
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYBRID NUMERICAL PINNS: ON THE EFFECTIVENESS
OF NUMERICAL DIFFERENTIATION FOR COMPLEX PROB-
LEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Automatic differentiation (AD) is the default tool for computing physical derivatives
in physics-informed models, but it faces significant limitations when applied to
general frameworks, restricting their effectiveness on real-world problems. To
overcome these challenges, we propose a hybrid approach that integrates traditional
numerical solvers, such as the finite element method, within physics-informed deep
learning. This framework enables the exact imposition of Dirichlet boundary
conditions seamlessly, and efficiently addresses complex, non-analytic problems.
The proposed approach is versatile, making it suitable for integration into any
physics-informed model. Crucially, our hybrid gradient computation is up to two
orders of magnitude faster than AD, as its computational cost remains unaffected
by the underlying model’s complexity. We validate the method on representative
two and three-dimensional numerical examples and analyze the training dynamics
of the hybrid framework.

1 INTRODUCTION

Physics-Informed Neural Networks (PINNs) Raissi et al. (2019) have recently emerged as a promising
tool to solve Partial Differential Equations (PDEs). These models leverage the expressive power and
flexibility of deep learning, making them well-suited for a variety of applications, without requiring
costly experimental or numerical data.

Due to their growing popularity, numerous improvements to the physics-informed framework have
been proposed. Research has focused on optimizing model architectures, balancing loss terms
for forward and inverse problems, and enhancing training procedures. Yet, despite encouraging
applications across diverse physical, chemical, and biological problems, challenges remain regarding
the convergence of physics-informed models and their application to more complex, non-analytic
real-world problems. Specifically, recent works, such as Grossmann et al. (2024), show that physics-
informed models struggle to compete with traditional finite element solvers on most benchmarks,
both in terms of accuracy and computational efficiency. Furthermore, their reliance on Automatic
Differentiation (AD) to compute PDE residuals makes them unable to address non-analytic problems,
where, for instance, PDE coefficients are estimated and tabulated instead of given as an analytical
field.

In this work, we argue that Automatic Differentiation (AD), commonly used to compute PDE
residuals, represents a bottleneck in the current framework. As an alternative, we present hybrid
numerical PINNs, where the differential operators are approximated using numerical kernels derived
from classical techniques such as the finite element method. We demonstrate that this approach offers
significant advantages over Automatic Differentiation-based PINNs. Specifically, the computational
cost of this method to calculate the PDE residuals remains constant regardless of the model’s
complexity, and enables the handling of more general, non analytic problems. Furthermore, Dirichlet
boundary conditions can be strongly imposed in a seamless manner.

The paper is organized as follows. First, in Section 2, the physics-informed model and its recent
developments are presented. In Section 3, we propose our hybrid numerical PINN, in which the
computation of PDE residuals is handled by a numerical gradient kernel, and we highlight the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

advantages of this framework over conventional AD PINNs. Then, we apply our hybrid model, first
to the Allen-Cahn equation in Section 4, and then to more challenging problems in two and three
dimensions in Section 5. The enhancement of the training process is further discussed in Section 6.

2 PHYSICS-INFORMED NEURAL NETWORKS

We consider a smooth, open and connex set Ω ∈ Rd, with d ≥ 1. We assume that a function u
satisfies a partial-differential equation (PDE) of the following form:

N [x, u] = f(x) ∀x ∈ Ω, (1)
B[x, u] = 0 ∀x ∈ ∂Ω. (2)

In this formulation, N and B are potentially non-linear partial differential and boundary operators
and f is a given source term.

In order to approximate the true solution u, a neural network with trainable parameters θ is used
to produce a prediction uθ. Physics-Informed Neural Networks Raissi et al. (2019) are designed to
solve directly the problem 1-2. To do so, Nr collocation points are sampled inside the domain Ω, and
Nb points are sampled on the boundary ∂Ω. For more details on the choice of those points, see for
instance Wu et al. (2023). These points are used to approximate the PDE residuals inside the domain,
therefore the loss term associated to the partial differential operator N is:

Lr(θ) =
1

Nr

Nr∑
i=1

∥N [xi, uθ(xi)]− f(xi)∥2 . (3)

Similarly, the loss term associated to B is computed as:

Lb(θ) =
1

Nb

Nb∑
i=1

∥B[xi, uθ(xi)]∥2. (4)

Finally, the total loss function L(θ) is the sum of the two loss terms:

L(θ) = αrLr(θ) + αbLb(θ). (5)

The weights αr and αb are hyperparameters which balance the contribution of the two loss terms
during training. For a discussion on the choice of these parameters, see Wang et al. (2021a).

