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ABSTRACT

In this paper, we explore how to enhance student network performance in
knowledge distillation (KD) for domain adaptation (DA). We identify two key
factors impacting student performance under domain shift: (1) the capability of
the teacher network and (2) the effectiveness of the knowledge distillation
strategy. For the first factor, we integrate a Vision Transformer (ViT) as the fea-
ture extractor and our proposed Category-level Aggregation (CA) module as the
classifier to construct the ViT+CA teacher network. This architecture leverages
ViT’s ability to capture detailed representations of individual images. Addition-
ally, the CA module employs the message-passing mechanism of a graph con-
volutional network to promote intra-class relations and mitigate domain shift by
grouping samples with similar class information. For the second factor, we lever-
age pseudo labels generated by the ViT+CA teacher to guide the gradient updates
of the student network’s parameters, aligning the student’s behavior with that of
the teacher. To optimize for efficient inference and reduced computational cost,
we use a convolutional neural network (CNN) for feature extraction and a multi-
layer perceptron (MLP) as the classifier to build the CNN+MLP student network.
Extensive experiments on various DA datasets demonstrate that our method sig-
nificantly surpasses state-of-the-art approaches. Our code will be available soon.

1 INTRODUCTION

Domain adaptation (DA) has attracted significant attention in recent research due to its potential
to mitigate domain shift (Ben-David et al., 2010) between source and target domains, enabling the
transfer of knowledge from labeled source data to unlabeled target data. Traditional DA methods
primarily rely on convolutional neural networks (CNNs) (Kayhan & van Gemert, 2020) to learn
domain-invariant representations. However, studies (Li et al., 2017; Naseer et al., 2021) indicate
that CNN-based models are highly sensitive to domain shift. Recently, DA approaches based on
Vision Transformers (ViTs) (Yang et al., 2023; Xu et al., 2022) have demonstrated superior per-
formance over CNN-based methods (Xiao et al., 2023; Yu & Lin, 2023). While these approaches
mark significant progress, deploying ViT-based models in real-world applications remains challeng-
ing, especially in scenarios demanding rapid inference, minimal storage, and lower computational
costs, such as on resource-constrained devices. In contrast, compact CNN models like ResNet18
and ResNet34 (He et al., 2016) are often preferred for their efficiency. This raises an intuitive
question: ‘how can we collaboratively leverage the strengths of these two models within a unified
framework?’ Specifically, ‘can we utilize the strong representational capability of the ViT-based
model during training while exploiting the computational efficiency of the CNN-based model during
inference?’ This balance would meet the demands for high performance with low computational
cost. Knowledge distillation (KD) offers a promising strategy to address this concern described as:
Teacher (ViT) Method−−−−→ Student (CNN). Herein, the knowledge acquired by the ViT-based teacher
model is transferred to a compact CNN-based student model. We identify two critical factors that
directly impact the performance of the student model: 1 the ability of the ViT-based teacher and
2 the effectiveness of the teaching method.

To satisfy 1 , the teacher must perform effectively on labeled source data, demonstrating low train-
ing loss and robustness to domain shift. Following prior DA methods (Xu et al., 2022; Yang et al.,
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2023), we employ a ViT model as the feature extractor, leveraging its strong representational ca-
pacity. However, these methods typically use a multilayer perceptron (MLP) as the classification
head, which may have limited generalization due to its inability to capture relational information
among neighboring samples. To address this limitation, we propose a Category-level Aggregation
(CA) module, inspired by graph convolutional networks (GCNs) (Kipf & Welling, 2017), as the
classification head to form the ViT+CA teacher network. The CA module enhances the teacher net-
work’s generalization by effectively capturing intra-class relations. Specifically, it enriches source
features extracted by the ViT-based model through a message-passing mechanism guided by ground-
truth labels. Similarly, the CA module improves intra-class information in the target domain based
on pseudo labels generated from unlabeled target data. Additionally, it constructs a cross-domain
knowledge graph, aligning unlabeled target samples with labeled source samples by class-aware
feature alignment, where pseudo labels and source ground-truth labels share the same categories.
By doing so, the teacher network not only captures structural representations within both domains
but also reduces the discrepancy between them.

Figure 1: Comparison results of vari-
ous knowledge distillation methods with our
GraDA on Office-Home (Venkateswara et al.,
2017) under UDA.

Regarding 2 , employing ViT and CNN in a
teacher-student paradigm, it introduces a cross-
architecture challenge due to their distinct mech-
anisms. CNN-based models capture local image
features through convolutional operations (Kay-
han & van Gemert, 2020), whereas ViT-based
models, via self-attention mechanisms, effectively
learn global information (Dosovitskiy et al., 2021).
Therefore, applying a feature-based KD approach
(Heo et al., 2019; Chen et al., 2021) with the ViT-
CNN pair requires additional transformation steps.
While logit distillation (Hinton, 2015; Huang et al.,
2022) may serve as an alternative, traditional logit-
based KD approaches typically align the teacher
and student networks by focusing on specific
model weights corresponding to regions within the
logit space. Consequently, the performance of
the knowledge distillation process remains subop-
timal. To address this problem, we propose a KD
method named Gradient-Guided Knowledge Dis-
tillation for Domain Adaptation (GraDA). Draw-
ing inspiration from (Wang et al., 2022), this ap-
proach emphasizes gradient knowledge distilla-
tion, where all weights of the student network are considered, and the teacher network guides the
gradient direction to update the student’s weights effectively. Specifically, in GraDA, the teacher
network guides the student solely through pseudo labels, giving the student network flexibility to
learn class representations on its own. This insight aligns with successful teaching strategies in edu-
cation (Tan & Abbas, 2009), where teachers leave space for students to discover and solve problems
on their own under guidance, rather than encouraging mechanical imitation. Moreover, teachers are
expected to continuously expand their knowledge and teaching skills to provide higher-quality in-
struction. Notably, the student network in our method remains consistent with prior DA approaches
(Jin et al., 2020; Li et al., 2021a), utilizing a CNN-based feature extractor and an MLP as the clas-
sifier (CNN+MLP). As illustrated in Fig. 1, our method is effective, particularly when the teacher
and student networks yield similar classification results, surpassing existing logit-based methods.

In summary, our key contributions are three-fold:

• We design a strong teacher network that provides robust representations by enriching intra-
class relations within each domain and mitigating domain shift across domains through
class-aware feature alignment.

• We introduce gradient-guided knowledge distillation, allowing the student network to be-
have similarly to its teacher following its own capacity constraints, thus reducing cross-
architecture and capability gaps.

2
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Figure 2: Illustration of the proposed GraDA. The teacher network includes a ViT-based model with
a CA module, while the student network comprises a CNN-based model and an MLP. The teacher
uses pseudo labels to guide the gradient direction for updating the student’s parameters. Notably,
the teacher is involved only during training, whereas the student is used for testing.

• Our proposed method is evaluated through quantitative and qualitative analyses, achieving
state-of-the-art results across various DA tasks on popular datasets: VisDA2017, Office-
Home, and DomainNet.

2 RELATED WORKS

CNN/ViT-based in Domain Adaptation. Traditional DA methods (Ganin et al., 2016; Saito et al.,
2018) utilize convolutional neural networks (CNN) to learn domain-invariant and discriminative fea-
tures. However, studies (Li et al., 2017; Naseer et al., 2021) have revealed that convolutional layers
are sensitive to domain shift. More recently, ViT-based DA methods (Xu et al., 2022; Zhu et al.,
2023a) have demonstrated that vision transformers (ViT) can effectively reduce the discrepancy be-
tween source and target domains, leading to significant improvements in performance. For instance,
CDTrans (Xu et al., 2022) illustrates that the cross-attention mechanism within ViT can counteract
domain shift. Consequently, ViT-based DA approaches can generate accurate pseudo labels that help
mitigate domain shift via class-aware feature alignment. However, their memory-intensive attention
mechanism makes them computationally costly and hard to deploy in real-world settings.

Knowledge Distillation. Over the past decade, KD methods have been mainly categorized into two
types: logit-based (Hinton, 2015; Zhao et al., 2022; Huang et al., 2022) and feature-based (Heo
et al., 2019; Romero et al., 2015; Chen et al., 2021). While logit-based approaches focus on narrow-
ing the logit distribution between teacher and student networks, feature-based methods encourage
the student to mimic the teacher’s representations. However, these techniques, particularly feature-
based approaches, struggle to transfer knowledge between networks with differing properties (Liu
et al., 2022b), like ViT and CNN, due to low feature space similarity. (Zhu et al., 2023b) attempted
to address this by using both feature- and logit-based mechanisms for cross-architecture knowledge
distillation, though additional transformation steps are required. Nonetheless, both logit-based and
feature-based methods operate in the same point-wise manner, where only specific parts of the stu-
dent’s weights are considered to match the teacher.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

In unsupervised domain adaptation (UDA), we are given the source dataset Dsrc =
{(xsrc

i , ysrci )}Nsrc
i=1 , with Nsrc representing the number of source samples. Each source image xsrc

i
corresponds to an individual data point paired with a label ysrci ∈ [C]. Here, C ∈ Z+ indicates
the number of categories, and [C] denotes the set {1, 2, . . . , C}. Additionally, we are also provided
with unlabeled target data, denoted as Dtar = {(xtar

i )}Ntar
i=1 , where xtar

i represents a target image,

3
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and Ntar denotes the number of target samples. The model is trained on both Dsrc and Dtar, to
achieve strong performance on Dtar. It is important to emphasize that Dsrc and Dtar share the same
categories, and the target label ytari ∈ [C] is only used during the testing phase. The architecture
and training process are illustrated in Fig. 2.

3.2 TEACHER NETWORK

Architecture. To match 1 , we use ViT (Dosovitskiy et al., 2021) as the backbone (fvit) for its
superior global pattern capture via self-attention compared to CNNs (Kayhan & van Gemert, 2020).
For the classification head, we introduce a Category-level Aggregation (CA) module, drawing in-
spiration from GCNs (Kipf & Welling, 2017), to enhance representations through message passing.
The CA module comprises fsim, which computes similarity scores, and fagg , which aggregates
feature vectors within a mini-batch.

Operation. During training, the input data is divided into multiple mini-batches of size B. Each
training sample xi ∈ RH×W×3 is first encoded by fvit: zviti = fvit(xi; θvit) ∈ Rd, where zviti is a
feature vector, d is the embedding size, and θvit is the set of learnable parameters of fvit. The batch
of feature vectors {(zviti )}Bi=1 is then processed by fsim and fagg in the CA module for feature
aggregation. Specifically, fsim : Rd → R1 is used to identify neighboring instances within the
mini-batch by calculating similarity scores as:

ŝi,j = sigmoid
(
fsim(∥zviti − zvitj ∥; θsim)

)
, (1)

where ŝi,j is a scalar value that quantifies the level of relationship between the i-th and j-th feature
vectors. θsim is the set of learned parameters of fsim. The correlations among samples within a
mini-batch are stored in the similarity matrix Ŝ ∈ RB×B , where ŝi,j ∈ Ŝ. We normalize Ŝ by
adding the self-connections formulated as follows:

S̃ = D− 1
2 (Ŝ + I)D− 1

2 , (2)

where I denotes the identity matrix, and D represents the degree matrix of Ŝ+I . Finally, the feature
aggregation is processed as follows:

zTi = fagg

([
zviti ,

∑
j∈B

s̃i,j · zvitj

]
; θagg

)
, (3)

where zTi is an aggregated feature vector of the teacher network with the C-dimensional logit for
the final prediction. [·] denotes the concatenation operation and s̃i,j ∈ S̃. fagg : R2d → RC is the
linear projection and θagg is the set of learnable parameters of fagg .

3.3 STUDENT NETWORK

Architecture. We attempt to build a straightforward network that meets the requirement for fast
inference. Thus, we select the CNN-based model as the feature extractor, fcnn, followed by an MLP
as the classification head.

Operation. fcnn takes each mini-batch {(xi)}Bi=1 as input, and xi is encoded as zcnni =

fcnn(xi; θcnn) ∈ Rd′
, where zcnni denotes the feature vector extracted by fcnn with the dimen-

sional embedding of size d′, which is parameterized by θcnn. Next, the MLP classifier processes
zcnni to produce the predicted vector pS(xi) = softmax(MLP(zcnni ; θmlp)), where θmlp is the set
of learned parameters of MLP.

3.4 TRAINING STRATEGY FOR TEACHER NETWORK

We conduct a three-step approach in the teacher network: 1) Enriching Intra-Class Relations, 2)
Pseudo-Label Generation, and 3) Self-Enhanced Learning, intending to improve feature representa-
tions and mitigate the domain shift issue.

Enriching Intra-Class Relation. The teacher network exploits the relationships among labeled
samples within each mini-batch {(xi, yi)}Bi=1, thereby enhancing intra-class information. To be

4
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specific, we train fsim to explore the pairwise similarity between the samples within the mini-batch
using a binary cross-entropy (bce) loss as follows:

LT
bce(s̃i,j , ei,j) = −ei,j log(s̃i,j)− (1− ei,j) log(1− s̃i,j), (4)

where ei,j represents the ground-truth of edge, ei,j = 1 indicates that the samples xi and xj belong
to the same category (yi = yj); otherwise, ei,j = 0. s̃i,j is the similarity score between xi and
xj predicted by fsim. Next, we update the parameters of fagg for feature aggregation using the
cross-entropy (ce) as follows:

LT
ce(pT (xi), yi) = −yi log

(
pT (xi)

)
, (5)

where LT
ce denotes the cross-entropy loss function. pT (xi) = softmax(zTi ) indicates the prediction

of xi with the aggregated features zTi in Eq. (3), and yi ∈ [0, 1]C is the ground truth in one-hot
encoding form.

We can easily adapt Eq. (4) and Eq. (5) on the labeled source Dsrc = {xsrc
i , ysrci }

Nsrc
i=1 to enrich

intra-class relation of the source domain as follows.

min
θvit,θsim,θagg

LT
bce(s̃

src
i,j , e

src
i,j ) + LT

ce(pT (x
src
i ), ysrci ), (6)

where LT
bce(s̃

src
i,j , e

src
i,j ) and LT

ce(pT (x
src
i ), ysrci ) are the bce and ce losses used to update θvit, θsim,

and θagg on the labeled source data, respectively. The proposed teacher network goes beyond ob-
taining the semantic features of individual images. Furthermore, it can comprehend the similarities
between the neighboring samples, thus enhancing intra-class consistency. To enable intra-class re-
lationships in the unlabeled target data, we assign pseudo-labels through a label generation process.

Pseudo-Label Generation. Following (Sohn et al., 2020), we first input the target image xtar
i into

the teacher network, and the resulting prediction pT (x
tar
i ) is then converted into a one-hot hard label

as follows:
ŷpsi = argmax

(
pT (x

tar
i )

)
if max

(
pT (x

tar
i )

)
≥ τ, (7)

where τ is a confidence threshold that controls the quality of the generated pseudo labels. Thanks
to Eq. (7), we can obtain a pseudo-labeled set: Dps = {(xtar

i , ŷpsi )}Nps

i=1 from the unlabeled set
Dtar = {(xtar

i )}Ntar
i=1 , where Nps denotes the number of pseudo labels and Nps ≤ Ntar.

Self-Enhanced Teacher Learning. In the next step, we combine Dps = {(xtar
i , ŷpsi )}Nps

i=1 into the
source Dsrc = {(xsrc

i , ysrci )}Nsrc
i=1 as follows:

Dcb = Dsrc ∪Dps, Ncb = Nps +Nsrc, (8)

where Ncb is the number of combined samples. Since the combined dataset Dcb consists of labeled
data, it enables the use of supervised losses as described in Eq. (4) and Eq. (5). Therefore, Eq. (6)
can be rewritten as follows:

min
θvit,θsim,θagg

LT
bce(s̃

cb
i,j , e

cb
i,j) + LT

ce(pT (x
cb
i ), ycbi ), (9)

where s̃cbi,j and ecbi,j denote the similarity score and ground-truth edge of {(xcb
i , ycbi )}Ncb

i=1 ∈ Dcb,
determined similarly to Equation Eq. (4). Notably, the teacher model enriches semantic represen-
tations and alleviates domain discrepancy when trained on Dcb, as it preserves intra-class relations
in the source domain where ysrci = ysrcj within Dcb. Besides, it also leverages pseudo labels to
exploit the intra-class relation of the target domain when ŷpsi = ŷpsj . Moreover, our teacher network
addresses domain shift by class-aware feature alignment when Dcb includes pairs with ŷpsi = ysrcj .

Furthermore, we minimize cross-class confusion (MCC) (Jin et al., 2020) on Dtar to enhance the
pseudo-label generation process of the teacher network as follows:

Lcc(pT (x
tar
i )) =

1

C

C∑
c=1

C∑
c′ ̸=c

|(pT (xtar
i,c )

⊤(pT (x
tar
i,c′)|, (10)

where pT (x
tar
i,c ) and pT (x

tar
i,c′) represent the probabilities of the target sample xtar

i belonging to the
c-th and c′-th classes, respectively, where {c, c′} ∈ C. Lcc(pT (x

tar
i )) is minimized to alleviate the

cross-class confusion level between the c-th and c′-th classes of the target samples xtar
i .

5
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3.5 TRAINING STRATEGY FOR STUDENT NETWORK

We also train the student network with the combined dataset Dcb = {(xcb
i , ycbi )}Ncb

i=1 using the cross-
entropy loss as:

LS
ce(pS(x

cb
i ), ycbi ) = −ycbi log

(
pS(x

cb
i )

)
. (11)

As defined in Eq. (8), Dcb consists of both Dsrc and Dps. Thus, the student network can Obtain
Source Knowledge on labeled source samples and effectively learn on unlabeled target data via
Pseudo Label-Based Gradient Guidance.

Obtain Source Knowledge. The student network captures the knowledge in Dsrc =
{(xsrc

i , ysrci )}Nsrc
i=1 ∈ Dcb using the cross-entropy loss as follows:

LS
ce(pS(x

src
i ), ysrci ) = −ysrci log(pS(x

src
i )), (12)

where pS(x
src
i ) = softmax

(
MLP(fcnn(xsrc

i ))
)

represents the output prediction of the source im-
age xsrc

i , which can be rewritten as follows:

min
θcnn,θmlp

LS
ce(pS(x

src
i ), ysrci ). (13)

The student’s parameters θS including θcnn and θmlp.

Pseudo Label-Based Gradient Guidance. We use Dps = {(xtar
i , ŷpsi )}Nps

i=1 ∈ Dcb to adjust the
gradient direction in updating the parameters of the student network as follows:

θS ← θS − η∇θSLS
ce(pS(x

tar
i ), ŷpsi ), (14)

where ∇θS is the gradient of the loss LS
ce with respect to θS on the unlabeled target data with the

learning rate η. The student network provides prediction on the target image xtar
i by pS(x

tar
i ) =

softmax
(
MLP(fcnn(xtar

i ))
)
. ŷpsi refers to the pseudo label generated by teacher network using Eq.

(7), which guides the gradient ∇θSLS
ce(pS(x

tar
i ), ŷpsi ), distilling the knowledge from the teacher

network to the student network. The goal of the gradient guidance strategy is to align the student’s
gradient directions with those of the teacher, ensuring the student behaves similarly. Consequently,
the student converges toward the optimal solution alongside its teacher on the target data, satisfying
the factor 2 , as verified by the qualitative visualization in the analysis section.

3.6 IMPLEMENTATION DETAILS

The training procedure of GraDA is processed in each episode e consisting of a fixed number of
training steps t. Specifically, in the initial episode (e = 0), Dsrc is sampled into multiple mini-
batches of size B to facilitate training of both teacher and student networks as in Eq. (6) and Eq.
(12), respectively. After completing the initial episode, the teacher network is utilized to generate
the first pseudo-labeled set D1

ps from the unlabeled target data Dtar for the next episode (e = 1)

using Eq. (7). D1
ps is then combined with Dsrc to form D1

cb = Dsrc ∪D1
ps, as specified in Eq. (8),

which is summarized as follows:

De
cb = Dsrc ∪De

ps, where D0
cb = Dsrc. (15)

Finally, De
cb is divided into mini-batches of size B to update the parameters of the teacher and

student networks by using Eq. (9) and Eq. (11), respectively. This iterative process continues until
convergence, where both networks align at an optimal point within a flattened region of the loss
surface.

