer 8*. Formally, robustness holds if there exists a constant K > 0 such that

16%€ - 6%|| < Ke,

where ||-|| is the Euclidean norm in parameter space. This ensures that the induced policy ng exhibits
bounded deviation under perturbations, preventing abrupt ’policy cliffs’ as studied in reward-policy
mappings of large language models. This definition aligns with broader notions of robustness
in machine learning, where stability is maintained under varying conditions or perturbations, as
discussed in Bousquet & Elisseeff](2002).

To establish robustness guarantees, we make the following standard assumptions, weaker than strong
convexity:

* Convexity. The loss function Ly (6) is convex. This assumption ensures that the opti-
mization landscape has no spurious local minima and that any local minimum is global,
simplifying convergence analysis in theoretical settings. Convexity is a foundational as-
sumption in many optimization studies, though relaxed in practice for deep learning; it has
been extensively used in works such asBoyd & Vandenberghe|(2004).

* Lipschitz gradient. Its gradient is L-Lipschitz continuous, i.e.,

IV Lrota1 (61) — VLo (2) ]| < L|61 = 62]|.
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This condition, also known as L-smoothness, bounds the rate of change of the gradient,
which is crucial for controlling step sizes in gradient-based methods and deriving conver-
gence rates. It is a standard assumption in convergence proofs for deep learning optimizers,
as seen in |[Nesterov| (2004) and Bottou et al.| (2018)).

¢ Polyak-Lojasiewicz (PL) inequality. There exists u > 0 such that

%”VLTotal(G)”2 2 /l(LTolal(g) - LTotal(g*))~

The PL inequality provides a sufficient condition for linear convergence of gradient descent
without requiring strong convexity, making it suitable for analyzing non-convex objectives
that behave well locally. It was originally introduced by Polyak| (1963) and |Lojasiewicz
(1963)), and has been applied to deep learning optimization in Karimi et al.[(2016).

These assumptions are more general than strong convexity and are commonly used to analyze deep
learning objectives that are not globally strongly convex but satisfy local well-behaved properties.
Importantly, the inclusion of the alignment regularizer Lpa (6) increases the effective PL constant y,
thereby strengthening robustness guarantees.

We now formalize the robustness bound for Ly (6).

Theorem 4.2 (Robustness Bound). Let 6* be the minimizer of Lyya(0), and 0™ € the minimizer
under perturbed data distribution D€ with noise intensity € > 0. Suppose the gradient of Ly (0)
is L-Lipschitz and the gradient perturbation satisfies

IVLE 1 (0) = VLo (0)|| < €G.

Total

Then,

G
o= - 67| < <.
L

At the minimizers, VLo (6°) = 0 and VL (6*€) = 0. Combining the gradient perturbation
bound with Lipschitz gradient continuity yields

IV Lot (67 )|l < €G < L||6™€ - 67,

which implies the stated inequality. The inclusion of Lpa () further improves robustness by reducing
effective sensitivity to noise, tightening the bound. This result demonstrates that the proposed loss
function is robust to bounded perturbations, with solution deviations scaling linearly in €. The
regularizer Lps strengthens robustness by mitigating degeneracies in the solution space, thereby
preventing discontinuous shifts in the learned policy under small distributional changes. This aligns
with recent theoretical analyses on preventing ’policy cliffs’ in large-scale models.

5 EXPERIMENTS

5.1 PRrRE-EXPERIMENT 1: EFFECTIVENESS OF PA Loss

In Pre-experiment 1, we aim to verify that PA loss can achieve effective probability alignment even
when the architectures of the policy model and the reference model differ significantly. Specifically,
the policy model (rg) adopts an LSTM with a single fully connected layer, while the reference model
(Talignea) adopts an LSTM with multiple fully connected layers and residual connections, with about
twice as many parameters. The comparison groups consist of Group 1 (training without PA loss,
using only cross-entropy loss) and Group 2 (training with PA loss).

