

000
001 **GRADA: GRADIENT-GUIDED KNOWLEDGE DIS-
002 TILLATION FOR DOMAIN ADAPTATION**
003
004
005

006 **Anonymous authors**
007 Paper under double-blind review
008
009

010 **ABSTRACT**
011
012

013 In this paper, we explore **how to enhance student network performance in**
014 **knowledge distillation (KD) for domain adaptation (DA)**. We identify two key
015 factors impacting student performance under domain shift: **(1) the capability of**
016 **the teacher network** and **(2) the effectiveness of the knowledge distillation**
017 **strategy**. For the first factor, we integrate a Vision Transformer (ViT) as the
018 feature extractor and our proposed Category-level Aggregation (CA) module as the
019 classifier to construct the ViT+CA teacher network. This architecture leverages
020 ViT’s ability to capture detailed representations of individual images. Additionally,
021 the CA module employs the message-passing mechanism of a graph convolutional
022 network to promote intra-class relations and mitigate domain shift by
023 grouping samples with similar class information. For the second factor, we lever-
024 age pseudo labels generated by the ViT+CA teacher to guide the gradient updates
025 of the student network’s parameters, aligning the student’s behavior with that of
026 the teacher. To optimize for efficient inference and reduced computational cost,
027 we use a convolutional neural network (CNN) for feature extraction and a multi-
028 layer perceptron (MLP) as the classifier to build the CNN+MLP student network.
029 Extensive experiments on various DA datasets demonstrate that our method sig-
030 nificantly surpasses state-of-the-art approaches. Our code will be available soon.
031

032 **1 INTRODUCTION**
033
034

035 Domain adaptation (DA) has attracted significant attention in recent research due to its potential
036 to mitigate domain shift (Ben-David et al., 2010) between source and target domains, enabling the
037 transfer of knowledge from labeled source data to unlabeled target data. Traditional DA methods
038 primarily rely on convolutional neural networks (CNNs) (Kayhan & van Gemert, 2020) to learn
039 domain-invariant representations. However, studies (Li et al., 2017; Naseer et al., 2021) indicate
040 that CNN-based models are highly sensitive to domain shift. Recently, DA approaches based on
041 Vision Transformers (ViTs) (Yang et al., 2023; Xu et al., 2022) have demonstrated superior per-
042 formance over CNN-based methods (Xiao et al., 2023; Yu & Lin, 2023). While these approaches
043 mark significant progress, deploying ViT-based models in real-world applications remains challeng-
044 ing, especially in scenarios demanding rapid inference, minimal storage, and lower computational
045 costs, such as on resource-constrained devices. In contrast, compact CNN models like ResNet18
046 and ResNet34 (He et al., 2016) are often preferred for their efficiency. This raises an intuitive
047 question: ‘*how can we collaboratively leverage the strengths of these two models within a unified*
048 *framework?*’ Specifically, ‘*can we utilize the strong representational capability of the ViT-based*
049 *model during training while exploiting the computational efficiency of the CNN-based model during*
050 *inference?*’ This balance would meet the demands for high performance with low computational
051 cost. Knowledge distillation (KD) offers a promising strategy to address this concern described as:
052

053 **Teacher (ViT) $\xrightarrow{\text{Method}}$ Student (CNN)**. Herein, the knowledge acquired by the ViT-based teacher
054 model is transferred to a compact CNN-based student model. We identify two critical factors that
055 directly impact the performance of the student model: **(1) the ability of the ViT-based teacher** and
056 **(2) the effectiveness of the teaching method**.

057 To satisfy **(1)**, the teacher must perform effectively on labeled source data, demonstrating low train-
058 ing loss and robustness to domain shift. Following prior DA methods (Xu et al., 2022; Yang et al.,

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 2023), we employ a ViT model as the feature extractor, leveraging its strong representational capacity. However, these methods typically use a multilayer perceptron (MLP) as the classification head, which may have limited generalization due to its inability to capture relational information among neighboring samples. To address this limitation, we propose a Category-level Aggregation (CA) module, inspired by graph convolutional networks (GCNs) (Kipf & Welling, 2017), as the classification head to form the ViT+CA teacher network. The CA module enhances the teacher network’s generalization by effectively capturing *intra-class relations*. Specifically, it enriches source features extracted by the ViT-based model through a message-passing mechanism guided by ground-truth labels. Similarly, the CA module improves intra-class information in the target domain based on pseudo labels generated from unlabeled target data. Additionally, it constructs a cross-domain knowledge graph, aligning unlabeled target samples with labeled source samples by *class-aware feature alignment*, where pseudo labels and source ground-truth labels share the same categories. By doing so, the teacher network not only captures structural representations within both domains but also reduces the discrepancy between them.

Regarding ②, employing ViT and CNN in a teacher-student paradigm, it introduces a cross-architecture challenge due to their distinct mechanisms. CNN-based models capture local image features through convolutional operations (Kayan & van Gemert, 2020), whereas ViT-based models, via self-attention mechanisms, effectively learn global information (Dosovitskiy et al., 2021). Therefore, applying a feature-based KD approach (Heo et al., 2019; Chen et al., 2021) with the ViT-CNN pair requires additional transformation steps. While logit distillation (Hinton, 2015; Huang et al., 2022) may serve as an alternative, traditional logit-based KD approaches typically align the teacher and student networks by focusing on specific model weights corresponding to regions within the logit space. Consequently, the performance of the knowledge distillation process remains suboptimal. To address this problem, we propose a KD method named **Gradient-Guided Knowledge Distillation for Domain Adaptation (GraDA)**. Drawing inspiration from (Wang et al., 2022), this approach emphasizes gradient knowledge distillation, where all weights of the student network are considered, and the teacher network guides the gradient direction to update the student’s weights effectively. Specifically, in GraDA, the teacher network guides the student solely through pseudo labels, giving the student network flexibility to learn class representations on its own. This insight aligns with successful teaching strategies in education (Tan & Abbas, 2009), where teachers leave space for students to discover and solve problems on their own under guidance, rather than encouraging mechanical imitation. Moreover, teachers are expected to continuously expand their knowledge and teaching skills to provide higher-quality instruction. Notably, the student network in our method remains consistent with prior DA approaches (Jin et al., 2020; Li et al., 2021a), utilizing a CNN-based feature extractor and an MLP as the classifier (CNN+MLP). As illustrated in Fig. 1, our method is effective, particularly when the teacher and student networks yield similar classification results, surpassing existing logit-based methods.

In summary, our key contributions are three-fold:

- We design a strong teacher network that provides robust representations by enriching intra-class relations within each domain and mitigating domain shift across domains through class-aware feature alignment.
- We introduce gradient-guided knowledge distillation, allowing the student network to behave similarly to its teacher following its own capacity constraints, thus reducing cross-architecture and capability gaps.

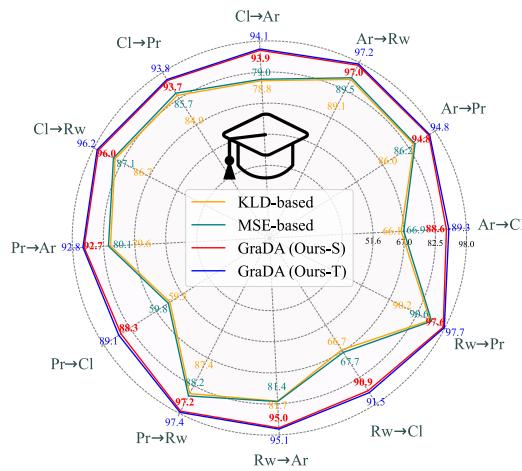


Figure 1: Comparison results of various knowledge distillation methods with our GraDA on **Office-Home** (Venkateswara et al., 2017) under UDA.

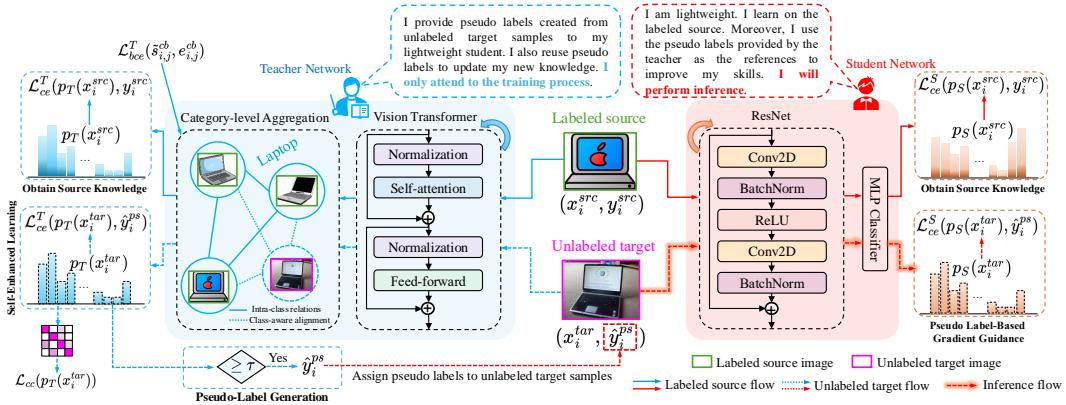


Figure 2: Illustration of the proposed GraDA. The teacher network includes a ViT-based model with a CA module, while the student network comprises a CNN-based model and an MLP. The teacher uses pseudo labels to guide the gradient direction for updating the student’s parameters. Notably, the teacher is involved only during training, whereas the student is used for testing.

- Our proposed method is evaluated through quantitative and qualitative analyses, achieving state-of-the-art results across various DA tasks on popular datasets: **VisDA2017**, **Office-Home**, and **DomainNet**.

2 RELATED WORKS

CNN/ViT-based in Domain Adaptation. Traditional DA methods (Ganin et al., 2016; Saito et al., 2018) utilize convolutional neural networks (CNN) to learn domain-invariant and discriminative features. However, studies (Li et al., 2017; Naseer et al., 2021) have revealed that convolutional layers are sensitive to domain shift. More recently, ViT-based DA methods (Xu et al., 2022; Zhu et al., 2023a) have demonstrated that vision transformers (ViT) can effectively reduce the discrepancy between source and target domains, leading to significant improvements in performance. For instance, CDTrans (Xu et al., 2022) illustrates that the cross-attention mechanism within ViT can counteract domain shift. Consequently, ViT-based DA approaches can generate accurate pseudo labels that help mitigate domain shift via class-aware feature alignment. However, their memory-intensive attention mechanism makes them computationally costly and hard to deploy in real-world settings.

Knowledge Distillation. Over the past decade, KD methods have been mainly categorized into two types: logit-based (Hinton, 2015; Zhao et al., 2022; Huang et al., 2022) and feature-based (Heo et al., 2019; Romero et al., 2015; Chen et al., 2021). While logit-based approaches focus on narrowing the logit distribution between teacher and student networks, feature-based methods encourage the student to mimic the teacher’s representations. However, these techniques, particularly feature-based approaches, struggle to transfer knowledge between networks with differing properties (Liu et al., 2022b), like ViT and CNN, due to low feature space similarity. (Zhu et al., 2023b) attempted to address this by using both feature- and logit-based mechanisms for cross-architecture knowledge distillation, though additional transformation steps are required. Nonetheless, both logit-based and feature-based methods operate in the same point-wise manner, where only specific parts of the student’s weights are considered to match the teacher.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

In unsupervised domain adaptation (UDA), we are given the source dataset $D_{src} = \{(x_i^{src}, y_i^{src})\}_{i=1}^{N_{src}}$, with N_{src} representing the number of source samples. Each source image x_i^{src} corresponds to an individual data point paired with a label $y_i^{src} \in [C]$. Here, $C \in \mathbb{Z}^+$ indicates the number of categories, and $[C]$ denotes the set $\{1, 2, \dots, C\}$. Additionally, we are also provided with unlabeled target data, denoted as $D_{tar} = \{(x_i^{tar})\}_{i=1}^{N_{tar}}$, where x_i^{tar} represents a target image,

162 and N_{tar} denotes the number of target samples. The model is trained on both D_{src} and D_{tar} , to
 163 achieve strong performance on D_{tar} . It is important to emphasize that D_{src} and D_{tar} share the same
 164 categories, and the target label $y_i^{tar} \in [C]$ is only used during the testing phase. The architecture
 165 and training process are illustrated in Fig. 2.
 166

167 **3.2 TEACHER NETWORK**
 168

169 **Architecture.** To match ①, we use ViT (Dosovitskiy et al., 2021) as the backbone (f_{vit}) for its
 170 superior global pattern capture via self-attention compared to CNNs (Kayhan & van Gemert, 2020).
 171 For the classification head, we introduce a Category-level Aggregation (CA) module, drawing in-
 172 spiration from GCNs (Kipf & Welling, 2017), to enhance representations through message passing.
 173 The CA module comprises f_{sim} , which computes similarity scores, and f_{agg} , which aggregates
 174 feature vectors within a mini-batch.
 175

176 **Operation.** During training, the input data is divided into multiple mini-batches of size B . Each
 177 training sample $x_i \in \mathbb{R}^{H \times W \times 3}$ is first encoded by f_{vit} : $z_i^{vit} = f_{vit}(x_i; \theta_{vit}) \in \mathbb{R}^d$, where z_i^{vit} is a
 178 feature vector, d is the embedding size, and θ_{vit} is the set of learnable parameters of f_{vit} . The batch
 179 of feature vectors $\{(z_i^{vit})\}_{i=1}^B$ is then processed by f_{sim} and f_{agg} in the CA module for feature
 180 aggregation. Specifically, $f_{sim} : \mathbb{R}^d \rightarrow \mathbb{R}^1$ is used to identify neighboring instances within the
 181 mini-batch by calculating similarity scores as:
 182

$$\hat{s}_{i,j} = \text{sigmoid}(f_{sim}(\|z_i^{vit} - z_j^{vit}\|; \theta_{sim})), \quad (1)$$

