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TagOOD: A Novel Approach to Out-of-Distribution Detection via
Vision-Language Representations and Class Center Learning

Anonymous Authors

ABSTRACT
Multimodal fusion, leveraging data like vision and language, is
rapidly gaining traction. This enriched data representation im-
proves performance across various tasks. Existing methods for
out-of-distribution (OOD) detection, a critical area where AI mod-
els encounter unseen data in real-world scenarios, rely heavily on
whole-image features. These image-level features can include ir-
relevant information that hinders the detection of OOD samples,
ultimately limiting overall performance. In this paper, we propose
TagOOD, a novel approach for OOD detection that leverages vision-
language representations to achieve label-free object feature de-
coupling from whole images. This decomposition enables a more
focused analysis of object semantics, enhancing OOD detection
performance. Subsequently, TagOOD trains a lightweight network
on the extracted object features to learn representative class centers.
These centers capture the central tendencies of IND object classes,
minimizing the influence of irrelevant image features during OOD
detection. Finally, our approach efficiently detects OOD samples by
calculating distance-based metrics as OOD scores between learned
centers and test samples. We conduct extensive experiments to eval-
uate TagOOD on several benchmark datasets and demonstrate its
superior performance compared to existing OOD detection meth-
ods. This work presents a novel perspective for further exploration
of multimodal information utilization in OOD detection, with po-
tential applications across various tasks. Code will be available.

CCS CONCEPTS
• Computing methodologies→ Object recognition.

KEYWORDS
Out-of-distribution detection, Vision-Language representations,
Representative class centers

1 INTRODUCTION
Most modern deep neural networks [7, 14, 15, 27, 32, 47] are vali-
dated using test data from the same distribution as the training data.
Nevertheless, encountering out-of-distribution (OOD) samples is
inevitable when deploying deep learning models in real-world sce-
narios. This phenomenon highlights the importance of an ideal
recognition model, which should not only deliver accurate predic-
tions on the training distribution (referred to as in-distribution data)
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“Orangutan” center

“Bamboo” center

“Withered grass” center

OOD sample (from Places)

“Orangutan” of IND sample (ImageNet)

Object feature space

Figure 1: This toy sample illustrates a challenge in OOD de-
tection using a 3D feature space. The features associated with
"Bamboo" and "Withered grass" in the IND image are spa-
tially close to the OOD image’s features in this space. This
proximity can lead the model to misclassify the IND image,
mistaking it for containing similar objects to the OOD image.

but also raise alerts to humans when encountering unknown sam-
ples. OOD detection is the task of determiningwhether a test sample
falls within the in-distribution (IND) or not. This task finds broad
applications in autonomous driving [3, 4], fraud detection [37],
medical image analysis [12, 41, 51], etc.

Current OOD detection methods [18, 19, 25, 28, 31, 42, 43, 52]
often rely on image-level features to construct a score function
for identifying OOD samples. In these approaches, a test sample is
classified as OOD if its score surpasses a threshold, or vice versa.
A major limitation of these approaches is that a single label in
the training data fails to fully describe the content of an image,
especially when the image contains multiple objects. In such cases,
the model can learn "OOD-like" features from the IND data, leading
to misclassifications. In essence, the model can learn some "OOD-
like" characteristics even without encountering any actual OOD
samples during training. A toy example is illustrated in Figure 1.
We utilize an image tagging model to generate tags for both an IND
image labeled as "orangutan" and anOOD image. Splitting the image
based on these tags exposes a critical insight for OOD detection: a
part of the IND image shares surprising feature similarity with the
OOD image. For example, tags like "bamboo" and "withered grass"
might be present in both. This observation highlights a crucial
disconnect between the model-captured visual features and the
semantic meaning of the image. While the "orangutan" label might
be accurate, the presence of "bamboo" and "withered grass" suggests
the image includes background elements that could be commonly
found in OOD data. This disconnect motivates our exploration of
vision-language representations for OOD detection. Our approach

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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integrates semantic information with visual features and learns the
IND area of each image that truly corresponds to the label, resulting
in a more refined IND distribution for enhanced OOD detection.

In this paper, we propose TagOOD, a novel approach for Out-
of-Distribution detection that leverages vision-language represen-
tations. TagOOD specifically addresses the challenge of confusing
OOD samples, which may contain objects visually similar to objects
found in the in-distribution data. These OOD objects are particu-
larly problematic because they not be explicitly labeled within the
IND data. TagOOD tackles this challenge through two key mecha-
nisms: 1) decoupling image features using a tagging model to focus
on semantic content beyond the object, and 2) generating object-
level class centers to capture the central tendencies of IND objects,
minimizing the influence of irrelevant background features.