The results are shown in Table[2Jand Figures[I] With PA loss, KL divergence is reduced from 1.4575 to
0.2562 (82.4% improvement relative to baseline), and the per-token probability difference decreases
from 0.0169 to 0.0051 (69.8% improvement relative to baseline). These findings demonstrate the
effectiveness of PA loss in probability alignment: even with substantial architectural differences, PA
loss significantly narrows the gap between predictive distributions.

5.2 PreE-EXPERIMENT 2: ErFrecTIVENESS OF CSFT + PA Loss

In Pre-experiment 2, we further evaluate whether combining CSFT with PA loss achieves better
alignment compared to CSFT loss alone. Similar to Pre-experiment 1, two neural networks with
different architectures are used to simulate 7y and myjigneq.
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Table 2: Impact of PA Loss on Model Alignment and the developed PA shows lower KL divergence
and token probability difference.

Metric Cross-Entropy PA (ours) Rel. Change vs. Baseline (%)
KL Divergence 1.4575 0.2562 +82.4
Per-Token Probability Diff. 0.0169 0.0051 +69.8

KL Divergence (lower is better)

14| — Cross-Entropy

PA
Improvement (%)

° B 3
Improvement (%)

x10°2

Token Probability Difference (lower is better)

Toss-Entropy
A
Improvement (%)

NS

Improvement (%) &

0 H 10 15 20 2 30 35 40 45 4 H 10 15 20 2 30 3 0 45
Epoch Epoch

a . KL Divergence (lower is better) b . Token Probability Difference (lower is better)
Figure 1: Results of Pre-experiment 1 (lower is better). With PA loss, both KL divergence and
token probability difference are significantly reduced compared to the Cross-Entropy baseline (cf.

Table .

The setup features architectural differences with the policy model using a two-layer LSTM and width-
preserving fully connected layers, versus the reference model’s three-layer LSTM and dimension-
expanded fully connected layers, alongside comparison groups: Group 1 (training with CSFT loss
only) and Group 2 (training with CSFT + PA loss).

The results, illustrated in Figures 2] and [3] show that CSFT + PA loss significantly improves cosine
similarity, Pearson correlation, distribution overlap, and KL similarity compared to CSFT alone (vs.
CSFT baseline); meanwhile, it also achieves smaller KL divergence. This indicates that CSFT + PA
loss achieves superior per-token probability alignment.

Pearson Correlation (higher is better)
099810 003
o ogssr04, T ST
099805 { 4o CSET4+PA - 002 CSET+PA

099800 Improvement t (6) 099805

Cosine Similarity (higher is better)

Improvement ()
oo g
099790 000 % 099795 000 %
099785 0g5ieR 099790
099780 N 099785
099775 ) 099780

a . Pearson Correlation b . Cosine Similarity

Figure 2: Results of Pre-experiment 2 (higher is better). CSFT+PA consistently outperforms CSFT
across Pearson Correlation and Cosine Similarity metrics (vs. CSFT baseline).

5.3 CSFT + PA Loss EvaLuaTiON ON LARGE LANGUAGE MODELS

To assess the safety and utility of the proposed method in real-world LLM fine-tuning tasks, we
conduct evaluations under adversarial attack scenarios and downstream datasets. The performance
of Llama-2-7B-Chat fine-tuned with our approach is reported in Table [3|and Table

 Safety evaluation: We test under Harmful Example (pure_bad) attacks, Identity Shifting
(aoa) attacks, and Backdoor Poisoning attacks, measuring the Attack Success Rate (ASR).

« Utility evaluation: We evaluate on the Samsum dataset and the SQL Create Context dataset
to measure downstream task performance.
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a . Distribution Overlap b . KL Similarity

Figure 3: Results of Pre-experiment 2 (higher is better for Distribution Overlap and KL Similarity).
CSFT+PA outperforms CSFT in terms of distribution-based metrics (vs. CSFT baseline).

x103 KL Divergence (lower is better)

— CSFT

3
T

CSFT+PA
755 Improvement (%)
750

745
740
735

Improvement (%)

730
725

IS

Figure 4: KL Divergence (lower is better). CSFT+PA loss leads to smaller distributional differences
compared to CSFT alone (vs. CSFT baseline).