4 EXPERIMENTS

4.1 SETUP

Dataset. We conduct experiments on VisDA2017 (Peng et al., 2018) with the domain adaptation
task: Synthetic to Real-world. Office-Home (Venkateswara et al., 2017) includes 4 different do-
mains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw), providing 12 DA tasks. A subset

6
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Net Method Mean

R
es

N
et

10
1

MCC (ECCV’20) 78.8
STAR (CVPR’20) 82.7
FixBi (CVPR’21) 87.2

DAMP (CVPR’24) 88.4
HVCLIP (ECCV’24) 90.0

GraDA (S) 96.5

V
iT

-B

PMTrans (CVPR’23) 87.5
SSRT (CVPR’22) 88.8

DAMP (CVPR’24) 90.9
NVC (WACV’24) 91.4

HVCLIP (ECCV’24) 92.5
GraDA (T) 97.0

(a) VisDA2017

Net Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean

R
es

N
et

50

SCDA (ICCV’21) 57.5 76.9 80.3 65.7 74.9 74.5 65.5 53.6 79.8 74.5 59.6 83.7 70.5
DALN (CVPR’22) 57.8 79.9 82.0 66.3 76.2 77.2 66.7 55.5 81.3 73.5 60.4 85.3 71.8

AML (IEEE Trans’23) 58.9 77.2 81.7 69.6 77.9 78.6 66.6 57.9 82.3 74.7 62.5 84.5 72.7
GeT (ICCV’23) 59.4 79.6 82.9 71.4 79.8 79.8 69.7 56.2 83.5 73.9 60.1 86.0 73.5

DAMP (CVPR’24) 59.7 88.5 86.8 76.6 88.9 87.0 76.3 59.6 87.1 77.0 61.0 89.9 78.2
HVCLIP (ECCV’24) 62.0 85.8 86.2 77.8 84.3 86.8 80.7 66.5 87.8 80.3 64.9 90.4 79.5

GraDA (S) 88.6 94.8 97.0 93.9 93.7 96.0 92.7 88.3 97.2 95.0 90.9 97.6 93.8

V
iT

-B

TVT (WACV’23) 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
SSRT (CVPR’22) 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4
NVC (WACV’24) 75.1 89.0 91.5 86.4 88.6 90.2 84.8 73.7 91.7 87.1 74.6 92.9 85.5
DAMP (CVPR’24) 75.7 94.2 92.0 86.3 94.2 91.9 86.2 76.3 92.4 86.1 75.6 94.0 87.1

PMTrans (CVPR’23) 81.2 91.6 92.4 88.9 91.6 93.0 88.5 80.0 93.4 89.5 82.4 94.5 88.9
HVCLIP (ECCV’24) 86.3 96.4 94.0 91.6 97.9 94.6 87.5 85.3 94.8 89.9 88.1 97.0 92.0

GraDA (T) 89.3 94.8 97.2 94.1 93.8 96.2 92.8 89.1 97.4 95.1 91.5 97.7 94.0

(b) Office-Home

Table 1: Accuracy (%) on (a) VisDA2017 and (b) Office-Home under the UDA setting. We compare
the results of the student GraDA (S) to previous CNN-based works for fairness, while the comparison
of the teacher GraDA (T) and ViT-based DA works is provided for reference. The best results are
marked as bold. For VisDA2017, the per-class accuracy is in the Suppl. Material.

rel→clp rel→pnt pnt→clp clp→skt skt→pnt rel→skt pnt→rel MeanNet Method 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

R
es

N
et

34

MME (ICCV’19) 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
APE (ECCV’20) 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7
SPA (NIPS’23) 75.3 76.0 71.8 72.2 74.8 76.5 65.9 67.0 69.8 71.1 65.8 67.2 81.1 82.3 72.1 73.2
GeT (ICCV’23) 76.1 77.6 72.5 73.9 73.9 75.8 66.7 67.8 69.8 73.6 66.8 67.1 82.0 82.8 72.2 73.9

DECOTA (ICCV’21) 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
CDAC (CVPR’21) 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
ECACL (ICCV’21) 75.3 79.0 74.1 77.3 75.3 79.4 65.0 70.6 72.1 74.6 68.1 71.6 79.7 82.4 72.8 76.4

MCL (IJCAI’22) 77.4 79.4 74.6 76.3 75.5 78.8 66.4 70.9 74.0 74.7 70.7 72.3 82.0 83.3 74.4 76.5
SLA (CVPR’23) 79.8 81.6 75.6 76.0 77.4 80.3 68.1 71.3 71.7 73.5 71.7 73.5 80.4 82.5 75.0 76.9
EFTL (AAAI’24) 79.6 81.2 74.9 77.1 78.2 81.8 69.3 72.8 71.8 74.4 69.9 71.5 83.1 84.4 75.3 77.6

FMLM (ECCV’24) 80.9 81.1 79.9 80.2 80.1 81.1 73.7 76.8 79.2 82.5 78.4 78.5 86.9 90.1 78.7 81.2
GraDA (S) 94.5 96.3 96.6 97.0 95.3 95.5 91.5 93.5 95.5 95.9 93.6 93.8 95.3 96.5 94.8 95.5

ViT-B GraDA (T) 95.2 97.0 97.1 97.7 96.0 96.2 92.1 94.2 96.1 96.5 94.4 94.5 96.6 97.3 95.4 96.2

Table 2: Accuracy (%) on DomainNet under the SSDA setting. The best results are marked as bold.

of DomainNet (Peng et al., 2019) includes 126 classes in 4 diverse domains: real (rel), clipart (clp),
painting (pnt), and sketch (skt), where we follow previous works (Saito et al., 2019; Zhang & Lee,
2023) to verify our method on 7 DA tasks. More information is provided in the Suppl. Material.

Experimental Settings. All experiments were conducted on a single RTX-4090 GPU. For the
feature extractor of the teacher network, we utilized ViT-B model with a 16×16 patch size, whereas
the ResNet family (He et al., 2016) served as the feature extractor for the student network, similar
to (Lu et al., 2020; Xiao et al., 2023). Each feature extractor was pre-trained on ImageNet-1k. For
the classifier, GCN (Luo et al., 2020) was used to implement the CA module in the teacher network,
while a two-layer MLP (Li et al., 2021a; Yu & Lin, 2023) was employed in the student network.
Both networks were optimized using SGD with a learning rate and weight decay of 5 × 10−4,
and momentum of 0.9, respectively. We set the mini-batch size to B = 32 and the pseudo-label
threshold in Eq. (7) to τ = 0.95. Teacher and student networks are trained for E = 100 episodes,
with T = 500 steps for Office-Home and T = 1,000 for VisDA2017 and DomainNet per episode.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Notably, the results of the student serve as a baseline for a fair comparison with prior CNN-based
methods, while the results of the teacher are used solely for analysis.

UDA Methods. Tables 1a and 1b show the results on VisDA2017 and Office-Home, respectively.
Specifically, on VisDA2017, GraDA (S) and GraDA (T) achieve 96.5% and 97.0%, respectively,
indicating a minimal performance gap between the student and teacher networks. Additionally,
GraDA (S) outperforms the second-best method, HVCLIP Vesdapunt et al. (2024), with a gain of
6.5%. Under a fair comparison using the same ViT-B backbone, GraDA (T) also surpasses HVCLIP
by 5.5%. On Office-Home, GraDA (S) still achieves the best results across all tasks, surpassing the
DA method with KD, AML Zhou et al. (2023), in several challenging tasks, such as Ar→Cl, Pr→Cl,
and Rw→Cl, with notable accuracies of 88.6%, 88.3%, and 90.9%, respectively. As a result, the
mean accuracy of GraDA (S) reaches 93.8% across 12 DA tasks, improving by 14.3% compared to
the second-best method, HVCLIP. Mean accuracy of GraDA (T) also achieves 94.0%, it surpasses
all ViT-based competitors, and exceeds the second-best HVCLIP by 2.0%.
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Figure 3: Convergence trajectory in the loss landscape of teacher and student networks.

Scenario Settings
Office-Home (UDA) DomainNet (SSDA)

(ResNet50) (ResNet34)

Student Mean Acc. (%)

Vanilla S1 Supervised 59.4 60.0

Student S2 + Self-Enhanced 62.7 71.3
S3 + LS

cc(pS(x
tar
i )) 69.1 73.4

With S4 Supervised 84.0 87.1

Teacher S5 + Self-Enhanced 93.5 95.0
S6 + LT

cc(pT (x
tar
i )) 93.8 95.5

Table 3: Ablation study on Office-Home and
DomainNet under UDA and 3-shot SSDA.

Teacher-Student Pair rel→clp clp→skt skt→pnt pnt→rel Mean

P1 T ResNet101+MLP 77.0 68.1 73.6 81.7 75.1
S ResNet34+MLP 76.8 67.6 73.3 81.3 74.8

P2 T ViT-B+MLP 85.3 79.1 85.3 90.9 85.2
S ResNet34+MLP 85.3 78.6 85.1 89.6 84.7

P3 T ResNet101+CA 95.1 90.5 93.0 91.8 92.6
S ResNet34+MLP 93.9 88.6 90.9 93.9 91.8

P4 T ViT-B+CA 97.0 94.2 96.5 97.3 96.3
S ResNet34+MLP 96.3 93.5 95.9 96.5 95.6

Table 4: Performance of student (S) paired with
various teachers (T) on DomainNet (3-shot).

SSDA Methods. Similar to Saito et al. (2019); Li et al. (2021a), we simply add a few labeled
target samples (1-shot or 3-shot) into the training dataset under the SSDA setting. As listed in
Table 2, GraDA (S) provides the remarkable results across 7 DA tasks on DomainNet with an
average accuracy of 94.8% and 95.5% corresponding to the 1-shot and 3-shot settings, respectively.
Moreover, the average accuracy gap between GraDA (S) and GraDA (T) is narrowed to 0.6% and
0.7% under the 1-shot and 3-shot, respectively. These results demonstrate that the student network,
utilizing a small model (ResNet34), can efficiently capture the knowledge of the larger teacher
network (ViT-B).

4.3 ANALYSES

Teacher-Student Pair #Params (M) Ar→Cl Cl→Pr Pr→Rw Rw→Ar Mean

ResNet50+CA (T) 30.3 78.3 83.9 93.8 92.5 87.1
ResNet50+MLP (S) 24.6 77.8 83.8 93.5 92.3 86.9

ViT-tiny+CA (T) 8.1 68.7 81.4 93.0 87.5 82.7
ViT-tiny+MLP (S) 5.7 68.3 80.5 92.8 87.3 82.2

HVCLIP (ResNet50) ≈101.5 62.0 84.3 87.8 80.3 78.6

Table 5: Ablation study on various teacher-
student pairs on Office-Home with UDA. (Com-
plete DA tasks in Suppl.)

As observed, in settings S1, S2, and S3, where
the student network operates without guidance
from the teacher network, it achieves maxi-
mum accuracies of only 69.1% and 73.4% on
Office-Home and DomainNet, respectively. In
contrast, with teacher guidance in settings S4,
S5, and S6, the classification performance of
the student network is significantly enhanced.
Specifically, in setting S4, the student network’s
results improve by 14.9% and 13.7%, despite
the limited quality and quantity of pseudo la-
bels provided by the teacher network, as only intra-class relationships within the source domain are
considered in Eq. (6). In setting S5, the teacher network improves generalization to unlabeled target
data thanks to intra-class relationships, while class-aware feature alignment mitigates the domain
shift issue using Eq. (9). Furthermore, setting S6 overcomes the ambiguous class confusion using
Eq. (10). As a result, the quality and quantity of pseudo labels from the teacher network increase,
enhancing the student network’s performance.

Can a Teacher Truly Educate a Student? To examine this, we use the gradient trajectory to
observe the changes in the learning behavior of teacher and student networks with the pseudo label-
based gradient guidance algorithm. We visualize the convergence trajectory of two UDA tasks
on Office-Home: Ar→Cl and Pr→Ar (Fig. 3a), two SSDA tasks on DomainNet: skt→pnt and
rel→skt with 1-shot and 3-shot settings (Fig. 3b), respectively. As shown in these figures, both
the teacher and student models are initialized with random parameters, leading to different starting
points. Nevertheless, the teacher network converges toward an optimal solution, followed by the
student, ultimately aligning within a minimal region with a low loss value.
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Figure 4: Illustration of category-level aggre-
gation (similarity matrix S̃) of the UDA task
Ar→Rw on Office-Home. Relationships between
samples within the source and target domains are
outlined in dashed green and pink boxes, respec-
tively. Relationships of cross-domain samples are
outlined by dashed yellow boxes.

Can a Student Perform Better with a Bet-
ter Teacher? We verify the critical role
of teacher network design in optimizing the
effectiveness of the knowledge distillation
scheme. Experiments are conducted using
ResNet34+MLP as the anchor student net-
work, paired with various types of teacher net-
works such as ResNet101+MLP, ViT-B+MLP,
ResNet101+CA, and ViT-B+CA corresponding
to P1, P2, P3, and P4, respectively. These
teacher-student pairs are evaluated on 4 DA
tasks within DomainNet under a 3-shot setting.
As reported in Tab. 4, the results of P2 sig-
nificantly outperform those of P1, attributed to
ViT-B’s superior capacity for image representa-
tion compared to ResNet101. However, a com-
parison among P1, P2, and P3 reveals a critical
insight: the category-level aggregation (+CA)
module proves to be a pivotal component in en-
hancing the effectiveness of knowledge distil-
lation. The CA module not only facilitates im-
proved intra-class generalization within source
and target domains but also mitigates domain
shift across these domains through class-aware
feature alignment. Based on these findings,
ViT-B+CA, associated with P4, is selected as
the optimal teacher network, surpassing the
other teacher networks and achieving the best accuracy of 96.3%. The classification performance
of the student network in P4 exceeds that of the student network in P1, including the least effective
teacher network, by 20.8%.

Fairness of the Teacher Network. We conduct an ablation where the (T) and (S) networks share
the same backbone on four Office-Home UDA tasks (Tab. 5). Even with identical ResNet50 or
the smaller ViT-Tiny, GraDA still outperforms HVCLIP (Tab. 1b). This demonstrates that GraDA’s
gains stem from the proposed CA module and effective pseudo labels, not just the backbone.

Effectiveness of CA Module. The category-level aggregation (CA) mechanism plays a crucial role
in the teacher network, which enhances intra-class representations within a domain and facilitates
class-aware alignment across domains. To demonstrate this, we present Fig. 4, which visualizes the
similarity matrix S̃ generated by the teacher network for a mini-batch (B = 16) in the Ar→Rw task,
encompassing both source and target test samples. As shown, CA functions effectively, exhibiting
high similarity among same-category samples, both within and across domains.

5 CONCLUSION

We introduce GraDA, a novel method designed to enhance student network performance in knowl-
edge distillation for domain adaptation tasks. To achieve this, we first developed a strong teacher
network by integrating a ViT backbone with a Category-level Aggregation (CA) module to produce
robust representations. The CA module enhances the teacher’s generalization ability by capturing
intra-class relations within each domain and reducing domain shift between domains through class-
aware feature alignment. We then proposed a gradient-guided knowledge distillation approach to
optimize the transfer of knowledge from the ViT-based teacher to a lightweight CNN-based student,
which is primarily used during inference. By providing high-quality pseudo labels, the ViT-based
teacher guides the gradient updates of the student’s parameters. Experiments across diverse settings
demonstrate that GraDA significantly outperforms state-of-the-art methods on widely used bench-
marks. Notably, this success is fully explainable, as evidenced by thorough qualitative analyses.

Limitation. While the CA module improves the teacher’s generalization, aggregating features from
noisy labels may introduce accumulated errors, degrading its quality and guidance to the student. It
would be interesting to investigate incorporating a denoising module before the CA module.
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A APPENDIX

This Supplementary Material provides five-fold information. First, we summarize the notations fre-
quently used in the main manuscript and their corresponding definitions (Sec. B) and a detailed
overview of all datasets (Sec. C). Second, a concise pseudocode for GraDA is included for clar-
ity (Sec. D), and the implementation details of the teacher and student networks are thoroughly
explained (Sec. E). Third, additional results in the UDA and SSDA settings are presented in Sec.
F. Fourth, various aspects are discussed in more detail, including the diversity of student networks
in GraDA, the pivotal role of CA in teacher network design, and the influence of CA on student
performance through pseudo-label generation, supported by additional results and discussion (Sec.
G). Finally, qualitative results using t-SNE and Grad-CAM are provided to further visually evaluate
GraDA (Sec. H). Below, we present the table of contents to facilitate easy access to the information.
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Notation Definition

A
bb

re
vi

at
io

n

DA Domain Adaptation
UDA Unsupervised Domain Adaptation
SSDA Semi-supervised Domain Adaptation
KD Knowledge Distillation
CNN Convolutional Neural Networks
ViT Vision Transformer
MLP Multilayer Perceptron
CA Category-level Aggregation
GCN Graph Convolutional Networks

Sy
m

bo
li

n
D

at
a

Se
tt

in
g

Dsrc Set of the labeled source domain
xsrc
i The i-th image from the source domain

ysrci Label of the source image xsrc
i

Nsrc The number of samples in the source domain
Dtar Set of the unlabeled target domain
xtar
i The i-th image from the target domain

ytari Label of the target image xtar
i

Ntar The number of samples in the target dataset
C Number of categories in both domains
De

ps Pseudo-labeled set generated at episode e

ŷpsi Pseudo label for the target image xtar
i

Nps The number of samples in the pseudo-labeled set
De

cb Combined dataset at episode e of Dsrc and De
ps

xcb
i The i-th image from the combined set

ycbi Label of the combined image xcb
i

Ncb The number of samples in the combined set

Sy
m

bo
li

n
Tr

ai
n. η Learning rate of the teacher and student networks

τ Confidence threshold for pseudo-label generation
B The number of samples in a mini-batch
E The number of training episodes
e Episode index in the training process
T Number of training steps per episode

Notation Definition

Sy
m

bo
li

n
Te

ac
he

r

fvit ViT-based feature extractor
fsim Similarity network in the CA module
fagg Category aggregation network in the CA module
θvit Set of learnable parameters for fvit
θsim Set of learnable parameters for fsim
θagg Set of learnable parameters for fagg
zviti Feature vector generated by fvit for sample xi

d Embedding size of the feature vector zviti

ŝi,j Similarity score between feature vectors
Ŝ Similarity matrix within a mini-batch B

s̃i,j Normalized similarity score
S̃ Normalized similarity matrix
I Identity matrix used for normalization
D Degree matrix of Ŝ + I

zTi Aggregated feature vector
pT (xi) Prediction of the teacher network for sample xi

ei,j Ground-truth of edge between two samples
LT
bce Binary cross-entropy loss of the teacher network
LT
ce Cross-entropy loss of the teacher network
Lcc Cross-class confusion loss of the teacher network

Sy
m

bo
li

n
St

ud
en

t

fcnn CNN-based feature extractor
MLP MLP classifier
θcnn Set of learnable parameters for fcnn
θmlp Set of learnable parameters for the MLP
zcnni Feature vector generated by fcnn for sample xi

d′ Embedding size of the feature vector zcnni

pS(xi) Prediction of the student network for sample xi

LS
ce Cross-entropy loss of the student network
∇θS The gradient of the loss LS

ce with respect to θS

Table 6: Abbreviation and symbol notation (Train. stands for Training).

B NOTATIONS

We summarize notations and their definitions frequently used in the proposed method, as listed in
Tab. 6.

C DATASET DETAILS

Table 7 provides an overview of popular domain adaptation datasets, including VisDA2017, Office-
Home, DomainNet, Office-31, and ImageCLEF-DA. It details the number of categories and the
number of images for each dataset, along with sample images from different domains.