TagOOD leverages a pre-trained tagging model, typically a large
vision-language model trained on extensive image-text datasets.
This model goes beyond single-label classification by identifying
and assigning multiple semantic tags to objects within an image. By
incorporating the tagging model, TagOOD focuses on object-level
features for OOD detection. Specifically, for a given in-distribution
image, the tagging model generates a set of object tags along with
their corresponding features. The object features representing IND
objects are then fed into a lightweight network for projection into a
common feature space. This allows for the subsequent generation of
trainable class centers, representing the central tendencies of each
object category within the IND data. Finally, TagOOD calculates an
OOD score based on the cosine similarity between these learned
class centers and a test sample. A high cosine similarity indicates
the test sample is likely IND data, as it closely resembles the central
tendencies learned from the training data. Conversely, a low cosine
similarity suggests the test sample is likely OOD.

The contributions of this paper are summarized as follows:
• Decoupling image features using a vision-language model:
allows TagOOD to focus on the semantic content of the
object, providing a deeper understanding of the IND data and
mitigating the influence of irrelevant background features.

• Generating object-level class centers: by capturing the cen-
tral tendencies of objects within the in-distribution data,
TagOOD can effectively distinguish between IND and OOD
samples, even if they contain similar objects.

• To investigate the effectiveness of TagOOD, we conducted
comprehensive experiments and ablation studies on the pop-
ular ImageNet benchmark. These studies demonstrate com-
petitive performance and reveal the importance of both de-
coupling features and generating object-level class centers
for TagOOD’s superior performance.

2 RELATEDWORK
2.1 Vision-Language Models for Image Tagging
Recent advancements [1, 10, 44] in large language models (LLMs)
have revolutionized natural language processing (NLP). In com-
puter vision (CV), vision-language models (VLMs) [29, 56] bridge
the gap between visual and textual data, leveraging the strengths
of both modalities for tasks like image tagging. VLMs fall into two
main categories: generation-based and alignment-based. Genera-
tion models create captions for images, with recent advancements

in language models [7, 35] making this approach dominant. Unlike
earlier methods [9] that relied solely on recognizing tags and then
composing captions, these models [5, 26, 50] leverage powerful
language models for text generation conditioned on visual infor-
mation. Alignment models, on the other hand, aim to determine if
an image and its description match. Many works [21, 22, 35] typ-
ically rely on aligning features from both modalities, often using
a dual-encoder or fusion-encoder architecture. Image Tagging, a
crucial computer vision task that involves assigning multiple rel-
evant labels to an image, plays a vital role in VLM performance.
Traditionally, classifiers and loss functions were used for image
tagging. Recent work [30, 39] utilizes transformers and robust loss
functions to address challenges like missing data and unbalanced
classes. Our work utilizes this powerful VLM technology to enhance
OOD detection performance.

2.2 Out-of-Distribution Detection
Out-of-distribution detection aims to distinguish OOD samples
from IND data. Numerous methods have been proposed for OOD
detection. Maximum softmax probability (MSP) [16] serves as a
common baseline, utilizing the highest score across all classes as
an OOD indicator. ODIN [28] builds upon MSP by introducing in-
put perturbations and adjusting logits through rescaling. Gaussian
discriminant analysis (GDA) has also been employed for OOD detec-
tion in works by [25, 52]. ReAct [42] leverages rectified activation
to mitigate model overconfidence in OOD data. In recent develop-
ments, several multi-modal methods [8, 33, 34, 48] have emerged to
address the challenge of OOD detection, utilizing the generalized
representations acquired through CLIP [11]. CLIPN [48] introduces
an extra text encoder to CLIP, aligning entire images with two
types of textual information and enabling the model to respond
with "no" when faced with OOD samples. MCM [34] aligns image-
level features with their corresponding textual description features,
enhancing the capabilities of IND estimates and consequently im-
proving OOD detection performance. While CLIP demonstrates
remarkable zero-shot OOD detection capabilities, these OOD detec-
tion methods utilizing CLIP still neglect to address the challenge of
similar object confusion between IND and OOD images. Different
from these CLIP-based methods, we attempt to exploit an image
tagging model to generate multiple tags in terms of mitigating the
impact of confused objects.