The evaluation of the PDE operator N is typically made by recording every modification on the
input position xi to produce uθ(xi) inside a computational graph, and by deriving every elementary
algebraic modification during reverse-mode Automatic Differentiation (AD) Baydin et al. (2018);
Margossian (2019). The global PDE operator is then evaluated using the chain rule. These operations
are facilitated with the use of deep learning frameworks such as Tensorflow Abadi et al. (2015),
Pytorch Paszke et al. (2019) or JAX Frostig et al. (2018).

A discussion on the related works is provided in Annex A.

3 PROPOSED APPROACH: NUMERICAL COMPUTATION OF PHYSICAL
OPERATORS

3.1 NUMERICAL OPERATOR EXTRACTION

In the proposed hybrid numerical physics-informed model, spatial derivative computations are
performed using a numerical operator derived from any suitable differentiation technique, such as the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

finite difference or finite element method. The key idea is to extract and represent the differential
operator as a sparse tensor, enabling its seamless integration into the training framework. This
approach offers significant advantages over automatic differentiation-based physics-informed neural
networks (AD PINNs), which we discuss in detail in Section 3.2.

Figure 1 illustrates the computation of the loss derivative with the proposed hybrid numerical
approach. The extracted operators corresponding to gradient and divergence computations are denoted
respectively G∇ and G∇·. In terms of computational complexity, once these operators are extracted,
computing the gradient or divergence of a field corresponds to a matrix-vector multiplication, therefore
it does not require to backpropagate through the computational graph. This operation is therefore
independent from the underlying model’s complexity.

Figure 1: Training workflow of the proposed hybrid physics-informed model. The gradient, di-
vergence and laplacian operators are approximated by sparse operators on a discretized domain,
and included inside the training loop. This step is recorded within the automatic differentiation
computational graph to facilitate the optimization process.

Our main experiment are presented in Section 5 and are based on a hybrid Finite Element-Physics-
Informed approach. To the best of our knowledge, while hybrid Finite Element Physics-Informed
models have been proposed before, they typically rely on the full variational finite element formulation
of the PDE. In contrast, our method extracts only the derivative operator from the finite element
formulation and uses it directly to solve the equation, either in its strong or weak form. While the
extraction of a gradient matrix is standard practice in finite difference methods LeVeque (2007),
performing a similar operation within a finite element framework is less straightforward. For
completeness, we outline the main steps required to construct this finite element gradient operator in
Annex B.

3.2 NUMERICAL PROPERTIES OF THE HYBRID MODEL

With the extraction of the numerical operator and its inclusion inside the Physics-Informed framework,
the resulting model has the following properties:

Inclusion of non-analytic fields: Unlike AD, the proposed differentiation operator can be applied
to non-analytic fields which are computed outside of the training framework. This capacity allows to
address much more general problems, in which the PDE parameters are non-analytic or are derived
from closure laws which are not directly implemented. This situation could arise in mechanics for
instance, where material parameters appear in the equation but are not known analytically. Instead,
they are typically provided in tabular forms. In multiphysics problems, different numerical kernels
can solve separate physical laws, and the resulting fields are interchanged to converge to the true,
multiphysics solution. All of these settings are beyond the capacities of conventional AD PINNs, as
these fields cannot be differentiated, leading to erroneous PDE residuals. In our proposed framework,
additional inputs computed by outside solvers can be directly fed to the model without breaking the
computational graph, ensuring that the corresponding PDE residuals remain accurate.

Strong imposition of Dirichlet boundary conditions: The subject of strongly imposing Dirichlet
boundary conditions in physics-informed neural networks is an ongoing research topic Sukumar &
Srivastava (2022); Berg & Nyström (2018). Ensuring that the model inherently respects Dirichlet
conditions is feasible for general, complex geometries with conventional PINNs. However, this
imposition comes with an increased preprocessing complexity (for instance, by fitting distance
functions to the boundary). With our hybrid models, this imposition can be done seamlessly, by

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

directly adjusting the model’s predicted values on the boundary to match the Dirichlet values. Suppose
the boundary condition in Equation 2 has the following form:

u(x) = g(x), x ∈ ∂Ω. (6)

Given a prediction uθ of any physics-informed model, one can strongly enforce such Dirichlet
boundary conditions regardless of the geometry with no added complexity using the following
operation:

u(x) = 1∂Ω(x)g(x) + (1− 1∂Ω(x))uθ(x). (7)

This straightforward procedure cannot be applied to standard AD-based PINNs for the same reasons
discussed previously: the differential operator cannot accurately compute derivatives of the solution
field near the boundary. As a result, the predicted solution tends to exhibit discontinuities in the
vicinity of the boundary. In contrast, numerical differential operators do not require analytical
expressions for the imposed Dirichlet conditions, and any discontinuities are naturally penalized
during the computation of the PDE residual. We evaluate this procedure on complex geometries with
non-analytical Dirichlet conditions in Section 5.