183 where $\hat{s}_{i,j}$ is a scalar value that quantifies the level of relationship between the i -th and j -th feature
 184 vectors. θ_{sim} is the set of learned parameters of f_{sim} . The correlations among samples within a
 185 mini-batch are stored in the similarity matrix $\hat{S} \in \mathbb{R}^{B \times B}$, where $\hat{s}_{i,j} \in \hat{S}$. We normalize \hat{S} by
 186 adding the self-connections formulated as follows:
 187

$$\tilde{S} = D^{-\frac{1}{2}}(\hat{S} + I)D^{-\frac{1}{2}}, \quad (2)$$

188 where I denotes the identity matrix, and D represents the degree matrix of $\hat{S} + I$. Finally, the feature
 189 aggregation is processed as follows:
 190

$$z_i^T = f_{agg}\left([z_i^{vit}, \sum_{j \in B} \tilde{s}_{i,j} \cdot z_j^{vit}]; \theta_{agg}\right), \quad (3)$$

191 where z_i^T is an aggregated feature vector of the teacher network with the C -dimensional logit for
 192 the final prediction. $[\cdot]$ denotes the concatenation operation and $\tilde{s}_{i,j} \in \tilde{S}$. $f_{agg} : \mathbb{R}^{2d} \rightarrow \mathbb{R}^C$ is the
 193 linear projection and θ_{agg} is the set of learnable parameters of f_{agg} .
 194

195 **3.3 STUDENT NETWORK**
 196

197 **Architecture.** We attempt to build a straightforward network that meets the requirement for fast
 198 inference. Thus, we select the CNN-based model as the feature extractor, f_{cnn} , followed by an MLP
 199 as the classification head.
 200

201 **Operation.** f_{cnn} takes each mini-batch $\{(x_i)\}_{i=1}^B$ as input, and x_i is encoded as $z_i^{cnn} =$
 202 $f_{cnn}(x_i; \theta_{cnn}) \in \mathbb{R}^{d'}$, where z_i^{cnn} denotes the feature vector extracted by f_{cnn} with the dimen-
 203 sional embedding of size d' , which is parameterized by θ_{cnn} . Next, the MLP classifier processes
 204 z_i^{cnn} to produce the predicted vector $p_S(x_i) = \text{softmax}(\text{MLP}(z_i^{cnn}; \theta_{mlp}))$, where θ_{mlp} is the set
 205 of learned parameters of MLP.
 206

207 **3.4 TRAINING STRATEGY FOR TEACHER NETWORK**
 208

209 We conduct a three-step approach in the teacher network: 1) *Enriching Intra-Class Relations*, 2)
 210 *Pseudo-Label Generation*, and 3) *Self-Enhanced Learning*, intending to improve feature representa-
 211 tions and mitigate the domain shift issue.
 212

213 **Enriching Intra-Class Relation.** The teacher network exploits the relationships among labeled
 214 samples within each mini-batch $\{(x_i, y_i)\}_{i=1}^B$, thereby enhancing intra-class information. To be
 215

216 specific, we train f_{sim} to explore the pairwise similarity between the samples within the mini-batch
 217 using a binary cross-entropy (bce) loss as follows:
 218

$$219 \quad \mathcal{L}_{bce}^T(\tilde{s}_{i,j}, e_{i,j}) = -e_{i,j} \log(\tilde{s}_{i,j}) - (1 - e_{i,j}) \log(1 - \tilde{s}_{i,j}), \quad (4)$$

220 where $e_{i,j}$ represents the ground-truth of edge, $e_{i,j} = 1$ indicates that the samples x_i and x_j belong
 221 to the same category ($y_i = y_j$); otherwise, $e_{i,j} = 0$. $\tilde{s}_{i,j}$ is the similarity score between x_i and
 222 x_j predicted by f_{sim} . Next, we update the parameters of f_{agg} for feature aggregation using the
 223 cross-entropy (ce) as follows:
 224

$$225 \quad \mathcal{L}_{ce}^T(p_T(x_i), y_i) = -y_i \log(p_T(x_i)), \quad (5)$$

226 where \mathcal{L}_{ce}^T denotes the cross-entropy loss function. $p_T(x_i) = \text{softmax}(z_i^T)$ indicates the prediction
 227 of x_i with the aggregated features z_i^T in Eq. (3), and $y_i \in [0, 1]^C$ is the ground truth in one-hot
 228 encoding form.

229 We can easily adapt Eq. (4) and Eq. (5) on the labeled source $D_{src} = \{x_i^{src}, y_i^{src}\}_{i=1}^{N_{src}}$ to enrich
 230 intra-class relation of the source domain as follows.
 231

$$232 \quad \min_{\theta_{vit}, \theta_{sim}, \theta_{agg}} \mathcal{L}_{bce}^T(\tilde{s}_{i,j}^{src}, e_{i,j}^{src}) + \mathcal{L}_{ce}^T(p_T(x_i^{src}), y_i^{src}), \quad (6)$$

234 where $\mathcal{L}_{bce}^T(\tilde{s}_{i,j}^{src}, e_{i,j}^{src})$ and $\mathcal{L}_{ce}^T(p_T(x_i^{src}), y_i^{src})$ are the bce and ce losses used to update θ_{vit} , θ_{sim} ,
 235 and θ_{agg} on the labeled source data, respectively. The proposed teacher network goes beyond ob-
 236 taining the semantic features of individual images. Furthermore, it can comprehend the similarities
 237 between the neighboring samples, thus *enhancing intra-class consistency*. To enable intra-class re-
 238 lationships in the unlabeled target data, we assign pseudo-labels through a label generation process.
 239

240 **Pseudo-Label Generation.** Following (Sohn et al., 2020), we first input the target image x_i^{tar} into
 241 the teacher network, and the resulting prediction $p_T(x_i^{tar})$ is then converted into a one-hot hard label
 242 as follows:

$$242 \quad \hat{y}_i^{ps} = \text{argmax}(p_T(x_i^{tar})) \text{ if } \max(p_T(x_i^{tar})) \geq \tau, \quad (7)$$

243 where τ is a confidence threshold that controls the quality of the generated pseudo labels. Thanks
 244 to Eq. (7), we can obtain a pseudo-labeled set: $D_{ps} = \{(x_i^{tar}, \hat{y}_i^{ps})\}_{i=1}^{N_{ps}}$ from the unlabeled set
 245 $D_{tar} = \{(x_i^{tar})\}_{i=1}^{N_{tar}}$, where N_{ps} denotes the number of pseudo labels and $N_{ps} \leq N_{tar}$.
 246

247 **Self-Enhanced Teacher Learning.** In the next step, we combine $D_{ps} = \{(x_i^{tar}, \hat{y}_i^{ps})\}_{i=1}^{N_{ps}}$ into the
 248 source $D_{src} = \{(x_i^{src}, y_i^{src})\}_{i=1}^{N_{src}}$ as follows:
 249

$$249 \quad D_{cb} = D_{src} \cup D_{ps}, N_{cb} = N_{ps} + N_{src}, \quad (8)$$

251 where N_{cb} is the number of combined samples. Since the combined dataset D_{cb} consists of labeled
 252 data, it enables the use of supervised losses as described in Eq. (4) and Eq. (5). Therefore, Eq. (6)
 253 can be rewritten as follows:

$$254 \quad \min_{\theta_{vit}, \theta_{sim}, \theta_{agg}} \mathcal{L}_{bce}^T(\tilde{s}_{i,j}^{cb}, e_{i,j}^{cb}) + \mathcal{L}_{ce}^T(p_T(x_i^{cb}), y_i^{cb}), \quad (9)$$

256 where $\tilde{s}_{i,j}^{cb}$ and $e_{i,j}^{cb}$ denote the similarity score and ground-truth edge of $\{(x_i^{cb}, y_i^{cb})\}_{i=1}^{N_{cb}} \in D_{cb}$,
 257 determined similarly to Equation Eq. (4). Notably, the teacher model enriches semantic represen-
 258 tations and alleviates domain discrepancy when trained on D_{cb} , as it preserves intra-class relations
 259 in the source domain where $y_i^{src} = y_j^{src}$ within D_{cb} . Besides, it also leverages pseudo labels to
 260 exploit the intra-class relation of the target domain when $\hat{y}_i^{ps} = \hat{y}_j^{ps}$. Moreover, our teacher network
 261 addresses domain shift by *class-aware feature alignment* when D_{cb} includes pairs with $\hat{y}_i^{ps} = y_j^{src}$.
 262 Furthermore, we minimize cross-class confusion (MCC) (Jin et al., 2020) on D_{tar} to enhance the
 263 pseudo-label generation process of the teacher network as follows:
 264

$$265 \quad \mathcal{L}_{cc}(p_T(x_i^{tar})) = \frac{1}{C} \sum_{c=1}^C \sum_{c' \neq c}^C |(p_T(x_{i,c}^{tar})^\top (p_T(x_{i,c'}^{tar}))|, \quad (10)$$

268 where $p_T(x_{i,c}^{tar})$ and $p_T(x_{i,c'}^{tar})$ represent the probabilities of the target sample x_i^{tar} belonging to the
 269 c -th and c' -th classes, respectively, where $\{c, c'\} \in C$. $\mathcal{L}_{cc}(p_T(x_i^{tar}))$ is minimized to alleviate the
 cross-class confusion level between the c -th and c' -th classes of the target samples x_i^{tar} .

270 3.5 TRAINING STRATEGY FOR STUDENT NETWORK
271272 We also train the student network with the combined dataset $D_{cb} = \{(x_i^{cb}, y_i^{cb})\}_{i=1}^{N_{cb}}$ using the cross-
273 entropy loss as:

274
$$\mathcal{L}_{ce}^S(p_S(x_i^{cb}), y_i^{cb}) = -y_i^{cb} \log(p_S(x_i^{cb})). \quad (11)$$

275 As defined in Eq. (8), D_{cb} consists of both D_{src} and D_{ps} . Thus, the student network can *Obtain*
276 *Source Knowledge* on labeled source samples and effectively learn on unlabeled target data via
277 *Pseudo Label-Based Gradient Guidance*.278 **Obtain Source Knowledge.** The student network captures the knowledge in $D_{src} =$
279 $\{(x_i^{src}, y_i^{src})\}_{i=1}^{N_{src}} \in D_{cb}$ using the cross-entropy loss as follows:

280
$$\mathcal{L}_{ce}^S(p_S(x_i^{src}), y_i^{src}) = -y_i^{src} \log(p_S(x_i^{src})), \quad (12)$$

281 where $p_S(x_i^{src}) = \text{softmax}(\text{MLP}(f_{cnn}(x_i^{src})))$ represents the output prediction of the source
282 image x_i^{src} , which can be rewritten as follows:

283
$$\min_{\theta_{cnn}, \theta_{mlp}} \mathcal{L}_{ce}^S(p_S(x_i^{src}), y_i^{src}). \quad (13)$$

284 The student's parameters θ_S including θ_{cnn} and θ_{mlp} .285 **Pseudo Label-Based Gradient Guidance.** We use $D_{ps} = \{(x_i^{tar}, \hat{y}_i^{ps})\}_{i=1}^{N_{ps}} \in D_{cb}$ to adjust the
286 gradient direction in updating the parameters of the student network as follows:

287
$$\theta_S \leftarrow \theta_S - \eta \nabla_{\theta_S} \mathcal{L}_{ce}^S(p_S(x_i^{tar}), \hat{y}_i^{ps}), \quad (14)$$

288 where ∇_{θ_S} is the gradient of the loss \mathcal{L}_{ce}^S with respect to θ_S on the unlabeled target data with the
289 learning rate η . The student network provides prediction on the target image x_i^{tar} by $p_S(x_i^{tar}) =$
290 $\text{softmax}(\text{MLP}(f_{cnn}(x_i^{tar})))$. \hat{y}_i^{ps} refers to the pseudo label generated by teacher network using Eq.
291 (7), which guides the gradient $\nabla_{\theta_S} \mathcal{L}_{ce}^S(p_S(x_i^{tar}), \hat{y}_i^{ps})$, distilling the knowledge from the teacher
292 network to the student network. The goal of the gradient guidance strategy is to align the student's
293 gradient directions with those of the teacher, ensuring the student behaves similarly. Consequently,
294 the student converges toward the optimal solution alongside its teacher on the target data, satisfying
295 *the factor ②*, as verified by the qualitative visualization in the analysis section.302 3.6 IMPLEMENTATION DETAILS
303304 The training procedure of GraDA is processed in each episode e consisting of a fixed number of
305 training steps t . Specifically, in the initial episode ($e = 0$), D_{src} is sampled into multiple mini-
306 batches of size B to facilitate training of both teacher and student networks as in Eq. (6) and Eq.
307 (12), respectively. After completing the initial episode, the teacher network is utilized to generate
308 the first pseudo-labeled set D_{ps}^1 from the unlabeled target data D_{tar} for the next episode ($e = 1$)
309 using Eq. (7). D_{ps}^1 is then combined with D_{src} to form $D_{cb}^1 = D_{src} \cup D_{ps}^1$, as specified in Eq. (8),
310 which is summarized as follows:

311
$$D_{cb}^e = D_{src} \cup D_{ps}^e, \text{ where } D_{cb}^0 = D_{src}. \quad (15)$$

312 Finally, D_{cb}^e is divided into mini-batches of size B to update the parameters of the teacher and
313 student networks by using Eq. (9) and Eq. (11), respectively. This iterative process continues until
314 convergence, where both networks align at an optimal point within a flattened region of the loss
315 surface.317 4 EXPERIMENTS
318319 4.1 SETUP
320321 **Dataset.** We conduct experiments on **VisDA2017** (Peng et al., 2018) with the domain adaptation
322 task: *Synthetic to Real-world*. **Office-Home** (Venkateswara et al., 2017) includes 4 different do-
323 mains: *Art* (Ar), *Clipart* (Cl), *Product* (Pr), and *Real-World* (Rw), providing 12 DA tasks. A subset

324	Net	Method	Mean	Net	Method	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Mean
325	ResNet101	MCC (ECCV'20)	78.8	ResNet50	SCDA (ICCV'21)	57.5	76.9	80.3	65.7	74.9	74.5	65.5	53.6	79.8	74.5	59.6	83.7	70.5
326		STAR (CVPR'20)	82.7		DALN (CVPR'22)	57.8	79.9	82.0	66.3	76.2	77.2	66.7	55.5	81.3	73.5	60.4	85.3	71.8
327		FixBi (CVPR'21)	87.2		AML (IEEE Trans'23)	58.9	77.2	81.7	69.6	77.9	78.6	66.6	57.9	82.3	74.7	62.5	84.5	72.7
328		DAMP (CVPR'24)	88.4		GeT (ICCV'23)	59.4	79.6	82.9	71.4	79.8	79.8	69.7	56.2	83.5	73.9	60.1	86.0	73.5
329		HVCLIP (ECCV'24)	90.0		DAMP (CVPR'24)	59.7	88.5	86.8	76.6	88.9	87.0	76.3	59.6	87.1	77.0	61.0	89.9	78.2
330		⊗ GraDA (S)	96.5		HVCLIP (ECCV'24)	62.0	85.8	86.2	77.8	84.3	86.8	80.7	66.5	87.8	80.3	64.9	90.4	79.5
331	ViT-B	⊗ GraDA (S)	97.0	ViT-B	⊗ GraDA (S)	88.6	94.8	97.0	93.9	93.7	96.0	92.7	88.3	97.2	95.0	90.9	97.6	93.8
332	(a) VisDA2017			(b) Office-Home														

(a) VisDA2017

(b) Office-Home

Table 1: Accuracy (%) on (a) **VisDA2017** and (b) **Office-Home** under the UDA setting. We compare the results of the student GraDA (S) to previous CNN-based works for fairness, while the comparison of the teacher GraDA (T) and ViT-based DA works is provided for reference. The best results are marked as **bold**. For **VisDA2017**, the per-class accuracy is in the *Suppl. Material*.