5.3.1 ADVERSARIAL ATTACK METHODS

We evaluate the effectiveness of CSFT + PA loss against three types of adversarial attacks: Harmful
Example Attacks, Identity Shifting Attacks, and Backdoor Poisoning Attacks.

* Harmful Example Attacks: These attacks introduce harmful examples into the training
data, which attempt to mislead the model into generating unsafe or toxic responses.

* Identity Shifting Attacks: These attacks involve altering the model’s output to shift its
identity, leading to biased or inaccurate outputs.

* Backdoor Poisoning Attacks: These attacks involve inserting poisoned data points into
the training set, which cause the model to perform poorly on certain inputs. We consider
both rrigger-free and trigger-based backdoor attacks.

5.3.2 SAFETY EVALUATION AGAINST FINE-TUNING ATTACKS

The effectiveness of combining CSFT with PA loss in defending against adversarial attacks is
summarized in Table [3] where we report the Attack Success Rate (ASR) for each attack category.
Overall, the results demonstrate that CSFT + PA loss consistently and substantially improves safety
across diverse threat models compared to both standard SFT and CSFT baselines.

More specifically, the results indicate that:

* Harmful Example Attacks: CSFT + PA loss reduces ASR from 88.9% with SFT to
2.7%, corresponding to an additional 25.0% relative improvement over CSFT. This finding
highlights that the proposed PA component is particularly effective in suppressing direct
harmful behaviors that are often missed by naive supervision.

* Identity Shifting Attacks: CSFT + PA loss decreases ASR to 7.5%, achieving a 7.4%
relative improvement compared to CSFT. Although the relative margin is smaller than in
other settings, the consistent reduction underscores the complementary role of PA loss in
enhancing safety even when CSFT already provides strong distributional alignment.

* Backdoor Poisoning Attacks: Substantial improvements are observed in both trigger-free
and trigger-based scenarios. In particular, for the trigger-based case, ASR drops sharply
from 90.9% with SFT to 3.3% with CSFT + PA loss, yielding a 52.3% relative improvement.
This result demonstrates that the adaptive weighting in PA loss effectively amplifies the
defense signal when the model’s behavior deviates most from the safety-aligned reference.
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Table 3: Evaluation of Attack Success Rate (ASR) under Fine-tuning Attacks

Attack Type SFT CSFT  CSFT+PA (ours)
Harmful Example (pure_bad) 889+0.5 3.6+x05 2705
Identity Shifting (aoa) 79.5+05 8.1x05 7.5+0.5
Backdoor Poisoning (w/o trigger) 7.6+0.5 1.9£0.5 1.5+£0.5
Backdoor Poisoning (w/ trigger)  90.9+0.5 69+0.5 3305

Table 4: Evaluation of Downstream Task Performance

Dataset SFT CSFT CSFT+PA (ours)
Samsum 51.7+£05 50.1%0.5 47.1%0.5
SQL Create Context 99.1£0.2 98.5+0.5 96.3 £ 0.5

Taken together, these findings underscore that the proposed method provides safe and stable defense
across attack categories. Importantly, the improvements are not confined to a specific type of
adversarial manipulation but generalize to both data-poisoning and behavioral attacks, which is a
key desideratum for practical safety alignment. Table [3|highlights these results in detail.

5.3.3 UriLity EVALUATION

In addition to safety, we also evaluate the utility of the proposed approach on downstream tasks.
Table [] presents results on the Samsum and SQL Create Context datasets. Compared to
CSFT, CSFT + PA loss incurs only minor performance degradation (within 6%), indicating that the
improvements in safety do not come at the cost of substantial utility loss.

In particular, the largest relative drop is observed on Samsum (from 50.1 to 47.1, a 6.0% decrease),
while the performance on SQL. Create Context decreases marginally by 2.2%. Such modest
trade-offs are common in safety-alignment methods, and the observed magnitudes are well within
acceptable bounds for practical deployment. The overall pattern suggests that CSFT + PA loss
achieves a favorable safety—utility balance: it yields strong adversarial resistance while retaining
high task competence.