Constant computation time: Unlike AD, which records and differentiates every modification of
the input to compute the corresponding derivative, the numerical complexity of applying the proposed
differential operator is independent of the model. Consequently, for deep neural networks, our method
demonstrates significantly faster performance compared to conventional AD, as shown in Section 5,
Figure 4. In our experiments, the proposed approach is up to two orders of magnitude faster than AD.
Crucially, for more complex architectures such as graph neural networks, which hold great potential
for physics-based applications, the speed-up could be even more substantial.

Better convergence: Using numerical operators as differential operators simplifies the computa-
tional graph of the loss, which, in turn, makes the training smoother, allowing for a better and faster
convergence. This aspect is discussed in Section 6.

Mesh-dependent approach: Physics-informed models are typically considered meshless ap-
proaches, offering a significant advantage over traditional numerical techniques. Our proposed
method does not possess this meshless property, as it requires the construction of a mesh to extract
the numerical gradient operator. However, our goal is to develop accurate and robust models for
two or three-dimensional physics-based simulations in arbitrary geometries, a domain where PINNs
still fall short of matching the performance of traditional numerical solvers (see, e.g., Grossmann
et al. (2024)). In such contexts, the problem dimensions are typically limited to two or three spatial
variables and one temporal dimension, so the curse of dimensionality is not the primary concern.
Moreover, while standard PINNs rely on collocation points during training, generating these points
becomes increasingly difficult for complex or irregular geometries. Consequently, most of the
Physics-Informed models that have tackled such problems rely on meshed versions of the geometry
for point sampling Sedykh et al. (2024); Costabal et al. (2024). This suggests that the commonly
cited meshless nature of PINNs generally holds for convex and structured geometries. Our aim is
to extend the capabilities of physics-informed models to more complex, real-world domains, where
incorporating mesh-awareness provides greater flexibility and practical applicability. Therefore, we
argue that the need for meshing is not the primary limitation of the proposed method.

4 VALIDATION OF THE HYBRID NUMERICAL APPROACH

To compare our hybrid approach to conventional PINNs, the Allen-Cahn equation is chosen, because
of its non-linearity. We want to emphasize that for this equation, we did not reach convergence
for the AD PINN with a weak imposition of Dirichlet boundary conditions, and therefore used a
strong constraint. While for this simple academic benchmark, finding a suitable imposition of such
constraint is feasible, more complex problems would require additional preprocessing complexity,
with for instance the use of distance functions of other computationally expensive preprocessing

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

steps Leake & Mortari (2020); Berg & Nyström (2018); Sukumar & Srivastava (2022). The equation
solved is the following.

∂u

∂t
= d

∂2u

∂x2
+ 5(u− u3), (x, t) ∈ Ω = (−1, 1)× (0, 1),

u(−1, t) = u(1, t) = −1, u(x, 0) = x2 cos(πx).

(8)

The parameter d is set to 0.001. This PDE has been solved by finite difference method in Lu et al.
(2021), and their provided dataset is used as ground truth. The spatio-temporal domain is discretized
as a 201× 101 grid, and the whole grid is used as collocation points.
To strongly impose Dirichlet boundary conditions, The following transformation is implemented for
both models. Given the prediction ypred of the model, the trial solution u is defined as:

u(x, t) = x2 cos(πx) + t(1− x2)ypred(x, t). (9)

This transformation, which was also used in the website of Lu et al. (2021), strongly enforces initial
and boundary conditions of equation 8. Therefore, the loss function used is only the term associated
to the PDE residuals. Two models were trained with the two different derivative computations, and
Multi-Layer Perceptrons with three hidden layers of width 64 and the Tanh activation function were
selected for both models. The two models were trained for 15,000 epochs with the Adam optimizer
and a learning rate of 0.001, and for 500 additional epochs with the L-BFGS optimizer and a learning
rate of 0.5. Increasing the number of L-BFGS epochs did not decrease the loss. Figure 2 shows the
relative L2 error as a function of the training time, for both models.

0 500 1000 1500 2000 2500 3000

Training time [s]

10−3

10−2

10−1

R
e
la

ti
v
e

M
e
a
n

S
q
u

a
re

d
E

rr
o
r

Num. Diff

Auto. Diff

Figure 2: Relative error of the proposed numerical differentiation-based model (stars) and the
AutoDiff PINN (triangles), as a function of the training time for the Allen-Cahn equation. The two
models reach a similar accuracy, with a speed-up of almost 6 for the hybrid model compared to the
conventional AD PINN.