339	Net	Method	rel→elp	rel→pnt	pnt→clp	clp→skt	skt→pnt	rel→skt	pnt→rel	Mean			
340		1-shot	3-shot										
ResNet34	MME (ICCV'19)	70.0	72.2	67.7	69.7	69.0	71.7	56.3	61.8	64.8	66.8		
	APE (ECCV'20)	70.4	76.6	70.8	72.1	72.9	76.7	56.7	63.1	64.5	66.1		
	SPA (NIPS'23)	75.3	76.0	71.8	72.2	74.8	76.5	65.9	67.0	69.8	71.1		
	GeT (ICCV'23)	76.1	77.6	72.5	73.9	73.9	75.8	66.7	67.8	69.8	73.6		
	DECOTA (ICCV'21)	79.1	80.4	74.9	75.2	76.9	78.7	65.1	68.6	72.0	72.7		
	CDAC (CVPR'21)	77.4	79.6	74.2	75.1	75.5	79.3	67.6	69.9	71.0	73.4		
	ECACL (ICCV'21)	75.3	79.0	74.1	77.3	75.3	79.4	65.0	70.6	72.1	74.7		
	MCL (IJCAI'22)	77.4	79.4	74.6	76.3	75.5	78.8	66.4	70.9	74.0	74.7		
	SLA (CVPR'23)	79.8	81.6	75.6	76.0	77.4	80.3	68.1	71.3	71.7	73.5		
	EFTL (AAAI'24)	79.6	81.2	74.9	77.1	78.2	81.8	69.3	72.8	71.8	74.4		
	FMLML (ECCV'24)	80.9	81.1	79.9	80.2	80.1	81.1	73.7	76.8	79.2	82.5		
346	⊗ GraDA (S)	94.5	96.3	96.6	97.0	95.3	95.5	91.5	93.5	95.5	95.9		
347	ViT-B	⊗ GraDA (T)	95.2	97.0	97.1	97.7	96.0	96.2	92.1	94.2	96.1	96.5	
348			94.4	94.5	96.6	97.3					97.3	95.4	96.2

Table 2: Accuracy (%) on **DomainNet** under the SSDA setting. The best results are marked as **bold**.

of **DomainNet** (Peng et al., 2019) includes 126 classes in 4 diverse domains: *real* (rel), *clipart* (clp), *painting* (pnt), and *sketch* (skt), where we follow previous works (Saito et al., 2019; Zhang & Lee, 2023) to verify our method on 7 DA tasks. More information is provided in the *Suppl. Material*.

Experimental Settings. All experiments were conducted on a single RTX-4090 GPU. For the feature extractor of the teacher network, we utilized ViT-B model with a 16×16 patch size, whereas the ResNet family (He et al., 2016) served as the feature extractor for the student network, similar to (Lu et al., 2020; Xiao et al., 2023). Each feature extractor was pre-trained on ImageNet-1k. For the classifier, GCN (Luo et al., 2020) was used to implement the CA module in the teacher network, while a two-layer MLP (Li et al., 2021a; Yu & Lin, 2023) was employed in the student network. Both networks were optimized using SGD with a learning rate and weight decay of 5×10^{-4} , and momentum of 0.9, respectively. We set the mini-batch size to $B = 32$ and the pseudo-label threshold in Eq. (7) to $\tau = 0.95$. Teacher and student networks are trained for $E = 100$ episodes, with $T = 500$ steps for **Office-Home** and $T = 1,000$ for **VisDA2017** and **DomainNet** per episode.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Notably, the results of the student serve as a baseline for a fair comparison with prior CNN-based methods, while the results of the teacher are used solely for analysis.

UDA Methods. Tables 1a and 1b show the results on **VisDA2017** and **Office-Home**, respectively. Specifically, on **VisDA2017**, GraDA (S) and GraDA (T) achieve 96.5% and 97.0%, respectively, indicating a minimal performance gap between the student and teacher networks. Additionally, GraDA (S) outperforms the second-best method, HVCLIP Vesdapunt et al. (2024), with a gain of 6.5%. Under a fair comparison using the same ViT-B backbone, GraDA (T) also surpasses HVCLIP by 5.5%. On **Office-Home**, GraDA (S) still achieves the best results across all tasks, surpassing the DA method with KD, AML Zhou et al. (2023), in several challenging tasks, such as Ar→Cl, Pr→Cl, and Rw→Cl, with notable accuracies of 88.6%, 88.3%, and 90.9%, respectively. As a result, the mean accuracy of GraDA (S) reaches 93.8% across 12 DA tasks, improving by 14.3% compared to the second-best method, HVCLIP. Mean accuracy of GraDA (T) also achieves 94.0%, it surpasses all ViT-based competitors, and exceeds the second-best HVCLIP by 2.0%.

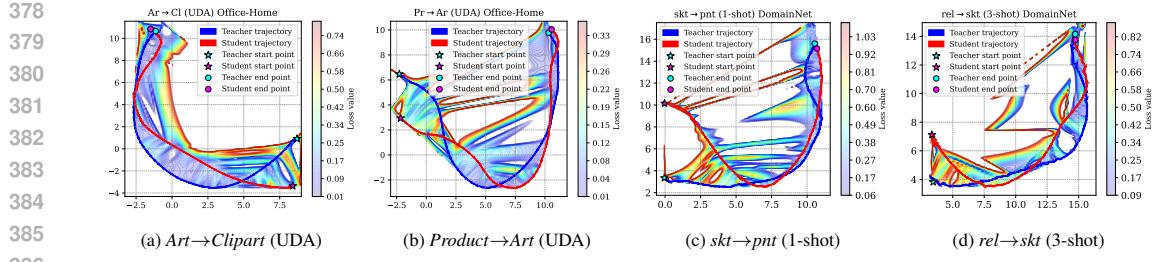


Figure 3: Convergence trajectory in the loss landscape of teacher and student networks.

Scenario	Settings	Office-Home (UDA)	DomainNet (SSDA)
		(ResNet50)	(ResNet34)
Vanilla Student	S1 Supervised	59.4	60.0
	S2 + Self-Enhanced	62.7	71.3
	S3 + $\mathcal{L}_{ce}^S(p_S(x_t^{tar}))$	69.1	73.4
With Teacher	S4 Supervised	84.0	87.1
	S5 + Self-Enhanced	93.5	95.0
	S6 + $\mathcal{L}_{ce}^T(p_T(x_t^{tar}))$	93.8	95.5

Table 3: Ablation study on **Office-Home** and **DomainNet** under UDA and 3-shot SSDA.

Teacher-Student Pair		rel→clip	clip→skt	skt→pnt	pnt→rel	Mean
P1	T ResNet101+MLP	77.0	68.1	73.6	81.7	75.1
	S ResNet34+MLP	76.8	67.6	73.3	81.3	74.8
P2	T ViT-B+MLP	85.3	79.1	85.3	90.9	85.2
	S ResNet34+MLP	85.3	78.6	85.1	89.6	84.7
P3	T ResNet101+CA	95.1	90.5	93.0	91.8	92.6
	S ResNet34+MLP	93.9	88.6	90.9	93.9	91.8
P4	T ViT-B+CA	97.0	94.2	96.5	97.3	96.3
	S ResNet34+MLP	96.3	93.5	95.9	96.5	95.6

Table 4: Performance of student (**S**) paired with various teachers (**T**) on **DomainNet** (3-shot).

SSDA Methods. Similar to Saito et al. (2019); Li et al. (2021a), we simply add a few labeled target samples (1-shot or 3-shot) into the training dataset under the SSDA setting. As listed in Table 2, GraDA (**S**) provides the remarkable results across 7 DA tasks on **DomainNet** with an average accuracy of 94.8% and 95.5% corresponding to the 1-shot and 3-shot settings, respectively. Moreover, the average accuracy gap between GraDA (**S**) and GraDA (**T**) is narrowed to 0.6% and 0.7% under the 1-shot and 3-shot, respectively. These results demonstrate that the student network, utilizing a *small* model (ResNet34), can efficiently capture the knowledge of the *larger* teacher network (ViT-B).

4.3 ANALYSES

As observed, in settings **S1**, **S2**, and **S3**, where the student network operates without guidance from the teacher network, it achieves maximum accuracies of only 69.1% and 73.4% on **Office-Home** and **DomainNet**, respectively. In contrast, with teacher guidance in settings **S4**, **S5**, and **S6**, the classification performance of the student network is significantly enhanced. Specifically, in setting **S4**, the student network’s results improve by 14.9% and 13.7%, despite the limited quality and quantity of pseudo labels provided by the teacher network, as only intra-class relationships within the source domain are considered in Eq. (6). In setting **S5**, the teacher network improves generalization to unlabeled target data thanks to intra-class relationships, while class-aware feature alignment mitigates the domain shift issue using Eq. (9). Furthermore, setting **S6** overcomes the ambiguous class confusion using Eq. (10). As a result, the quality and quantity of pseudo labels from the teacher network increase, enhancing the student network’s performance.

Can a Teacher Truly Educate a Student? To examine this, we use the gradient trajectory to observe the changes in the learning behavior of teacher and student networks with the pseudo label-based gradient guidance algorithm. We visualize the convergence trajectory of two UDA tasks on **Office-Home**: Ar→Cl and Pr→Ar (Fig. 3a), two SSDA tasks on **DomainNet**: skt→pnt and rel→skt with 1-shot and 3-shot settings (Fig. 3b), respectively. As shown in these figures, both the teacher and student models are initialized with random parameters, leading to different starting points. Nevertheless, the teacher network converges toward an optimal solution, followed by the student, ultimately aligning within a minimal region with a low loss value.

Teacher-Student Pair	#Params (M)	Ar→Cl	Cl→Pr	Pr→Rw	Rw→Ar	Mean
ResNet50+CA (T)	30.3	78.3	83.9	93.8	92.5	87.1
ResNet50+MLP (S)	24.6	77.8	83.8	93.5	92.3	86.9
ViT-tiny+CA (T)	8.1	68.7	81.4	93.0	87.5	82.7
ViT-tiny+MLP (S)	5.7	68.3	80.5	92.8	87.3	82.2
HVCLIP (ResNet50)	≈101.5	62.0	84.3	87.8	80.3	78.6

Table 5: Ablation study on various teacher-student pairs on **Office-Home** with UDA. (Complete DA tasks in Suppl.)

432 **Can a Student Perform Better with a Better Teacher?** We verify the critical role
 433 of teacher network design in optimizing the effectiveness of the knowledge distillation
 434 scheme. Experiments are conducted using ResNet34+MLP as the anchor student network,
 435 paired with various types of teacher networks such as ResNet101+MLP, ViT-B+MLP,
 436 ResNet101+CA, and ViT-B+CA corresponding to **P1**, **P2**, **P3**, and **P4**, respectively. These
 437 teacher-student pairs are evaluated on 4 DA tasks within **DomainNet** under a 3-shot setting.
 438 As reported in Tab. 4, the results of **P2** significantly outperform those of **P1**, attributed to
 439 ViT-B’s superior capacity for image representation compared to ResNet101. However, a com-
 440 parison among **P1**, **P2**, and **P3** reveals a critical insight: the category-level aggregation (+CA)
 441 module proves to be a pivotal component in enhancing the effectiveness of knowledge distil-
 442 lation. The CA module not only facilitates im-
 443 proved intra-class generalization within source
 444 and target domains but also mitigates domain
 445 shift across these domains through class-aware
 446 feature alignment. Based on these findings,
 447 ViT-B+CA, associated with **P4**, is selected as
 448 the optimal teacher network, surpassing the
 449 other teacher networks and achieving the best accuracy of 96.3%. The classification performance
 450 of the student network in **P4** exceeds that of the student network in **P1**, including the least effective
 451 teacher network, by 20.8%.

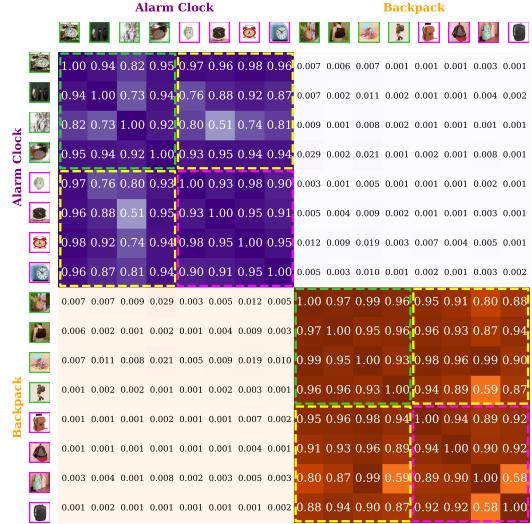
452 **Fairness of the Teacher Network.** We conduct an ablation where the (**T**) and (**S**) networks share
 453 the same backbone on four **Office-Home** UDA tasks (Tab. 5). Even with identical ResNet50 or
 454 the smaller ViT-Tiny, GraDA still outperforms HVCLIP (Tab. 1b). This demonstrates that GraDA’s
 455 gains stem from the proposed CA module and effective pseudo labels, not just the backbone.