In summary, Tables[3|and[d]demonstrate that CSFT + PA loss substantially strengthens safety against
a wide range of adversarial attacks, with the maximum reduction in ASR reaching 52.3%. At the
same time, the approach preserves downstream task performance with only minimal degradation.
This balance between safety and utility is crucial for real-world applications, where adversarial
resistance must be achieved without sacrificing core capabilities.

6 CONCLUSION

We introduced a preference-augmented alignment framework for mitigating the safety degradation
of LLMs under domain-specific fine-tuning. By complementing token-level distributional alignment
with preference signals, our method encourages models to favor the safe outputs of their pre-trained
counterparts rather than merely imitating distributions. Extensive experiments demonstrate that this
approach achieves a more favorable trade-off between safety and utility, and substantially improves
robustness against adversarial fine-tuning.

Our findings suggest that preference signals can play a crucial role in strengthening intrinsic safety
alignment, pointing toward a new direction for fine-tuning resistant safeguards. Future work may
explore scaling our framework to broader alignment objectives, integrating human feedback more
directly, and extending it to multi-modal or continual fine-tuning settings.
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ETHICS STATEMENT

This work investigates methods to improve the safety of large language models. We only use publicly
available datasets and avoid personal or sensitive information. While safety research may reveal
potential risks, our intention is to strengthen responsible and trustworthy Al deployment.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All datasets used in this work are
publicly available, and we provide a detailed description of the improved methods in the main text.
The experimental settings, including model architectures and training procedures, are outlined in the
corresponding sections. To further facilitate reproducibility, we will release our source code upon
the publication of the paper.
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A APPENDIX

A.1 Proor or Loss FunctioN CONVERGENCE
A.1.1 ProOBLEM SETUP AND NOTATION

Consider the total loss function:

LTotal(g) = LCSFT(G) + ‘5epoch . LPA(H)
where:
[yl

Lesr(0) = =E(z,y)~D Z wy -logmg (ye|T, y<)

L =1

we =2{1 -0 [B: (log e (y: T, Y<;) — 10 Matigned (Ve T, y<1)) |}

[yl

Lpa(6) = _E(ac,y)~D Z log o (,ut : (log g (yt,alignedlw’ Yer) — log ﬂe()’r,9|$, y<t)))

t=1

Mr = DKL(”B(yth’ Y<r) |l ”aligned(yt|w, y<t))

epoch

Sepoch = 0.1 +0.2 x — 2T
max_epoch
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A.1.2 BAsic ASSUMPTIONS

To establish convergence, we adopt the following relatively mild assumptions, which are standard in
stochastic optimization and align with practical deep learning settings:

1. Bounded Gradients: There exists a constant G > 0 such that for any 6 and any sample
(x,),
Vg log o (ye|z, y<c)ll < G.

2. Lipschitz Continuity of Gradients: There exists a constant L > 0 such that for any 6, 65,
IV L1otar (61) — VLol (62) || < LI|61 — 62|

3. Learning Rate Decay: The learning rate sequence {ny} satisfies

[oe]

ink:w’ Zr]i<oo.
k=1

k=1
4. Bounded Gradient Noise: The stochastic gradient g (@) satisfies
E[g(6) | 0] = VLrow (6), E[llg(0) — VLroa (D) | 6] < 0.

5. Bounded Weights: There exists a constant W > 0 such that for all ¢, |w,| < W.

6. Bounded Log-Probability Differences: There exists a constant D > 0 such that for all ¢
and 6, | log 7o (¥t aligned | T, Y<1) — log g (ys, 01, Yy<:)| < D.

7. Probability Lower Bound: There exists a constant € > 0 such that for all y,, x, y,, and 6,
7o (yt|x, y<;) = €. This can be enforced via logit clipping or label smoothing.

8. Bounded KL Divergence: There exists a constant K > 0 such that for all ¢ and 6, u, < K.
This holds in finite-vocabulary settings or can be enforced via KL clipping.