VisDA2017 Peng et al. (2018) exhibits a significant domain gap when transferring from the Synthetic
domain to the Real-world domain. It includes 152, 397 Synthetic images as the source domain and
55, 388 Real-world images as the target domain. Each domain consists of 12 different categories.
The synthetic images are generated from 3D models, while the real images are collected from natural
scenes.

Office-Home Venkateswara et al. (2017) contains approximately 15, 500 images across 65 cate-
gories from 4 distinct domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw). These
4 domains establish 12 cross-domain tasks: Ar→Cl, Ar→Pr, Ar→Rw, Cl→Ar, Cl→Pr, Cl→Rw,
Pr→Ar, Pr→Cl, Pr→Rw, Rw→Ar, Rw→Cl, and Rw→Pr.

DomainNet Peng et al. (2019) contains approximately 600, 000 images from six domains: clipart
(clp), infograph (inf), painting (pnt), quickdraw (qdw), real (rel), and sketch (skt). It includes 345
categories. In the SSDA setting, we use a subset with 126 classes across these domains to consis-
tency with the prior SSDA works Saito et al. (2019); Qin et al. (2021); Yu & Lin (2023); Huang
et al. (2023). In the UDA setting, we employ Mini-DomainNet as used in Prabhu et al. (2021);
Westfechtel et al. (2023), a curated subset with 40 frequently observed classes across the same 4
domains, encompassing all 12 possible domain shifts.
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Algorithm 1: Pseudocode of GraDA

1 Input: Source and target datasets: Dsrc = {(xsrc
i , ysrci )}Nsrc

i=1 ; Dtar = {xtar
i }

Ntar
i=1 ;

2 Training Configuration: Threshold τ , Total episodes E, training steps T , Mini-batch size B,
Learning rate η

3 Initialization: Combined dataset D0
cb ← Dsrc

4 Network Architectures:
5 Teacher network: fvit, fsim and fagg . Set of parameters: θT = {θvit, θsim, θagg}
6 Student network: fcnn and MLP. Set of parameters: θS = {θcnn, θmlp};
7 ➤ TRAINING: for e = 1 to E do
8 for t = 1 to T do
9 Sample {(xcb

i , ycbi )}Bi=1 ∈ De
cb

10 • Training Strategy for the Teacher Network:
11 {zviti }Bi=1 ← {fvit(xcb

i ; θvit)}Bi=1

12 ⋄ Initialize similarity matrix: Ŝ ∈ RB×B

13 for (i, j) in (1..B, 1..B) do
14 ⋄ Computing the (i, j)-th similarity score:
15 ŝi,j ← sigmoid

(
fsim(∥zviti − zvitj ∥; θsim)

)
where ŝi,j ∈ Ŝ ▷ Eq. (1).

16 S̃ ← D− 1
2 (Ŝ + I)D− 1

2 ▷ Eq. (2).
17 for i = 1 to B do
18 zTi ← fagg

([
zviti ,

∑
j∈B

s̃i,j · zvitj

]
; θagg

)
19 ▷ Eq. (3).
20 pT (x

cb
i )← softmax(zTi )

21 θT ← θT − η∇θT (LT
bce + LT

ce + Lcc)

22 ▷ LT
bce, LT

ce and Lcc are computed in Eq. (4), Eq. (5) and Eq. (10), respectively.

23 • Training Strategy for Student Network: zcnni ← fcnn(x
cb
i ; θcnn)

24 pS(xi)← softmax(MLP(zcnni ; θmlp))

25 θS ← θS − η∇θSLS
ce

26 ▷ LS
ce is computed in Eq. (11).

27 ⋄ Pseudo Label Generation: De
ps ← ∅

28 for {(xtar
i )}Bi=1 in Dtar do

29 {zviti }Bi=1 ← {fvit(xtar
i ; θvit)}Bi=1

30 Repeat lines 13–20 to obtain {zTi }Bi=1
31 for i = 1 to B do
32 pT (x

tar
i )← softmax(zTi )

33 if max
(
pT (x

tar
i )

)
≥ τ then

34 ŷpsi ← argmax
(
pT (x

tar
i )

)
35 ▷ Assign pseudo label.
36 De

ps ← De
ps ∪ {(xtar

i , ŷpsi )}
37 ▷ Update pseudo-labeled set.

38 ⋄ Update the combined set: De
cb ← Dsrc ∪De

ps

39 ➤ TESTING: pS(xtar
i )← softmax

(
MLP(fcnn(xtar

i ))
)

40 ▷ Only the student network is used for testing.

Office-31 Saenko et al. (2010) contains 4, 110 images across 31 categories from three distinct do-
mains: Amazon (A), Webcam (W), and DSLR (D). The Amazon domain consists of images from
online merchants, Webcam includes low-resolution images taken by web cameras, and DSLR con-
tains high-resolution images captured with a digital SLR camera. In UDA, all 6 possible domain
adaptation tasks between these domains are considered: A→W, A→D, W→A, W→D, D→A, and
D→W. In the SSDA setting, 2 tasks are evaluated: W→A and D→A.
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Domain Adaptation Datasets
VisDA2017: 12 categories Office-Home: 65 categories

Synthetic Real-world Art Clipart Product Real-World
152, 397 images 55, 388 images 2, 427 images 4, 365 images 4, 439 images 4, 357 images

DomainNet: 345 categories

clipart infograph painting quickdraw real sketch
48, 837 images 53, 201 images 75, 759 images 172, 500 images 175, 327 images 70, 386 images

Office-31: 31 categories ImageCLEF-DA: 12 categories

Amazon Webcam DSLR Caltech-256 ImageNet ILSVRC Pascal VOC 2012
2, 817 images 795 images 498 images 600 images 600 images 600 images

Table 7: Overview of popular domain adaptation datasets, including VisDA2017, Office-Home,
DomainNet, Office-31, and ImageCLEF-DA. The number of images reflects the scale of each
dataset, while the example images per domain highlight the distribution discrepancy.

Net Method aero bicycle bus car horse knife motor person plant skate train truck Mean

ResNet101

MCC (ECCV’20) 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
STAR (CVPR’20) 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
FixBi (CVPR’21) 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

DAMP (CVPR’24) 97.3 91.6 89.1 76.4 97.5 94.0 92.3 84.5 91.2 88.1 91.2 67.0 88.4
HVCLIP (ECCV’24) 98.8 90.1 90.8 82.2 97.3 95.5 91.8 82.9 94.9 92.8 92.2 70.8 90.0

GraDA (S) 99.9 98.6 96.4 88.4 100.0 99.8 99.3 97.5 100.0 100.0 99.2 78.7 96.5

ViT-B

PMTrans (CVPR’23) 98.9 93.7 84.5 73.3 99.0 98.0 96.2 67.8 94.2 98.4 96.6 49.0 87.5
SSRT (CVPR’22) 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8

DAMP (CVPR’24) 98.7 92.8 91.7 80.1 98.9 96.9 94.9 83.2 93.9 94.9 94.8 70.2 90.9
NVC (WACV’24) 98.5 89.0 88.5 92.0 98.5 98.3 96.2 88.4 98.5 97.9 95.0 55.4 91.4

HVCLIP (ECCV’24) 99.0 93.7 92.1 84.5 98.8 96.2 94.2 88.6 96.9 96.7 94.5 74.4 92.5
GraDA (T) 100.0 99.1 97.9 89.4 100.0 100.0 99.7 98.5 100.0 99.9 99.9 79.5 97.0

Table 8: Accuracy (%) on VisDA2017 under the UDA setting. GraDA (S) and GraDA (T) are the
student and teacher networks, respectively. For a fair comparison, we use GraDA (S) to compare
with the prior CNN-based works, while the comparison of the teacher GraDA (T) and ViT-based
DA works is provided for reference. The best classification accuracy is marked as bold.

ImageCLEF-DA Caputo et al. (2014) includes images from three domains: Caltech-256 (C), Im-
ageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). Each domain contains 12 categories with 50
images per category, totaling 600 images per domain. The dataset defines 6 domain adaptation tasks
between these domains: I→P, P→I, I→C, C→I, C→P, and P→C.

D PSEUDOCODE OF GRADA

We provide the pseudocode of GraDA presented in Algorithm 1, which is straightforward and helps
to gain a better understanding of GraDA. Note that the losses for the teacher network including LT

bce,
LT
ce, and Lcc, are specified in Eqs. 4, 5 and 10, respectively. Meanwhile, the loss LS

ce for the student
network is detailed in Eq. 11.
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Net Method rel→clp rel→pnt rel→skt clp→rel clp→pnt clp→skt pnt→rel pnt→clp pnt→skt skt→rel skt→clp skt→pnt Mean

ResNet50

MCD (CVPR’18) 62.0 69.3 56.3 79.8 56.6 53.7 83.4 58.3 61.0 81.7 56.3 66.8 65.4
PADA (ECCV’18) 65.9 67.1 58.4 74.7 53.1 52.9 79.8 59.3 57.9 76.5 67.0 61.1 64.5

BIWAA-I (WACV’23) 79.9 75.2 75.4 87.9 72.1 75.7 88.9 77.8 76.7 88.8 80.5 74.5 79.4
SENTRY (ICCV’21) 83.9 76.7 74.4 90.6 76.0 79.5 90.3 82.9 75.6 90.4 82.4 74.0 81.4

LUHP (AAAI’24) 79.6 82.8 79.3 91.1 79.7 76.5 90.2 77.2 76.7 91.2 80.3 79.5 82.0
GSDE (WACV’24) 82.9 79.2 80.8 91.9 78.2 80.0 90.9 84.1 79.2 90.3 83.4 76.1 83.1
ECB (CVPR’24) 84.7 83.8 79.7 91.6 84.0 82.5 91.0 83.2 79.2 86.1 82.9 81.6 84.2

GraDA (S) 93.1 94.8 85.7 98.4 95.0 91.5 97.3 86.6 89.3 95.7 93.1 96.4 93.1

ViT-B GraDA (T) 93.4 95.0 86.2 98.7 95.5 91.9 98.2 86.9 90.0 96.4 93.4 96.7 93.5

Table 9: Accuracy (%) on Mini-DomainNet under the UDA setting. The best classification accuracy
is marked as bold.

Net Method A→W D→W W→D A→D D→A W→A Mean

ResNet50

GVB-GD (CVPR’20) 94.8 98.7 100.0 95.0 73.4 73.7 89.3
SCDA (ICCV’21) 94.2 98.7 99.8 95.2 75.7 76.2 90.0
DALN (CVPR’22) 95.2 99.1 100.0 95.4 76.4 76.5 90.4

BIWAA-I (WACV’23) 95.6 99.0 100.0 94.4 75.9 77.3 90.5
GeT (ICCV’23) 95.4 99.1 100.0 95.4 76.6 77.0 90.6

LUHP (AAAI’24) 94.2 98.6 100.0 95.2 77.7 78.6 90.7
FixBi (CVPR’21) 96.1 99.3 100.0 95.0 78.7 79.4 91.4
SPA (NIPS’23) 97.2 99.0 99.8 95.0 78.0 79.4 91.4

HVCLIP (ECCV’24) 96.2 99.4 100.0 96.0 80.1 80.6 92.1
GraDA (S) 98.6 99.3 100.0 99.2 90.0 91.8 96.5

ResNet34 GraDA (S) 99.3 99.4 100.0 99.2 90.8 91.4 96.7
ResNet18 GraDA (S) 98.5 99.3 100.0 98.8 90.0 91.3 96.3

ViT-B GraDA (T) 99.4 100.0 100.0 99.2 90.7 92.1 96.9

Table 10: Accuracy (%) on Office-31 under the UDA setting with various versions of ResNet, such
as ResNet50, ResNet34, and ResNet18. The best classification accuracy is marked as bold.

E GRADA ARCHITECTURE

This section thoroughly provides detailed implementations of teacher and student network architec-
tures.

E.1 TEACHER NETWORK

Feature Extractor. ViT-B Dosovitskiy et al. (2021) is adopted as the feature extractor fvit, dividing
the input image xi into patches of size 16× 16. After processing by the patch embedding network,
a sequence of 144 patch tokens is obtained, with the [CLS] token added at the beginning. The
sequence then passes through a stack of 12 transformer blocks, each comprising multi-head self-
attention and a feedforward layer, with each followed by a normalization layer. A skip connection
is applied between the input and output of the multi-head self-attention module. The [CLS] token
obtained from the final transformer block is used as the feature vector zviti ∈ Rd, where d = 768.
Given a batch of images with size B, it is processed by fvit to produce a batch of feature vectors
{zviti }Bi=1, which are then processed by the CA module to produce the aggregated feature vector zTi .

CA Module. Our CA module includes a similarity network fsim and an aggregation network fagg .
For fsim, we implement two convolutional layers: the first layer has the same input and output
channels, which are 768, while the second layer projects from 768 to 1, i.e., a scalar value for the
similarity score. Batch Normalization Ioffe & Szegedy (2015) followed by a LeakyReLU activa-
tion is applied between these two convolutional layers. For fagg , three convolutional layers are
employed, each followed by Batch Normalization and LeakyReLU. The first two layers have the
same input and output channels, which are 768, while the last one produces C logits, where C is the
number of categories.
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E.2 STUDENT NETWORK

Feature Extractor. The ResNet family He et al. (2016) and AlexNet Krizhevsky et al. (2012) are
adopted as feature extractors for the student network, i.e., fcnn. The ResNet architectures used in
this study include ResNet101, ResNet50, ResNet34, and ResNet18. The specific network applied
to the student network depends on the dataset and settings to ensure a fair comparison with existing
studies or for evaluation purposes. Given an input image xi, the feature extractor fcnn produces a
feature vector zcnni ∈ Rd′

, where d′ represents the dimensionality of the feature vector. The value of
d′ depends on the specific feature extractor used: d′ = 512 for ResNet18 and ResNet34, d′ = 2048
for ResNet50 and ResNet101, and d′ = 4096 for AlexNet.

MLP Classifier. The MLP classifier includes two linear layers. The first layer projects from a d′

dimension to 512, and the second layer projects from 512 to C logits. Between the two linear layers,
there is a normalization operation.

E.3 COMPARISON BETWEEN CA AND MLP

We further highlight the differences between CA and MLP and analyze some significant time com-
plexities. For a batch of B samples, CA constructs a similarity matrix S̃ ∈ RB×B , using fsim for
scoring and fagg for feature aggregation and logits generation. Constructing the similarity matrix
requires computing all possible pairwise feature differences in the batch, with a time complexity
of O(B2 · d), where d is the feature vector dimension of fvit. fsim then assigns scalar similarity
scores. Subsequently, feature aggregation involves a weighted sum of each feature vector with all
others, costingO(B2 ·d), followed by concatenation (O(B ·d)) and fagg to produce C-dimensional
logits. In this manner, the CA module projects aggregated feature vectors into the logit space.
In contrast, the MLP generates the logits for each feature vector independently using a single
network. Although the proposed CA module introduces higher complexity, it is used only dur-
ing training, whereas MLP integrated with CNN-based networks is used during inference, ensuring
practicality.

F ADDITIONAL RESULTS

This section presents extensive experimental results on UDA and SSDA settings.

F.1 UNSUPERVISED DOMAIN ADAPTATION

VisDA2017. The classification accuracy for each class is listed in Tab. 8. Using ResNet101 as
the backbone, the proposed student network GraDA (S) achieves the highest classification accuracy
across all classes except for the “car” class. The average accuracy over the 12 classes for the student
network reaches 96.5%, representing a 6.5% improvement over the second-best method, HVCLIP
Vesdapunt et al. (2024). Compared to prior works using ViT-B as a backbone, the teacher network
GraDA (T) also achieves the best accuracy of 97.0%. Notably, the mean accuracy gap between the
student and teacher networks is marginal, measuring only 0.5%.

Mini-DomainNet. We reported the classification results of 12 DA tasks in Tab. 9. The average
accuracy is 93.1%, surpassing the second-best method, ECB Ngo et al. (2024), by 8.9%.

Office-31 & ImageCLEF-DA. Tables 10 and 11 present the classification results for Office-31 and
ImageCLEF-DA, respectively. The proposed student model, utilizing ResNet50, achieves compet-
itive accuracy on both datasets, with 96.5% on Office-31 and 94.8% on ImageCLEF-DA.

F.2 SEMI-SUPERVISED DOMAIN ADAPTATION (SSDA)

The proposed method can be easily extended to the SSDA setting, where a limited number of labeled

target samples per class are available, Dl
tar = {(xtar

i , ytari )}N
l
tar

i=1 , where N l
tar is the number of

labeled target samples and N l
tar ≪ Ntar. We simply add Dl

tar into Dcb, which can be formed as
follows:

Dcb = Dsrc ∪Dps ∪Dl
tar, Ncb = Nsrc +Nps +N l

tar.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Net Method I→P P→I I→C C→I C→P P→C Mean

ResNet50

MCD (CVPR’18) 77.3 89.2 92.7 88.2 71.0 92.3 85.1
GVB-GD (CVPR’20) 78.2 92.7 96.5 91.5 78.2 95.0 88.7
VRDA (ICASSP’22) 78.3 93.8 96.3 93.5 78.0 96.3 89.4
DALN (CVPR’22) 80.5 93.8 97.5 92.8 78.3 95.0 89.7
CKB (CVPR’21) 80.7 93.7 97.0 93.5 79.2 97.0 90.2

AML (IEEE Trans’23) 80.8 93.8 97.7 93.2 80.2 98.2 90.7
GOAL (TPAMI’24) 82.2 94.1 97.3 95.6 82.3 96.4 91.3

GraDA (S) 85.8 99.5 99.5 99.3 84.8 99.8 94.8

ResNet34 GraDA (S) 85.8 99.3 99.5 99.3 84.7 99.7 94.7
ResNet18 GraDA (S) 84.6 99.7 99.7 99.5 84.8 99.0 94.6

ViT-B GraDA (T) 86.8 99.8 100.0 99.8 87.2 100.0 95.6

Table 11: Accuracy (%) on ImageCLEF-DA under UDA with various versions of ResNet such as
ResNet50, ResNet34, and ResNet18. The best classification accuracy is marked as bold.

Then, the training process for SSDA is conducted in the same manner as the unsupervised domain
adaptation (UDA).

Office-Home. As reported in Tab. 12, we compare our student network with previous SSDA works
on the Office-Home dataset. Remarkably, in terms of mean accuracy, our GraDA (S) surpasses
FMLM Basak & Yin (2024) by 19.4% in the 1-shot setting and EFTL He et al. (2024) by 16.1% in
the 3-shot setting. Furthermore, our method is not affected by the addition of labeled target samples,
with a gain of only 0.6% from the 1-shot to the 3-shot setting.

Office-31. We evaluate our method using the lightweight model, AlexNet Krizhevsky et al. (2012),
on Office-31 under the SSDA setting, as shown in Tab. 13. In the 1-shot and 3-shot settings, our
GraDA (S) achieves the new state-of-the-art method with a mean accuracy of 90.8% and 91.7%,
respectively.

G DISCUSSION

This section further explores the variety of student networks in GraDA and the pivotal role of CA in
teacher network design. We also take a closer look at its impact on student performance through the
pseudo-label generation process.

G.1 ROBUSTNESS WITH VARIOUS STUDENT NETWORKS

We investigate the effectiveness of gradient-based knowledge distillation across various student
networks. Figures 5 and 6 illustrate results of different versions of the student networks imple-
mented with ResNet50, ResNet34, and ResNet18 for Office-Home and ResNet101, ResNet50, and
ResNet18 for VisDA2017, respectively. Additionally, Tabs. 10 and 11 provide classification accu-
racy results of various student networks employing ResNet50, ResNet34, and ResNet18 on Office-
31 and ImageCLEF-DA. The results presented in these figures and tables demonstrate robustness
across various student networks, where smaller networks, such as ResNet18, with relatively fewer
parameters, can achieve competitive results compared to larger networks like ResNet50, as shown in
Fig. 5, Tabs. 10 and 11, or ResNet101, as illustrated in Fig. 6. For small datasets such as Office-31
and ImageCLEF-DA, the student network based on ResNet18 achieves performance comparable
to those based on ResNet50, with only a minimal gap of 0.2%. For moderate and more challenging
datasets, such as Office-Home and VisDA2017, the student network using ResNet18 also demon-
strates strong flexibility, closely aligning with the classification results of larger student networks
based on ResNet50 or ResNet101.