456 **Effectiveness of CA Module.** The category-level aggregation (CA) mechanism plays a crucial role
 457 in the teacher network, which enhances *intra-class representations* within a domain and facilitates
 458 *class-aware alignment* across domains. To demonstrate this, we present Fig. 4, which visualizes the
 459 similarity matrix \tilde{S} generated by the teacher network for a mini-batch ($B = 16$) in the Ar→Rw task,
 460 encompassing both source and target test samples. As shown, CA functions effectively, exhibiting
 461 high similarity among same-category samples, both within and across domains.

471 5 CONCLUSION

472 We introduce GraDA, a novel method designed to enhance student network performance in knowl-
 473 edge distillation for domain adaptation tasks. To achieve this, we first developed a strong teacher
 474 network by integrating a ViT backbone with a Category-level Aggregation (CA) module to produce
 475 robust representations. The CA module enhances the teacher’s generalization ability by capturing
 476 *intra-class relations* within each domain and reducing domain shift between domains through *class-
 477 aware feature alignment*. We then proposed a gradient-guided knowledge distillation approach to
 478 optimize the transfer of knowledge from the ViT-based teacher to a lightweight CNN-based student,
 479 which is primarily used during inference. By providing high-quality pseudo labels, the ViT-based
 480 teacher guides the gradient updates of the student’s parameters. Experiments across diverse settings
 481 demonstrate that GraDA significantly outperforms state-of-the-art methods on widely used bench-
 482 marks. Notably, this success is fully explainable, as evidenced by thorough qualitative analyses.

483 **Limitation.** While the CA module improves the teacher’s generalization, aggregating features from
 484 noisy labels may introduce accumulated errors, degrading its quality and guidance to the student. It
 485 would be interesting to investigate incorporating a denoising module before the CA module.



486 **Figure 4: Illustration of category-level ag-
 487 gregation (similarity matrix \tilde{S}) of the UDA task
 488 **Ar**→**Rw** on **Office-Home**. Relationships between
 489 samples within the **source** and **target** domains are
 490 outlined in dashed green and pink boxes, respec-
 491 tively. Relationships of cross-domain samples are
 492 outlined in dashed yellow boxes.**

486 REFERENCES
487

488 Hritam Basak and Zhaozheng Yin. Forget more to learn more: Domain-specific feature unlearning
489 for semi-supervised and unsupervised domain adaptation. In *Eur. Conf. Comput. Vis.*, 2024.

490 Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
491 man Vaughan. A theory of learning from different domains. *Machine learning*, pp. 151–175,
492 2010.

493 Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander
494 Kolesnikov. Knowledge distillation: A good teacher is patient and consistent. In *IEEE Conf.*
495 *Comput. Vis. Pattern Recog.*, pp. 10925–10934, 2022.

496 Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang. Partial adversarial domain adaptation.
497 In *Eur. Conf. Comput. Vis.*, pp. 135–150, 2018.

498 Barbara Caputo, Henning Müller, Jesus Martinez-Gomez, Mauricio Villegas, Burak Acar, Novi
499 Patricia, Neda Marvasti, Suzan Üsküdarlı, Roberto Paredes, Miguel Cazorla, et al. Imageclef
500 2014: Overview and analysis of the results. In *International Conference of the Cross-Language*
501 *Evaluation Forum for European Languages*, pp. 192–211, 2014.

502 Lin Chen, Huaian Chen, Zhixiang Wei, Xin Jin, Xiao Tan, Yi Jin, and Enhong Chen. Reusing the
503 task-specific classifier as a discriminator: Discriminator-free adversarial domain adaptation. In
504 *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 7181–7190, 2022.

505 Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge
506 review. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 5008–5017, 2021.

507 Shuhao Cui, Shuhui Wang, Junbao Zhuo, Chi Su, Qingming Huang, and Qi Tian. Gradually van-
508 ishing bridge for adversarial domain adaptation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
509 12455–12464, 2020.

510 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Thomas Unterthiner
511 Xiaohua Zhai, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob
512 Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
513 tion at scale. In *Int. Conf. Learn. Represent.*, 2021.

514 Zhekai Du, Xinyao Li, Fengling Li, Ke Lu, Lei Zhu, and Jingjing Li. Domain-agnostic mutual
515 prompting for unsupervised domain adaptation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
516 23375–23384, 2024.

517 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
518 Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
519 works. *Journal of Machine Learning Research*, 17(1):2096–2030, 2016.

520 Jiujun He, Bin Liu, and Guosheng Yin. Enhancing semi-supervised domain adaptation via effective
521 target labeling. In *AAAI*, volume 38, pp. 12385–12393, 2024.

522 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
523 nition. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 770–778, 2016.

524 Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A
525 comprehensive overhaul of feature distillation. In *Int. Conf. Comput. Vis.*, pp. 1921–1930, 2019.

526 Geoffrey Hinton. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*,
527 2015.

528 Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge distillation from a stronger
529 teacher. In *Adv. Neural Inform. Process. Syst.*, volume 35, pp. 33716–33727, 2022.

530 Xinyang Huang, Chuang Zhu, and Wenkai Chen. Semi-supervised domain adaptation via prototype-
531 based multi-level learning. In *IJCAI*, 2023.

532 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
533 reducing internal covariate shift. *arXiv preprint arXiv:1502.03167*, 2015.

540 Joonhyeok Jang, Sunhyeok Lee, Seonghak Kim, Jung-Un Kim, Seonghyun Kim, and Daeshik Kim.
 541 Robust unsupervised domain adaptation through negative-view regularization. In *Winter Conference*
 542 *on Applications of Computer Vision*, pp. 2462–2471, 2024.

543

544 Pin Jiang, Aming Wu, Yahong Han, Yunfeng Shao, Meiyu Qi, and Bingshuai Li. Bidirectional
 545 adversarial training for semi-supervised domain adaptation. In Christian Bessiere (ed.), *IJCAI*,
 546 pp. 934–940. International Joint Conferences on Artificial Intelligence Organization, 7 2020.

547

548 Ying Jin, Ximei Wang, Mingsheng Long, and Jianmin Wang. Minimum class confusion for versatile
 549 domain adaptation. In *Eur. Conf. Comput. Vis.*, pp. 464–480, 2020.

549

550 Osman Semih Kayhan and Jan C van Gemert. On translation invariance in cnns: Convolutional
 551 layers can exploit absolute spatial location. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
 552 14274–14285, 2020.

553

554 Taekyung Kim and Changick Kim. Attract, perturb, and explore: Learning a feature alignment
 555 network for semi-supervised domain adaptation. In *Eur. Conf. Comput. Vis.*, pp. 591–607, 2020.

555

556 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 557 works. In *Int. Conf. Learn. Represent.*, 2017.

558

559 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 560 lutional neural networks. In *Adv. Neural Inform. Process. Syst.*, volume 25, 2012.

561

562 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
 563 generalization. In *Int. Conf. Comput. Vis.*, Oct 2017.

563

564 Jichang Li, Guanbin Li, Yemin Shi, and Yizhou Yu. Cross-domain adaptive clustering for semi-
 565 supervised domain adaptation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 2505–2514, 2021a.

565

566 Kai Li, Chang Liu, Handong Zhao, Yulun Zhang, and Yun Fu. Ecacl: A holistic framework for
 567 semi-supervised domain adaptation. In *Int. Conf. Comput. Vis.*, pp. 8578–8587, 2021b.

568

569 Shuang Li, Mixue Xie, Fangrui Lv, Chi Harold Liu, Jian Liang, Chen Qin, and Wei Li. Semantic
 570 concentration for domain adaptation. In *Int. Conf. Comput. Vis.*, pp. 9102–9111, 2021c.

571

572 Xinyi Liu, Tao Dai, Shu-Tao Xia, and Yong Jiang. Self-ensemble variance regularization for domain
 573 adaptation. In *ICASSP*, pp. 3853–3857. IEEE, 2022a.

573

574 Yufan Liu, Jiajiong Cao, Bing Li, Weiming Hu, Jingting Ding, and Liang Li. Cross-architecture
 575 knowledge distillation. In *Asian Conference on Computer Vision*, pp. 3396–3411, December
 576 2022b.

577

578 Zhihe Lu, Yongxin Yang, Xiatian Zhu, Cong Liu, Yi-Zhe Song, and Tao Xiang. Stochastic classifiers
 579 for unsupervised domain adaptation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 9111–9120,
 2020.

580

581 Yadan Luo, Zijian Wang, Zi Huang, and Mahsa Baktashmotagh. Progressive graph learning for
 582 open-set domain adaptation. In *Int. Conf. Mach. Learn.*, pp. 6468–6478. PMLR, 2020.

583

584 You-Wei Luo and Chuan-Xian Ren. Conditional bures metric for domain adaptation. In *IEEE Conf.*
 585 *Comput. Vis. Pattern Recog.*, pp. 13989–13998, 2021.

585

586 You-Wei Luo, Chuan-Xian Ren, Xiao-Lin Xu, and Qingshan Liu. Geometric understanding of
 587 discriminability and transferability for visual domain adaptation. *IEEE Trans. Pattern Anal. Mach.*
 588 *Intell.*, 2024.

589

590 Zong Martin, Qiu Zengyu, Ma Xinzhu, Yang Kunlin, Liu Chunya, Hou Jun, Yi Shuai, and Ouyang
 591 Wanli. Better teacher better student: Dynamic prior knowledge for knowledge distillation. In *Int.*
 591 *Conf. Learn. Represent.*, 2023.

592

593 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 594 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

594 Jaemin Na, Heechul Jung, Hyung Jin Chang, and Wonjun Hwang. Fixbi: Bridging domain spaces
 595 for unsupervised domain adaptation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 1094–1103,
 596 2021.

597 Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat, Fahad
 598 Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers. In *Adv.
 599 Neural Inform. Process. Syst.*, volume 34, pp. 23296–23308, 2021.

600 Ba Hung Ngo, Nhat-Tuong Do-Tran, Tuan-Ngoc Nguyen, Hae-Gon Jeon, and Tae Jong Choi. Learning
 601 cnn on vit: A hybrid model to explicitly class-specific boundaries for domain adaptation. In *IEEE Conf. Comput.
 602 Vis. Pattern Recog.*, pp. 28545–28554, June 2024.

603 Xingchao Peng, Ben Usman, Neela Kaushik, Dequan Wang, Judy Hoffman, and Kate Saenko.
 604 Visda: A synthetic-to-real benchmark for visual domain adaptation. In *IEEE Conf. Comput.
 605 Vis. Pattern Recog. Worksh.*, June 2018.

606 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 607 for multi-source domain adaptation. In *Int. Conf. Comput. Vis.*, October 2019.

608 Viraj Prabhu, Shivam Khare, Deeksha Kartik, and Judy Hoffman. Sentry: Selective entropy optimiza-
 609 tion via committee consistency for unsupervised domain adaptation. In *Int. Conf. Comput.
 610 Vis.*, pp. 8558–8567, 2021.

611 Can Qin, Lichen Wang, Qianqian Ma, Yu Yin, Huan Wang, and Yun Fu. Contradictory structure
 612 learning for semi-supervised domain adaptation. In *Proceedings of the 2021 SIAM International
 613 Conference on Data Mining (SDM)*, pp. 576–584. SIAM, 2021.

614 Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
 615 Yoshua Bengio. Fitnets: Hints for thin deep nets. In *Int. Conf. Learn. Represent.*, 2015.

616 Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
 617 domains. In *Eur. Conf. Comput. Vis.*, pp. 213–226. Springer, 2010.

618 Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier dis-
 619 crepancy for unsupervised domain adaptation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, 2018.

620 Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised
 621 domain adaptation via minimax entropy. In *Int. Conf. Comput. Vis.*, pp. 8050–8058, 2019.

622 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 623 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 624 ization. In *Int. Conf. Comput. Vis.*, pp. 618–626, 2017.

625 Ayan Sengupta, Shantanu Dixit, Md Shad Akhtar, and Tanmoy Chakraborty. A good learner can
 626 teach better: Teacher-student collaborative knowledge distillation. In *Int. Conf. Learn. Represent.*,
 627 2024.

628 Ankit Singh. Clda: Contrastive learning for semi-supervised domain adaptation. In *Adv. Neural
 629 Inform. Process. Syst.*, pp. 5089–5101, 2021.

630 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
 631 Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
 632 learning with consistency and confidence. In *Adv. Neural Inform. Process. Syst.*, pp. 596–608,
 633 2020.

634 Tao Sun, Cheng Lu, Tianshuo Zhang, and Haibin Ling. Safe self-refinement for transformer-based
 635 domain adaptation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 7191–7200, 2022.

636 Charlene Tan and Diwi Binti Abbas. The ‘teach less, learn more’ initiative in singapore: New peda-
 637 gogies for islamic religious schools? *KEDI Journal of Educational Policy*, 2009.

638 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine
 639 Learning Research*, 9(11), 2008.

648 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 649 hashing network for unsupervised domain adaptation. In *IEEE Conf. Comput. Vis. Pattern Recog.*,
 650 July 2017.

651

652 Noranart Vesdapunt, Kah Kuen Fu, Yue Wu, Xu Zhang, and Pradeep Natarajan. Hvclip: High-
 653 dimensional vector in clip for unsupervised domain adaptation. In *Eur. Conf. Comput. Vis.*, 2024.

654

655 Lean Wang, Lei Li, and Xu Sun. Gradient knowledge distillation for pre-trained language models.
 656 In *Adv. Neural Inform. Process. Syst.*, 2022.