With a relative error of 1.43× 10−4, the proposed model is slightly more accurate than the AD PINN,
and its relative error of 1.60× 10−4. However, the main improvement is done regarding the training
time, as a speed-up of 5.8 is reached.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 NUMERICAL RESULTS

5.1 A TWO-DIMENSIONAL STATIC LINEAR ELASTICITY PROBLEM

To demonstrate the extended ability of numerical PINNs, we extend our analysis to a two-dimensional
linear elasticity static problem. The target field in this case is the vector displacement, with Dirichlet
boundary conditions on the domain Ω plotted in Figure 3 and representing the Olympic rings.
The target function u∗ = (u∗

x, u
∗
y) is obtained with Finite Element Method (FEM). Details on the

mathematical formulation of the problem and the training procedure are provided in C.1.

Three models were trained on this problem: one with our hybrid framework with strong imposition
of boundary conditions, and two models trained with AD: one with strongly enforced boundary
conditions following our approach, and one with a weak imposition of this constraint. The results
and the training time are presented in Table 1.

Table 1: Results on the linear elasticity case. The relative Mean Squared Error is reported. ‘Hybrid
FE-PINN’ refers to our hybrid Finite Element (FE) PINN. ‘AD PINN, Strong BC’ (resp.‘AD PINN,
Weak BC’) refers to the AD PINN, with strongly (resp. weakly) enforced boundary conditions.

Model Relative error (%) Training time (s)

Hybrid FE-PINN (ours) 0.05 4.97× 102

AD PINN, Strong BC 19, 300 1.80× 103

AD PINN, Weak BC 94 1.82× 103

With a relative mean squared error of 0.05%, our model can accurately reconstruct the target solution;
the predicted solution is plotted in Figure 3. In contrast, the AD model trained with weak imposition
of boundary constraints only achieves a relative error of 94% due to the complexity of the geometry.
The performances of the AD method with strongly enforced boundary conditions are even worse, with
a relative error of 19, 300%, demonstrating the difficulty of strongly enforcing boundary conditions
with plain PINNs. While more complex architectures like graph models could have better accuracy
than plain neural networks, this case highlights the performance of our hybrid approach, and its
ability to address real-life geometries and equations.

To further demonstrate the competitiveness of our method in terms of computational complexity, we
performed gradient and Laplacian computations using both the traditional AD framework and our
finite element-based gradient kernel on the same geometry. The computations have been performed
with neural networks of a fixed width of 50, and varying depth (between 1 and 20 hidden layers).
For every computation, 10 runs are performed and repeated 25 times for statistical significance. The
computations have been performed on a single Nvidia T400 GPU. The average gradient and Laplacian
computation times and the associated standard deviations as a function of the neural network’s depth
are reported in Figure 4.

As expected, the run time of our method does not depend on the model’s complexity, making it
consistently faster than AD-based computations, especially for more complex models. For the deepest
networks, the Laplacian computations are up to two orders of magnitude faster compared to the AD
baseline.

The computational graph of our model is also drastically simplified, since no backtracking is needed
for the loss computation. This simplification, combined with the results presented in Figure 4, explain
the shorter training time of our hybrid method compared to AD PINNs.

5.2 HETEROGENEOUS THREE-DIMENSIONAL ELLIPTIC PROBLEM

In this experiment, we consider a non-analytic three-dimensional case on a complex geometry. The
problem is an elliptic PDE on an irregular, hollow, three-dimensional coil. The coil is divided
into two equal parts, with two materials (steel and Copper Chromium alloy), with different electric
conductivities. The target field is the electrostatic potential. Due to the complexity of the geometry,
the total conductivity is not an analytical field, therefore, for the reasons developed in Section 3.2, it
cannot be differentiated by AD. The details of the problem and the training procedure are provided in
Annex C.2. Figure 5 displays the three-dimensional domain, along with the target and predicted field.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Chosen mesh

X
D

is
pl

ac
em

en
t

(b) Target displacement (c) Predicted displacement

Y
D

is
pl

ac
em

en
t

Figure 3: Meshed domain Ω, prediction of our model and target displacement. The boundary
nodes where the target X displacement is equal to −1 and 1 are the nodes with Dirichlet boundary
conditions.

The results are the following. Our proposed hybrid PINN with strongly enforced boundary conditions
achieves a relative error of 1.01%, with a training time of 2.04× 103 seconds on an Intel Xeon Gold
CPU. The conventional PINN, on the other hand, due to its inability to differentiate the conductivity
σ(x), cannot compute the true PDE residuals. The model reaches a relative error of 42.9%, with a
longer training time (9.66× 103 seconds). As explained in Section 3.2, such real-life heterogeneous
problems seem to be unreachable for conventional PINNs. Meanwhile, our proposed numerical
derivation kernel allows the hybrid PINN to converge to the target solution.