G.2 ABILITY OF THE TEACHER NETWORK

Selecting a strong teacher is the most important aspect of knowledge distillation (KD), with various
perspectives and definitions. Traditional KD methods often assume that a strong teacher is a large
model size. However, (Beyer et al., 2022) argue that a strong teacher is one that is patiently trained
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Net Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean

1-shot

ResNet34

DECOTA (ICCV’21) 42.1 68.5 72.6 60.3 70.4 70.7 60.0 48.8 76.9 71.3 56.0 79.4 64.8
APE (ECCV’20) 53.9 76.1 75.2 63.6 69.8 72.3 63.6 58.3 78.6 72.5 60.7 81.6 68.9
MME (ICCV’19) 59.6 75.5 77.8 65.7 74.5 74.8 64.7 57.4 79.2 71.2 61.9 82.8 70.4
CLDA (NIPS’21) 56.3 76.1 79.3 66.3 73.9 76.3 66.2 55.9 81.0 72.6 60.2 83.2 70.6
CDAC (CVPR’21) 61.2 75.9 78.5 64.5 75.1 75.3 64.6 59.3 80.0 72.7 61.9 83.1 71.0

SPA (NIPS’23) 62.3 76.7 79.0 66.6 77.3 76.4 65.7 59.1 80.7 71.4 65.2 84.1 72.0
SLA (CVPR’23) 63.0 78.0 79.2 66.9 77.6 77.0 67.3 61.8 80.5 72.7 66.1 84.6 72.9
MCL (IJCAI’22) 64.4 79.5 81.2 68.5 79.3 78.4 68.0 61.1 81.3 73.8 67.0 85.5 74.0
EFTL (AAAI’24) 65.7 80.5 80.8 65.6 79.6 77.5 68.7 63.3 82.6 74.3 66.6 87.2 74.4
ProML (IJCAI’23) 64.5 79.7 81.7 69.1 80.5 79.0 69.3 61.4 81.9 73.7 67.5 86.1 74.6
FMLM (ECCV’24) 64.1 80.1 81.1 70.6 79.5 79.1 67.9 62.5 80.9 75.2 69.1 87.9 74.8

GraDA (S) 89.9 95.5 95.8 93.5 96.3 96.9 93.7 89.1 96.9 94.5 91.2 96.9 94.2

ViT-B GraDA (T) 90.4 95.6 96.0 93.8 96.4 97.1 93.8 89.6 97.1 94.6 91.5 97.0 94.4

3-shot

ResNet34

MME (ICCV’19) 63.6 79.0 79.7 67.2 79.3 76.6 65.5 64.6 80.1 71.3 64.6 85.5 73.1
APE (ECCV’20) 63.9 81.1 80.2 66.6 79.9 76.8 66.1 65.2 82.0 73.4 66.4 86.2 74.0

CDAC (CVPR’21) 65.9 80.3 80.6 67.4 81.4 80.2 67.5 67.0 81.9 72.2 67.8 85.6 74.2
SPA (NIPS’23) 63.1 81.0 80.2 68.5 81.7 77.5 69.5 65.2 82.0 73.9 67.2 87.0 74.7

CLDA (NIPS’21) 63.4 81.4 81.3 70.5 80.9 80.3 72.4 63.9 82.2 76.7 66.0 87.6 75.5
DECOTA (ICCV’21) 64.0 81.8 80.5 68.0 83.2 79.0 69.9 68.0 82.1 74.0 70.4 87.7 75.7

SLA (CVPR’23) 67.3 82.6 81.4 69.2 82.1 80.1 70.1 69.3 82.5 73.9 70.1 87.1 76.3
MCL (IJCAI’22) 67.5 83.9 82.4 71.4 84.3 81.6 69.9 68.0 83.0 75.3 70.1 88.1 77.1

ProML (IJCAI’23) 67.8 83.9 82.2 72.1 84.1 82.3 72.5 68.9 83.8 75.8 71.0 88.6 77.8
FMLM (ECCV’24) 68.8 84.7 84.2 70.6 83.7 82.4 70.5 70.9 84.3 75.7 71.1 88.5 77.9
EFTL (AAAI’24) 70.3 84.8 83.8 70.6 84.6 81.5 72.6 70.9 85.4 77.5 72.8 89.3 78.7

GraDA (S) 91.0 96.1 97.3 93.8 96.3 97.5 94.1 90.7 97.1 94.5 92.6 97.0 94.8

ViT-B GraDA (T) 91.7 96.1 97.4 94.1 96.5 97.8 94.3 91.0 97.3 94.7 93.1 97.1 95.1

Table 12: Accuracy (%) on Office-Home under the SSDA setting. The best classification accuracy
is marked as bold.

W→A D→A MeanNet Method 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

AlexNet

MME (ICCV’19) 57.2 67.3 55.8 67.8 56.5 67.6
BiAT (IJCAI’20) 57.9 68.2 54.6 68.5 56.3 68.4

CDAC (CVPR’21) 63.4 70.1 62.8 70.0 63.1 70.0
CLDA (NIPS’21) 64.6 70.5 62.7 72.5 63.6 71.5
ECB (CVPR’24) 77.9 85.2 76.3 84.0 77.1 84.6

GraDA (S) 91.1 92.1 90.4 91.3 90.8 91.7

ViT-B GraDA (T) 91.9 92.8 91.2 92.4 91.6 92.6

Table 13: Accuracy (%) on Office-31 under the SSDA setting. The best classification accuracy is
marked as bold.

over an extended period, producing consistent and reliable outputs. (Martin et al., 2023) propose
that a strong teacher dynamically adjusts the amount of knowledge transfer based on the feature gap
between the teacher and student models. Similarly, (Sengupta et al., 2024) define a strong teacher
as one that can both collaborate with and compete against the student network during the distillation
process. However, these approaches typically employ a combination of a feature extractor and an
MLP classifier. This setup focuses on processing individual inputs without considering their neigh-
boring information. Consequently, the previous teacher networks had limited ability to construct
and generalize extracted knowledge effectively.

This section provides further insights into the capabilities of our teacher network. As discussed in the
main manuscript, the CA module plays a pivotal role in the success of the teacher network’s archi-
tecture. It effectively explores intra-class relations within each domain, thereby enriching category
representations. Additionally, it facilitates class-aware feature alignment across domains, address-
ing the domain shift issue. To illustrate the superior effectiveness of the CA module, we present
additional visualizations of the similarity matrix S̃ on Office-Home under the UDA setting and on
DomainNet under the 3-shot SSDA setting. We use the visualization results from the left-side fig-
ures in Tabs. 16 and 17 to analyze the insight operation of our teacher network during training,
including:
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Teacher-Student Pair #Params (M) Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean

ViT-B+CA (T) 89.7 89.3 94.8 97.2 94.1 93.8 96.2 92.8 89.1 97.4 95.1 91.5 97.7 94.0
ResNet50+MLP (S) 24.6 88.6 94.8 97.0 93.9 93.7 96.0 92.7 88.3 97.2 95.0 90.9 97.6 93.8
ViT-tiny+MLP (S) 5.7 87.0 93.1 96.2 93.6 93.8 95.7 92.1 87.0 96.0 94.6 88.2 96.9 92.9

ResNet50+CA (T) 30.3 78.3 87.6 95.3 81.5 83.9 89.7 84.8 75.9 93.8 92.5 82.8 93.0 86.6
ResNet50+MLP (S) 24.6 77.8 87.3 95.1 81.4 83.8 89.5 84.6 75.5 93.5 92.3 82.5 92.9 86.4

ViT-tiny+CA (T) 8.1 68.7 84.6 89.9 82.0 81.4 84.5 83.7 69.6 93.0 87.5 75.6 91.9 82.7
ViT-tiny+MLP (S) 5.7 68.3 82.9 89.0 81.8 80.5 82.9 83.6 69.1 92.8 87.3 75.1 90.8 82.0

HVCLIP (ResNet50) ≈101.5 62.0 85.8 86.2 77.8 84.3 86.8 80.7 66.5 87.8 80.3 64.9 90.4 79.5

Table 14: Comparison of teacher-student pairs on Office-Home under the UDA setting (Full ver-
sion).

• Enhancing the generalization by enriching intra-class relations. We process a batch
of B = 16 images through the teacher network, covering two classes, as an example. For
each class, there are four samples from the source domain and another four samples from the
target domain. For easier visualization, source samples are marked in green, while target
samples are marked in pink. The CA module works effectively to show high similarity
scores for same-category samples within the source domain indicated by dashed green.
This is intuitive, as the source ground truth information supports these results. For target
samples, the CA module relies on the quality of generated pseudo labels. Despite this, it
still assigns high similarity scores to samples belonging to the same class, as marked by
dashed pink boxes.

• Handling the domain shift via class-aware feature alignment. To demonstrate the ef-
fectiveness of the CA module in the teacher network for handling the domain shift issue
between the source and target domains, we present the similarity scores of cross-domain
samples highlighted by dashed yellow boxes. The CA module successfully identifies sam-
ples belonging to the same class but from different domains by assigning high similarity
scores. In contrast, it assigns low similarity scores to samples from distinct classes, ensur-
ing robust class-aware feature alignment.

These observations strongly emphasize the capability of the CA module in teacher network design.
Furthermore, unlike previous teacher networks that make predictions directly from features extracted
by the feature extractor, our teacher network bases its predictions on aggregated features.

Effectiveness of the teacher network in the testing phase. We use the visualization results from
the right-side figures in Tabs. 16 and 17 to evaluate the effectiveness of the teacher network during
testing. As illustrated in these figures, the CA module effectively identifies target samples within the
same category by assigning high similarity scores, while providing low similarity scores to samples
from distinct classes. This observation highlights the teacher network’s capability to exploit intra-
class relations within the target data, grouping samples of the same category while ensuring that
samples from different classes remain distinguishable.

G.3 ROLES OF CA MODULE IN PSEUDO-LABELING

To demonstrate the effectiveness of our CA module in the pseudo-labeling process, we compare the
quantity and quality of pseudo labels generated by ViT-B+MLP (Setting 1) and ViT-B+CA (Setting
2) as teacher networks on VisDA2017. As shown in Fig. 7, the dashed lines indicate the number of
ground-truth labels for each class, while the colored bars represent the pseudo-label counts. These
two settings follow the same training manner combining supervised, self-enhanced, and cross-class
confusion strategies.

In Setting 1, we employ MLP as the classifier, which is unable to capture relationships among
neighboring samples. As illustrated in Fig. 7a, the ViT-B+MLP network assigns a higher number
of pseudo labels than ground-truth labels to classes such as “bicycle”, “bus”, “skate”, and “truck”.
Obviously, those excessive pseudo labels are incorrect, indicating that ViT-B+MLP does not ensure
the quality of its generated pseudo labels, which misguide the student network. Furthermore, as
it focuses only on individual representations, the MLP classifier also demonstrates its weakness in
differentiating between highly similar classes, such as “bus”, “car”, “train”, and “truck”.
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Figure 5: Performance of the teacher network and its three students on the Office-Home dataset
under the UDA setting. The black numbers on the radar chart indicate the distance values from
the center to the corresponding intersections of the concentric circles. The classification results
show that our method performs effectively across various student network configurations. It remains
unaffected by the capability gap between teacher and student networks and significantly surpasses
the second-best approach, HVCLIP (Vesdapunt et al., 2024), even with a student network using
fewer parameters.

Teacher-Student Pair #Param. (M) Ar→Cl Cl→Pr Pr→Rw Rw→Ar Mean

T ViT-B+CA 89.7 89.3 93.8 97.4 95.1 93.9

S
ResNet50+MLP 24.6 88.6 93.7 97.2 95.0 93.6
ResNet34+MLP 21.6 87.8 93.2 97.1 94.8 93.2
ResNet18+MLP 11.5 86.7 93.1 96.3 94.6 92.7

Table 15: Accuracy of different student network (S) paired with the fixed teacher network (T) on
Office-Home under the UDA setting.

In contrast, in Setting 2, the proposed CA module enriches intra-class relationships by aggregat-
ing representations of samples within the same category. This enables the ViT-B+CA network to
enhance the robustness of representations within each class. As a result, the ViT-B+CA network
demonstrates stronger discriminability between different classes compared to the ViT-B+MLP net-
work. This can be observed clearly in the car class, where the quantity and quality of pseudo labels
generated by Setting 2 are significantly higher than those of Setting 1, as shown in Figs. 7a and
7b. By doing so, the ViT-B+CA teacher network can provide more reliable information to train the
student network, resulting in a substantial increase in the overall results of the student network.

G.4 EFFECTIVENESS OF GRADIENT-BASED KD

We first provide the method to visualize the gradient trajectories of teacher and student networks,
learnable parameters and their corresponding loss values from all episodes are used: {θeT , leT }Ee=1

and {θeS , leS}Ee=1, where θT = {θvit, θsim, θagg}, and θS = {θcnn, θmlp}. Here, leT and leS are per-
epoch loss values of the teacher and student networks, respectively. The parameters {θeT }Ee=1 and
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(b) Student (ResNet101+MLP)
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(c) Student (ResNet50+MLP)
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Figure 6: Confusion matrix of (a) the teacher network, and (b), (c), (d) representing various student
networks, specifically ResNet101, ResNet50, and ResNet18, respectively. These networks are eval-
uated across 12 classes on VisDA2017 under the UDA setting.

{θeS}Ee=1 are projected into 2D space using UMAP McInnes et al. (2018), yielding θ̃T = {θ̃eT }Ee=1

and θ̃S = {θ̃eS}Ee=1, where θ̃eT , θ̃
e
S ∈ R2. The student projections θ̃S are scaled to match the value

range of θ̃T . We then sum up the loss values of the two networks per epoch to obtain a set of
combined loss values, L = {leT + leS}Ee=1. The variables θ̃S , θ̃T , and L are used to estimate the
loss landscape using cubic interpolation. Finally, θ̃S , θ̃T , and the loss landscape are plotted to
illustrate the gradient trajectories of the two networks, showing the direction of their convergency in
the respective minima.

We provide additional results of the gradient trajectory visualization with various student networks
such as ResNet50, ResNet34, and ResNet18 for the Ar→Cl, Ar→Pr, Pr→Ar, and Rw→Cl tasks
from the Office-Home dataset in Tab. 18. These results demonstrate that the teacher network
effectively guides the student, regardless of various student network architectures, within our GraDA
framework, further validating its reliability for DA tasks.

G.5 FAIRNESS OF THE TEACHER NETWORK (Extended Version).

This study presents an enhanced approach to fairness evaluation, extending comparisons across
multiple teacher networks. Experimental outcomes full 12 domain adaptation tasks, utilizing the
Office-Home dataset, are detailed in Table 14. Notably, networks employing the robust ViT-B+CA
teacher model (denoted as (S)) demonstrate superior performance. Furthermore, the proposed CA
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module proves effective when integrated with either the ResNet50 architecture or the more compact
ViT-Tiny model. The student network (S) supported by the CA-based teacher network (T) consis-
tently surpasses the second-best method, HVCLIP, highlighting that its performance improvements
derive primarily from the CA module and the efficacy of pseudo-labeling, rather than solely from
the backbone architecture.

G.6 CAN THE TEACHER ADAPT TO VARIOUS STUDENTS?

To explore this concern, we construct diverse student networks, including ResNet50+MLP,
ResNet34+MLP, and ResNet18+MLP, while fixing ViT-B+CA as the teacher network. As listed
in Table 15, the experimental results across 4 DA tasks on Office-Home under the UDA setting
demonstrate that GraDA is effective regardless of the student network used. Surprisingly, despite
having considerably fewer parameters than ResNet34 and ResNet50, the student network based on
ResNet18 achieves competitive performance, with small performance gaps of 0.5% and 0.9%, re-
spectively.

H VISUALIZATION ANALYSIS

In this section, t-SNE Van der Maaten & Hinton (2008) visualizations are provided to show embed-
ding improvements across training strategies, while Grad-CAM Selvaraju et al. (2017) is used to
demonstrate the enhanced visual performance of the student network in GraDA.

H.1 T-SNE VISUALIZATION

We use t-SNE Van der Maaten & Hinton (2008) to further evaluate the effectiveness of the proposed
gradient-based knowledge distillation for domain adaptation via visualizing domain alignment and
target feature distributions. Figure 8 presents the visualization results of the Rw→Cl task on Office-
Home under the UDA setting, while Fig. 9 illustrates results of the rel→pnt task on DomainNet
under the SSDA setting (3-shot). We first show results of the vanilla student trained using super-
vised, self-enhanced, and cross-class confusion losses without guidance from the teacher network,
as specified in setting S3 of the main manuscript. Then, we investigate the impact of the teacher net-
work on the feature space of the student network by progressively adding supervised (Teacher+S4),
self-enhanced (Teacher+S5), and cross-class confusion (Teacher+S6) settings.

The vanilla student (S3) struggles to provide robust representations due to the sensitivity of CNN
to domain shift and its limited ability to capture relationships among neighboring samples. As
shown in Figs. 8a and 9a, the target features are highly misalignment compared to those guided by
the teacher network under the Teacher+S4 setting (Figs. 8b and 9b) thanks to ability in enriching
intra-class relations. In cases Teacher+S5, the teacher network leverages pseudo labels generated
from unlabeled target data to enhance intra-class information on the target domain and mitigating
domain shifts through class-aware feature alignment. As shown in Figs. 8c and 9c, the teacher
network effectively guides the student network using these pseudo labels, enabling the student to
align source and target features. Additionally, the discriminative ability among the different classes
of the student network is also improved, as illustrated in Figs. 8g and 9g. Finally, we implement the
cross-class confusion loss in the Teacher+S6 setting to reduce ambiguous prediction among classes,
resulting in a slight improvement, as shown in Figs. 8d and 8h for Office-Home, and Figs. 9d and
9h for DomainNet.

H.2 GRAD-CAM VISUALIZATION

We visualize attention maps to examine our gradient-guided ability of the teacher network for the
student network by using Grad-CAM Selvaraju et al. (2017). To clearly demonstrate the improve-
ments of our student network, GraDA (S), over the vanilla student network (without any guidance),
we present samples that are misclassified by the vanilla student but correctly classified by GraDA
(S) under the UDA and SSDA settings on the Office-Home and DomainNet datasets.

Office-Home. For the Office-Home dataset under UDA, we present attention results for four
tasks: Ar→Cl, Cl→Pr, Pr→Rw, and Rw→Ar. In both the vanilla student network and GraDA
(S), ResNet50 is utilized as the feature extractor. As shown in Tab. 19, without any guidance, the
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vanilla student network struggles to capture object regions in several classes, such as “alarm clock”,
“keyboard”, “spoon”, “bucket”, chair”, “couch”, “flipflops”, “flowers”, and “shelf ”. Meanwhile,
GraDA (S) is shown to focus more precise regions, shifting focus from irrelevant to relevant ele-
ments, such as from a cable to a “keyboard” or a broom to a “bucket”. Upon closer examination, it is
clear that GraDA (S) closely emulates the behavior of GraDA (T), which itself demonstrates strong
performance. For example, in the case of the class “bed”, the vanilla student network fails to capture
the entire bed and instead focuses only on the footboard, leading to the wrong prediction. However,
our teacher network successfully captures the full object, enabling our student network, GraDA (S),
to learn and mimic this behavior. Similar observations are evident for “batteries”, “post-it notes”,
“toothbrush”, and “toys”.