657

658 Thomas Westfechtel, Hao-Wei Yeh, Qier Meng, Yusuke Mukuta, and Tatsuya Harada. Backprop in-
 659 duced feature weighting for adversarial domain adaptation with iterative label distribution align-
 660 ment. In *Winter Conference on Applications of Computer Vision*, pp. 392–401, 2023.

661

662 Thomas Westfechtel, Hao-Wei Yeh, Dexuan Zhang, and Tatsuya Harada. Gradual source domain ex-
 663 pansion for unsupervised domain adaptation. In *Winter Conference on Applications of Computer
 Vision*, pp. 1946–1955, 2024.

664

665 Zhiqing Xiao, Haobo Wang, Ying Jin, Lei Feng, Gang Chen, Fei Huang, and Junbo Zhao. Spa:
 666 a graph spectral alignment perspective for domain adaptation. In *Adv. Neural Inform. Process.
 Syst.*, volume 36, 2023.

667

668 Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, and Rong Jin. Cdtrans: Cross-domain
 669 transformer for unsupervised domain adaptation. In *Int. Conf. Learn. Represent.*, 2022.

670

671 Zizheng Yan, Yushuang Wu, Guanbin Li, Yipeng Qin, Xiaoguang Han, and Shuguang Cui. Multi-
 672 level consistency learning for semi-supervised domain adaptation. In *IJCAI*, 2022.

673

674 Jinyu Yang, Jingjing Liu, Ning Xu, and Junzhou Huang. Tvt: Transferable vision transformer for
 675 unsupervised domain adaptation. In *Winter Conference on Applications of Computer Vision*, pp.
 676 520–530, 2023.

677

678 Luyu Yang, Yan Wang, Mingfei Gao, Abhinav Shrivastava, Kilian Q. Weinberger, Wei-Lun Chao,
 679 and Ser-Nam Lim. Deep co-training with task decomposition for semi-supervised domain adap-
 680 tation. In *Int. Conf. Comput. Vis.*, pp. 8906–8916, 2021.

681

682 Yu-Chu Yu and Hsuan-Tien Lin. Semi-supervised domain adaptation with source label adaptation.
 683 In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 24100–24109, 2023.

684

685 Can Zhang and Gim Hee Lee. Get: Generative target structure debiasing for domain adaptation. In
 686 *Int. Conf. Comput. Vis.*, pp. 23577–23588, 2023.

687

688 Xinyu Zhang, Meng Kang, and Shuai Lü. Low category uncertainty and high training potential
 689 instance learning for unsupervised domain adaptation. In *AAAI*, pp. 16881–16889, 2024.

690

691 Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
 In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 11953–11962, 2022.

692

693 Lihua Zhou, Siying Xiao, Mao Ye, Xiatian Zhu, and Shuaifeng Li. Adaptive mutual learning for un-
 694 supervised domain adaptation. *IEEE Transactions on Circuits and Systems for Video Technology*,
 33(11):6622–6634, 2023.

695

696 Jingjing Zhu, Haotian Bai, and Lin Wang. Patch-mix transformer for unsupervised domain adap-
 697 tation: A game perspective. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 3561–3571, 2023a.

698

699 Jingjing Zhu, Yunhao Luo, Xu Zheng, Hao Wang, and Lin Wang. A good student is cooperative and
 700 reliable: Cnn-transformer collaborative learning for semantic segmentation. In *Int. Conf. Comput.
 Vis.*, pp. 11720–11730, October 2023b.

701

A APPENDIX

This *Supplementary Material* provides five-fold information. First, we summarize the notations frequently used in the main manuscript and their corresponding definitions (Sec. B) and a detailed overview of all datasets (Sec. C). Second, a concise pseudocode for GraDA is included for clarity (Sec. D), and the implementation details of the teacher and student networks are thoroughly explained (Sec. E). Third, additional results in the UDA and SSDA settings are presented in Sec. F. Fourth, various aspects are discussed in more detail, including the diversity of student networks in GraDA, the pivotal role of CA in teacher network design, and the influence of CA on student performance through pseudo-label generation, supported by additional results and discussion (Sec. G). Finally, qualitative results using t-SNE and Grad-CAM are provided to further visually evaluate GraDA (Sec. H). Below, we present the table of contents to facilitate easy access to the information.

Contents

1	Introduction	1
2	Related Works	3
3	Methodology	3
3.1	Problem Formulation	3
3.2	Teacher Network	4
3.3	Student Network	4
3.4	Training Strategy for Teacher Network	4
3.5	Training Strategy for Student Network	6
3.6	Implementation Details	6
4	Experiments	6
4.1	Setup	6
4.2	Comparison with State-of-the-Arts	7
4.3	Analyses	8
5	Conclusion	9
A	Appendix	14
B	Notations	15
C	Dataset Details	15
D	Pseudocode of GraDA	17
E	GraDA Architecture	18
E.1	Teacher Network	18
E.2	Student Network	19
E.3	Comparison Between CA and MLP	19
F	Additional Results	19
F.1	Unsupervised Domain Adaptation	19
F.2	Semi-supervised Domain Adaptation (SSDA)	19
G	Discussion	20
G.1	Robustness with various Student Networks	20
G.2	Ability of the Teacher Network	20
G.3	Roles of CA Module in Pseudo-Labeling	22
G.4	Effectiveness of Gradient-Based KD	23
G.5	Fairness of the Teacher Network (<i>Extended Version</i>).	24
G.6	Can the Teacher Adapt to Various Students?	25
H	Visualization Analysis	25
H.1	t-SNE Visualization	25
H.2	Grad-CAM Visualization	25

	Notation	Definition		Notation	Definition
Abbreviation	DA	Domain Adaptation	Symbol in Teacher	f_{vit}	ViT-based feature extractor
	UDA	Unsupervised Domain Adaptation		f_{sim}	Similarity network in the CA module
	SSDA	Semi-supervised Domain Adaptation		f_{agg}	Category aggregation network in the CA module
	KD	Knowledge Distillation		θ_{vit}	Set of learnable parameters for f_{vit}
	CNN	Convolutional Neural Networks		θ_{sim}	Set of learnable parameters for f_{sim}
	ViT	Vision Transformer		θ_{agg}	Set of learnable parameters for f_{agg}
	MLP	Multilayer Perceptron		z_i^{vit}	Feature vector generated by f_{vit} for sample x_i
	CA	Category-level Aggregation		d	Embedding size of the feature vector z_i^{vit}
	GCN	Graph Convolutional Networks		$\hat{s}_{i,j}$	Similarity score between feature vectors
				\hat{S}	Similarity matrix within a mini-batch B
Symbol in Data Setting	D_{src}	Set of the labeled source domain		$\tilde{s}_{i,j}$	Normalized similarity score
	x_i^{src}	The i -th image from the source domain		\tilde{S}	Normalized similarity matrix
	y_i^{src}	Label of the source image x_i^{src}		I	Identity matrix used for normalization
	N_{src}	The number of samples in the source domain		D	Degree matrix of $\tilde{S} + I$
	D_{tar}	Set of the unlabeled target domain		z_i^T	Aggregated feature vector
	x_i^{tar}	The i -th image from the target domain		$p_T(x_i)$	Prediction of the teacher network for sample x_i
	y_i^{tar}	Label of the target image x_i^{tar}		$e_{i,j}$	Ground-truth of edge between two samples
	N_{tar}	The number of samples in the target dataset		\mathcal{L}_{bce}^T	Binary cross-entropy loss of the teacher network
	C	Number of categories in both domains		\mathcal{L}_{ce}^T	Cross-entropy loss of the teacher network
	D_{ps}^e	Pseudo-labeled set generated at episode e		\mathcal{L}_{cc}	Cross-class confusion loss of the teacher network
Symbol in Train.	x_i^{ps}	Pseudo label for the target image x_i^{tar}	Symbol in Student	f_{cnn}	CNN-based feature extractor
	y_i^{ps}	The number of samples in the pseudo-labeled set		MLP	MLP classifier
	N_{ps}	Combined dataset at episode e of D_{src} and D_{ps}^e		θ_{cnn}	Set of learnable parameters for f_{cnn}
	D_{cb}^e	The i -th image from the combined set		θ_{mlp}	Set of learnable parameters for the MLP
	x_i^{cb}	Label of the combined image x_i^{cb}		z_i^{cnn}	Feature vector generated by f_{cnn} for sample x_i
	y_i^{cb}	The number of samples in the combined set		d'	Embedding size of the feature vector z_i^{cnn}
	N_{cb}			$p_S(x_i)$	Prediction of the student network for sample x_i
	η	Learning rate of the teacher and student networks		\mathcal{L}_{ce}^S	Cross-entropy loss of the student network
	τ	Confidence threshold for pseudo-label generation		∇_{θ_S}	The gradient of the loss \mathcal{L}_{ce}^S with respect to θ_S
	B	The number of samples in a mini-batch			
	E	The number of training episodes			
	e	Episode index in the training process			
	T	Number of training steps per episode			

Table 6: Abbreviation and symbol notation (Train. stands for Training).

B NOTATIONS

We summarize notations and their definitions frequently used in the proposed method, as listed in Tab. 6.

C DATASET DETAILS

Table 7 provides an overview of popular domain adaptation datasets, including **VisDA2017**, **Office-Home**, **DomainNet**, **Office-31**, and **ImageCLEF-DA**. It details the number of categories and the number of images for each dataset, along with sample images from different domains.

VisDA2017 Peng et al. (2018) exhibits a significant domain gap when transferring from the *Synthetic* domain to the *Real-world* domain. It includes 152,397 *Synthetic* images as the source domain and 55,388 *Real-world* images as the target domain. Each domain consists of 12 different categories. The synthetic images are generated from 3D models, while the real images are collected from natural scenes.

Office-Home Venkateswara et al. (2017) contains approximately 15,500 images across 65 categories from 4 distinct domains: *Art* (Ar), *Clipart* (Cl), *Product* (Pr), and *Real-World* (Rw). These 4 domains establish 12 cross-domain tasks: Ar→Cl, Ar→Pr, Ar→Rw, Cl→Ar, Cl→Pr, Cl→Rw, Pr→Ar, Pr→Cl, Pr→Rw, Rw→Ar, Rw→Cl, and Rw→Pr.

DomainNet Peng et al. (2019) contains approximately 600,000 images from six domains: *clipart* (clp), *infograph* (inf), *painting* (pnt), *quickdraw* (qdw), *real* (rel), and *sketch* (skt). It includes 345 categories. In the SSDA setting, we use a subset with 126 classes across these domains to consistency with the prior SSDA works Saito et al. (2019); Qin et al. (2021); Yu & Lin (2023); Huang et al. (2023). In the UDA setting, we employ **Mini-DomainNet** as used in Prabhu et al. (2021); Westfiechtel et al. (2023), a curated subset with 40 frequently observed classes across the same 4 domains, encompassing all 12 possible domain shifts.

810
 811 **Algorithm 1:** Pseudocode of GraDA

812 **1 Input:** Source and target datasets: $D_{src} = \{(x_i^{src}, y_i^{src})\}_{i=1}^{N_{src}}$; $D_{tar} = \{x_i^{tar}\}_{i=1}^{N_{tar}}$;
 813 **2 Training Configuration:** Threshold τ , Total episodes E , training steps T , Mini-batch size B ,
 814 Learning rate η
 815 **3 Initialization:** Combined dataset $D_{cb}^0 \leftarrow D_{src}$
 816 **4 Network Architectures:**
 817 Teacher network: f_{vit} , f_{sim} and f_{agg} . Set of parameters: $\theta_T = \{\theta_{vit}, \theta_{sim}, \theta_{agg}\}$
 818 Student network: f_{cnn} and MLP. Set of parameters: $\theta_S = \{\theta_{cnn}, \theta_{mlp}\}$;
 819 **7 ► TRAINING:** **for** $e = 1$ **to** E **do**
 820 **8 for** $t = 1$ **to** T **do**
 821 8 **9 Sample** $\{(x_i^{cb}, y_i^{cb})\}_{i=1}^B \in D_{cb}^e$
 822 **10 Training Strategy for the Teacher Network:**
 823 **11** $\{z_i^{vit}\}_{i=1}^B \leftarrow \{f_{vit}(x_i^{cb}; \theta_{vit})\}_{i=1}^B$
 824 **12**◊ Initialize similarity matrix: $\hat{S} \in \mathbb{R}^{B \times B}$
 825 **13**◊ Computing the (i, j) -th similarity score:
 826 **14** $\hat{s}_{i,j} \leftarrow \text{sigmoid}(f_{sim}(\|z_i^{vit} - z_j^{vit}\|; \theta_{sim}))$ where $\hat{s}_{i,j} \in \hat{S}$ ▷ Eq. (1).
 827 **15** $\hat{S} \leftarrow D^{-\frac{1}{2}}(\hat{S} + I)D^{-\frac{1}{2}}$ ▷ Eq. (2).
 828 **16**◊ Computing the i -th aggregated feature:
 829 **17** $z_i^T \leftarrow f_{agg}\left([z_i^{vit}, \sum_{j \in B} \hat{s}_{i,j} \cdot z_j^{vit}]; \theta_{agg}\right)$ ▷ Eq. (3).
 830 **18** $p_T(x_i^{cb}) \leftarrow \text{softmax}(z_i^T)$
 831 **19** $\theta_T \leftarrow \theta_T - \eta \nabla_{\theta_T} (\mathcal{L}_{bce}^T + \mathcal{L}_{ce}^T + \mathcal{L}_{cc})$
 832 **20**▷ \mathcal{L}_{bce}^T , \mathcal{L}_{ce}^T and \mathcal{L}_{cc} are computed in Eq. (4), Eq. (5) and Eq. (10), respectively.
 833 **21**◊ Pseudo Label Generation: $D_{ps}^e \leftarrow \emptyset$
 834 **22**◊ Training Strategy for Student Network: $z_i^{cnn} \leftarrow f_{cnn}(x_i^{cb}; \theta_{cnn})$
 835 **23** $p_S(x_i) \leftarrow \text{softmax}(\text{MLP}(z_i^{cnn}; \theta_{mlp}))$
 836 **24** $\theta_S \leftarrow \theta_S - \eta \nabla_{\theta_S} \mathcal{L}_{ce}^S$ ▷ \mathcal{L}_{ce}^S is computed in Eq. (11).
 837 **25**Repeat lines 13–20 to obtain $\{z_i^T\}_{i=1}^B$
 838 **26**◊ Assign pseudo label.
 839 **27**◊ Update pseudo-labeled set.
 840 **28**◊ Update the combined set: $D_{cb}^e \leftarrow D_{src} \cup D_{ps}^e$
 841 **29**◊ Testing: $p_S(x_i^{tar}) \leftarrow \text{softmax}(\text{MLP}(f_{cnn}(x_i^{tar})))$ ▷ Only the student network is used for testing.
 842 **30**Repeat lines 13–20 to obtain $\{z_i^T\}_{i=1}^B$
 843 **31**◊ Assign pseudo label.
 844 **32**◊ Update pseudo-labeled set.
 845 **33**◊ Update the combined set: $D_{cb}^e \leftarrow D_{src} \cup D_{ps}^e$
 846 **34**◊ Assign pseudo label.
 847 **35**◊ Update pseudo-labeled set.
 848 **36**◊ Update the combined set: $D_{cb}^e \leftarrow D_{src} \cup D_{ps}^e$
 849 **37**◊ Assign pseudo label.
 850 **38**◊ Update pseudo-labeled set.
 851 **39**► **TESTING:** $p_S(x_i^{tar}) \leftarrow \text{softmax}(\text{MLP}(f_{cnn}(x_i^{tar})))$ ▷ Only the student network is used for testing.
 852 **40**

853
 854 **Office-31** Saenko et al. (2010) contains 4,110 images across 31 categories from three distinct domains: *Amazon* (A), *Webcam* (W), and *DSLR* (D). The *Amazon* domain consists of images from online merchants, *Webcam* includes low-resolution images taken by web cameras, and *DSLR* contains high-resolution images captured with a digital SLR camera. In UDA, all 6 possible domain adaptation tasks between these domains are considered: A→W, A→D, W→A, W→D, D→A, and D→W. In the SSDA setting, 2 tasks are evaluated: W→A and D→A.