3 METHOD
3.1 Preliminary
Out-of-distribution(OOD) detection aims to distinguish between
data the model has seen during training and unseen data from
a different distribution. Formally, we can represent the training
set as 𝒟𝑡𝑟𝑎𝑖𝑛

𝐼𝑁𝐷
= {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, where 𝑥𝑖 ∈ R3×𝐻×𝑊 is the input

image typically a 3-channel image with height 𝐻 and width𝑊 ,
𝑦𝑖 ∈ {1, 2, ..., 𝐾}, one of 𝐾 possible IND categories, is the corre-
sponding class label, and 𝑛 is the number of samples in training
set 𝒟𝑡𝑟𝑎𝑖𝑛

𝐼𝑁𝐷
. When a recognition model 𝑭 is presented with a test

set𝒟𝑡𝑒𝑠𝑡 = {𝑥 ′
𝑖
}𝑝
𝑖=1, the goal is to split the test data into IND and

OOD categories, denoted as 𝒟𝑡𝑒𝑠𝑡
𝐼𝑁𝐷

and 𝒟𝑡𝑒𝑠𝑡
𝑂𝑂𝐷

respectively. Unlike
the training data with labeled categories, OOD data typically lacks
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Figure 2: The TagOOD pipeline for OOD detection consists of two main stages, illustrated in (a) and (b). First, image feature
decomposition (see (a) on the left) leverages a vision-language model to generate multiple tags. The model then identifies tags
belonging to the IND category and creates corresponding attention masks within the image. Next, as shown in (b), the extracted
IND object features are used to train a lightweight network that produces a set of IND class centers. During inference (referring
back to (a)), TagOOD computes a distance-based metric between IND class centers and test sample features as the OOD score.

labels entirely and does not fall within the set of 𝐾 possible IND
categories. This separation is often achieved by defining an OOD
score function 𝒉(𝑥) which assigns a score to a test image 𝑥 :

𝒉(𝑥) =
{
0, if 𝑥 ∈ 𝒟

𝑡𝑒𝑠𝑡
𝑂𝑂𝐷 ,

1, if 𝑥 ∈ 𝒟
𝑡𝑒𝑠𝑡
𝐼𝑁𝐷 ,

(1)

As shown in Equation (1), the function outputs 0 if the image likely
belongs to the OOD data, and 1 if likely belongs to the IND data.
In practice, the OOD score function provides a continuous value
between 0 and 1, with a higher score indicating a higher likelihood
of the data point being IND. This score is then used to classify the
test data into IND and OOD categories.

3.2 Overview of TagOOD
Our proposed TagOOD approach aims to address a key challenge
in OOD detection: distinguish the confusing OOD samples, which
contain objects similar to objects found in the training data. These
objects in test samples can be particularly problematic because they
are non-labeled but occur in in-distribution data. Figure 2 illustrates
our framework, which consists of two main steps: 1) Image De-
composition. In Figure 2(a), TagOOD first leverages a pre-trained
tagging model to generate multiple semantic tags for each object
within an image. The model then identifies tags belonging to the
IND category and creates corresponding attention masks within the
image. By analyzing the attention maps produced by the tagging
model, TagOOD identifies the relevant regions within the image
feature extracted by the backbone network of the pre-trained tag-
ging model. This allows our approach to obtain object features for
each identified category object(See Sec 3.3 for details). 2) Class
Center Generation. We generate object-level class centers to fur-
ther accurately construct the IND distribution and eliminate the
error impact caused by the tagging model. Once IND object features
are extracted, TagOOD employs a lightweight projection model.
This model learns to project these object features, which might
have different shapes due to the varying nature of objects, into a
common feature space. Simultaneously, as Figure 2(b), it updates
class centers (see Sec 3.4 for details) for each object category.

During the inference phase, referring back to Figure (a), TagOOD
leverages a distance-based metric, such as Euclidean distance or
cosine similarity, for OOD detection. This metric directly compares
the features extracted from a test sample with the learned class
centers representing the IND data. A larger distance or lower cosine
similarity between the test features and the nearest class center
suggests a higher likelihood of the sample being OOD. This strategy
effectively utilizes the learned class centers tha capture the cen-
tral tendencies of objects within the training data. By identifying
deviations from these expected patterns through distance metrics,
TagOOD achieves robust OOD detection.