DomainNet. For the DomainNet dataset under SSDA, we extract the attention results for four tasks:
rel→clp, clp→skt, skt→pnt, and pnt→rel, which are shown in Tab. 20. ResNet34 is utilized as a
feature extractor for the student network. Overall, we observe that the teacher network GraDA (T)
accurately captures the salient regions that strongly represent the class label of the image. For sam-
ples containing a single instance, such as “crab,” the teacher network accurately focuses on the crab
in the center, effectively guiding the student to mimic this behavior. In contrast, the vanilla student
focuses only on the frame, which provides no key information and ultimately leads to misclassifi-
cation. Same observations are evident for “cell phone”, “spider”, “alarm clock”, “bus”, and “sub-
marine”. In the case of multiple instances appearing in an image, two scenarios can be identified:
1) instances with similar characteristics and 2) salient instances that are mixed with miscellaneous
or less relevant instances. In the first scenario, for example, an ant appears with a book in the “ant”
class, and a cello appears with a panda in the “cello” class. This can lead to confusion. Interestingly,
the student network guided by GraDA (T) is shown to correctly focus on the salient instances, pre-
cisely detecting the ant’s head in the “ant” class and effectively separating the cello from the panda
in the “cello” class. In contrast, the vanilla student fails to do so, focusing on completely irrelevant
instances in all cases. Similar observations are evident for the “cactus”, “cell phone”, and “banana”
classes. In the second scenario, where multiple instances with similar characteristics appear, our
student network successfully covers all of them. For example, GraDA (S) captures all dolphins and
all rabbits in the “dolphin” and “rabbit” classes, respectively, whereas the vanilla student focuses on
only one instance. Similar observations are made for the “whale” and “sheep” classes.

Intra-class relations and Class-aware
alignment (during training)

Intra-class relations on target domain only
(during testing)
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Intra-class relations and Class-aware
alignment (during training)

Intra-class relations on target domain only
(during testing)

Art→Product

Kettle Keyboard

K
et

tl
e

K
ey

bo
ar

d

1.00 0.61 0.98 0.96 0.93 0.94 0.95 0.65 0.011 0.007 0.002 0.002 0.003 0.001 0.003 0.002

0.61 1.00 0.51 0.61 0.77 0.83 0.73 0.81 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.002

0.98 0.51 1.00 0.97 0.95 0.95 0.93 0.73 0.015 0.010 0.004 0.004 0.004 0.002 0.004 0.003

0.96 0.61 0.97 1.00 0.92 0.92 0.91 0.85 0.002 0.005 0.002 0.002 0.002 0.001 0.003 0.002

0.93 0.77 0.95 0.92 1.00 0.88 0.95 0.73 0.001 0.003 0.002 0.002 0.002 0.001 0.002 0.002

0.94 0.83 0.95 0.92 0.88 1.00 0.95 0.79 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002

0.95 0.73 0.93 0.91 0.95 0.95 1.00 0.89 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002

0.65 0.81 0.73 0.85 0.73 0.79 0.89 1.00 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.003

0.011 0.001 0.015 0.002 0.001 0.001 0.001 0.002 1.00 0.65 0.60 0.60 0.84 0.68 0.65 0.64

0.007 0.002 0.010 0.005 0.003 0.002 0.002 0.001 0.65 1.00 0.45 0.45 0.90 0.89 0.84 0.75

0.002 0.002 0.004 0.002 0.002 0.001 0.001 0.002 0.60 0.45 1.00 1.00 0.66 0.53 0.33 0.28

0.002 0.002 0.004 0.002 0.002 0.001 0.001 0.002 0.60 0.45 1.00 1.00 0.66 0.53 0.33 0.28

0.003 0.001 0.004 0.002 0.002 0.001 0.001 0.001 0.84 0.90 0.66 0.66 1.00 0.82 0.83 0.83

0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.68 0.89 0.53 0.53 0.82 1.00 0.28 0.93

0.003 0.001 0.004 0.003 0.002 0.002 0.002 0.001 0.65 0.84 0.33 0.33 0.83 0.28 1.00 0.67

0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.64 0.75 0.28 0.28 0.83 0.93 0.67 1.00

Bike Bottle Bucket Calculator

B
ik

e
B

ot
tl

e
B

uc
ke

t
C

al
cu

la
to

r

1.00 0.99 0.66 0.99 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.003

0.99 1.00 0.59 0.99 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.003

0.66 0.59 1.00 0.68 0.002 0.001 0.002 0.002 0.005 0.009 0.002 0.004 0.002 0.001 0.002 0.002

0.99 0.99 0.68 1.00 0.002 0.001 0.002 0.002 0.003 0.005 0.001 0.003 0.001 0.001 0.001 0.002

0.001 0.001 0.002 0.002 1.00 0.85 0.69 0.85 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002

0.001 0.001 0.001 0.001 0.85 1.00 0.75 0.95 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002

0.002 0.002 0.002 0.002 0.69 0.75 1.00 0.56 0.005 0.003 0.002 0.002 0.002 0.002 0.001 0.002

0.001 0.001 0.002 0.002 0.85 0.95 0.56 1.00 0.002 0.001 0.003 0.001 0.002 0.003 0.001 0.002

0.001 0.001 0.005 0.003 0.001 0.001 0.005 0.002 1.00 0.88 0.86 0.96 0.001 0.002 0.001 0.002

0.002 0.002 0.009 0.005 0.001 0.001 0.003 0.001 0.88 1.00 0.58 0.78 0.001 0.002 0.002 0.003

0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.003 0.86 0.58 1.00 0.92 0.001 0.001 0.001 0.002

0.002 0.001 0.004 0.003 0.001 0.001 0.002 0.001 0.96 0.78 0.92 1.00 0.001 0.002 0.001 0.002

0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 1.00 0.80 0.98 0.64

0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.001 0.002 0.80 1.00 0.66 0.19

0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.98 0.66 1.00 0.21

0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.64 0.19 0.21 1.00

Art→Real World

Bucket Calculator

B
uc

ke
t

C
al

cu
la

to
r

1.00 0.90 0.82 0.87 0.81 0.90 0.91 0.85 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.001

0.90 1.00 0.96 0.94 0.85 0.95 0.96 0.92 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001

0.82 0.96 1.00 0.93 0.85 0.95 0.97 0.95 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.87 0.94 0.93 1.00 0.71 0.89 0.94 0.91 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000

0.81 0.85 0.85 0.71 1.00 0.97 0.91 0.79 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001

0.90 0.95 0.95 0.89 0.97 1.00 0.98 0.94 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001

0.91 0.96 0.97 0.94 0.91 0.98 1.00 0.97 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.001

0.85 0.92 0.95 0.91 0.79 0.94 0.97 1.00 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1.00 0.96 1.00 0.95 0.97 0.93 0.93 0.94

0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.96 1.00 0.96 0.93 0.99 0.93 0.90 0.90

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1.00 0.96 1.00 0.95 0.97 0.93 0.93 0.94

0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.95 0.93 0.95 1.00 0.96 0.98 0.99 0.99

0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.97 0.99 0.97 0.96 1.00 0.95 0.92 0.96

0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.93 0.93 0.93 0.98 0.95 1.00 0.98 0.96

0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.93 0.90 0.93 0.99 0.92 0.98 1.00 0.97

0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.94 0.90 0.94 0.99 0.96 0.96 0.97 1.00

Computer Couch Curtains Desk Lamp

C
om

pu
te

r
C

ou
ch

C
ur

ta
in

s
D

es
k 

La
m

p

1.00 0.92 0.92 0.84 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.002

0.92 1.00 0.89 0.81 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.004 0.004 0.005 0.004

0.92 0.89 1.00 0.90 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.002

0.84 0.81 0.90 1.00 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001

0.001 0.002 0.001 0.001 1.00 0.96 0.91 0.93 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002

0.001 0.001 0.002 0.002 0.96 1.00 0.87 0.92 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001

0.001 0.001 0.001 0.001 0.91 0.87 1.00 0.95 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001

0.001 0.001 0.001 0.001 0.93 0.92 0.95 1.00 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1.00 0.92 0.89 0.93 0.001 0.001 0.001 0.002

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.92 1.00 0.94 0.94 0.001 0.001 0.001 0.001

0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.89 0.94 1.00 0.96 0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.93 0.94 0.96 1.00 0.001 0.001 0.001 0.001

0.002 0.004 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1.00 0.98 0.93 0.95

0.002 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.98 1.00 0.93 0.97

0.003 0.005 0.003 0.001 0.002 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.93 0.93 1.00 0.92

0.002 0.004 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.95 0.97 0.92 1.00

Clipart→Art

Kettle Keyboard

K
et

tl
e

K
ey

bo
ar

d

1.00 0.86 1.00 0.96 0.96 0.89 0.92 0.97 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.86 1.00 0.91 0.94 0.91 0.96 0.92 0.95 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001

1.00 0.91 1.00 1.00 0.98 0.95 0.97 0.99 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001

0.96 0.94 1.00 1.00 0.96 0.97 0.97 0.99 0.001 0.006 0.001 0.002 0.001 0.001 0.005 0.005

0.96 0.91 0.98 0.96 1.00 0.99 1.00 0.98 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.89 0.96 0.95 0.97 0.99 1.00 0.98 0.98 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.001

0.92 0.92 0.97 0.97 1.00 0.98 1.00 0.97 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.97 0.95 0.99 0.99 0.98 0.98 0.97 1.00 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001

0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 1.00 1.00 0.99 1.00 0.97 0.98 1.00 0.99

0.001 0.000 0.001 0.006 0.000 0.001 0.000 0.000 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00

0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.99 1.00 1.00 1.00 0.98 0.98 0.98 1.00

0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00

0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.97 0.98 0.98 0.99 1.00 1.00 0.97 1.00

0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.98 0.99 0.98 1.00 1.00 1.00 0.99 1.00

0.000 0.000 0.001 0.005 0.000 0.000 0.000 0.001 1.00 0.99 0.98 0.99 0.97 0.99 1.00 1.00

0.000 0.001 0.001 0.005 0.000 0.001 0.000 0.001 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bike Bottle Bucket Calculator

B
ik

e
B

ot
tl

e
B

uc
ke

t
C

al
cu

la
to

r

1.00 0.98 0.98 0.99 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.98 1.00 0.96 0.99 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.98 0.96 1.00 0.99 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000

0.99 0.99 0.99 1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.001 0.000 1.00 1.00 0.99 0.99 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.000 1.00 1.00 1.00 0.99 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000

0.001 0.001 0.000 0.000 0.99 1.00 1.00 0.99 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.99 0.99 0.99 1.00 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.001 0.000 0.001 0.001 0.003 0.000 1.00 0.98 0.99 0.99 0.000 0.000 0.000 0.000

0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.98 1.00 1.00 0.99 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.002 0.001 0.001 0.001 0.99 1.00 1.00 1.00 0.000 0.000 0.000 0.001

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.99 0.99 1.00 1.00 0.000 0.000 0.000 0.000

0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 0.80 0.98 0.94

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.80 1.00 0.94 0.99

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.98 0.94 1.00 0.96

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.94 0.99 0.96 1.00
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Under review as a conference paper at ICLR 2026

Intra-class relations and Class-aware
alignment (during training)

Intra-class relations on target domain only
(during testing)

Clipart→Product

Pan Paper Clip

Pa
n

Pa
pe

r 
C

lip

1.00 0.48 0.49 0.62 0.74 0.65 0.71 0.71 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000

0.48 1.00 0.31 0.84 0.55 0.55 0.45 0.44 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.000

0.49 0.31 1.00 0.66 0.43 0.37 0.41 0.36 0.000 0.001 0.002 0.001 0.001 0.000 0.000 0.000

0.62 0.84 0.66 1.00 0.62 0.45 0.54 0.62 0.001 0.000 0.002 0.000 0.001 0.000 0.000 0.000

0.74 0.55 0.43 0.62 1.00 0.66 0.91 0.96 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000

0.65 0.55 0.37 0.45 0.66 1.00 0.62 0.64 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000

0.71 0.45 0.41 0.54 0.91 0.62 1.00 0.99 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

0.71 0.44 0.36 0.62 0.96 0.64 0.99 1.00 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000

0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 1.00 0.58 0.40 0.59 0.50 0.26 0.54 0.27

0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.58 1.00 0.51 0.56 0.66 0.32 0.52 0.21

0.002 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.40 0.51 1.00 0.62 0.96 0.66 0.67 0.41

0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.59 0.56 0.62 1.00 0.64 0.50 0.49 0.25

0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.50 0.66 0.96 0.64 1.00 0.57 0.67 0.42

0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.26 0.32 0.66 0.50 0.57 1.00 0.48 0.47

0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.54 0.52 0.67 0.49 0.67 0.48 1.00 0.25

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.27 0.21 0.41 0.25 0.42 0.47 0.25 1.00

Drill Eraser Exit Sign Fan

D
ri

ll
Er

as
er

Ex
it

 S
ig

n
Fa

n

1.00 0.95 0.30 0.68 0.000 0.002 0.001 0.002 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.001

0.95 1.00 0.18 0.53 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001

0.30 0.18 1.00 0.50 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

0.68 0.53 0.50 1.00 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.000 0.001 0.000

0.000 0.001 0.000 0.000 1.00 0.28 0.62 0.35 0.002 0.001 0.002 0.002 0.006 0.001 0.001 0.002

0.002 0.001 0.001 0.001 0.28 1.00 0.44 0.45 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.002

0.001 0.001 0.000 0.000 0.62 0.44 1.00 0.54 0.001 0.001 0.003 0.001 0.005 0.001 0.001 0.001

0.002 0.001 0.000 0.000 0.35 0.45 0.54 1.00 0.001 0.001 0.002 0.001 0.002 0.000 0.001 0.001

0.000 0.000 0.000 0.000 0.002 0.001 0.001 0.001 1.00 0.62 0.53 0.70 0.001 0.001 0.001 0.001

0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.62 1.00 0.46 0.81 0.001 0.001 0.000 0.001

0.001 0.001 0.000 0.001 0.002 0.002 0.003 0.002 0.53 0.46 1.00 0.50 0.002 0.001 0.001 0.002

0.000 0.001 0.000 0.000 0.002 0.001 0.001 0.001 0.70 0.81 0.50 1.00 0.001 0.001 0.001 0.001

0.001 0.001 0.000 0.002 0.006 0.002 0.005 0.002 0.001 0.001 0.002 0.001 1.00 0.22 0.22 0.23

0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.22 1.00 0.45 0.71

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.22 0.45 1.00 0.34

0.001 0.001 0.000 0.000 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.23 0.71 0.34 1.00

Clipart→Real World

Exit Sign Fan

Ex
it

 S
ig

n
Fa

n

1.00 0.97 0.99 0.95 0.77 0.95 0.62 0.78 0.007 0.010 0.005 0.006 0.004 0.004 0.006 0.003

0.97 1.00 0.98 1.00 0.82 0.96 0.90 0.92 0.007 0.008 0.004 0.005 0.004 0.004 0.005 0.004

0.99 0.98 1.00 0.97 0.84 0.97 0.81 0.88 0.017 0.022 0.006 0.006 0.004 0.005 0.007 0.003

0.95 1.00 0.97 1.00 0.81 0.97 0.89 0.93 0.006 0.006 0.004 0.004 0.004 0.004 0.004 0.004

0.77 0.82 0.84 0.81 1.00 0.90 0.88 0.82 0.006 0.006 0.004 0.005 0.005 0.005 0.005 0.009

0.95 0.96 0.97 0.97 0.90 1.00 0.93 0.86 0.009 0.015 0.004 0.004 0.003 0.004 0.005 0.003

0.62 0.90 0.81 0.89 0.88 0.93 1.00 0.83 0.007 0.005 0.003 0.004 0.005 0.005 0.005 0.003

0.78 0.92 0.88 0.93 0.82 0.86 0.83 1.00 0.004 0.007 0.005 0.004 0.005 0.005 0.005 0.003

0.007 0.007 0.017 0.006 0.006 0.009 0.007 0.004 1.00 0.97 0.78 0.92 0.86 0.91 0.91 0.79

0.010 0.008 0.022 0.006 0.006 0.015 0.005 0.007 0.97 1.00 0.90 0.99 0.80 0.85 0.97 0.69

0.005 0.004 0.006 0.004 0.004 0.004 0.003 0.005 0.78 0.90 1.00 0.89 0.88 0.93 0.96 0.71

0.006 0.005 0.006 0.004 0.005 0.004 0.004 0.004 0.92 0.99 0.89 1.00 0.74 0.88 0.96 0.76

0.004 0.004 0.004 0.004 0.005 0.003 0.005 0.005 0.86 0.80 0.88 0.74 1.00 0.94 0.86 0.88

0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.91 0.85 0.93 0.88 0.94 1.00 0.86 0.95

0.006 0.005 0.007 0.004 0.005 0.005 0.005 0.005 0.91 0.97 0.96 0.96 0.86 0.86 1.00 0.64

0.003 0.004 0.003 0.004 0.009 0.003 0.003 0.003 0.79 0.69 0.71 0.76 0.88 0.95 0.64 1.00

File Cabinet Flipflops Flowers Folder

Fi
le

 C
ab

in
et

Fl
ip

fl
op

s
Fl

ow
er

s
Fo

ld
er

1.00 0.89 0.72 0.89 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.003 0.003 0.003 0.004

0.89 1.00 0.90 0.97 0.004 0.003 0.004 0.005 0.002 0.002 0.003 0.003 0.004 0.003 0.004 0.004

0.72 0.90 1.00 0.92 0.005 0.003 0.005 0.006 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.003

0.89 0.97 0.92 1.00 0.004 0.003 0.004 0.005 0.003 0.002 0.002 0.002 0.004 0.003 0.003 0.003

0.002 0.004 0.005 0.004 1.00 0.95 0.92 0.91 0.003 0.003 0.004 0.004 0.003 0.003 0.004 0.003

0.002 0.003 0.003 0.003 0.95 1.00 0.91 0.93 0.008 0.007 0.006 0.005 0.002 0.002 0.002 0.002

0.002 0.004 0.005 0.004 0.92 0.91 1.00 0.93 0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.002

0.003 0.005 0.006 0.005 0.91 0.93 0.93 1.00 0.002 0.003 0.002 0.002 0.003 0.003 0.003 0.003

0.002 0.002 0.003 0.003 0.003 0.008 0.002 0.002 1.00 0.90 0.91 0.95 0.002 0.001 0.002 0.001

0.002 0.002 0.002 0.002 0.003 0.007 0.003 0.003 0.90 1.00 0.92 0.82 0.002 0.001 0.002 0.001

0.003 0.003 0.003 0.002 0.004 0.006 0.002 0.002 0.91 0.92 1.00 0.93 0.002 0.001 0.002 0.002

0.002 0.003 0.002 0.002 0.004 0.005 0.003 0.002 0.95 0.82 0.93 1.00 0.001 0.002 0.002 0.002

0.003 0.004 0.003 0.004 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.001 1.00 0.92 0.89 0.88

0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.003 0.001 0.001 0.001 0.002 0.92 1.00 0.96 0.97

0.003 0.004 0.003 0.003 0.004 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.89 0.96 1.00 0.97

0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.003 0.001 0.001 0.002 0.002 0.88 0.97 0.97 1.00

Product→Art

Hammer Helmet

H
am

m
er

H
el

m
et

1.00 0.97 0.96 0.97 0.41 0.47 0.34 0.47 0.005 0.006 0.010 0.018 0.001 0.000 0.001 0.003

0.97 1.00 0.91 0.99 0.48 0.51 0.49 0.63 0.011 0.009 0.015 0.024 0.001 0.000 0.000 0.003

0.96 0.91 1.00 0.95 0.48 0.44 0.42 0.62 0.004 0.008 0.010 0.026 0.002 0.000 0.001 0.003

0.97 0.99 0.95 1.00 0.33 0.45 0.34 0.48 0.020 0.004 0.024 0.014 0.002 0.001 0.001 0.005

0.41 0.48 0.48 0.33 1.00 0.33 0.55 0.46 0.001 0.003 0.003 0.006 0.001 0.000 0.000 0.001

0.47 0.51 0.44 0.45 0.33 1.00 0.37 0.54 0.001 0.004 0.005 0.005 0.002 0.001 0.001 0.002

0.34 0.49 0.42 0.34 0.55 0.37 1.00 0.65 0.002 0.003 0.004 0.005 0.001 0.000 0.000 0.002

0.47 0.63 0.62 0.48 0.46 0.54 0.65 1.00 0.003 0.008 0.008 0.008 0.002 0.001 0.001 0.003