6 AN INSIGHT ON THE TRAINING OF HYBRID MODELS

The optimization error of a statistical model after the fitting (or training) phase measures how far
the model is from the optimal model which minimizes the training loss whithin the same class.
Due to the non-convexity of the loss function with respect to their parameters, neural networks
are notoriously difficult to train, often resulting in high optimization errors. This is especially
verified in physics-informed models, where the target loss function is complex, and involves intricate
computational graphs. Specifically, data and PDE loss terms can compete during training, leading to
sub-optimal optimizations Wang et al. (2022). In contrast, strongly enforcing Dirichlet boundary
conditions mitigates this issue, and the computational graph of numerical differential operators tends
to be less complex.

To illustrate this aspect, we computed the loss landscapes of both methods for the models trained to
solve the problem presented in Section 5. The loss landscape computation was performed following
a straightforward approach inspired by Lorch (2016); Li et al. (2018). During training, the model
parameters were stored, and a Principal Component Analysis (PCA) was applied to identify the
principal directions in which the parameters evolve. The models’ weights were then perturbed along
these directions, and the corresponding loss values were recorded. The resulting loss landscapes are
presented in Figure 6.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 10 15 20

Hidden layers

0.00

0.05

0.10

0.15

0.20

0.25

E
x
e
cu

ti
o
n

T
im

e
[s

]

Execution Time of physical operators computation

Hybrid gradient

AD gradient

Hybrid laplacian

AD laplacian

Figure 4: Execution time for gradient (solid lines) and Laplacian (dashed lines) computations in
neural networks of varying depth, using both methods. AD operator runtimes are marked with black
diamonds, while hybrid computations are indicated by grey chevrons.

While not purely convex, the loss landscape of our hybrid model is noticeably smoother and clearly
exhibits a minimum, in contrast to the AD PINN, which has multiple local minima.

The smoothing behaviour of numerical gradients compared to automatic differentiation has already
been noticed in other fields such as image rendering or general derivative estimation Petersen et al.
(2024); Fischer & Ritschel (2023); Petersen et al. (2022). In our case, this behaviour may be
attributed to the competing PDE and boundary loss terms, as well as the increased complexity of the
computational graph. The computational graphs of a single gradient computation for both models are
presented in Annex D.

7 CONCLUSION AND PERSPECTIVES

In this paper, we present hybrid numerical PINNs, and highlight their key improvements over
conventional Automatic-Differentiation PINNs. Crucially, our hybrid approach enables the strong
imposition of Dirichlet boundary conditions on arbitrary shapes without introducing preprocessing
complexity. Additionally, the computation of PDE residuals is decoupled from the model’s
architecture and complexity, resulting in speed-ups of up to two orders of magnitude. We also discuss
and demonstrate the numerical properties of these models, in particular their more stable training
processes.

Key future directions include the extension of this setting to more complex problems, such as those
involving more challenging boundary conditions and equations, as well as further investigations into
the generalization capabilities of such hybrid models. Additionally, expanding our framework to
neural operator settings could be of significant interest.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Chosen mesh and subdomain division

(b) Target potential (c) Predicted potential

Figure 5: Meshed domain, prediction of our model and target potential. The domain is made of steel
(black nodes) and Copper Chromium alloy (grey nodes).

Figure 6: Loss landscapes for AD training (left) and the hybrid framework (right). The loss directions
are obtained via PCA on the model’s weights during training, with the first two principal directions
displayed. The scales of both plots are identical.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/. (Visited
on 01/01/2024).

9

https://www.tensorflow.org/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research,
18:1–43, 2018.

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable
pde solvers and graph neural networks for fluid flow prediction. In International Conference on
Machine Learning, pp. 2402–2411. PMLR, 2020.

Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing, 317:28–41, 2018.

M Chenaud, Frederic Magoules, and J Alves. Physics-informed graph convolutional networks:
Towards a generalized framework for complex geometries. In The Sixth International Conference
on Soft Computing, Machine Learning and Optimization in Civil, Structural and Environmental
Engineering, volume 300, pp. Paper–4, 2023.

M Chenaud, F Magoulès, and J Alves. Physics-informed graph-mesh networks for pdes: A hybrid
approach for complex problems. Advances in Engineering Software, 197:103758, 2024.

Francisco Sahli Costabal, Simone Pezzuto, and Paris Perdikaris. δ-pinns: Physics-informed neural
networks on complex geometries. Engineering Applications of Artificial Intelligence, 127:107324,
2024.

MWMG Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solving
partial differential equations. communications in Numerical Methods in Engineering, 10(3):
195–201, 1994.

Suchuan Dong and Zongwei Li. Local extreme learning machines and domain decomposition for
solving linear and nonlinear partial differential equations. Computer Methods in Applied Mechanics
and Engineering, 387:114129, 2021.

Nathan Doumèche, Gérard Biau, and Claire Boyer. Convergence and error analysis of pinns. arXiv
preprint arXiv:2305.01240, 2023.

Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements, volume 159. Springer,
2004.