3.3 Vision-Language Approach for Image
Feature Decomposition

TagOOD leverages a pre-trained vision-language model to identify
and label objects within an image, enabling feature decomposition.
In practice, we use RAM [56], which combines three components
for generating image features, tags, and corresponding attention
maps required for feature decomposition: 1) Image Encoder 𝒇
captures features from the input image, capturing visual informa-
tion about all of the objects within the image. 2) Text Encoder 𝒈
based on the CLIP model [38] encodes potential object tags from a
pre-defined vocabulary𝑇 into a common feature space. This vocab-
ulary 𝑇 = {𝑡𝑖 }𝑀𝑖=1, provided by RAM, containing𝑀 object used for
more detailed image labeling. 3) Tagging Head 𝝓 combines the
image features and tag information to predict the final result. The
result contains the tags 𝑇𝑥 = {𝑡} for the objects within the image
and corresponding attention maps 𝐴𝑥 = {𝑎}, where 𝑎 ∈ R𝐻×𝑊 .
In practice, we utilize the last cross-attention module within the
Tagging Head to generate attention maps. Eq. 2 summarizes how
the tagging model operates:

𝑇𝑥 , 𝐴𝑥 = 𝝓 (𝒇 (𝑥),𝒈(𝑇 )), (2)

When the vision-language model processes an image 𝑥 , we will
obtain an image feature 𝒇 (𝑥), predicted tags 𝑇𝑥 for the objects
within the image, and corresponding attention maps 𝐴𝑥 for each
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predicted tag. We then filter 𝑇𝑥 to retain only the tags belonging
to our IND vocabulary 𝑇 𝑖𝑛 .

TagOOD leverages the attention maps 𝐴𝑥 to achieve image fea-
ture decomposition by selecting IND object features from the full
image feature 𝒇 (𝑥). In Figure 2(a), Our filter applies a threshold
𝜏 to the attention map values corresponding to the object. This
essentially creates a binary mask (values above 𝜏 become 1, others
become 0), highlighting the most influential image regions of each
object. Instead of element-wise multiplication, TagOOD directly se-
lects features from the original image representation corresponding
to locations with 1 in the mask. This effectively chooses the parts
of the image feature that are most relevant to the objects based on
the predicted tag. When multiple IND objects are detected, their
corresponding object features are combined into a single feature
representation, denoted as 𝑧. This combined feature vector then
undergoes reshaping to prepare it for the next step of the model.
Through the process described above, we can obtain a training
dataset consisting of object features and their corresponding la-
bels. This dataset is denoted as 𝒵𝑡𝑟𝑎𝑖𝑛

𝐼𝑁𝐷
= {(𝑧𝑖 , 𝑦𝑖 )}𝑛𝑖=1, where 𝑧𝑖

represents the object features for the 𝑖-th sample, 𝑦𝑖 represents the
corresponding label for the 𝑖-th sample, indicating its IND category.

Since the original vocabulary 𝑇 might not encompass all IND
labels, we construct an IND vocabulary which is a subset of 𝑇 ,
denoted by 𝑇 𝑖𝑛 . Before training TagOOD, we go through a process
to select the most relevant tags𝑇 𝑖𝑛 representing the IND data from
𝑇 .𝑇 𝑖𝑛 are used during training to establish the central tendencies of
objects within each category. We collect all the tags associated with
the objects within our training data. To ensure the selected tags
accurately represent the ground truth, human experts review the
results after identifying the most frequent tag within each category.
Through this process, we obtain a set of IND tags 𝑇 𝑖𝑛 from the pre-
defined vocabulary𝑇 that best corresponds to the object categories
present in the training data.

3.4 Object-Level Class Center Generation
TagOOD employs a lightweight projection model 𝒑 with dataset
𝒵
𝑡𝑟𝑎𝑖𝑛
𝐼𝑁𝐷

to learn a set of object-level IND class centers, denoted as
𝑈 = {𝜇𝑖 }𝐾

𝑖=1. These class centers represent the typical characteris-
tics of objects belonging to IND categories and serve as effective
indicators for OOD detection. Initially, we randomly initialize a set
of tensors {𝜇𝑖 }𝐾

𝑖=1 to represent the class centers for each of the 𝐾
IND categories. During training, as illustrated in Figure 2(b), the
model receives the object features 𝑧, which can have varying sizes
depending on the specific objects. The projection model transforms
these features 𝑧 into a common feature space. This ensures consis-
tency when comparing the projected features with 𝜇. The object
feature 𝑧𝑐 and its label 𝑦𝑐 of category 𝑐 are used to calculate a
combined loss function:

L = 𝛼 · CE(𝒑(𝑧𝑐 ), 𝑦𝑐 ) + 𝛽 ·MSE(𝒑(𝑧𝑐 ), 𝜇𝑐 ), (3)

where 𝐶𝐸 (·) represents the cross-entropy loss,𝑀𝑆𝐸 (·) stands for
mean squared error loss. The hyperparameters 𝛼 and 𝛽 control the
relative importance of each loss term during training. The loss term
CE(𝒑(𝑧𝑐 ), 𝑦𝑐 ) helps the model learn to differentiate between object
features belonging to different IND categories. MSE(𝒑(𝑧𝑐 ), 𝜇𝑐 ) term
encourages the model to refine the projected features to better

align with the central tendencies represented by the class centers.
Before the next training iteration, the IND class centers are updated.
TagOOD utilizes an exponential moving average (EMA) [13] with
𝒑(𝑧) to achieve this update. EMA helps smooth out fluctuations in
the projected features and provides a more stable estimate of the
central tendencies for each IND category. According to the process
we described above, the parameter of projection model 𝜃𝑝 and the
class centers {𝜇𝑖 }𝐾