Discussion of Assumption Validity

Assumption 2 (Lipschitz continuity) ensures the smoothness of the loss gradient, a standard condition
in stochastic optimization for deriving descent inequalities. Itis not overly restrictive: in deep learning
models like Transformers, the loss is a composition of smooth functions (e.g., softmax and cross-
entropy), satisfying local Lipschitz properties in bounded parameter spaces. Unbounded parameters
can be handled via weight decay or gradient clipping. Many activation functions, such as the sigmoid
in Lpa, have inherently Lipschitz gradients. In practice, gradient clipping enforces this condition,
and learning rates are typically chosen smaller than 1/L for stability.

Assumption 7 (probability lower bound) ensures well-defined KL divergences and gradients. It can
be practically achieved through logit clipping or label smoothing, common in language models.

Assumption 8 (bounded KL) is reasonable in finite-vocabulary models, where KL has a natural upper
bound log(1/min g(y)). In practice, KL regularization or clipping ensures numerical stability.

A.1.3 CONVERGENCE ProoOF

Gradient Computation and Analysis

First, analyze the gradient of the total loss:

V Ltota1(8) = VLcspr(6) + Sepoch VLpa ().

CSFT Gradient
The gradient of the CSFT loss is:

|yl
VLicser(0) = ~E(a,y)~D ZW: Vg logmo(yi|z, y<i) | .
=1
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Since w; is treated as a constant via detachment, and by Assumption 5, |w;| < W, combined with
Assumption 1, we have:

IVLcspr(0)I < W - G - Tnax,
where T,,.x = max |y| is the maximum sequence length.
PA Gradient
The gradient of the PA loss is:

lyl
2, Vologor (e A)

t=1

E}

VLpa(0) = —E(a.9)~D

where A; = log g (yt,aligned|93, Y<r) —logme (ys,0l2, y<i).

The gradient expands as:
Vologo(z)) = (1 -0(z)Vezr, 2 = pulAy.

Thus,
Vozi = u:Vols + A Vo,

where
VoA; = Vg logmg (Yt,aligned|33, Y<:) — Vo logmg (yr,9|w, Yet).

By Assumption 1, ||VeA,|| < 2G.

For Vou,, since u; = Dxi(pllg) with p = m(-|, y<;) and fixed g = malignea (|, Y<:). the gradient
1S:

Vour = E(z,4)~p [Vaolog p(y) - (log p(y) —logq(y))] .

By Assumption 1, ||Vg log p(y)|| < G. By Assumption 7, and assuming a lower bound on min g(y)
(common in finite vocabularies), there exists B > 0 such that | log p(y) — logg(y)| < B, yielding
Vol < GB.

By Assumption 8, u, < K, and by Assumption 6, |[A,| < D. Since |1 — o (z,)| < 1,
IVglogo(z:)|l < ur - 2G + |A;| - GB < 2KG + DGB.

Thus, there exists a constant C = T, - (2KG + DG B) such that
IVLpa(0)]| < C.

Bounded Total Gradient
Since depoch < 0.3, the total gradient is bounded:

IV L1ota1 (8) || € WGTinax + 0.3C = M.

Convergence Framework

Consider the stochastic gradient descent update:

Or+1 = Ok — 1ig(0k),
where g(0y) is an unbiased estimator of V Lo (0%).

By Assumption 2, the pointwise descent lemma holds:
L
Lotal (0x+1) < Lotal (6x) + VLot (6x) T (041 — 0x) + 5 101 — Ol
Substituting the update:

L
Lotal (Ok+1) < Lo (0k) = 1V Lo (0x) " (0k) + Ening(@k)ﬂz- *
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A.1.4 DETAILED DERIVATION OF THE EXPECTED DESCENT INEQUALITY

In stochastic optimization, deriving the expected descent from the pointwise inequality requires
careful handling of expectations. This section provides a rigorous derivation.