Mohammad Sadegh Eshaghi, Cosmin Anitescu, Manish Thombre, Yizheng Wang, Xiaoying Zhuang,
and Timon Rabczuk. Variational physics-informed neural operator (vino) for solving partial
differential equations. arXiv preprint arXiv:2411.06587, 2024.

Zhiwei Fang. A high-efficient hybrid physics-informed neural networks based on convolutional
neural network. IEEE Transactions on Neural Networks and Learning Systems, 33(10):5514–5526,
2021.

Michael Fischer and Tobias Ritschel. Plateau-reduced differentiable path tracing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4285–4294, 2023.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing. Systems for Machine Learning, 4(9), 2018.

Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks: A
unified framework for solving pde-governed forward and inverse problems. Computer Methods in
Applied Mechanics and Engineering, 390:114502, 2022.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of pde systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.

Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems. Neural
Networks, 146:272–289, 2022.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed
deep neural operator networks. In Machine learning in modeling and simulation: methods and
applications, pp. 219–254. Springer, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tamara G Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-Bibiane Schönlieb. Can
physics-informed neural networks beat the finite element method? IMA Journal of Applied
Mathematics, pp. hxae011, 2024.

Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. A priori analysis of stable neural network
solutions to numerical pdes. arXiv preprint arXiv:2104.02903, 2021.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-vpinns: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Applied Mechanics
and Engineering, 374:113547, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998a.

Isaac Elias Lagaris, Aristidis Likas, and Dimitrios G Papageorgiou. Neural network methods for
boundary value problems defined in arbitrarily shaped domains. arXiv preprint cs/9812003, 1998b.

Carl Leake and Daniele Mortari. Deep theory of functional connections: A new method for estimating
the solutions of partial differential equations. Machine learning and knowledge extraction, 2(1):
37–55, 2020.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

Eliana Lorch. Visualizing deep network training trajectories with pca. In ICML Workshop on
Visualization for Deep Learning, 2016.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021.

Charles C Margossian. A review of automatic differentiation and its efficient implementation. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 9(4):e1305, 2019.

Rishith E Meethal, Anoop Kodakkal, Mohamed Khalil, Aditya Ghantasala, Birgit Obst, Kai-Uwe
Bletzinger, and Roland Wüchner. Finite element method-enhanced neural network for forward and
inverse problems. Advanced Modeling and Simulation in Engineering Sciences, 10(1):6, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Felix Petersen, Bastian Goldluecke, Christian Borgelt, and Oliver Deussen. Gendr: A generalized
differentiable renderer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4002–4011, 2022.

Felix Petersen, Christian Borgelt, Aashwin Mishra, and Stefano Ermon. Generalizing stochastic
smoothing for differentiation and gradient estimation. arXiv preprint arXiv:2410.08125, 2024.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lena Podina, Brydon Eastman, and Mohammad Kohandel. Universal physics-informed neural
networks: symbolic differential operator discovery with sparse data. In International Conference
on Machine Learning, pp. 27948–27956. PMLR, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Alexandr Sedykh, Maninadh Podapaka, Asel Sagingalieva, Karan Pinto, Markus Pflitsch, and Alexey
Melnikov. Hybrid quantum physics-informed neural networks for simulating computational fluid
dynamics in complex shapes. Machine Learning: Science and Technology, 5(2):025045, 2024.

Hailong Sheng and Chao Yang. Pfnn-2: A domain decomposed penalty-free neural network method
for solving partial differential equations. arXiv preprint arXiv:2205.00593, 2022.

Natarajan Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance
functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics
and Engineering, 389:114333, 2022.

Remco van der Meer, Cornelis W Oosterlee, and Anastasia Borovykh. Optimally weighted loss func-
tions for solving pdes with neural networks. Journal of Computational and Applied Mathematics,
405:113887, 2022.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081,
2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021b.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Zixue Xiang, Wei Peng, and Wen Yao. Rbf-mgn: Solving spatiotemporal pdes with physics-informed
graph neural network. arXiv preprint arXiv:2212.02861, 2022.

A RELATED WORKS

Physics-informed models have proven to be very effective in several academic benchmarks Dis-
sanayake & Phan-Thien (1994); Lagaris et al. (1998a;b); Raissi et al. (2019); Kharazmi et al. (2021).
However, deriving theoretical guarantees of convergence for these models is an ongoing research
topic Hong et al. (2021); Doumèche et al. (2023). Many efforts have been conducted to enhance the
physics-informed framework. Leake & Mortari (2020); van der Meer et al. (2022); Berg & Nyström
(2018); Wang et al. (2021a); Sheng & Yang (2022) have addressed the complex issue of balancing
the different loss terms accounting for the PDE residuals and the data knowledge (e.g., boundary
or initial conditions) to ensure an efficient training. Other approaches have investigated different
model architectures Gao et al. (2022); Belbute-Peres et al. (2020); Pfaff et al. (2020); Chenaud
et al. (2023; 2024); Dong & Li (2021); Geneva & Zabaras (2020; 2022). For better generalization
capabilities, some works have proposed to modify the learning process to fit operators instead of solu-
tions to a single PDE Wang et al. (2021b); Podina et al. (2023); Goswami et al. (2023); Li et al. (2024).