𝑖=1 are updated by the following equations:

𝜃
𝑝

𝑡+1 = 𝜃
𝑝
𝑡 − 𝛾1

𝜕L
𝜕𝜃
𝑝
𝑡

, (4)

𝜇𝑐𝑡+1 = (1 − 𝛾2)𝜇𝑐𝑡 + 𝛾2𝒑(𝑧𝑐 ), (5)

where 𝛾1, and 𝛾2 are learning rates controlling the update speed.

3.5 OOD Detection Based on the Class Centers
When the training of our projection model 𝒑 finishes, we will get
a set of IND class centers 𝑈 that capture the central tendencies of
the IND object accurately. To assess the likelihood of a test sample
𝑥 ′ belonging to the IND data, we compute the cosine similarity
between its projected features 𝑧′ and each class center within 𝑈 .
The maximum cosine similarity score across 𝑈 is used as the OOD
score for the test sample, denoted by 𝒉(𝑥 ′). Intuitively, a high cosine
similarity score indicates that the test sample feature closely resem-
bles one of the learned IND class centers 𝜇𝑖 , suggesting it’s likely
IND data. Conversely, a low OOD score suggests the test sample
deviates significantly from the expected IND patterns. The provided
mathematical formula accurately represents this calculation:

𝒉(𝑥 ′) = max
𝑐

( 𝑧′ · 𝜇𝑐
∥𝑧′∥∥𝜇c∥ ) . (6)

If the tagging model predicts no tags in 𝑇 𝑖𝑛 for a given image,
TagOOD directly classifies the sample as OOD. Overall, by com-
paring the test sample feature (𝒑 supports both image feature or
object feature) to the learned class centers using cosine similar-
ity, TagOOD can effectively distinguish between in-distribution
and out-of-distribution data, enhancing the model’s robustness in
real-world applications.

4 EXPERIMENTS
4.1 Experimental Setup
In-distribtuion Dataset.We adopt the well-established ImageNet-
1K [40] dataset, a standard dataset for OOD detection, as our in-
distribution data. ImageNet-1K is a large-scale visual recognition
dataset containing 1000 object categories and 1281167 images.
Out-of-Distribution Dataset. Based on ImageNet as IND datasets,
we followHuang et al. [20] to test our TagOODwith iNaturalist [46],
SUN [53], Places365 [57], and Texture [6]. To further explore the
generalization ability of our approach, we follow Wang et al. [49]
and employ another two OOD datasets, OpenImage-O [24] and
ImageNet-O [17] to evaluate our method.
Evaluation Metrics. We evaluate our approach using common
OOD detection metrics [20, 34, 42, 54, 55]: Area Under the ROC
Curve (AUROC). This metric summarizes the model’s ability to
distinguish between IND and OOD samples. Higher AUROC in-
dicates better overall performance. False Positive Rate at 95%
True Positive Rate (FPR95). This metric measures the model’s
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Table 1: OOD detection performance comparison of TagOOD and existing methods. The best and second-best results are
indicated in Bold and Underline. The method marked with * indicates that it utilizes a more expansive backbone in comparison
to the others. ↑ indicates larger values are better and ↓ indicates the opposite. All values are expressed in percentages.

OOD Datasets

iNatrualist SUN Place Texture Average
Method

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

MSP[16] 95.60 18.89 86.88 49.18 85.64 51.73 85.17 49.66 88.32 42.37
ODIN[28] 71.04 48.53 60.47 69.00 57.01 72.69 63.03 68.88 62.89 64.78
ENERGY[31] 94.87 14.47 83.44 45.34 82.25 48.55 80.64 52.93 85.30 40.32
ReAct[42] 97.61 7.32 86.71 40.30 85.14 44.49 82.99 48.97 88.11 35.27
MCM(CLIP-L)*[34] 94.95 28.38 94.12 29.00 92.00 35.42 84.88 59.88 91.49 38.17
LHAct[55] 63.60 58.53 65.10 92.11 64.84 92.69 81.06 85.35 68.65 82.17
FeatureNorm[54] 66.42 89.70 60.77 92.22 61.44 91.80 55.86 95.78 61.12 92.38

TagOOD(Ours) 98.97 5.00 92.22 29.70 87.81 40.40 90.60 36.31 92.40 27.85

Table 2: Evaluation on more challenging datasets. The method marked with * indicates that it utilizes a more expansive
backbone in comparison to the others. The best and second-best results are indicated in Bold and Underline. ↑ indicates larger
values are better and ↓ indicates the opposite. All values are expressed in percentages.