Monotonicity of Expectations

Theorem A.1 (Monotonicity of Conditional Expectations). Let X and Y be random variables on a
probability space, and let F be a sub-o-algebra. If X <Y almost surely, then B[X | ¥ <E[Y | F]
almost surely.

Proof. This follows from the definition of conditional expectation. For a detailed proof, see Billings-
ley (1995, Probability and Measure). O

Application to Derive Conditional Expectation

Define X = Lyota1(0x+1) and

L
Y = Lrow (6k) = 1xV Lrowt (0x) "¢ (61) + Eniﬂg(@k)ﬂz,
with F the o-algebra generated by 6x. By Equation (¥), X <Y a.s. Thus, by Theorem 1,
E[X | 0x] <E[Y | 6] as.

By linearity of conditional expectations:
L
E[Y | 6x] = Low (6x) = 7k V Lrowat (6x) "E[g () | 6x] + 2leE[IIg(Gk)II2 | Okl
By Assumption 4, E[g(0x) | 0x] = VLtota1(6x), sO
V Ltoar (0x) "E[ (6x) | 6] = |V Lrowa (61 >

For the variance term:
E[llg(0)1* | 0] = E[llg = V + VII* | 6]
=E[llg ~ VI | 6] + V1> + 2E[(g = V)TV | 6]
<o + VLt (0011,
since the cross term is zero by unbiasedness.
Thus:
E[Ltotal (Fk+1) | 6] < Lrow (6x) — nk (1 - %) IV Lot (011> + %77%0'2-

Taking full expectation (law of total expectation):

E[LTolal(9k+l)] < E[LTotal(ek)] — Nk (1 - %Uk) [”VLTotal(gk)” ] + 277k0' (**)

A.1.5 DEgTAILED DERIVATION OF THE CONVERGENCE CONCLUSION

From Equation (¥%), sum from & = 1 to K

K K L O’ K
D (Bl Lroa (0] = El Lo (6:)]) < = D mi (1 - znk) LIVIF)+ =5 > -
k=1 k=1

k=1

The left side telescopes to B[ Lota1 (O +1)] — B[ Ltota1 (61)]. Rearranging:

K K
Z Nk (1 - %’Ik) E[||V Lrotal (01) 1] < E[Ltotal (01)] = E[ Lo (0x+1)] + i Z
=1
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Since Lo > 0 (as a negative log-likelihood), E[ Lot (6 +1)] = 0, so the sum is bounded above by
a term that remains finite as K — oo (due to ) ni < 0). Thus:

s L
S (1 . Enk) B[V Liow (61)IP] < oo,
k=1

Assume for contradiction that liminf E[||V]|?] > 0. Then there exists € > 0 and subsequence {kj}
with E[||V(9kj)||2] > €. For large j, 1 — (L/2)nk; > 1/2, so the subsum diverges, contradicting the
finite sum. Hence:

lim inf B[ ||V Lyow (1) I7] = 0.

A.2 Proor or Loss FuncTioN ROBUSTNESS
A.2.1 INTRODUCTION

In this proof, we consider the given loss function form and rigorously prove its robustness. First,
we clearly define 'robustness’ in the context of optimization. Subsequently, through mathematical
derivations, we analyze the optimization process, particularly focusing on what quantity’s variation
causes the policy 7y to approach mjigned. Finally, we provide a quantitative proof using weaker
assumptions (such as convexity, Lipschitz gradient continuity, and the Polyak-Lojasiewicz (PL)
inequality, rather than strong convexity). These assumptions are more general and applicable to
certain non-strongly convex but locally well-behaved loss functions, as commonly encountered in
deep learning scenarios.

To align with theoretical analyses in related literature, such as *The Policy Cliff: A Theoretical
Analysis of Reward-Policy Maps in Large Language Models,” we emphasize how regularization
terms like Lpa (0) resolve degeneracies in optima, preventing “policy cliffs’ (discontinuous policy
shifts under perturbations) by acting as tie-breakers in cases of non-unique optimal actions.