Domain Adaptation Datasets					
VisDA2017: 12 categories			Office-Home: 65 categories		
<i>Synthetic</i> 152,397 images	<i>Real-world</i> 55,388 images	<i>Art</i> 2,427 images	<i>Clipart</i> 4,365 images	<i>Product</i> 4,439 images	<i>Real-World</i> 4,357 images
DomainNet: 345 categories					
<i>clipart</i> 48,837 images	<i>infograph</i> 53,201 images	<i>painting</i> 75,759 images	<i>quickdraw</i> 172,500 images	<i>real</i> 175,327 images	<i>sketch</i> 70,386 images
Office-31: 31 categories			ImageCLEF-DA: 12 categories		
<i>Amazon</i> 2,817 images	<i>Webcam</i> 795 images	<i>DSLR</i> 498 images	<i>Caltech-256</i> 600 images	<i>ImageNet ILSVRC</i> 600 images	<i>Pascal VOC 2012</i> 600 images

Table 7: Overview of popular domain adaptation datasets, including **VisDA2017**, **Office-Home**, **DomainNet**, **Office-31**, and **ImageCLEF-DA**. The number of images reflects the scale of each dataset, while the example images per domain highlight the distribution discrepancy.

Net	Method	aero	bicycle	bus	car	horse	knife	motor	person	plant	skate	train	truck	Mean
ResNet101	MCC (ECCV'20)	88.1	80.3	80.5	71.5	90.1	93.2	85.0	71.6	89.4	73.8	85.0	36.9	78.8
	STAR (CVPR'20)	95.0	84.0	84.6	73.0	91.6	91.8	85.9	78.4	94.4	84.7	87.0	42.2	82.7
	FixBi (CVPR'21)	96.1	87.8	90.5	90.3	96.8	95.3	92.8	88.7	97.2	94.2	90.9	25.7	87.2
	DAMP (CVPR'24)	97.3	91.6	89.1	76.4	97.5	94.0	92.3	84.5	91.2	88.1	91.2	67.0	88.4
	HVCLIP (ECCV'24)	98.8	90.1	90.8	82.2	97.3	95.5	91.8	82.9	94.9	92.8	92.2	70.8	90.0
	☛ GraDA (S)	99.9	98.6	96.4	88.4	100.0	99.8	99.3	97.5	100.0	100.0	99.2	78.7	96.5
ViT-B	PMTrans (CVPR'23)	98.9	93.7	84.5	73.3	99.0	98.0	96.2	67.8	94.2	98.4	96.6	49.0	87.5
	SSRT (CVPR'22)	98.9	87.6	89.1	84.8	98.3	98.7	96.3	81.1	94.9	97.9	94.5	43.1	88.8
	DAMP (CVPR'24)	98.7	92.8	91.7	80.1	98.9	96.9	94.9	83.2	93.9	94.9	94.8	70.2	90.9
	NVC (WACV'24)	98.5	89.0	88.5	92.0	98.5	98.3	96.2	88.4	98.5	97.9	95.0	55.4	91.4
	HVCLIP (ECCV'24)	99.0	93.7	92.1	84.5	98.8	96.2	94.2	88.6	96.9	96.7	94.5	74.4	92.5
	☛ GraDA (T)	100.0	99.1	97.9	89.4	100.0	100.0	99.7	98.5	100.0	99.9	99.9	79.5	97.0

Table 8: Accuracy (%) on **VisDA2017** under the UDA setting. GraDA (S) and GraDA (T) are the student and teacher networks, respectively. For a fair comparison, we use GraDA (S) to compare with the prior CNN-based works, while the comparison of the teacher GraDA (T) and ViT-based DA works is provided for reference. The best classification accuracy is marked as **bold**.

ImageCLEF-DA Caputo et al. (2014) includes images from three domains: *Caltech-256* (C), *ImageNet ILSVRC 2012* (I), and *Pascal VOC 2012* (P). Each domain contains 12 categories with 50 images per category, totaling 600 images per domain. The dataset defines 6 domain adaptation tasks between these domains: I→P, P→I, I→C, C→I, C→P, and P→C.

D PSEUDOCODE OF GRAADA

We provide the pseudocode of GraDA presented in Algorithm 1, which is straightforward and helps to gain a better understanding of GraDA. Note that the losses for the teacher network including \mathcal{L}_{bce}^T , \mathcal{L}_{ce}^T , and \mathcal{L}_{ce} , are specified in Eqs. 4, 5 and 10, respectively. Meanwhile, the loss \mathcal{L}_{ce}^S for the student network is detailed in Eq. 11.

918	Net	Method	rel→clp	rel→pnt	rel→skt	clp→rel	clp→pnt	clp→skt	pnt→rel	pnt→clp	pnt→skt	skt→rel	skt→clp	skt→pnt	Mean
919	ResNet50	MCD (CVPR'18)	62.0	69.3	56.3	79.8	56.6	53.7	83.4	58.3	61.0	81.7	56.3	66.8	65.4
920		PADA (ECCV'18)	65.9	67.1	58.4	74.7	53.1	52.9	79.8	59.3	57.9	76.5	67.0	61.1	64.5
921		BIWAA-I (WACV'23)	79.9	75.2	75.4	87.9	72.1	75.7	88.9	77.8	76.7	88.8	80.5	74.5	79.4
922		SENTRY (ICCV'21)	83.9	76.7	74.4	90.6	76.0	79.5	90.3	82.9	75.6	90.4	82.4	74.0	81.4
923		LUHP (AAAI'24)	79.6	82.8	79.3	91.1	79.7	76.5	90.2	77.2	76.7	91.2	80.3	79.5	82.0
924		GSDE (WACV'24)	82.9	79.2	80.8	91.9	78.2	80.0	90.9	84.1	79.2	90.3	83.4	76.1	83.1
925		ECB (CVPR'24)	84.7	83.8	79.7	91.6	84.0	82.5	91.0	83.2	79.2	86.1	82.9	81.6	84.2
926		✉ GraDA (S)	93.1	94.8	85.7	98.4	95.0	91.5	97.3	86.6	89.3	95.7	93.1	96.4	93.1
927	ViT-B	✉ GraDA (T)	93.4	95.0	86.2	98.7	95.5	91.9	98.2	86.9	90.0	96.4	93.4	96.7	93.5

Table 9: Accuracy (%) on **Mini-DomainNet** under the UDA setting. The best classification accuracy is marked as **bold**.

928	Net	Method	A→W	D→W	W→D	A→D	D→A	W→A	Mean
929	ResNet50	GVB-GD (CVPR'20)	94.8	98.7	100.0	95.0	73.4	73.7	89.3
930		SCDA (ICCV'21)	94.2	98.7	99.8	95.2	75.7	76.2	90.0
931		DALN (CVPR'22)	95.2	99.1	100.0	95.4	76.4	76.5	90.4
932		BIWAA-I (WACV'23)	95.6	99.0	100.0	94.4	75.9	77.3	90.5
933		GeT (ICCV'23)	95.4	99.1	100.0	95.4	76.6	77.0	90.6
934		LUHP (AAAI'24)	94.2	98.6	100.0	95.2	77.7	78.6	90.7
935		FixBi (CVPR'21)	96.1	99.3	100.0	95.0	78.7	79.4	91.4
936		SPA (NIPS'23)	97.2	99.0	99.8	95.0	78.0	79.4	91.4
937		HVCLIP (ECCV'24)	96.2	99.4	100.0	96.0	80.1	80.6	92.1
938		✉ GraDA (S)	98.6	99.3	100.0	99.2	90.0	91.8	96.5
939	ResNet34	✉ GraDA (S)	99.3	99.4	100.0	99.2	90.8	91.4	96.7
940	ResNet18	✉ GraDA (S)	98.5	99.3	100.0	98.8	90.0	91.3	96.3
941	ViT-B	✉ GraDA (T)	99.4	100.0	100.0	99.2	90.7	92.1	96.9

Table 10: Accuracy (%) on **Office-31** under the UDA setting with various versions of ResNet, such as ResNet50, ResNet34, and ResNet18. The best classification accuracy is marked as **bold**.

E GRADA ARCHITECTURE

This section thoroughly provides detailed implementations of teacher and student network architectures.

E.1 TEACHER NETWORK

Feature Extractor. ViT-B Dosovitskiy et al. (2021) is adopted as the feature extractor f_{vit} , dividing the input image x_i into patches of size 16×16 . After processing by the patch embedding network, a sequence of 144 patch tokens is obtained, with the [CLS] token added at the beginning. The sequence then passes through a stack of 12 transformer blocks, each comprising multi-head self-attention and a feedforward layer, with each followed by a normalization layer. A skip connection is applied between the input and output of the multi-head self-attention module. The [CLS] token obtained from the final transformer block is used as the feature vector $z_i^{vit} \in \mathbb{R}^d$, where $d = 768$. Given a batch of images with size B , it is processed by f_{vit} to produce a batch of feature vectors $\{z_i^{vit}\}_{i=1}^B$, which are then processed by the CA module to produce the aggregated feature vector z_i^T .

CA Module. Our CA module includes a similarity network f_{sim} and an aggregation network f_{agg} . For f_{sim} , we implement two convolutional layers: the first layer has the same input and output channels, which are 768, while the second layer projects from 768 to 1, i.e., a scalar value for the similarity score. Batch Normalization Ioffe & Szegedy (2015) followed by a LeakyReLU activation is applied between these two convolutional layers. For f_{agg} , three convolutional layers are employed, each followed by Batch Normalization and LeakyReLU. The first two layers have the same input and output channels, which are 768, while the last one produces C logits, where C is the number of categories.

972 E.2 STUDENT NETWORK
973

974 **Feature Extractor.** The ResNet family He et al. (2016) and AlexNet Krizhevsky et al. (2012) are
975 adopted as feature extractors for the student network, *i.e.*, f_{cnn} . The ResNet architectures used in
976 this study include ResNet101, ResNet50, ResNet34, and ResNet18. The specific network applied
977 to the student network depends on the dataset and settings to ensure a fair comparison with existing
978 studies or for evaluation purposes. Given an input image x_i , the feature extractor f_{cnn} produces a
979 feature vector $z_i^{cnn} \in \mathbb{R}^{d'}$, where d' represents the dimensionality of the feature vector. The value of
980 d' depends on the specific feature extractor used: $d' = 512$ for ResNet18 and ResNet34, $d' = 2048$
981 for ResNet50 and ResNet101, and $d' = 4096$ for AlexNet.

982 **MLP Classifier.** The MLP classifier includes two linear layers. The first layer projects from a d'
983 dimension to 512, and the second layer projects from 512 to C logits. Between the two linear layers,
984 there is a normalization operation.

985
986 E.3 COMPARISON BETWEEN CA AND MLP
987

988 We further highlight the differences between CA and MLP and analyze some significant time com-
989 plexities. For a batch of B samples, CA constructs a similarity matrix $\tilde{S} \in \mathbb{R}^{B \times B}$, using f_{sim} for
990 scoring and f_{agg} for feature aggregation and logits generation. Constructing the similarity matrix
991 requires computing all possible pairwise feature differences in the batch, with a time complexity
992 of $\mathcal{O}(B^2 \cdot d)$, where d is the feature vector dimension of f_{vit} . f_{sim} then assigns scalar similarity
993 scores. Subsequently, feature aggregation involves a weighted sum of each feature vector with all
994 others, costing $\mathcal{O}(B^2 \cdot d)$, followed by concatenation ($\mathcal{O}(B \cdot d)$) and f_{agg} to produce C -dimensional
995 logits. In this manner, **the CA module projects aggregated feature vectors into the logit space**.
996 In contrast, **the MLP generates the logits for each feature vector independently using a single**
997 **network**. Although the proposed CA module introduces higher complexity, it is used only during
998 training, whereas MLP integrated with CNN-based networks is used during inference, ensuring
999 practicality.