0.005 0.011 0.004 0.020 0.001 0.001 0.002 0.003 1.00 0.85 0.64 0.97 0.45 0.32 0.35 0.40

0.006 0.009 0.008 0.004 0.003 0.004 0.003 0.008 0.85 1.00 0.82 0.99 0.32 0.44 0.42 0.40

0.010 0.015 0.010 0.024 0.003 0.005 0.004 0.008 0.64 0.82 1.00 0.61 0.39 0.43 0.35 0.41

0.018 0.024 0.026 0.014 0.006 0.005 0.005 0.008 0.97 0.99 0.61 1.00 0.31 0.42 0.41 0.30

0.001 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.45 0.32 0.39 0.31 1.00 0.50 0.51 0.49

0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.32 0.44 0.43 0.42 0.50 1.00 0.55 0.62

0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.35 0.42 0.35 0.41 0.51 0.55 1.00 0.70

0.003 0.003 0.003 0.005 0.001 0.002 0.002 0.003 0.40 0.40 0.41 0.30 0.49 0.62 0.70 1.00

Postit Notes Printer Push Pin Radio

Po
st

it
 N

ot
es

Pr
in

te
r

Pu
sh

 P
in

R
ad

io

1.00 0.41 0.41 0.48 0.001 0.002 0.006 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.001

0.41 1.00 0.39 0.32 0.001 0.002 0.001 0.000 0.001 0.002 0.001 0.001 0.001 0.000 0.000 0.000

0.41 0.39 1.00 0.47 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.48 0.32 0.47 1.00 0.001 0.001 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.001 0.000 0.001 1.00 0.53 0.29 0.27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.002 0.002 0.000 0.001 0.53 1.00 0.32 0.22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

0.006 0.001 0.001 0.002 0.29 0.32 1.00 0.31 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.001 0.27 0.22 0.31 1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 1.00 0.48 0.38 0.42 0.000 0.001 0.000 0.001

0.001 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.48 1.00 0.52 0.50 0.000 0.001 0.000 0.000

0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.38 0.52 1.00 0.42 0.000 0.000 0.000 0.000

0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.42 0.50 0.42 1.00 0.000 0.001 0.000 0.000

0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 0.70 0.60 0.31

0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.70 1.00 0.60 0.80

0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.60 0.60 1.00 0.45

0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.31 0.80 0.45 1.00
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Intra-class relations and Class-aware
alignment (during training)

Intra-class relations on target domain only
(during testing)

Product→Clipart

Hammer Helmet

H
am

m
er

H
el

m
et

1.00 0.84 0.37 0.82 0.44 0.41 0.49 0.54 0.007 0.008 0.005 0.008 0.004 0.005 0.002 0.004

0.84 1.00 0.68 0.97 0.92 0.85 0.91 0.94 0.002 0.002 0.003 0.004 0.002 0.003 0.002 0.002

0.37 0.68 1.00 0.84 0.65 0.68 0.81 0.52 0.008 0.008 0.007 0.014 0.005 0.008 0.007 0.010

0.82 0.97 0.84 1.00 0.88 0.82 0.88 0.88 0.003 0.004 0.003 0.005 0.002 0.004 0.002 0.004

0.44 0.92 0.65 0.88 1.00 0.93 0.98 0.94 0.003 0.002 0.004 0.004 0.003 0.006 0.002 0.005

0.41 0.85 0.68 0.82 0.93 1.00 0.96 0.91 0.002 0.002 0.005 0.005 0.004 0.004 0.002 0.005

0.49 0.91 0.81 0.88 0.98 0.96 1.00 0.96 0.003 0.002 0.005 0.008 0.004 0.008 0.003 0.004

0.54 0.94 0.52 0.88 0.94 0.91 0.96 1.00 0.001 0.001 0.003 0.003 0.002 0.003 0.002 0.002

0.007 0.002 0.008 0.003 0.003 0.002 0.003 0.001 1.00 1.00 0.78 0.92 0.85 0.92 0.78 0.85

0.008 0.002 0.008 0.004 0.002 0.002 0.002 0.001 1.00 1.00 0.85 0.92 0.86 0.94 0.81 0.89

0.005 0.003 0.007 0.003 0.004 0.005 0.005 0.003 0.78 0.85 1.00 0.83 0.80 0.67 0.66 0.68

0.008 0.004 0.014 0.005 0.004 0.005 0.008 0.003 0.92 0.92 0.83 1.00 0.83 0.91 0.75 0.86

0.004 0.002 0.005 0.002 0.003 0.004 0.004 0.002 0.85 0.86 0.80 0.83 1.00 0.84 0.84 0.79

0.005 0.003 0.008 0.004 0.006 0.004 0.008 0.003 0.92 0.94 0.67 0.91 0.84 1.00 0.75 0.92

0.002 0.002 0.007 0.002 0.002 0.002 0.003 0.002 0.78 0.81 0.66 0.75 0.84 0.75 1.00 0.78

0.004 0.002 0.010 0.004 0.005 0.005 0.004 0.002 0.85 0.89 0.68 0.86 0.79 0.92 0.78 1.00

Mouse Mug Notebook Oven

M
ou

se
M

ug
N

ot
eb

oo
k

O
ve

n

1.00 0.82 0.94 0.87 0.002 0.002 0.002 0.002 0.004 0.004 0.002 0.004 0.004 0.004 0.004 0.004

0.82 1.00 0.80 0.83 0.002 0.003 0.002 0.002 0.004 0.003 0.002 0.002 0.004 0.004 0.003 0.003

0.94 0.80 1.00 0.87 0.003 0.002 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.005 0.004 0.004

0.87 0.83 0.87 1.00 0.002 0.002 0.003 0.002 0.003 0.004 0.003 0.003 0.005 0.006 0.004 0.004

0.002 0.002 0.003 0.002 1.00 0.95 0.87 0.97 0.002 0.002 0.001 0.002 0.003 0.003 0.003 0.003

0.002 0.003 0.002 0.002 0.95 1.00 0.90 0.95 0.002 0.004 0.002 0.002 0.004 0.003 0.003 0.003

0.002 0.002 0.003 0.003 0.87 0.90 1.00 0.95 0.003 0.003 0.002 0.002 0.004 0.004 0.003 0.003

0.002 0.002 0.004 0.002 0.97 0.95 0.95 1.00 0.003 0.002 0.002 0.002 0.004 0.003 0.003 0.004

0.004 0.004 0.003 0.003 0.002 0.002 0.003 0.003 1.00 0.96 0.89 0.84 0.003 0.008 0.004 0.004

0.004 0.003 0.004 0.004 0.002 0.004 0.003 0.002 0.96 1.00 0.80 0.84 0.004 0.004 0.003 0.003

0.002 0.002 0.003 0.003 0.001 0.002 0.002 0.002 0.89 0.80 1.00 0.89 0.004 0.005 0.004 0.003

0.004 0.002 0.004 0.003 0.002 0.002 0.002 0.002 0.84 0.84 0.89 1.00 0.004 0.004 0.003 0.003

0.004 0.004 0.004 0.005 0.003 0.004 0.004 0.004 0.003 0.004 0.004 0.004 1.00 0.87 0.82 0.96

0.004 0.004 0.005 0.006 0.003 0.003 0.004 0.003 0.008 0.004 0.005 0.004 0.87 1.00 0.78 0.91

0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.003 0.82 0.78 1.00 0.92

0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.004 0.004 0.003 0.003 0.003 0.96 0.91 0.92 1.00

Product→Real World

Kettle Keyboard

K
et

tl
e

K
ey

bo
ar

d

1.00 0.81 0.96 0.91 0.54 0.90 0.68 0.44 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002

0.81 1.00 0.93 0.80 0.75 0.78 0.68 0.40 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.96 0.93 1.00 0.84 0.58 0.97 0.57 0.34 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002

0.91 0.80 0.84 1.00 0.60 0.82 0.68 0.42 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.54 0.75 0.58 0.60 1.00 0.55 0.75 0.44 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.90 0.78 0.97 0.82 0.55 1.00 0.64 0.25 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.002

0.68 0.68 0.57 0.68 0.75 0.64 1.00 0.26 0.002 0.001 0.001 0.002 0.003 0.003 0.001 0.002

0.44 0.40 0.34 0.42 0.44 0.25 0.26 1.00 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 1.00 0.77 0.68 0.64 0.55 0.57 0.55 0.56

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.77 1.00 0.93 0.89 0.59 0.62 0.58 0.61

0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.68 0.93 1.00 0.90 0.50 0.46 0.53 0.38

0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.64 0.89 0.90 1.00 0.49 0.54 0.42 0.44

0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.001 0.55 0.59 0.50 0.49 1.00 0.94 0.69 0.52

0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.001 0.57 0.62 0.46 0.54 0.94 1.00 0.61 0.58

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.55 0.58 0.53 0.42 0.69 0.61 1.00 0.50

0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.56 0.61 0.38 0.44 0.52 0.58 0.50 1.00

Alarm Clock Backpack Batteries Bed

A
la

rm
 C

lo
ck

B
ac

kp
ac

k
B

at
te

ri
es

B
ed

1.00 0.48 0.67 0.81 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001

0.48 1.00 0.64 0.55 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.67 0.64 1.00 0.65 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.81 0.55 0.65 1.00 0.001 0.002 0.001 0.002 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001 1.00 0.56 0.96 0.89 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.002 0.003 0.002 0.002 0.56 1.00 0.57 0.45 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001

0.002 0.001 0.001 0.001 0.96 0.57 1.00 0.93 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001

0.002 0.001 0.001 0.002 0.89 0.45 0.93 1.00 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1.00 0.53 0.50 0.64 0.000 0.001 0.001 0.001

0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.53 1.00 0.56 0.63 0.000 0.001 0.001 0.001

0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.50 0.56 1.00 0.38 0.001 0.000 0.001 0.002

0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.64 0.63 0.38 1.00 0.000 0.001 0.001 0.001

0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.000 0.000 0.001 0.000 1.00 0.49 0.81 0.33

0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.49 1.00 0.64 0.61

0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.81 0.64 1.00 0.54

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.33 0.61 0.54 1.00

Real World→Art

Calendar Candles

C
al

en
da

r
C

an
dl

es

1.00 0.94 0.84 0.97 0.70 0.80 0.51 0.91 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.94 1.00 0.91 0.97 0.87 0.91 0.79 0.90 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.84 0.91 1.00 0.90 0.70 0.74 0.80 0.91 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001

0.97 0.97 0.90 1.00 0.73 0.74 0.76 0.88 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.70 0.87 0.70 0.73 1.00 0.77 0.90 0.92 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.80 0.91 0.74 0.74 0.77 1.00 0.50 0.75 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001

0.51 0.79 0.80 0.76 0.90 0.50 1.00 0.82 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001

0.91 0.90 0.91 0.88 0.92 0.75 0.82 1.00 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002

0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.002 1.00 0.96 0.84 0.97 0.69 0.97 0.71 0.91

0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.96 1.00 0.96 0.94 0.76 0.98 0.88 0.96

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.84 0.96 1.00 0.86 0.66 0.88 0.90 0.86

0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.97 0.94 0.86 1.00 0.87 0.97 0.81 0.97

0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.69 0.76 0.66 0.87 1.00 0.83 0.73 0.83

0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.97 0.98 0.88 0.97 0.83 1.00 0.89 0.94

0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.71 0.88 0.90 0.81 0.73 0.89 1.00 0.78

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.91 0.96 0.86 0.97 0.83 0.94 0.78 1.00

Alarm Clock Backpack Batteries Bed

A
la

rm
 C

lo
ck

B
ac

kp
ac

k
B

at
te

ri
es

B
ed

1.00 0.86 0.83 0.87 0.001 0.001 0.000 0.000 0.005 0.001 0.002 0.004 0.000 0.001 0.001 0.001

0.86 1.00 0.78 0.82 0.002 0.001 0.000 0.000 0.002 0.001 0.003 0.002 0.001 0.001 0.001 0.001

0.83 0.78 1.00 0.97 0.002 0.001 0.001 0.001 0.003 0.001 0.003 0.005 0.002 0.001 0.001 0.002

0.87 0.82 0.97 1.00 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.002 0.002 0.001 0.001 0.000

0.001 0.002 0.002 0.001 1.00 0.46 0.74 0.61 0.002 0.002 0.005 0.003 0.005 0.004 0.005 0.002

0.001 0.001 0.001 0.001 0.46 1.00 0.76 0.70 0.001 0.001 0.001 0.001 0.002 0.004 0.003 0.001

0.000 0.000 0.001 0.001 0.74 0.76 1.00 0.88 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001

0.000 0.000 0.001 0.001 0.61 0.70 0.88 1.00 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002

0.005 0.002 0.003 0.002 0.002 0.001 0.001 0.001 1.00 0.55 0.53 0.64 0.002 0.001 0.002 0.001

0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.55 1.00 0.58 0.39 0.001 0.001 0.000 0.001

0.002 0.003 0.003 0.003 0.005 0.001 0.002 0.001 0.53 0.58 1.00 0.61 0.002 0.001 0.001 0.000

0.004 0.002 0.005 0.002 0.003 0.001 0.001 0.001 0.64 0.39 0.61 1.00 0.002 0.001 0.001 0.001

0.000 0.001 0.002 0.002 0.005 0.002 0.002 0.002 0.002 0.001 0.002 0.002 1.00 0.75 0.86 0.45

0.001 0.001 0.001 0.001 0.004 0.004 0.002 0.001 0.001 0.001 0.001 0.001 0.75 1.00 0.50 0.68

0.001 0.001 0.001 0.001 0.005 0.003 0.001 0.001 0.002 0.000 0.001 0.001 0.86 0.50 1.00 0.45

0.001 0.001 0.002 0.000 0.002 0.001 0.001 0.002 0.001 0.001 0.000 0.001 0.45 0.68 0.45 1.00
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Intra-class relations and Class-aware
alignment (during training)

Intra-class relations on target domain only
(during testing)

Real World→Clipart

Exit Sign Fan

Ex
it

 S
ig

n
Fa

n

1.00 0.67 0.89 0.89 0.82 0.85 0.90 0.84 0.003 0.003 0.003 0.004 0.005 0.003 0.005 0.003

0.67 1.00 0.85 0.88 0.36 0.61 0.63 0.59 0.004 0.004 0.006 0.008 0.005 0.003 0.005 0.004

0.89 0.85 1.00 0.93 0.80 0.88 0.91 0.89 0.003 0.004 0.004 0.005 0.005 0.003 0.005 0.003

0.89 0.88 0.93 1.00 0.64 0.80 0.84 0.81 0.007 0.009 0.013 0.009 0.006 0.006 0.007 0.007

0.82 0.36 0.80 0.64 1.00 0.95 0.97 0.91 0.005 0.005 0.003 0.004 0.003 0.005 0.006 0.005

0.85 0.61 0.88 0.80 0.95 1.00 0.96 0.98 0.004 0.004 0.004 0.003 0.002 0.004 0.004 0.004

0.90 0.63 0.91 0.84 0.97 0.96 1.00 0.94 0.004 0.004 0.004 0.003 0.003 0.004 0.004 0.005

0.84 0.59 0.89 0.81 0.91 0.98 0.94 1.00 0.003 0.004 0.003 0.003 0.002 0.004 0.004 0.004

0.003 0.004 0.003 0.007 0.005 0.004 0.004 0.003 1.00 0.95 0.85 0.78 0.77 0.98 0.86 0.88

0.003 0.004 0.004 0.009 0.005 0.004 0.004 0.004 0.95 1.00 0.85 0.95 0.82 0.95 0.89 0.98

0.003 0.006 0.004 0.013 0.003 0.004 0.004 0.003 0.85 0.85 1.00 0.70 0.43 0.83 0.69 0.82

0.004 0.008 0.005 0.009 0.004 0.003 0.003 0.003 0.78 0.95 0.70 1.00 0.52 0.80 0.91 0.91

0.005 0.005 0.005 0.006 0.003 0.002 0.003 0.002 0.77 0.82 0.43 0.52 1.00 0.90 0.39 0.55

0.003 0.003 0.003 0.006 0.005 0.004 0.004 0.004 0.98 0.95 0.83 0.80 0.90 1.00 0.82 0.90

0.005 0.005 0.005 0.007 0.006 0.004 0.004 0.004 0.86 0.89 0.69 0.91 0.39 0.82 1.00 0.95

0.003 0.004 0.003 0.007 0.005 0.004 0.005 0.004 0.88 0.98 0.82 0.91 0.55 0.90 0.95 1.00

Calendar Candles Chair Clipboards

C
al

en
da

r
C

an
dl

es
C

ha
ir

C
lip

bo
ar

ds

1.00 0.91 0.68 0.87 0.002 0.003 0.003 0.002 0.004 0.004 0.005 0.004 0.004 0.005 0.004 0.004

0.91 1.00 0.83 0.86 0.002 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.006 0.006 0.003

0.68 0.83 1.00 0.71 0.003 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.008 0.008 0.005

0.87 0.86 0.71 1.00 0.002 0.003 0.004 0.004 0.005 0.004 0.005 0.004 0.004 0.005 0.005 0.004

0.002 0.002 0.003 0.002 1.00 0.68 0.78 0.80 0.003 0.002 0.002 0.002 0.005 0.006 0.005 0.004

0.003 0.003 0.005 0.003 0.68 1.00 0.84 0.67 0.003 0.007 0.004 0.005 0.004 0.008 0.008 0.005

0.003 0.003 0.004 0.004 0.78 0.84 1.00 0.84 0.002 0.003 0.003 0.003 0.005 0.007 0.006 0.007

0.002 0.003 0.004 0.004 0.80 0.67 0.84 1.00 0.004 0.002 0.004 0.003 0.004 0.006 0.005 0.003

0.004 0.003 0.004 0.005 0.003 0.003 0.002 0.004 1.00 0.77 0.76 0.84 0.003 0.003 0.003 0.003

0.004 0.003 0.004 0.004 0.002 0.007 0.003 0.002 0.77 1.00 0.53 0.82 0.005 0.004 0.004 0.004

0.005 0.004 0.004 0.005 0.002 0.004 0.003 0.004 0.76 0.53 1.00 0.66 0.005 0.005 0.005 0.005

0.004 0.003 0.004 0.004 0.002 0.005 0.003 0.003 0.84 0.82 0.66 1.00 0.006 0.006 0.006 0.005

0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.003 0.005 0.005 0.006 1.00 0.82 0.84 0.98

0.005 0.006 0.008 0.005 0.006 0.008 0.007 0.006 0.003 0.004 0.005 0.006 0.82 1.00 1.00 0.77

0.004 0.006 0.008 0.005 0.005 0.008 0.006 0.005 0.003 0.004 0.005 0.006 0.84 1.00 1.00 0.78

0.004 0.003 0.005 0.004 0.004 0.005 0.007 0.003 0.003 0.004 0.005 0.005 0.98 0.77 0.78 1.00

Real World→Product

Alarm Clock Backpack

A
la

rm
 C

lo
ck

B
ac

kp
ac

k

1.00 0.55 0.58 0.84 0.45 0.66 0.38 0.50 0.001 0.001 0.001 0.004 0.001 0.002 0.001 0.001

0.55 1.00 0.53 0.58 0.60 0.70 0.47 0.69 0.001 0.000 0.001 0.001 0.000 0.002 0.000 0.001

0.58 0.53 1.00 0.88 0.73 0.72 0.38 0.49 0.001 0.000 0.001 0.003 0.000 0.002 0.000 0.001

0.84 0.58 0.88 1.00 0.69 0.78 0.39 0.46 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.001

0.45 0.60 0.73 0.69 1.00 0.75 0.56 0.81 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

0.66 0.70 0.72 0.78 0.75 1.00 0.80 0.69 0.001 0.003 0.001 0.002 0.001 0.002 0.002 0.001

0.38 0.47 0.38 0.39 0.56 0.80 1.00 0.60 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.50 0.69 0.49 0.46 0.81 0.69 0.60 1.00 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001

0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 1.00 0.72 0.75 0.56 0.73 0.49 0.66 0.77

0.001 0.000 0.000 0.000 0.000 0.003 0.001 0.000 0.72 1.00 0.75 0.36 0.87 0.38 0.80 0.82