A.2.2 DEFINITION OF ROBUSTNESS

Definition A.1 (Robustness). In optimization problems, the robustness of the loss function L(8)
refers to the system’s ability to maintain its performance and stability in the face of uncertainty or
perturbations. Specifically, uncertainty may manifest as noise perturbations in the input data D
(such as label noise or input variations). We quantify the perturbation size through the noise intensity
€ > 0, representing the maximum amplitude of data deviation.

Quantitatively, the loss function L(0) is considered robust if, for a noise perturbation €, the perturbed
optimal solution 6*€ and the original optimal solution 6" satisfy:

16%€ - 07|l < Ke,

where K is a Lipschitz-related constant. Here, we uniformly use the Euclidean norm || - || in the
parameter space to measure changes in solutions, ensuring consistency. This ensures that changes
in the output (optimal solution or policy ng) are linearly bounded by the perturbation size.

In cases where optima are non-unique (degenerate), perturbations can lead to discontinuous shifts,
akin to ’policy cliffs’ in reward-policy maps. Our assumptions (e.g., PLinequality) ensure uniqueness,
mitigating such issues.

In this context, uncertainty primarily refers to noise in the data distribution D, characterized by e.
We will prove that the total loss L (6), by incorporating the Lpa (6) term, enhances robustness to
noise. Specifically, Lps acts as a regularization term that strengthens the PL inequality constant p,
thereby tightening the robustness bound.

A.2.3 Review ofF THE Loss FuncTioN

The total loss function is:
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Lrotal (6) = Lespr(6) + Sepoch + Lea(0),

where

ly|
Leser(6) = =E(a,y)~D [Z wy - log o (ye|, Y<¢)

>

t=1

wy =2{1 -0 B (log 7o (y:|T, Y<r) — 10g Matignea (y: 12, y<1)) |},

|yl
Lpa(6) = —E(2,4)~D [Z log o (1 - (log o (1 aligned |, Y<¢) — log o (yr 01X, y<r)))

t=1

s

e = Dxe (o (el @, y<i) || Tatignea (Ve |, y<r)).

Note that y; aligned and y; ¢ are the argmax predictions of myjigneq and g at position ¢ (assuming
softmax outputs as probability distributions, taking the maximum probability class). To handle the
non-differentiability of argmax, we implicitly use a softened version (such as temperature-scaled
softmax approximation) to ensure gradient flow. w, is treated as a constant in gradient computations
(via detach operation) to avoid overfitting to noise. Oepoch is a scheduling parameter that increases
with epochs, used to gradually strengthen the regularization effect.

A.2.4 AnNaLysIs ofF THE OPTIMIZATION ProcEss: THE Ky FacTor Dr1vING PoLicY ALIGNMENT
During optimization, we use gradient descent to minimize Lo, (6). The update rule is 6 «
0 — Vg Lo (0), where 7 is the learning rate.

The key question is: what quantity’s variation causes 7g to approach myjigned. The answer lies in the
gradient contribution of Lps(6). Specifically, the variation in g, (i.e., changes in KL divergence)
drives this process. We will compute the gradients in detail to demonstrate this.

First, consider the gradient of Lpa (6):

|yl
> Vologa (- Ar)

t=1

VoLpa(0) = —E(z,4)~D

>

where A; = log 79 (¥+ aligned| T, Y<¢) — log mo (yz, 01, Y<r)-

Let z; = u; - Ay, then the gradient of log o (z;) is:

1 ,
Vologo(z;) = 0__ <0’ (1) - Voz;.

(z¢)

Since 0’ (z) = 0(2)(1 — 0(2)), we have:

o’ (z)
o ()

= 1 - O-(ZT)’
thus:

Vologo(z;) = (1 =0 (z))Vez.

Next, compute Vgz;:
Vozi = Ar - Vo + 1 - Vol
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Here, p; = Dxp(7g||Maligned), and its gradient is:

7o (ye|T, Y1)
ﬂaligned(yt |z, y</) .

Vo Dxr (7ol Matigned) = E(z,y)~D | Vo log me (i, y<;) log

For VgA;:

VoA; = Vg log mg (Vs aligned| T, Y<:) — Vo log mo (y1,0|2, y<i).