OOD Datasets

ImageNet-O OpenImage Average
Method

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

MSP[16] 85.22 59.25 92.57 29.89 88.90 44.57
ODIN[28] 72.85 57.15 69.21 52.73 71.03 54.94
ENERGY[31] 87.33 37.05 86.64 36.83 86.99 36.94
React[42] 87.85 34.45 93.39 20.81 90.62 27.63
MCM(CLIP-L)*[34] 82.46 68.75 92.92 35.84 87.69 52.30
LHAct[55] 57.72 91.75 59.27 70.66 58.50 81.21
FeatureNorm[54] 54.22 94.84 61.00 92.83 57.61 93.84

TagOOD(Ours) 87.48 51.91 96.28 20.44 91.88 36.18

tendency to misclassify OOD samples as IND samples when the
true positive rate (correctly identified IND samples) is 95%. Lower
FPR95 suggests the model effectively identifies OOD data even with
a high true positive rate for IND data.
Training Details.We leverage RAM [56] as the underlying vision-
language model for OOD sample detection. For consistency across
all compared methods, the feature extractor within RAM, swin-
large [32], is used for all approaches. Our lightweight projection
model employs two serially connected self-attention block layers.
The projected feature space has a dimensionality of 512. ImageNet-
1k is used for training, with a total of 100 epochs, and the class cen-
ters are initialized with Gaussian noise for the 1000 ImageNet cate-
gories. The hyperparameters 𝛼, 𝛽,𝛾1, 𝛾2 are set to 1, 0.1, 1, 1 × 10−4,
respectively. These values were chosen based on our experimental
results. During training, The Adam optimizer [23] is used during
training with an initial learning rate of 0.01, a Cosine Annealing
learning rate scheduler, and a batch size of 256. All the experiments
are performed using PyTorch [36] with default parameters on two
NVIDIA V100 GPUs.

4.2 Main results
Standard evaluation on ImageNet.We compare the performance
of our TagOOD against seven popular OOD detection approaches,
including MSP [16], ODIN [28], Energy [31], ReAct [42], MCM [34],
LHAct [55], FeatureNorm [54]. All methods, except MCM, utilize
Swin-L as the backbone extractor for a fair comparison. MCM em-
ploys a larger andmore complex CLIP-based ViT-Lmodel. As shown
in Table 1, our method achieves better AUROC and FPR95 metrics.
We highlight that TagOOD achieves 27.85% on FPR95, which outper-
forms the previous best method ReAct [42] by 7.42% across various
OOD datasets. While MCM [34] exhibits higher AUROC and lower
FPR95 on SUN and Places datasets due to its significantly larger
CLIP ViT-L backbone, which is 1.7 times the size of Swin-L, Ta-
gOOD maintains the best average performance across all datasets.
Our analysis suggests that LHAct [55] and FeatureNorm [54] might
suffer limitations due to hyperparameter settings optimized for
a different backbone network. This mismatch between hyperpa-
rameters and the chosen Swin-L model can lead to suboptimal
performance on these methods.
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Figure 3: Overlap between IND and OOD samples. the black-tagged images are from ImageNet for reference and represent
a standard IND class sample. The samples with red tags containing IND class objects are selected from the SUN and Places
datasets. Red tags indicate the corresponding OOD scores assigned by our method.

Figure 4: The performance of TagOOD training with varying values of the hyperparameter 𝜏 .

The study by Bitterwolf et al. [2] highlights a crucial aspect of
OOD detection: the overlap between training and OOD data. The
commonly used datasets in our evaluation (detailed in Section 4.1)
exhibit varying degrees of overlap with the ImageNet-1k training
data. This overlap can potentially influence the evaluation of a
model to identify OOD samples. In Figure 3, the black-tagged images
are from ImageNet for reference and represent a true IND class
sample. The samples with red tags, selected from the SUN and
Places datasets, contain IND class objects. These red tags indicate
the corresponding OOD scores assigned by our method. TagOOD
correctly assigns them OOD scores with high confidence, indicating
it is reliable to accurately distinguish IND objects. This highlights
the robust OOD detection performance of TagOOD, leveraging the
power of the vision-language model.
Evaluation on more challenging OOD datasets.To further as-
sess the limitations and robustness of our TagOOD, we conducted
experiments on two challenging datasets: OpenImage-O [24] and