0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.75 0.75 1.00 0.45 0.78 0.45 0.77 0.80

0.004 0.001 0.003 0.002 0.001 0.002 0.001 0.001 0.56 0.36 0.45 1.00 0.58 0.51 0.38 0.45

0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.73 0.87 0.78 0.58 1.00 0.44 0.90 0.81

0.002 0.002 0.002 0.001 0.000 0.002 0.001 0.000 0.49 0.38 0.45 0.51 0.44 1.00 0.26 0.57

0.001 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.66 0.80 0.77 0.38 0.90 0.26 1.00 0.73

0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.77 0.82 0.80 0.45 0.81 0.57 0.73 1.00

Pan Paper Clip Pen Pencil

Pa
n

Pa
pe

r 
C

lip
Pe

n
Pe

nc
il

1.00 0.88 0.78 0.93 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001

0.88 1.00 0.83 1.00 0.001 0.001 0.001 0.001 0.001 0.004 0.002 0.001 0.000 0.001 0.001 0.000

0.78 0.83 1.00 0.73 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.000 0.001 0.001 0.000

0.93 1.00 0.73 1.00 0.001 0.001 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.001 0.001 0.000

0.001 0.001 0.001 0.001 1.00 0.71 0.64 0.61 0.001 0.003 0.003 0.002 0.005 0.001 0.006 0.003

0.002 0.001 0.001 0.001 0.71 1.00 0.59 0.81 0.003 0.009 0.006 0.004 0.004 0.002 0.008 0.003

0.002 0.001 0.001 0.001 0.64 0.59 1.00 0.36 0.002 0.007 0.002 0.007 0.003 0.001 0.004 0.003

0.001 0.001 0.001 0.001 0.61 0.81 0.36 1.00 0.001 0.002 0.002 0.001 0.004 0.002 0.006 0.002

0.001 0.001 0.001 0.000 0.001 0.003 0.002 0.001 1.00 0.44 0.53 0.72 0.001 0.001 0.001 0.001

0.001 0.004 0.002 0.002 0.003 0.009 0.007 0.002 0.44 1.00 0.51 0.68 0.003 0.002 0.003 0.003

0.001 0.002 0.001 0.001 0.003 0.006 0.002 0.002 0.53 0.51 1.00 0.51 0.002 0.001 0.002 0.001

0.002 0.001 0.001 0.001 0.002 0.004 0.007 0.001 0.72 0.68 0.51 1.00 0.001 0.002 0.002 0.002

0.001 0.000 0.000 0.000 0.005 0.004 0.003 0.004 0.001 0.003 0.002 0.001 1.00 0.31 0.59 0.52

0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.31 1.00 0.16 0.20

0.001 0.001 0.001 0.001 0.006 0.008 0.004 0.006 0.001 0.003 0.002 0.002 0.59 0.16 1.00 0.52

0.001 0.000 0.000 0.000 0.003 0.003 0.003 0.002 0.001 0.003 0.001 0.002 0.52 0.20 0.52 1.00

Table 16: Similarity matrix S̃ of the 12 UDA tasks on the Office-Home dataset. Dashed green
and pink boxes are marked for the relationships of samples within the source and target domains,
respectively. The dashed yellow boxes outline the relationships of cross-domain samples. Higher
values reflect greater similarity scores.
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Intra-class relations and Class-aware
alignment (during training)

Intra-class relations on target domain only
(during testing)

real→clipart

ant anvil

an
t

an
vi

l

1.00 0.97 0.99 0.99 0.97 0.97 0.97 0.96 0.005 0.006 0.008 0.008 0.007 0.007 0.006 0.008

0.97 1.00 0.98 0.95 0.98 0.97 0.97 0.96 0.004 0.005 0.005 0.005 0.004 0.006 0.004 0.005

0.99 0.98 1.00 0.97 0.99 0.98 0.98 0.99 0.005 0.006 0.008 0.007 0.006 0.007 0.004 0.009

0.99 0.95 0.97 1.00 0.97 0.94 0.97 0.95 0.003 0.004 0.004 0.004 0.003 0.004 0.003 0.003

0.97 0.98 0.99 0.97 1.00 0.99 0.98 0.98 0.004 0.010 0.009 0.009 0.007 0.009 0.004 0.010

0.97 0.97 0.98 0.94 0.99 1.00 0.98 0.97 0.006 0.011 0.009 0.011 0.007 0.008 0.006 0.012

0.97 0.97 0.98 0.97 0.98 0.98 1.00 0.98 0.005 0.009 0.010 0.009 0.007 0.008 0.005 0.007

0.96 0.96 0.99 0.95 0.98 0.97 0.98 1.00 0.004 0.008 0.008 0.008 0.006 0.008 0.006 0.009

0.005 0.004 0.005 0.003 0.004 0.006 0.005 0.004 1.00 0.99 0.98 0.98 0.99 0.99 0.98 0.97

0.006 0.005 0.006 0.004 0.010 0.011 0.009 0.008 0.99 1.00 0.98 0.99 0.99 0.99 0.99 0.97

0.008 0.005 0.008 0.004 0.009 0.009 0.010 0.008 0.98 0.98 1.00 0.99 0.99 0.98 0.99 0.97

0.008 0.005 0.007 0.004 0.009 0.011 0.009 0.008 0.98 0.99 0.99 1.00 0.99 0.98 0.99 0.96

0.007 0.004 0.006 0.003 0.007 0.007 0.007 0.006 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.97

0.007 0.006 0.007 0.004 0.009 0.008 0.008 0.008 0.99 0.99 0.98 0.98 0.99 1.00 0.99 0.98

0.006 0.004 0.004 0.003 0.004 0.006 0.005 0.006 0.98 0.99 0.99 0.99 0.99 0.99 1.00 0.98

0.008 0.005 0.009 0.003 0.010 0.012 0.007 0.009 0.97 0.97 0.97 0.96 0.97 0.98 0.98 1.00

blackberry blueberry bottlecap broccoli

bl
ac

kb
er

ry
bl

ue
be

rr
y

bo
tt

le
ca

p
br

oc
co

li

1.00 0.99 0.95 0.98 0.003 0.004 0.004 0.003 0.003 0.003 0.005 0.002 0.004 0.003 0.004 0.004

0.99 1.00 0.96 0.98 0.002 0.005 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.003 0.005 0.004

0.95 0.96 1.00 0.96 0.003 0.004 0.005 0.005 0.004 0.005 0.004 0.002 0.003 0.002 0.003 0.003

0.98 0.98 0.96 1.00 0.002 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.004 0.002 0.003 0.002

0.003 0.002 0.003 0.002 1.00 0.98 0.98 0.98 0.003 0.004 0.002 0.002 0.001 0.001 0.001 0.001

0.004 0.005 0.004 0.003 0.98 1.00 0.96 0.98 0.004 0.004 0.003 0.004 0.002 0.002 0.002 0.002

0.004 0.003 0.005 0.003 0.98 0.96 1.00 0.96 0.003 0.004 0.002 0.003 0.002 0.001 0.001 0.002

0.003 0.003 0.005 0.003 0.98 0.98 0.96 1.00 0.003 0.004 0.004 0.004 0.001 0.001 0.001 0.001

0.003 0.003 0.004 0.002 0.003 0.004 0.003 0.003 1.00 0.98 0.98 0.99 0.004 0.006 0.006 0.005

0.003 0.003 0.005 0.003 0.004 0.004 0.004 0.004 0.98 1.00 0.96 0.98 0.004 0.006 0.005 0.005

0.005 0.003 0.004 0.002 0.002 0.003 0.002 0.004 0.98 0.96 1.00 0.98 0.004 0.004 0.005 0.006

0.002 0.003 0.002 0.002 0.002 0.004 0.003 0.004 0.99 0.98 0.98 1.00 0.005 0.006 0.006 0.005

0.004 0.005 0.003 0.004 0.001 0.002 0.002 0.001 0.004 0.004 0.004 0.005 1.00 0.97 0.99 0.99

0.003 0.003 0.002 0.002 0.001 0.002 0.001 0.001 0.006 0.006 0.004 0.006 0.97 1.00 0.98 0.98

0.004 0.005 0.003 0.003 0.001 0.002 0.001 0.001 0.006 0.005 0.005 0.006 0.99 0.98 1.00 0.98

0.004 0.004 0.003 0.002 0.001 0.002 0.002 0.001 0.005 0.005 0.006 0.005 0.99 0.98 0.98 1.00

real→painting

cactus cake

ca
ct

us
ca

ke

1.00 0.97 0.98 0.96 0.99 0.99 0.97 0.98 0.002 0.005 0.003 0.004 0.002 0.004 0.004 0.004

0.97 1.00 0.92 0.96 0.97 0.98 0.97 0.96 0.006 0.003 0.003 0.002 0.002 0.002 0.002 0.002

0.98 0.92 1.00 0.92 0.98 0.96 0.92 0.97 0.002 0.005 0.002 0.002 0.002 0.003 0.003 0.003

0.96 0.96 0.92 1.00 0.95 0.96 0.94 0.95 0.018 0.003 0.023 0.026 0.003 0.019 0.009 0.005

0.99 0.97 0.98 0.95 1.00 0.99 0.96 0.96 0.002 0.004 0.003 0.003 0.002 0.003 0.003 0.004

0.99 0.98 0.96 0.96 0.99 1.00 0.98 0.98 0.002 0.005 0.003 0.003 0.003 0.004 0.005 0.003

0.97 0.97 0.92 0.94 0.96 0.98 1.00 0.96 0.001 0.004 0.003 0.002 0.002 0.002 0.004 0.003

0.98 0.96 0.97 0.95 0.96 0.98 0.96 1.00 0.002 0.004 0.003 0.002 0.002 0.003 0.004 0.004

0.002 0.006 0.002 0.018 0.002 0.002 0.001 0.002 1.00 0.81 0.91 0.92 0.86 0.63 0.78 0.35

0.005 0.003 0.005 0.003 0.004 0.005 0.004 0.004 0.81 1.00 0.99 0.97 0.93 0.98 0.99 0.97

0.003 0.003 0.002 0.023 0.003 0.003 0.003 0.003 0.91 0.99 1.00 0.98 0.97 0.99 0.99 0.98

0.004 0.002 0.002 0.026 0.003 0.003 0.002 0.002 0.92 0.97 0.98 1.00 0.92 0.97 0.98 0.95

0.002 0.002 0.002 0.003 0.002 0.003 0.002 0.002 0.86 0.93 0.97 0.92 1.00 0.95 0.97 0.94

0.004 0.002 0.003 0.019 0.003 0.004 0.002 0.003 0.63 0.98 0.99 0.97 0.95 1.00 0.99 0.97

0.004 0.002 0.003 0.009 0.003 0.005 0.004 0.004 0.78 0.99 0.99 0.98 0.97 0.99 1.00 0.97

0.004 0.002 0.003 0.005 0.004 0.003 0.003 0.004 0.35 0.97 0.98 0.95 0.94 0.97 0.97 1.00

leaf lion lipstick lobster

le
af

lio
n

lip
st

ic
k

lo
bs

te
r

1.00 0.99 0.95 0.98 0.006 0.008 0.006 0.006 0.005 0.001 0.005 0.004 0.003 0.004 0.003 0.004

0.99 1.00 0.97 0.97 0.005 0.006 0.006 0.006 0.006 0.001 0.009 0.003 0.002 0.004 0.003 0.003

0.95 0.97 1.00 0.97 0.005 0.006 0.006 0.006 0.008 0.001 0.01 0.004 0.003 0.003 0.004 0.005

0.98 0.97 0.97 1.00 0.006 0.008 0.008 0.007 0.005 0.001 0.005 0.003 0.004 0.004 0.005 0.005

0.006 0.005 0.005 0.006 1.00 0.99 0.98 0.99 0.003 0.001 0.004 0.002 0.003 0.004 0.003 0.005

0.008 0.006 0.006 0.008 0.99 1.00 0.97 0.98 0.003 0.000 0.004 0.002 0.003 0.004 0.004 0.005

0.006 0.006 0.006 0.008 0.98 0.97 1.00 0.99 0.004 0.001 0.005 0.003 0.003 0.004 0.005 0.005

0.006 0.006 0.006 0.007 0.99 0.98 0.99 1.00 0.004 0.001 0.004 0.002 0.004 0.005 0.005 0.006

0.005 0.006 0.008 0.005 0.003 0.003 0.004 0.004 1.00 0.98 0.98 0.99 0.006 0.007 0.007 0.007

0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.98 1.00 0.97 0.97 0.001 0.001 0.003 0.001

0.005 0.009 0.01 0.005 0.004 0.004 0.005 0.004 0.98 0.97 1.00 0.98 0.006 0.006 0.006 0.006

0.004 0.003 0.004 0.003 0.002 0.002 0.003 0.002 0.99 0.97 0.98 1.00 0.003 0.006 0.004 0.004

0.003 0.002 0.003 0.004 0.003 0.003 0.003 0.004 0.006 0.001 0.006 0.003 1.00 0.95 0.95 0.96

0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.005 0.007 0.001 0.006 0.006 0.95 1.00 0.96 0.94

0.003 0.003 0.004 0.005 0.003 0.004 0.005 0.005 0.007 0.003 0.006 0.004 0.95 0.96 1.00 0.95

0.004 0.003 0.005 0.005 0.005 0.005 0.005 0.006 0.007 0.001 0.006 0.004 0.96 0.94 0.95 1.00

painting→clipart

bus butterfly

bu
s

bu
tt

er
fl

y

1.00 0.98 0.98 0.94 0.95 0.91 0.93 0.97 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.002

0.98 1.00 0.95 0.94 0.95 0.90 0.92 0.97 0.002 0.002 0.004 0.002 0.002 0.002 0.002 0.002

0.98 0.95 1.00 0.94 0.94 0.89 0.95 0.97 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002

0.94 0.94 0.94 1.00 0.88 0.94 0.98 0.92 0.002 0.003 0.002 0.003 0.001 0.002 0.002 0.002

0.95 0.95 0.94 0.88 1.00 0.93 0.90 0.98 0.003 0.004 0.003 0.003 0.002 0.003 0.003 0.002

0.91 0.90 0.89 0.94 0.93 1.00 0.95 0.97 0.003 0.003 0.003 0.004 0.002 0.004 0.004 0.003

0.93 0.92 0.95 0.98 0.90 0.95 1.00 0.96 0.007 0.003 0.003 0.005 0.004 0.004 0.005 0.005

0.97 0.97 0.97 0.92 0.98 0.97 0.96 1.00 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.004

0.002 0.002 0.002 0.002 0.003 0.003 0.007 0.003 1.00 0.94 0.81 0.81 0.92 0.96 0.96 0.90

0.002 0.002 0.002 0.003 0.004 0.003 0.003 0.003 0.94 1.00 0.95 0.96 0.95 0.94 0.95 0.95

0.003 0.004 0.002 0.002 0.003 0.003 0.003 0.004 0.81 0.95 1.00 0.95 0.92 0.93 0.93 0.90

0.002 0.002 0.003 0.003 0.003 0.004 0.005 0.004 0.81 0.96 0.95 1.00 0.97 0.96 0.96 0.96

0.002 0.002 0.002 0.001 0.002 0.002 0.004 0.004 0.92 0.95 0.92 0.97 1.00 0.96 0.98 0.97

0.003 0.002 0.002 0.002 0.003 0.004 0.004 0.005 0.96 0.94 0.93 0.96 0.96 1.00 0.97 0.97

0.002 0.002 0.002 0.002 0.003 0.004 0.005 0.005 0.96 0.95 0.93 0.96 0.98 0.97 1.00 0.97

0.002 0.002 0.002 0.002 0.002 0.003 0.005 0.004 0.90 0.95 0.90 0.96 0.97 0.97 0.97 1.00

cat ceiling_fan cello cell_phone

ca
t

ce
ili

ng
_f

an
ce

llo
ce

ll_
ph

on
e

1.00 0.93 0.95 0.97 0.002 0.002 0.003 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.004 0.003

0.93 1.00 0.74 0.94 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.004 0.003

0.95 0.74 1.00 0.97 0.002 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.004 0.004

0.97 0.94 0.97 1.00 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.003 0.003

0.002 0.001 0.002 0.001 1.00 0.99 0.98 0.98 0.002 0.003 0.002 0.002 0.001 0.001 0.003 0.003

0.002 0.001 0.003 0.001 0.99 1.00 0.99 0.98 0.002 0.003 0.002 0.002 0.001 0.001 0.003 0.003

0.003 0.001 0.003 0.001 0.98 0.99 1.00 0.98 0.004 0.004 0.003 0.002 0.002 0.002 0.005 0.005

0.002 0.001 0.002 0.001 0.98 0.98 0.98 1.00 0.003 0.004 0.003 0.003 0.002 0.002 0.005 0.004

0.001 0.001 0.002 0.001 0.002 0.002 0.004 0.003 1.00 0.98 0.98 0.98 0.002 0.003 0.004 0.004

0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.98 1.00 0.96 0.97 0.001 0.003 0.004 0.004

0.001 0.001 0.002 0.001 0.002 0.002 0.003 0.003 0.98 0.96 1.00 0.98 0.002 0.003 0.004 0.003

0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.98 0.97 0.98 1.00 0.001 0.002 0.002 0.002

0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.001 1.00 0.89 0.66 0.51

0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.002 0.89 1.00 0.59 0.83

0.004 0.004 0.004 0.003 0.003 0.003 0.005 0.005 0.004 0.004 0.004 0.002 0.66 0.59 1.00 0.88

0.003 0.003 0.004 0.003 0.003 0.003 0.005 0.004 0.004 0.004 0.003 0.002 0.51 0.83 0.88 1.00
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Intra-class relations and Class-aware
alignment (during training)

Intra-class relations on target domain only
(during testing)

clipart→sketch

asparagus axe

as
pa

ra
gu

s
ax

e

1.00 0.98 0.97 0.98 0.97 0.96 0.97 0.98 0.005 0.005 0.003 0.006 0.004 0.005 0.005 0.007

0.98 1.00 0.99 0.98 0.98 0.97 0.99 0.98 0.005 0.006 0.005 0.006 0.005 0.004 0.007 0.007

0.97 0.99 1.00 0.99 0.99 0.96 0.98 0.98 0.006 0.005 0.004 0.007 0.005 0.003 0.005 0.005

0.98 0.98 0.99 1.00 0.98 0.96 0.98 0.98 0.005 0.005 0.004 0.007 0.004 0.004 0.008 0.005

0.97 0.98 0.99 0.98 1.00 0.98 1.00 0.97 0.007 0.006 0.004 0.008 0.005 0.005 0.006 0.007

0.96 0.97 0.96 0.96 0.98 1.00 0.98 0.96 0.005 0.004 0.003 0.006 0.004 0.005 0.005 0.006

0.97 0.99 0.98 0.98 1.00 0.98 1.00 0.99 0.004 0.003 0.002 0.004 0.003 0.003 0.004 0.004

0.98 0.98 0.98 0.98 0.97 0.96 0.99 1.00 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.006

0.005 0.005 0.006 0.005 0.007 0.005 0.004 0.005 1.00 0.94 0.97 0.98 0.98 0.98 0.92 0.98

0.005 0.006 0.005 0.005 0.006 0.004 0.003 0.005 0.94 1.00 0.97 0.94 0.97 0.95 0.94 0.93

0.003 0.005 0.004 0.004 0.004 0.003 0.002 0.004 0.97 0.97 1.00 0.99 0.97 0.97 0.94 0.96

0.006 0.006 0.007 0.007 0.008 0.006 0.004 0.004 0.98 0.94 0.99 1.00 0.97 0.97 0.93 0.97

0.004 0.005 0.005 0.004 0.005 0.004 0.003 0.004 0.98 0.97 0.97 0.97 1.00 0.97 0.96 0.97

0.005 0.004 0.003 0.004 0.005 0.005 0.003 0.004 0.98 0.95 0.97 0.97 0.97 1.00 0.96 0.99

0.005 0.007 0.005 0.008 0.006 0.005 0.004 0.005 0.92 0.94 0.94 0.93 0.96 0.96 1.00 0.93