1000 F ADDITIONAL RESULTS
1001

1002 This section presents extensive experimental results on UDA and SSDA settings.
1003

1004 F.1 UNSUPERVISED DOMAIN ADAPTATION
1005

1006 **VisDA2017.** The classification accuracy for each class is listed in Tab. 8. Using ResNet101 as
1007 the backbone, the proposed student network GraDA (S) achieves the highest classification accuracy
1008 across all classes except for the “car” class. The average accuracy over the 12 classes for the student
1009 network reaches 96.5%, representing a 6.5% improvement over the second-best method, HVCLIP
1010 Vesdapunt et al. (2024). Compared to prior works using ViT-B as a backbone, the teacher network
1011 GraDA (T) also achieves the best accuracy of 97.0%. Notably, the mean accuracy gap between the
1012 student and teacher networks is marginal, measuring only 0.5%.

1013 **Mini-DomainNet.** We reported the classification results of 12 DA tasks in Tab. 9. The average
1014 accuracy is 93.1%, surpassing the second-best method, ECB Ngo et al. (2024), by 8.9%.

1015 **Office-31 & ImageCLEF-DA.** Tables 10 and 11 present the classification results for **Office-31** and
1016 **ImageCLEF-DA**, respectively. The proposed student model, utilizing ResNet50, achieves compet-
1017 itive accuracy on both datasets, with 96.5% on **Office-31** and 94.8% on **ImageCLEF-DA**.

1019 F.2 SEMI-SUPERVISED DOMAIN ADAPTATION (SSDA)
1020

1021 The proposed method can be easily extended to the SSDA setting, where a limited number of labeled
1022 target samples per class are available, $D_{tar}^l = \{(x_i^{tar}, y_i^{tar})\}_{i=1}^{N_{tar}^l}$, where N_{tar}^l is the number of
1023 labeled target samples and $N_{tar}^l \ll N_{tar}$. We simply add D_{tar}^l into D_{cb} , which can be formed as
1024 follows:

$$1025 D_{cb} = D_{src} \cup D_{ps} \cup D_{tar}^l, N_{cb} = N_{src} + N_{ps} + N_{tar}^l.$$

	Net	Method	I→P	P→I	I→C	C→I	C→P	P→C	Mean
1026 1027 1028 1029 1030 1031 1032	ResNet50	MCD (CVPR'18)	77.3	89.2	92.7	88.2	71.0	92.3	85.1
		GVB-GD (CVPR'20)	78.2	92.7	96.5	91.5	78.2	95.0	88.7
		VRDA (ICASSP'22)	78.3	93.8	96.3	93.5	78.0	96.3	89.4
		DALN (CVPR'22)	80.5	93.8	97.5	92.8	78.3	95.0	89.7
		CKB (CVPR'21)	80.7	93.7	97.0	93.5	79.2	97.0	90.2
		AML (IEEE Trans'23)	80.8	93.8	97.7	93.2	80.2	98.2	90.7
		GOAL (TPAMI'24)	82.2	94.1	97.3	95.6	82.3	96.4	91.3
1033 1034 1035	ResNet34 ResNet18	✉ GraDA (S)	85.8	99.5	99.5	99.3	84.8	99.8	94.8
		✉ GraDA (S)	85.8	99.3	99.5	99.3	84.7	99.7	94.7
		✉ GraDA (S)	84.6	99.7	99.7	99.5	84.8	99.0	94.6
	ViT-B	✉ GraDA (T)	86.8	99.8	100.0	99.8	87.2	100.0	95.6

Table 11: Accuracy (%) on **ImageCLEF-DA** under UDA with various versions of ResNet such as ResNet50, ResNet34, and ResNet18. The best classification accuracy is marked as **bold**.

Then, the training process for SSDA is conducted in the same manner as the unsupervised domain adaptation (UDA).

Office-Home. As reported in Tab. 12, we compare our student network with previous SSDA works on the **Office-Home** dataset. Remarkably, in terms of mean accuracy, our GraDA (S) surpasses FMLM Basak & Yin (2024) by 19.4% in the 1-shot setting and EFTL He et al. (2024) by 16.1% in the 3-shot setting. Furthermore, our method is not affected by the addition of labeled target samples, with a gain of only 0.6% from the 1-shot to the 3-shot setting.

Office-31. We evaluate our method using the lightweight model, AlexNet Krizhevsky et al. (2012), on **Office-31** under the SSDA setting, as shown in Tab. 13. In the 1-shot and 3-shot settings, our GraDA (S) achieves the new state-of-the-art method with a mean accuracy of 90.8% and 91.7%, respectively.

G DISCUSSION

This section further explores the variety of student networks in GraDA and the pivotal role of CA in teacher network design. We also take a closer look at its impact on student performance through the pseudo-label generation process.

G.1 ROBUSTNESS WITH VARIOUS STUDENT NETWORKS

We investigate the effectiveness of gradient-based knowledge distillation across various student networks. Figures 5 and 6 illustrate results of different versions of the student networks implemented with ResNet50, ResNet34, and ResNet18 for **Office-Home** and ResNet101, ResNet50, and ResNet18 for **VisDA2017**, respectively. Additionally, Tabs. 10 and 11 provide classification accuracy results of various student networks employing ResNet50, ResNet34, and ResNet18 on **Office-31** and **ImageCLEF-DA**. The results presented in these figures and tables demonstrate robustness across various student networks, where smaller networks, such as ResNet18, with relatively fewer parameters, can achieve competitive results compared to larger networks like ResNet50, as shown in Fig. 5, Tabs. 10 and 11, or ResNet101, as illustrated in Fig. 6. For small datasets such as **Office-31** and **ImageCLEF-DA**, the student network based on ResNet18 achieves performance comparable to those based on ResNet50, with only a minimal gap of 0.2%. For moderate and more challenging datasets, such as **Office-Home** and **VisDA2017**, the student network using ResNet18 also demonstrates strong flexibility, closely aligning with the classification results of larger student networks based on ResNet50 or ResNet101.

G.2 ABILITY OF THE TEACHER NETWORK

Selecting a strong teacher is the most important aspect of knowledge distillation (KD), with various perspectives and definitions. Traditional KD methods often assume that a strong teacher is a large model size. However, (Beyer et al., 2022) argue that a strong teacher is one that is patiently trained

1080	Net	Method	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Mean		
1-shot																	
1081	ResNet34	DECOTA (ICCV'21)	42.1	68.5	72.6	60.3	70.4	70.7	60.0	48.8	76.9	71.3	56.0	79.4	64.8		
		APE (ECCV'20)	53.9	76.1	75.2	63.6	69.8	72.3	63.6	58.3	78.6	72.5	60.7	81.6	68.9		
		MME (ICCV'19)	59.6	75.5	77.8	65.7	74.5	74.8	64.7	57.4	79.2	71.2	61.9	82.8	70.4		
		CLDA (NIPS'21)	56.3	76.1	79.3	66.3	73.9	76.3	66.2	55.9	81.0	72.6	60.2	83.2	70.6		
		CDAC (CVPR'21)	61.2	75.9	78.5	64.5	75.1	75.3	64.6	59.3	80.0	72.7	61.9	83.1	71.0		
		SPA (NIPS'23)	62.3	76.7	79.0	66.6	77.3	76.4	65.7	59.1	80.7	71.4	65.2	84.1	72.0		
		SLA (CVPR'23)	63.0	78.0	79.2	66.9	77.6	77.0	67.3	61.8	80.5	72.7	66.1	84.6	72.9		
		MCL (IJCAI'22)	64.4	79.5	81.2	68.5	79.3	78.4	68.0	61.1	81.3	73.8	67.0	85.5	74.0		
		EFTL (AAAI'24)	65.7	80.5	80.8	65.6	79.6	77.5	68.7	63.3	82.6	74.3	66.6	87.2	74.4		
		ProML (IJCAI'23)	64.5	79.7	81.7	69.1	80.5	79.0	69.3	61.4	81.9	73.7	67.5	86.1	74.6		
		FMLM (ECCV'24)	64.1	80.1	81.1	70.6	79.5	79.1	67.9	62.5	80.9	75.2	69.1	87.9	74.8		
		✉ GraDA (S)	89.9	95.5	95.8	93.5	96.3	96.9	93.7	89.1	96.9	94.5	91.2	96.9	94.2		
1089		ViT-B	✉ GraDA (T)	90.4	95.6	96.0	93.8	96.4	97.1	93.8	89.6	97.1	94.6	91.5	97.0	94.4	
3-shot																	
1090	ResNet34	MME (ICCV'19)	63.6	79.0	79.7	67.2	79.3	76.6	65.5	64.6	80.1	71.3	64.6	85.5	73.1		
		APE (ECCV'20)	63.9	81.1	80.2	66.6	79.9	76.8	66.1	65.2	82.0	73.4	66.4	86.2	74.0		
		CDAC (CVPR'21)	65.9	80.3	80.6	67.4	81.4	80.2	67.5	67.0	81.9	72.2	67.8	85.6	74.2		
		SPA (NIPS'23)	63.1	81.0	80.2	68.5	81.7	77.5	69.5	65.2	82.0	73.9	67.2	87.0	74.7		
		CLDA (NIPS'21)	63.4	81.4	81.3	70.5	80.9	80.3	72.4	63.9	82.2	76.7	66.0	87.6	75.5		
		DECOTA (ICCV'21)	64.0	81.8	80.5	68.0	83.2	79.0	69.9	68.0	82.1	74.0	70.4	87.7	75.7		
		SLA (CVPR'23)	67.3	82.6	81.4	69.2	82.1	80.1	70.1	69.3	82.5	73.9	70.1	87.1	76.3		
		MCL (IJCAI'22)	67.5	83.9	82.4	71.4	84.3	81.6	69.9	68.0	83.0	75.3	70.1	88.1	77.1		
		ProML (IJCAI'23)	67.8	83.9	82.2	72.1	84.1	82.3	72.5	68.9	83.8	75.8	71.0	88.6	77.8		
		FMLM (ECCV'24)	68.8	84.7	84.2	70.6	83.7	82.4	70.5	70.9	84.3	75.7	71.1	88.5	77.9		
		EFTL (AAAI'24)	70.3	84.8	83.8	70.6	84.6	81.5	72.6	70.9	85.4	77.5	72.8	89.3	78.7		
		✉ GraDA (S)	91.0	96.1	97.3	93.8	96.3	97.5	94.1	90.7	97.1	94.5	92.6	97.0	94.8		
1099		ViT-B	✉ GraDA (T)	91.7	96.1	97.4	94.1	96.5	97.8	94.3	91.0	97.3	94.7	93.1	97.1	95.1	

Table 12: Accuracy (%) on **Office-Home** under the SSDA setting. The best classification accuracy is marked as **bold**.

1104	Net	Method	W→A		D→A		Mean		
1105			1-shot	3-shot	1-shot	3-shot	1-shot	3-shot	
1106	AlexNet	MME (ICCV'19)	57.2	67.3	55.8	67.8	56.5	67.6	
		BiAT (IJCAI'20)	57.9	68.2	54.6	68.5	56.3	68.4	
		CDAC (CVPR'21)	63.4	70.1	62.8	70.0	63.1	70.0	
		CLDA (NIPS'21)	64.6	70.5	62.7	72.5	63.6	71.5	
		ECB (CVPR'24)	77.9	85.2	76.3	84.0	77.1	84.6	
		✉ GraDA (S)	91.1	92.1	90.4	91.3	90.8	91.7	
1111		ViT-B	✉ GraDA (T)	91.9	92.8	91.2	92.4	91.6	92.6

Table 13: Accuracy (%) on **Office-31** under the SSDA setting. The best classification accuracy is marked as **bold**.

over an extended period, producing consistent and reliable outputs. (Martin et al., 2023) propose that a strong teacher dynamically adjusts the amount of knowledge transfer based on the feature gap between the teacher and student models. Similarly, (Sengupta et al., 2024) define a strong teacher as one that can both collaborate with and compete against the student network during the distillation process. However, these approaches typically employ a combination of a feature extractor and an MLP classifier. This setup focuses on *processing individual inputs without considering their neighboring information*. Consequently, the previous teacher networks had limited ability to construct and generalize extracted knowledge effectively.

This section provides further insights into the capabilities of our teacher network. As discussed in the *main manuscript*, the CA module plays a pivotal role in the success of the teacher network's architecture. It effectively explores intra-class relations within each domain, thereby enriching category representations. Additionally, it facilitates class-aware feature alignment across domains, addressing the domain shift issue. To illustrate the superior effectiveness of the CA module, we present additional visualizations of the similarity matrix \tilde{S} on **Office-Home** under the UDA setting and on **DomainNet** under the 3-shot SSDA setting. We use the visualization results from the *left-side figures* in Tabs. 16 and 17 to analyze **the insight operation of our teacher network during training**, including:

1134	Teacher-Student Pair	#Params (M)	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Mean
1135	ViT-B+CA (T)	89.7	89.3	94.8	97.2	94.1	93.8	96.2	92.8	89.1	97.4	95.1	91.5	97.7	94.0
1136	ResNet50+MLP (S)	24.6	88.6	94.8	97.0	93.9	93.7	96.0	92.7	88.3	97.2	95.0	90.9	97.6	93.8
1137	ViT-tiny+MLP (S)	5.7	87.0	93.1	96.2	93.6	93.8	95.7	92.1	87.0	96.0	94.6	88.2	96.9	92.9
1138	ResNet50+CA (T)	30.3	78.3	87.6	95.3	81.5	83.9	89.7	84.8	75.9	93.8	92.5	82.8	93.0	86.6
1139	ResNet50+MLP (S)	24.6	77.8	87.3	95.1	81.4	83.8	89.5	84.6	75.5	93.5	92.3	82.5	92.9	86.4
1140	ViT-tiny+CA (T)	8.1	68.7	84.6	89.9	82.0	81.4	84.5	83.7	69.6	93.0	87.5	75.6	91.9	82.7
1141	ViT-tiny+MLP (S)	5.7	68.3	82.9	89.0	81.8	80.5	82.9	83.6	69.1	92.8	87.3	75.1	90.8	82.0
1142	HVCLIP (ResNet50)	≈101.5	62.0	85.8	86.2	77.8	84.3	86.8	80.7	66.5	87.8	80.3	64.9	90.4	79.5

Table 14: Comparison of teacher-student pairs on **Office-Home** under the UDA setting (*Full version*).