Finally, closer to the approach proposed here, the authors of Belbute-Peres et al. (2020); Meethal
et al. (2023); Xiang et al. (2022); Gao et al. (2022) have combined numerical methods with the deep
learning approach. In Belbute-Peres et al. (2020); Meethal et al. (2023), the problem of solving the
PDE is decomposed between the numerical solver and the deep learning model. In Fang (2021);
Xiang et al. (2022); Gao et al. (2022), the residuals are computed without automatic differentiation,

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

using finite difference methods, and discretized Galerkin analytical formulations. Hybrid Finite
Element PINNs are also presented in Costabal et al. (2024); Eshaghi et al. (2024); Meethal et al.
(2023). However, to the best of our knowledge, the full finite element formulation is consistently
utilized, rather than isolating the differential operator. This design limits the flexibility of the
resulting model. Therefore, a quantitative comparison with other hybrid models is challenging,
as these approaches typically rely on a fully variational, discretized formulation of the PDE
rather than incorporating a numerical differentiation operator directly within the training pipeline.
As a result, their implementations are highly problem-specific. Furthermore, to the best of our
knowledge, the referenced works do not analyze the improved loss landscapes observed in compar-
ison to AD-based PINNs. Below, we provide a qualitative comparison with similar hybrid approaches.

In Fang (2021), the author introduces a finite difference-based derivative operator that is integrated
into the training pipeline, resulting in much shorter training times and improved theoretical
convergence guarantees. However, this operator is limited to regular, uniformly spaced grids. The
method is extended to irregular meshes through a finite volume formulation of the PDE, which
is closer to our hybrid model. However, this approach involves deriving the full finite volume
discretization of the equation. As a result, the implementation becomes tightly coupled to the specific
PDE under consideration, reducing its adaptability. Moreover, we argue that this formulation is not
suitable for general nonlinear equations, where the discretized system matrix depends explicitly on
the predicted solution. In such cases, the matrix cannot be precomputed.

In Gao et al. (2022), the problem formulation is integrated within the finite element framework, and,
to the best of our understanding, the predicted solution is constrained to lie within a pre-selected FE
space. This design choice may limit the model’s interpolation capabilities, particularly when applied
to a different discretization of the same domain. In contrast, our method uses the mesh solely for
computing the derivative operator during training. As a result, the trained model can be evaluated at
any point within the domain, independent of the training mesh or discretization.

Finally, the authors of Xiang et al. (2022) propose a radial basis function (RBF) finite difference
variant of PINNs. In this approach, the target solution is represented as a combination of RBFs and
polynomial basis functions, and the PDE residuals are computed using a discretized version of the
governing equation. While this method demonstrates promising results, it is labor-intensive, requiring
the construction of two discretized function spaces. Additionally, the formulation is closely tied to
the specific PDE being solved, which limits its flexibility.

B DERIVATION OF THE FINITE ELEMENT GRADIENT OPERATOR

On a domain Ω ⊂ Rn for which a mesh has been built, we consider a nodal field u = (u1, . . . , uN ),
N being the number of nodes. For the node xi, 1 ≤ i ≤ N , ui is the value of the field u on the node
xi. The P1 finite element approximation is based on the consideration of the set of piecewise linear
functions (φi)1≤i≤N , such that φi(xj) is equal to 1 if i = j, and 0 otherwise. The nodal field u is
therefore approximated by equation 10.

u ≈
∑
i

uiφi. (10)

With this assumption, the spatial gradient of u, denoted by ∇u, can be approximated as ∇u ≈ G∇u,
with:

G∇ i,j =
1∫

Ωi
dΩ

∫
Ωi

ng∑
g=1

∇φj(xg)dΩ. (11)

In this formulation, Ωi is the set of elements which share the node i, xg are the Gauss points of these
elements and ng is the number of elements. This operation recovers the computation of ∇u on the
Gauss points of the domain, followed by its projection onto the mesh nodes, to recover a P1 field.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Numerically, applying this operator is equivalent to a sparse matrix-vector multiplication in terms
of computational complexity. Therefore, once the numerical operator G∇ has been extracted from
the geometry and converted to a sparse tensor, the numerical gradient computation can be included
directly inside any automatic differentiation framework, and its application will be recorded inside
the computational graph of the PDE residuals. Similarly, other differential operators such as the diver-
gence and the Laplacian can be obtained as sparse tensors and included in a physics-informed training.