ImageNet-O [17]. OpenImage-O contains a diverse set of OOD sam-
ples, while ImageNet-O specifically includes adversarial examples
designed to fool detection models. As shown in Table 2, TagOOD
demonstrates strong performance on OpenImage-O, indicating its
effectiveness in handling general OOD data. However, on ImageNet-
O, which contains specifically crafted adversarial examples, the per-
formance of TagOOD shows some limitations while still achieving
the best AUROC score. This suggests that further exploration is
needed to enhance TagOOD’s resilience against adversarial attacks.

4.3 A closer look of TagOOD
How does image feature decomposition affect the perfor-
mance?We investigate the influence of the hyperparameter 𝜏 on
image feature decomposition for our projection model training.
Figure 4 visualizes the effects of varying 𝜏 values on model per-
formance. Specifically, we set 𝜏 = {0, 0.3, 0.5, 0.7}. Higher 𝜏 values
correspond to a more selective feature subset, prioritizing those
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Figure 5: Illustration of object features visualization and OOD score distribution. Both object features are visualized by T-
SNE [45]. Data points represent object features, and colors encode their corresponding IND class labels. Gray X marks indicate
OOD data points. The features presented on the left are directly extracted from the tagging model before projection. Following
the projection process, the object features become more condensed, as demonstrated on the right.

with strong alignment to IND object classes. Conversely, 𝜏 = 0
represents a baseline where all image features are directly used for
object model training. We observe that the optimal performance
across all the OOD datasets used in our evaluation is achieved at
𝜏 = 0.5. This finding suggests a critical balance between feature
selectivity and information retention for effective OOD detection.
Interestingly, the performance suffers more significantly when 𝜏
decreases from 0.5. In contrast, increasing 𝜏 beyond 0.5 leads to
only a slight performance degradation. We hypothesize that this
occurs because higher 𝜏 values eliminate some redundant informa-
tion without discarding critically important features for accurate
OOD classification. In essence, our model demonstrates the ability
to retain the most crucial information from image samples while
discarding irrelevant features at 𝜏 = 0.5. This selectivity contributes
to the reliable performance of TagOOD in identifying OOD data.

Table 3: A set of ablation results for TagOOD, averaged across
four standard OOD datasets. CCG stands for class center
generation, Proj. represents the projectionmodel training, CS
means Cosine Similarity distance and CE and MSE represent
Cross Entropy loss and Mean Square Error loss.

CCG Proj. AUROC↑ FPR95↓

Tag Score 85.62 43.44
CS

√
83.28 39.94

𝒑(CE)+CS
√

91.58 32.13
𝒑(CE+MSE)+CS

√ √
92.40 27.85

What is the effect of the projection model and class centers?
Table 3 and Figure 5 systematically explore the influence of the
projection model and class centers on the performance of TagOOD.
This analysis helps us understand how each step contributes to
the final OOD detection effectiveness. Tag Score in Table 3 utilizes
the confidence score directly from the tagging model as the OOD
score. CS leverages object features obtained after the image feature
decomposition. In this case, we compute the average feature of each
IND class as the class center. Cosine similarity is then computed
as the OOD score. 𝒑(CE)+CS uses the projection model trained
solely with a CE loss to project the object features. Subsequent
operations are the same as CS. The bottom line represents the full

TagOOD approach. It incorporates all the previous steps: image
feature decomposition, a projection model trained with a combined
loss function which includes both CE loss and MSE loss, and class
center generation. As observed, each stage progressively improves
performance, culminating in superior OOD detection capabilities.
This highlights the importance of both the projection model and
class centers in achieving reliable OOD detection.

To gain deeper insights into the operation of TagOOD, Figure 5
utilizes T-SNE [45] for visualization. The data points represent ob-
ject features, and colors encode their corresponding IND class labels.
The gray ’X’ markers represent OOD samples. A critical observa-
tion is the improved feature separation achieved through projection.
Features that are directly procured from the tagging model, shown
on the left, are likely to be scattered and overlapping. On the right
side, we see the features after the projection operation in TagOOD.
These features form tighter and more distinct clusters, with clearer
boundaries between different IND classes. This enhanced separa-
tion in the projected feature space allows TagOOD to assign more
distinguishable OOD scores. This facilitates the identification of
OOD samples because their features deviate significantly from the
learned representations of known object classes.