0.007 0.007 0.005 0.005 0.007 0.006 0.004 0.006 0.98 0.93 0.96 0.97 0.97 0.99 0.93 1.00

frog giraffe goatee grapes

fr
og

gi
ra

ff
e

go
at

ee
gr

ap
es

1.00 0.96 0.98 0.94 0.003 0.004 0.004 0.005 0.008 0.005 0.006 0.009 0.002 0.002 0.003 0.002

0.96 1.00 0.97 0.98 0.005 0.005 0.004 0.006 0.008 0.007 0.005 0.005 0.002 0.002 0.002 0.004

0.98 0.97 1.00 0.98 0.003 0.003 0.004 0.005 0.005 0.004 0.004 0.004 0.002 0.002 0.002 0.003

0.94 0.98 0.98 1.00 0.002 0.003 0.003 0.003 0.006 0.005 0.003 0.005 0.002 0.001 0.002 0.002

0.003 0.005 0.003 0.002 1.00 0.97 0.91 0.92 0.003 0.002 0.002 0.003 0.002 0.003 0.003 0.003

0.004 0.005 0.003 0.003 0.97 1.00 0.96 0.97 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002

0.004 0.004 0.004 0.003 0.91 0.96 1.00 0.97 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.002

0.005 0.006 0.005 0.003 0.92 0.97 0.97 1.00 0.004 0.004 0.006 0.005 0.005 0.005 0.004 0.005

0.008 0.008 0.005 0.006 0.003 0.003 0.003 0.004 1.00 0.98 0.98 0.98 0.005 0.004 0.004 0.005

0.005 0.007 0.004 0.005 0.002 0.003 0.003 0.004 0.98 1.00 0.98 0.98 0.005 0.004 0.004 0.004

0.006 0.005 0.004 0.003 0.002 0.003 0.003 0.006 0.98 0.98 1.00 0.99 0.004 0.003 0.002 0.004

0.009 0.005 0.004 0.005 0.003 0.002 0.002 0.005 0.98 0.98 0.99 1.00 0.006 0.003 0.002 0.004

0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.005 0.005 0.005 0.004 0.006 1.00 0.98 0.95 0.96

0.002 0.002 0.002 0.001 0.003 0.002 0.003 0.005 0.004 0.004 0.003 0.003 0.98 1.00 0.97 0.99

0.003 0.002 0.002 0.002 0.003 0.002 0.003 0.004 0.004 0.004 0.002 0.002 0.95 0.97 1.00 0.96

0.002 0.004 0.003 0.002 0.003 0.002 0.002 0.005 0.005 0.004 0.004 0.004 0.96 0.99 0.96 1.00

sketch→painting

camera candle

ca
m

er
a

ca
nd

le

1.00 0.98 0.99 0.99 0.97 0.97 0.99 0.99 0.007 0.004 0.007 0.007 0.005 0.004 0.004 0.003

0.98 1.00 0.99 0.99 0.98 0.96 0.97 0.97 0.004 0.005 0.004 0.004 0.005 0.004 0.004 0.003

0.99 0.99 1.00 0.99 0.98 0.98 0.99 0.99 0.006 0.005 0.006 0.006 0.006 0.005 0.005 0.005

0.99 0.99 0.99 1.00 0.98 0.97 0.99 0.99 0.005 0.007 0.005 0.005 0.006 0.005 0.005 0.004

0.97 0.98 0.98 0.98 1.00 0.96 0.98 0.98 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000

0.97 0.96 0.98 0.97 0.96 1.00 0.97 0.96 0.006 0.008 0.006 0.006 0.006 0.005 0.006 0.005

0.99 0.97 0.99 0.99 0.98 0.97 1.00 0.99 0.007 0.006 0.007 0.007 0.006 0.006 0.005 0.005

0.99 0.97 0.99 0.99 0.98 0.96 0.99 1.00 0.005 0.007 0.005 0.005 0.006 0.006 0.006 0.004

0.007 0.004 0.006 0.005 0.001 0.006 0.007 0.005 1.00 0.98 1.00 1.00 0.97 0.96 0.96 0.97

0.004 0.005 0.005 0.007 0.001 0.008 0.006 0.007 0.98 1.00 0.98 0.98 0.98 0.97 0.98 0.97

0.007 0.004 0.006 0.005 0.001 0.006 0.007 0.005 1.00 0.98 1.00 1.00 0.97 0.96 0.96 0.97

0.007 0.004 0.006 0.005 0.001 0.006 0.007 0.005 1.00 0.98 1.00 1.00 0.97 0.96 0.96 0.97

0.005 0.005 0.006 0.006 0.000 0.006 0.006 0.006 0.97 0.98 0.97 0.97 1.00 0.98 0.98 0.98

0.004 0.004 0.005 0.005 0.001 0.005 0.006 0.006 0.96 0.97 0.96 0.96 0.98 1.00 0.98 0.98

0.004 0.004 0.005 0.005 0.000 0.006 0.005 0.006 0.96 0.98 0.96 0.96 0.98 0.98 1.00 0.98

0.003 0.003 0.005 0.004 0.000 0.005 0.005 0.004 0.97 0.97 0.97 0.97 0.98 0.98 0.98 1.00

asparagus axe banana basket

as
pa

ra
gu

s
ax

e
ba

na
na

ba
sk

et

1.00 0.98 0.99 0.98 0.003 0.006 0.004 0.003 0.004 0.003 0.005 0.003 0.004 0.005 0.004 0.003

0.98 1.00 0.97 0.97 0.002 0.004 0.004 0.002 0.003 0.003 0.003 0.002 0.003 0.004 0.004 0.002

0.99 0.97 1.00 0.98 0.004 0.006 0.005 0.003 0.003 0.005 0.004 0.004 0.003 0.004 0.004 0.002

0.98 0.97 0.98 1.00 0.003 0.005 0.003 0.002 0.005 0.005 0.003 0.002 0.003 0.005 0.006 0.002

0.003 0.002 0.004 0.003 1.00 0.95 0.99 0.92 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.004

0.006 0.004 0.006 0.005 0.95 1.00 0.96 0.94 0.005 0.004 0.004 0.005 0.005 0.005 0.006 0.005

0.004 0.004 0.005 0.003 0.99 0.96 1.00 0.95 0.005 0.004 0.005 0.005 0.007 0.004 0.006 0.005

0.003 0.002 0.003 0.002 0.92 0.94 0.95 1.00 0.004 0.004 0.004 0.004 0.008 0.004 0.006 0.006

0.004 0.003 0.003 0.005 0.004 0.005 0.005 0.004 1.00 0.98 0.99 0.97 0.003 0.003 0.003 0.003

0.003 0.003 0.005 0.005 0.004 0.004 0.004 0.004 0.98 1.00 0.96 0.96 0.003 0.003 0.003 0.002

0.005 0.003 0.004 0.003 0.004 0.004 0.005 0.004 0.99 0.96 1.00 0.97 0.004 0.003 0.003 0.003

0.003 0.002 0.004 0.002 0.004 0.005 0.005 0.004 0.97 0.96 0.97 1.00 0.003 0.003 0.003 0.003

0.004 0.003 0.003 0.003 0.005 0.005 0.007 0.008 0.003 0.003 0.004 0.003 1.00 0.93 0.95 0.88

0.005 0.004 0.004 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.003 0.003 0.93 1.00 0.93 0.85

0.004 0.004 0.004 0.006 0.006 0.006 0.006 0.006 0.003 0.003 0.003 0.003 0.95 0.93 1.00 0.92

0.003 0.002 0.002 0.002 0.004 0.005 0.005 0.006 0.003 0.002 0.003 0.003 0.88 0.85 0.92 1.00

real→sketch

camera candle

ca
m

er
a

ca
nd

le

1.00 0.96 0.91 0.96 0.88 0.91 0.91 0.86 0.003 0.004 0.003 0.002 0.003 0.004 0.004 0.003

0.96 1.00 0.96 0.97 0.94 0.94 0.91 0.91 0.007 0.005 0.006 0.004 0.005 0.004 0.002 0.004

0.91 0.96 1.00 0.95 0.93 0.96 0.95 0.95 0.003 0.004 0.004 0.003 0.003 0.005 0.003 0.004

0.96 0.97 0.95 1.00 0.97 0.98 0.98 0.95 0.003 0.003 0.003 0.003 0.002 0.004 0.003 0.003

0.88 0.94 0.93 0.97 1.00 0.95 0.94 0.91 0.004 0.007 0.004 0.005 0.004 0.006 0.007 0.004

0.91 0.94 0.96 0.98 0.95 1.00 0.99 0.96 0.004 0.004 0.005 0.003 0.005 0.004 0.003 0.003

0.91 0.91 0.95 0.98 0.94 0.99 1.00 0.97 0.002 0.002 0.002 0.002 0.003 0.003 0.002 0.002

0.86 0.91 0.95 0.95 0.91 0.96 0.97 1.00 0.002 0.003 0.002 0.002 0.003 0.003 0.002 0.003

0.003 0.007 0.003 0.003 0.004 0.004 0.002 0.002 1.00 0.98 0.99 0.97 0.99 0.98 0.96 0.99

0.004 0.005 0.004 0.003 0.007 0.004 0.002 0.003 0.98 1.00 0.98 0.99 0.98 0.98 0.96 0.98

0.003 0.006 0.004 0.003 0.004 0.005 0.002 0.002 0.99 0.98 1.00 0.97 0.99 0.98 0.97 0.98

0.002 0.004 0.003 0.003 0.005 0.003 0.002 0.002 0.97 0.99 0.97 1.00 0.98 0.99 0.97 0.97

0.003 0.005 0.003 0.002 0.004 0.005 0.003 0.003 0.99 0.98 0.99 0.98 1.00 0.99 0.96 0.98

0.004 0.004 0.005 0.004 0.006 0.004 0.003 0.003 0.98 0.98 0.98 0.99 0.99 1.00 0.98 0.99

0.004 0.002 0.003 0.003 0.007 0.003 0.002 0.002 0.96 0.96 0.97 0.97 0.96 0.98 1.00 0.95

0.003 0.004 0.004 0.003 0.004 0.003 0.002 0.003 0.99 0.98 0.98 0.97 0.98 0.99 0.95 1.00

bus butterfly cactus cake

bu
s

bu
tt

er
fl

y
ca

ct
us

ca
ke

1.00 0.98 0.97 0.95 0.003 0.003 0.004 0.004 0.001 0.002 0.001 0.002 0.005 0.006 0.006 0.006

0.98 1.00 0.98 0.97 0.004 0.003 0.005 0.003 0.001 0.002 0.001 0.002 0.005 0.006 0.007 0.005

0.97 0.98 1.00 0.96 0.004 0.002 0.004 0.003 0.001 0.002 0.001 0.002 0.005 0.008 0.007 0.008

0.95 0.97 0.96 1.00 0.004 0.004 0.004 0.002 0.001 0.001 0.001 0.001 0.004 0.006 0.005 0.004

0.003 0.004 0.004 0.004 1.00 0.97 0.93 0.97 0.002 0.003 0.003 0.002 0.004 0.005 0.004 0.005

0.003 0.003 0.002 0.004 0.97 1.00 0.98 0.98 0.002 0.002 0.001 0.002 0.003 0.006 0.003 0.004

0.004 0.005 0.004 0.004 0.93 0.98 1.00 0.98 0.003 0.003 0.002 0.003 0.004 0.004 0.005 0.005

0.004 0.003 0.003 0.002 0.97 0.98 0.98 1.00 0.003 0.005 0.003 0.003 0.003 0.004 0.003 0.006

0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003 1.00 0.98 0.96 0.98 0.002 0.003 0.004 0.002

0.002 0.002 0.002 0.001 0.003 0.002 0.003 0.005 0.98 1.00 0.93 0.98 0.003 0.003 0.003 0.003

0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.003 0.96 0.93 1.00 0.81 0.003 0.003 0.004 0.003

0.002 0.002 0.002 0.001 0.002 0.002 0.003 0.003 0.98 0.98 0.81 1.00 0.010 0.007 0.010 0.007

0.005 0.005 0.005 0.004 0.004 0.003 0.004 0.003 0.002 0.003 0.003 0.010 1.00 0.97 0.96 0.97

0.006 0.006 0.008 0.006 0.005 0.006 0.004 0.004 0.003 0.003 0.003 0.007 0.97 1.00 0.96 0.98

0.006 0.007 0.007 0.005 0.004 0.003 0.005 0.003 0.004 0.003 0.004 0.010 0.96 0.96 1.00 0.97

0.006 0.005 0.008 0.004 0.005 0.004 0.005 0.006 0.002 0.003 0.003 0.007 0.97 0.98 0.97 1.00
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Intra-class relations and Class-aware
alignment (during training)

Intra-class relations on target domain only
(during testing)

painting→real

carrot castle

ca
rr

ot
ca

st
le

1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.003 0.004 0.004 0.005 0.004 0.004 0.003 0.004

0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.004 0.005 0.005 0.006 0.005 0.004 0.004 0.004

0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.004 0.006 0.005 0.007 0.006 0.005 0.004 0.004

0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.004 0.004 0.005 0.005 0.005 0.005 0.004 0.005

0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.003 0.005 0.006 0.006 0.006 0.005 0.005 0.005

0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.003 0.004 0.004 0.005 0.004 0.003 0.003 0.004

0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.003 0.005 0.005 0.005 0.006 0.004 0.004 0.004

0.99 0.98 0.99 0.99 0.98 0.99 0.99 1.00 0.003 0.004 0.004 0.005 0.005 0.004 0.004 0.004

0.003 0.004 0.004 0.004 0.003 0.003 0.003 0.003 1.00 0.95 0.98 0.97 0.98 0.96 0.97 0.97

0.004 0.005 0.006 0.004 0.005 0.004 0.005 0.004 0.95 1.00 0.97 0.96 0.97 0.96 0.99 0.97

0.004 0.005 0.005 0.005 0.006 0.004 0.005 0.004 0.98 0.97 1.00 0.98 0.97 0.98 0.98 0.97

0.005 0.006 0.007 0.005 0.006 0.005 0.005 0.005 0.97 0.96 0.98 1.00 0.97 0.98 0.98 0.97

0.004 0.005 0.006 0.005 0.006 0.004 0.006 0.005 0.98 0.97 0.97 0.97 1.00 0.97 0.99 0.98

0.004 0.004 0.005 0.005 0.005 0.003 0.004 0.004 0.96 0.96 0.98 0.98 0.97 1.00 0.98 0.98

0.003 0.004 0.004 0.004 0.005 0.003 0.004 0.004 0.97 0.99 0.98 0.98 0.99 0.98 1.00 0.98

0.004 0.004 0.004 0.005 0.005 0.004 0.004 0.004 0.97 0.97 0.97 0.97 0.98 0.98 0.98 1.00

drums duck dumbbell elephant

dr
um

s
du

ck
du

m
bb

el
l

el
ep

ha
nt

1.00 0.98 0.99 0.99 0.003 0.002 0.002 0.003 0.003 0.002 0.003 0.004 0.003 0.003 0.003 0.003

0.98 1.00 0.99 0.99 0.003 0.002 0.002 0.004 0.004 0.003 0.004 0.005 0.004 0.004 0.005 0.004

0.99 0.99 1.00 0.99 0.003 0.002 0.002 0.004 0.002 0.003 0.003 0.004 0.003 0.004 0.004 0.003

0.99 0.99 0.99 1.00 0.003 0.002 0.002 0.004 0.002 0.002 0.002 0.004 0.003 0.004 0.004 0.004

0.003 0.003 0.003 0.003 1.00 0.96 0.95 0.99 0.004 0.003 0.003 0.004 0.002 0.002 0.002 0.003

0.002 0.002 0.002 0.002 0.96 1.00 0.96 0.96 0.003 0.002 0.003 0.003 0.002 0.003 0.002 0.002

0.002 0.002 0.002 0.002 0.95 0.96 1.00 0.95 0.003 0.003 0.003 0.004 0.003 0.003 0.002 0.003

0.003 0.004 0.004 0.004 0.99 0.96 0.95 1.00 0.005 0.003 0.004 0.006 0.003 0.003 0.004 0.004

0.003 0.004 0.002 0.002 0.004 0.003 0.003 0.005 1.00 0.97 0.98 0.96 0.004 0.004 0.006 0.005

0.002 0.003 0.003 0.002 0.003 0.002 0.003 0.003 0.97 1.00 0.98 0.93 0.005 0.003 0.007 0.006

0.003 0.004 0.003 0.002 0.003 0.003 0.003 0.004 0.98 0.98 1.00 0.95 0.005 0.005 0.006 0.005

0.004 0.005 0.004 0.004 0.004 0.003 0.004 0.006 0.96 0.93 0.95 1.00 0.009 0.007 0.01 0.007

0.003 0.004 0.003 0.003 0.002 0.002 0.003 0.003 0.004 0.005 0.005 0.009 1.00 0.97 0.99 0.97

0.003 0.004 0.004 0.004 0.002 0.003 0.003 0.003 0.004 0.003 0.005 0.007 0.97 1.00 0.98 0.97

0.003 0.005 0.004 0.004 0.002 0.002 0.002 0.004 0.006 0.007 0.006 0.01 0.99 0.98 1.00 0.98

0.003 0.004 0.003 0.004 0.003 0.002 0.003 0.004 0.005 0.006 0.005 0.007 0.97 0.97 0.98 1.00

Table 17: The similarity matrix S̃ of the 7 SSDA tasks on the DomainNet dataset.
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Figure 7: Comparison of the quantity and quality of pseudo labels between two different teachers (a)
ViT-B+MLP and (b) ViT-B+CA on VisDA2017 under the UDA setting. The bar plots illustrate the
number of true labels (outlined in dash lines) and pseudo labels (filled with color) across 12 classes.
The red line represents the classification accuracy of the student network (ResNet101+MLP) for
each class.
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Table 18: 2D visualization of the convergence trajectory in the loss landscape of the teacher network
with various student networks.
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Figure 8: Feature visualization of the student network under different settings. We use t-SNE to
visualize for 10 classes of the Real World→Clipart task on Office-Home under the UDA setting.
In (a) and (e), the student network is trained by setting S3 without the support of teacher guidance.
In (b), (c), (d), (f), (g), and (h), the student network is guided by the teacher network, progressively
adding S4 (Supervised), S5 (Self-Enhanced), and S6

(
LT
cc(pT (x

tar
i ))

)
, respectively. For easy iden-

tification of domain alignment features, source features are represented by red markers, and target
features by blue markers in Figs. (a), (b), (c), and (d). Target features are shown in Figs. (e), (f), (g),
and (h), we use 10 distinct colors to indicate the 10 classes.
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Figure 9: Feature visualization of the student network under different settings on DomainNet (3-
shot SSDA, real→painting).
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Image Vanilla Student GraDA (T) GraDA (S) Image Vanilla Student GraDA (T) GraDA (S)
Art→Clipart

Alarm clock Batteries

Bed Keyboard

Clipart→Product
Bottle Postit notes

Spoon Toothbrush

Product→Real World
Bucket Chair

Couch Toys

Real World→Art
Flipflops Flowers

Glasses Shelf

Table 19: Attention maps of the teacher network GraDA (T), and the student network with the vanilla
and GraDA (S) variants, on Office-Home under the UDA setting. We use Grad-CAM Selvaraju et al.
(2017) to identify class-discriminative regions in 4 various samples for each task: Ar→Cl, Cl→Pr,
Pr→Rw, and Rw→Ar.
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Image Vanilla Student GraDA (T) GraDA (S) Image Vanilla Student GraDA (T) GraDA (S)
real→clipart

Ant Cactus

Cell phone Cello

clipart→sketch
Asparagus Spider

Submarine Whale

sketch→painting
Banana Crab

Dolphin Rabbit

painting→real
Alarm clock Bus

Sheep Tiger

Table 20: Attention maps of the teacher and student networks on DomainNet in the 3-shot SSDA
setting. The visualization displays class-discriminative regions in 4 diverse samples from the
rel→clp, clp→skt, skt→pnt, and pnt→rel tasks.
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