One of the advantages of using such operators is that their behavior is well-understood within the
framework of established numerical methods, such as the finite element method (FEM). Theoretical
error bounds for these operators have been rigorously studied. For example, the authors of Ern &
Guermond (2004) show that, under mild regularity assumptions on the target function, the numerical
gradient converges to the true gradient with a rate of O(h), where h is the mesh size. In our
experiments, the numerical error introduced by this approximation was significantly smaller than the
optimization error inherent to the PINN, and thus did not constitute the primary limitation in terms of
overall accuracy.

C DETAILS ON THE NUMERICAL EXPERIMENTS

C.1 TWO-DIMENSIONAL LINEAR STATIC ELASTICITY PROBLEM

The mathematical formulation of the problem is the following:

divσ(ε) = 0,

ε(u) = ∇u+∇uT , σ(ε) = λTr(ε)I+ 2µε,

u(x, y) = u∗(x, y), (x, y) ∈ Γ ⊂ ∂Ω,

∂u

∂n
(x, y) = 0, (x, y) ∈ ∂Ω\Γ.

(12)

The Lamé parameters λ and µ are set to 1, and I denotes the identity matrix. A mesh of 5,104 nodes
was built on this complex geometry. The FEM computation took 0.21 second and 1,452 iterations for
a relative tolerance of 10−4, and 0.4 second (2,843 iterations) for a relative tolerance of 10−8 using a
preconditioned conjugate gradient method with Jacobi preconditioner. The experiments were made
on a single Intel Xeon Gold CPU. The FEM gradient kernel has been used for our hybrid approach,
following the approach presented in Section 3.

For the three models tested, the training has been conducted for 20,000 epochs with the Adam
optimizer, and a learning rate of 0.005. The models are Multi-Layer Perceptrons with 3 hidden layers
of width 50, and with the Tanh activation function. To include the homogeneous Neumann boundary
condition, a weak formulation of the PDE is used to compute the residuals.

C.2 THREE-DIMENSIONAL ELLIPTIC PROBLEM

The target field is the electrostatic potential V . Its value is set to zero on one extremity of the coil,
∂Ω1, and to 1 on the other extremity, ∂Ω2. The full mathematical formulation is the following:

∇ · (σ(x)∇V (x)) = 0, x ∈ Ω,

V (x) = 0, x ∈ ∂Ω1,

V (x) = 1, x ∈ ∂Ω2.

(13)

The domain is divided into two parts, with two different materials. The conductivity σ is equal to
2.225× 107 for the Copper Chromium alloy part, and to 6.25× 106 for the steel part. The domain is
discretized into a mesh composed of 10,368 nodes. This problem has been solved by finite element
method, and the corresponding result is considered to be the ground truth. Two models are trained on
this problem: our proposed hybrid PINN with the numerical gradient kernel, and a strong imposition
of the Dirichlet boundary conditions, and a conventional AD PINN with weakly enforced boundary
conditions. Both models are multi-layer perceptrons with three hidden layers of width 100, and the

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tanh activation function. The training is conducted for 5, 000 epochs with the Adam optimizer and a
learning rate of 0.001, and for 1, 000 additional epochs with the L-BFGS optimizer, and a learning
rate of 0.1. The loss is the L1 norm of the physics-informed residuals for our hybrid model, and the
sum of the physics-informed loss term and the Dirichlet boundary error for the conventional PINN.

D A COMPARISON OF THE COMPUTATIONAL GRAPHS

To demonstrate the ability of our method to simplify the computational graph of a physics-informed
loss, we computed the gradient of two neural networks with the same architecture (3 hidden layers of
width 50, and the Tanh activation function), on the geometry presented in Section 5.1. We captured
the computational graph of this operation, and visualized it. The results are presented in Figures 7
and 8.

Figure 7: Computational graph of the AD gradient computation.

Unlike the AD operator, the hybrid differential operator does not require performing backward passes
on the computational graph to complete the forward computation, which explains the significantly
simpler structure of the corresponding graph. This property may also explain the smoother loss
landscape observed in Section 6.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Computational graph of the hybrid gradient computation.

16


	Introduction
	Physics-Informed Neural Networks
	Proposed approach: Numerical computation of physical operators
	Numerical operator extraction
	Numerical properties of the hybrid model

	Validation of the hybrid numerical approach
	Numerical results
	A two-dimensional static linear elasticity problem
	Heterogeneous three-dimensional elliptic problem

	An insight on the training of hybrid models
	Conclusion and perspectives
	Related works
	Derivation of the Finite Element gradient operator
	Details on the numerical experiments
	Two-dimensional linear static elasticity problem
	Three-dimensional elliptic problem

	A comparison of the computational graphs