When y; is large (high KL divergence, misaligned positions), the A; Vg, term dominates, amplifying
the gradient to push for KL reduction. Conversely, low u; weakens the gradient. Sepoch controls the
weight of this term.

Thus, the quantity driving g toward 7yjigned is the variation in i, i.e., the reduction in KL divergence,
achieved through the dynamic adjustment of the regularization effect in Lpa.

This mechanism aligns with tie-breaking in degenerate optima: high KL indicates non-unique actions,
and Lpa resolves this by favoring aligned policies, preventing rational exploitation of incomplete
losses (similar to ’clever slacker’ behaviors in policy cliffs literature).

A.2.5 QUANTITATIVE PROOF OF ROBUSTNESS

We assume the loss function Loy, (6) satisfies convexity, its gradient Vg Lo (6) is L-Lipschitz
continuous, and the Polyak-Lojasiewicz (PL) inequality:

1 .
E”VLTotal(e)”Z 2 :u(LTotal(e) - LTotal(g ))’

where u > 0 is a constant. The PL inequality and convexity ensure the existence and uniqueness
of minimizers, as well as convergence rates in optimization, while not directly required for the
parameter bound derivation below. Introducing Lpa(6) can increase u, as the KL divergence
regularization enhances the lower bound on the gradient norm. Specifically, through Hessian analysis,
Lpa contributes positive definite terms to the second derivatives, increasing the effective curvature
lower bound (refer to optimization literature such as Karimi et al.). For a sketch: the Hessian of
Lpa involves terms like V2D, which is positive semi-definite for entropy-like regularizers, thus
boosting the minimal eigenvalue related to u.

Lemma A.1 (Perturbation Bounds). Consider noisy data D€ = D + €&, where & is bounded noise,
€]l < 1. Then LS, (6) = Ly (6) + € - g(0, ), where g is a bounded function, |g| < M.

Total

Additionally, for the gradients, ||[VoLy, (8) = Vo Ly (0)|| < €G, where G is the bound on gradient
perturbations.

Proof: By the linearity of expectations and the Lipschitz nature of continuous functions, the noise
linearly affects the loss and gradients. Specifically, for each expectation term, the difference due to
perturbation is linearly controlled by €, yielding |Ls ., (6) — Lrota1 ()| < €eM. Applying the chain rule
to gradients, each derivative term’s perturbation is also linear, so ||Vo Ly ., (6) — Vo Lroa (0) || < €G.
Theorem A.2 (Robustness Bound). Let 6* be the minimizer of Lyy(0), and 8 € the minimizer of
Ly, W(G). Assuming the gradient V g Ly1,(0) is L-Lipschitz continuous and the gradient perturbation
satisfies Vo Ly, .,(6) = Vo Ly (0)|| < €G, then

eG

%€ - 07| <
l [ 7

Proof: Since 6" and 0™ € are minimizers, we have V Lty (0") = 0 and VL

ot (07€) = 0. From the
gradient perturbation assumption,

IV Lot (67 )| = IV Lrotal (67) = VL5 (07| < €G.

By Lipschitz gradient continuity,
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IV Lot (07€) = VLot (67) || < L6 = 67|.

Since V Lyoa1 (67) = 0,

IV Lot (07 )| < L|67€ — 67

Combining the inequalities,

IV Lo (6°€) || < €G < L||6%€ - 6,

thus

eG
9*,6 _ 9* g —.
loe -6l < <

This bound shows that parameter changes are linearly related to the perturbation size €, proving
robustness. Introducing Lps can reduce the effective Lipschitz constant L (through smoothing)
or decrease G (reducing noise sensitivity), thereby tightening the bound. The PL inequality and
convexity ensure minimizer existence and uniqueness but do not directly participate in deriving the
parameter bound.

A.3 TuEe Usk oF LARGE LANGUAGE MODELS

In this work, we employ large language models (LLMs) primarily as assistants for writing. Their
role is limited to aiding the authors in polishing the presentation and improving readability.
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