Table 4: Performance of TagOOD using various distance met-
rics. Results are averaged across four standard OOD datasets.

Metrics AUROC↑ FPR95↓

KL Divergence 90.66 32.53
Euclidean Distance 92.03 28.74
Cosine Similarity 92.40 27.85

Is TagOOD robust with various distance metrics? This abla-
tion experiment investigates the sensitivity of TagOOD to various
distance metrics commonly used in OOD detection: KL divergence,
Euclidean distance, and cosine similarity. The results in Table 4
demonstrate that TagOOD exhibits robustness across these met-
rics, maintaining strong performance. While KL divergence and
Euclidean distance show slight performance degradation compared
to cosine similarity, The effectiveness remains consistent. This sug-
gests that TagOOD is not overly reliant on a specific distance metric
for accurate OOD detection.
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Figure 6: Results of evaluation on varying levels of features selected during image feature decomposition.

Is the performance of TagOOD enhanced when training uti-
lizes a single ground truth tag as opposed to multiple pre-
dicted tags? This ablation experiment explores the influence of
tagging strategies on object feature selection for OOD detection.
We evaluate two strategies: utilize a single tag corresponding to the
ground truth for feature decomposition or leverage the predictions
of the tagging model, generating multiple tags for each image. The
decomposition is then guided by the attention masks constructed
based on these predicted tags. As shown in Table 5, the multiple
tags strategy achieves superior performance compared to using
the single ground-truth tag. We hypothesize that relying solely on
the ground truth might lead to inaccurate feature decomposition
due to potential tagging model errors. These errors could introduce
"missing information" or "offset issues" in the decomposed features,
hindering the ability to capture essential characteristics for effective
OOD detection. In contrast, the multiple tags strategy incorporates
the predictions of the tagging model, potentially offering a richer
representation of the image content. This can lead to more accu-
rate feature decomposition and the extraction of more informative
features, ultimately enhancing OOD detection capabilities.

Table 5: Ablation experiment about impact of tag selection
strategies on TagOOD Performance.

Tag for Training AUROC↑ FPR95↓

One tag 91.71 31.41
Multiple tags 92.40 27.85

Does TagOOD Maintain Robustness with Feature Variations?
This section investigates the ability of TagOOD to distinguish OOD
data at inference despite variations introduced (different values of
𝜏) during image feature decomposition. As mentioned earlier, our
projection model utilizes both image and object features. To explore
the robustness of TagOOD against such variations, we evaluate Ta-
gOOD on all six OOD datasets while adjusting the hyperparameter
𝜏 in the image feature decomposition stage. This manipulation effec-
tively controls the level of detail extracted from image features. The
results visualized in Figure 6 are encouraging. They demonstrate
that TagOOD consistently maintains strong performance in OOD
detection, regardless of the utilization of either image features or ob-
ject features, and irrespective of how the hyperparameter 𝜏 impacts

image feature decomposition. This suggests that the projection
model in TagOOD effectively learns discriminative features and
exhibits robustness to variations in feature representation extracted
during image feature decomposition.

5 LIMITATIONS
While TagOOD demonstrates promising results, there are areas
where further exploration could enhance its capabilities. The per-
formance of the tagging model can influence TagOOD’s ability to
accurately detect OOD data. Currently, TagOOD solely leverages
the backbone network of the tagging model for feature extraction.
This limits the potential for exploring alternative feature extractors
that might be better suited for OOD detection tasks. Opening doors
for investigating alternative feature extraction techniques will be
an exciting future direction for this research.

6 CONCLUSION
Existing OOD detection methods often rely on whole-image fea-
tures, which can incorporate irrelevant information beyond IND
objects. This paper introduces TagOOD, a novel approach that lever-
ages the power of vision-language models (VLMs) to achieve more
focused OOD detection. TagOOD tackles the challenge of OOD
detection by decoupling images from their corresponding classes
and generating class centers within a common feature space. This
innovative approach offers many advantages: TagOOD employs
a VLM to decouple images from their associated classes. This al-
lows the model to focus on the essential semantic information and
learn the IND area of each image that truly corresponds to the
label, resulting in a more refined IND distribution for enhanced
OOD detection. TagOOD generates object-level class centers for
each category within the IND data. These class centers serve as
reference points in the common feature space, enabling the model
to distinguish OOD samples effectively. A distance-based metric
is used between the test sample feature and class centers for OOD
detection. This simple yet effective approach allows the model to
identify samples that fall outside the expected distribution of the
IND data. This work presents a novel perspective for further ex-
ploration of multimodal information utilization in OOD detection,
we hope our work contributes to the advancement of robust and
reliable AI systems.
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