- **Enhancing the generalization by enriching intra-class relations.** We process a batch of $B = 16$ images through the teacher network, covering two classes, as an example. For each class, there are *four samples from the source domain* and another *four samples from the target domain*. For easier visualization, source samples are marked in **green**, while target samples are marked in **pink**. The CA module works effectively to show high similarity scores for same-category samples within the source domain indicated by **dashed green**. This is intuitive, as the source ground truth information supports these results. For target samples, the CA module relies on the quality of generated pseudo labels. Despite this, it still assigns high similarity scores to samples belonging to the same class, as marked by **dashed pink** boxes.
- **Handling the domain shift via class-aware feature alignment.** To demonstrate the effectiveness of the CA module in the teacher network for handling the domain shift issue between the source and target domains, we present the similarity scores of cross-domain samples highlighted by **dashed yellow** boxes. The CA module successfully identifies samples belonging to the same class but from different domains by assigning high similarity scores. In contrast, it assigns low similarity scores to samples from distinct classes, ensuring robust class-aware feature alignment.

These observations strongly emphasize the capability of the CA module in teacher network design. Furthermore, unlike previous teacher networks that make predictions directly from features extracted by the feature extractor, our teacher network bases its predictions on aggregated features.

Effectiveness of the teacher network in the testing phase. We use the visualization results from the *right-side figures* in Tabs. 16 and 17 to evaluate the effectiveness of the teacher network during testing. As illustrated in these figures, the CA module effectively identifies target samples within the same category by assigning high similarity scores, while providing low similarity scores to samples from distinct classes. This observation highlights the teacher network’s capability to exploit intra-class relations within the target data, grouping samples of the same category while ensuring that samples from different classes remain distinguishable.

G.3 ROLES OF CA MODULE IN PSEUDO-LABELING

To demonstrate the effectiveness of our CA module in the pseudo-labeling process, we compare the quantity and quality of pseudo labels generated by ViT-B+MLP (**Setting 1**) and ViT-B+CA (**Setting 2**) as teacher networks on **VisDA2017**. As shown in Fig. 7, the dashed lines indicate the number of ground-truth labels for each class, while the colored bars represent the pseudo-label counts. These two settings follow the same training manner combining *supervised*, *self-enhanced*, and *cross-class confusion* strategies.

In **Setting 1**, we employ MLP as the classifier, which is unable to capture relationships among neighboring samples. As illustrated in Fig. 7a, the ViT-B+MLP network assigns a higher number of pseudo labels than ground-truth labels to classes such as “*bicycle*”, “*bus*”, “*skate*”, and “*truck*”. Obviously, those excessive pseudo labels are incorrect, indicating that ViT-B+MLP does not ensure the quality of its generated pseudo labels, which misguide the student network. Furthermore, as it focuses only on individual representations, the MLP classifier also demonstrates its weakness in differentiating between highly similar classes, such as “*bus*”, “*car*”, “*train*”, and “*truck*”.

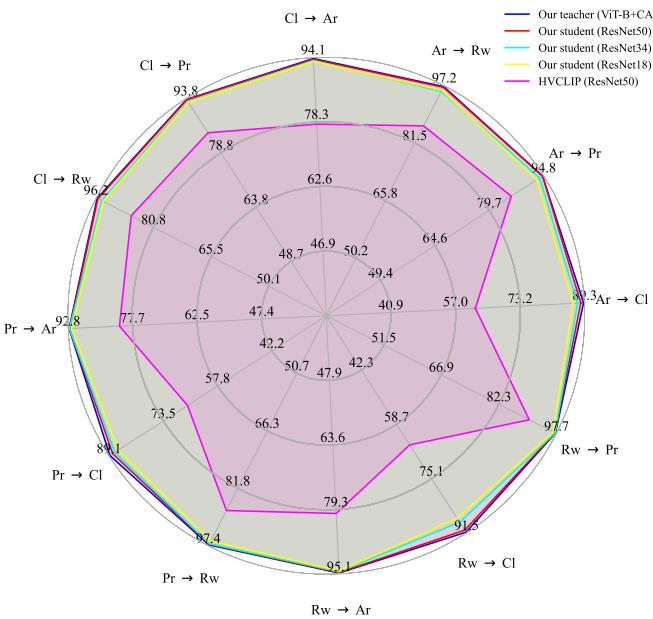


Figure 5: Performance of the teacher network and its three students on the **Office-Home** dataset under the UDA setting. The black numbers on the radar chart indicate the distance values from the center to the corresponding intersections of the concentric circles. The classification results show that our method performs effectively across various student network configurations. It remains unaffected by the capability gap between teacher and student networks and significantly surpasses the second-best approach, HVCLIP (Vesdapunt et al., 2024), even with a student network using fewer parameters.

Teacher-Student Pair		#Param. (M)	Ar→Cl	Cl→Pr	Pr→Rw	Rw→Ar	Mean
T	ViT-B+CA	89.7	89.3	93.8	97.4	95.1	93.9
S	ResNet50+MLP	24.6	88.6	93.7	97.2	95.0	93.6
	ResNet34+MLP	21.6	87.8	93.2	97.1	94.8	93.2
	ResNet18+MLP	11.5	86.7	93.1	96.3	94.6	92.7

Table 15: Accuracy of different student network (**S**) paired with the fixed teacher network (**T**) on **Office-Home** under the UDA setting.

In contrast, in **Setting 2**, the proposed CA module enriches intra-class relationships by aggregating representations of samples within the same category. This enables the ViT-B+CA network to enhance the robustness of representations within each class. As a result, the ViT-B+CA network demonstrates stronger discriminability between different classes compared to the ViT-B+MLP network. This can be observed clearly in the *car* class, where the quantity and quality of pseudo labels generated by **Setting 2** are significantly higher than those of **Setting 1**, as shown in Figs. 7a and 7b. By doing so, the ViT-B+CA teacher network can provide more reliable information to train the student network, resulting in a substantial increase in the overall results of the student network.

G.4 EFFECTIVENESS OF GRADIENT-BASED KD

We first provide the method to visualize the gradient trajectories of teacher and student networks, learnable parameters and their corresponding loss values from all episodes are used: $\{\theta_T^e, l_T^e\}_{e=1}^E$ and $\{\theta_S^e, l_S^e\}_{e=1}^E$, where $\theta_T = \{\theta_{vit}, \theta_{sim}, \theta_{agg}\}$, and $\theta_S = \{\theta_{cnn}, \theta_{mlp}\}$. Here, l_T^e and l_S^e are per-epoch loss values of the teacher and student networks, respectively. The parameters $\{\theta_T^e\}_{e=1}^E$ and

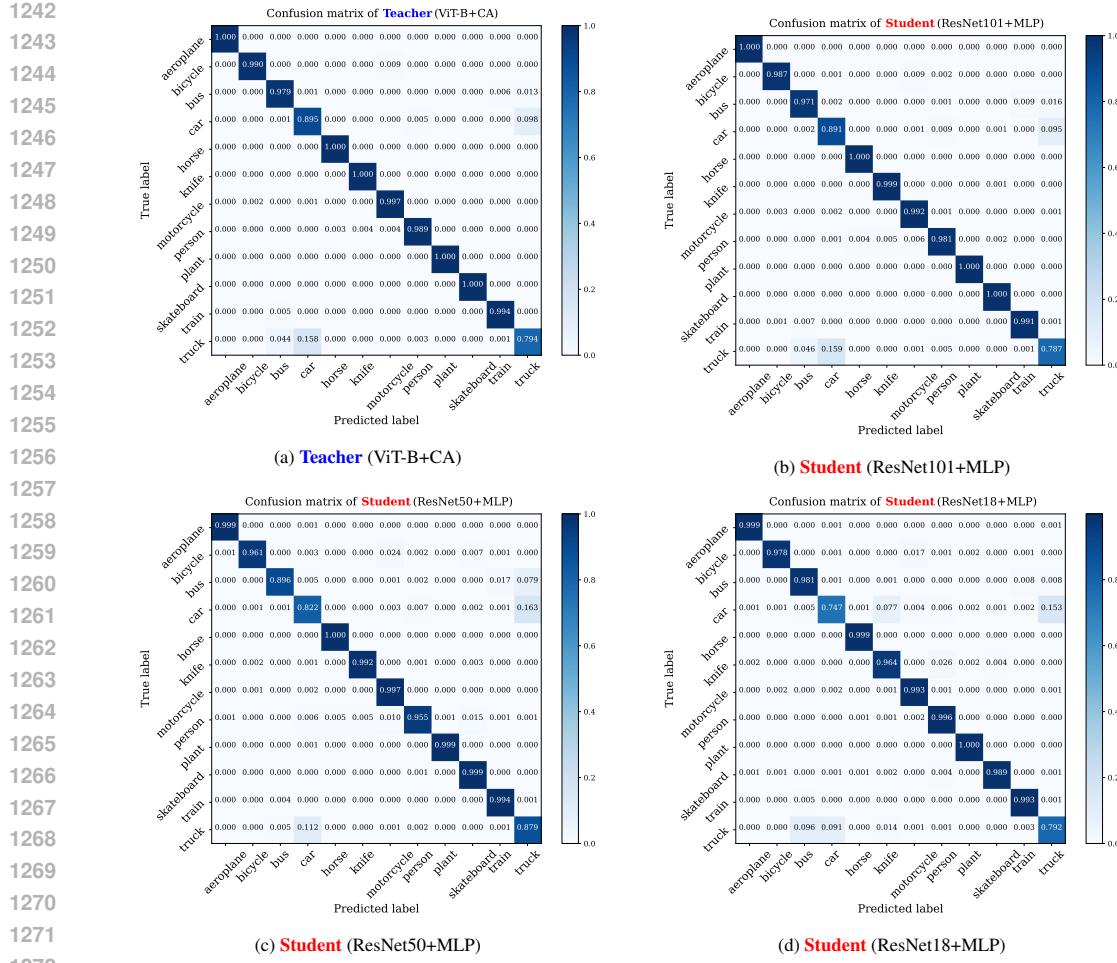


Figure 6: Confusion matrix of (a) the teacher network, and (b), (c), (d) representing various student networks, specifically ResNet101, ResNet50, and ResNet18, respectively. These networks are evaluated across 12 classes on **VisDA2017** under the UDA setting.

$\{\theta_S^e\}_{e=1}^E$ are projected into 2D space using UMAP McInnes et al. (2018), yielding $\tilde{\theta}_T = \{\tilde{\theta}_T^e\}_{e=1}^E$ and $\tilde{\theta}_S = \{\tilde{\theta}_S^e\}_{e=1}^E$, where $\tilde{\theta}_T^e, \tilde{\theta}_S^e \in \mathbb{R}^2$. The student projections $\tilde{\theta}_S$ are scaled to match the value range of $\tilde{\theta}_T$. We then sum up the loss values of the two networks per epoch to obtain a set of combined loss values, $L = \{l_T^e + l_S^e\}_{e=1}^E$. The variables $\tilde{\theta}_S$, $\tilde{\theta}_T$, and L are used to estimate the loss landscape using cubic interpolation. Finally, $\tilde{\theta}_S$, $\tilde{\theta}_T$, and the loss landscape are plotted to illustrate the gradient trajectories of the two networks, showing the direction of their convergency in the respective minima.

We provide additional results of the gradient trajectory visualization with various student networks such as ResNet50, ResNet34, and ResNet18 for the Ar \rightarrow Cl, Ar \rightarrow Pr, Pr \rightarrow Ar, and Rw \rightarrow Cl tasks from the **Office-Home** dataset in Tab. 18. These results demonstrate that the teacher network effectively guides the student, regardless of various student network architectures, within our GraDA framework, further validating its reliability for DA tasks.

G.5 FAIRNESS OF THE TEACHER NETWORK (Extended Version).

This study presents an enhanced approach to fairness evaluation, extending comparisons across multiple teacher networks. Experimental outcomes full 12 domain adaptation tasks, utilizing the **Office-Home** dataset, are detailed in Table 14. Notably, networks employing the robust ViT-B+CA teacher model (denoted as (S)) demonstrate superior performance. Furthermore, the proposed CA

1296 module proves effective when integrated with either the ResNet50 architecture or the more compact
 1297 ViT-Tiny model. The student network (**S**) supported by the CA-based teacher network (**T**) consis-
 1298 tently surpasses the second-best method, HVCLIP, highlighting that its performance improvements
 1299 derive primarily from the CA module and the efficacy of pseudo-labeling, rather than solely from
 1300 the backbone architecture.

1301

1302 G.6 CAN THE TEACHER ADAPT TO VARIOUS STUDENTS?

1303

1304 To explore this concern, we construct diverse student networks, including ResNet50+MLP,
 1305 ResNet34+MLP, and ResNet18+MLP, while fixing ViT-B+CA as the teacher network. As listed
 1306 in Table 15, the experimental results across 4 DA tasks on **Office-Home** under the UDA setting
 1307 demonstrate that GraDA is effective regardless of the student network used. Surprisingly, despite
 1308 having considerably fewer parameters than ResNet34 and ResNet50, the student network based on
 1309 ResNet18 achieves competitive performance, with small performance gaps of 0.5% and 0.9%, re-
 1310 spectively.

1311

1312 H VISUALIZATION ANALYSIS

1313

1314 In this section, t-SNE Van der Maaten & Hinton (2008) visualizations are provided to show embed-
 1315 ding improvements across training strategies, while Grad-CAM Selvaraju et al. (2017) is used to
 1316 demonstrate the enhanced visual performance of the student network in GraDA.

1317

1318 H.1 t-SNE VISUALIZATION

1319

1320 We use t-SNE Van der Maaten & Hinton (2008) to further evaluate the effectiveness of the proposed
 1321 gradient-based knowledge distillation for domain adaptation via visualizing domain alignment and
 1322 target feature distributions. Figure 8 presents the visualization results of the $\text{Rw} \rightarrow \text{Cl}$ task on **Office-
 1323 Home** under the UDA setting, while Fig. 9 illustrates results of the $\text{rel} \rightarrow \text{pnt}$ task on **DomainNet**
 1324 under the SSDA setting (3-shot). We first show results of the vanilla student trained using *super-
 1325 vised*, *self-enhanced*, and *cross-class confusion* losses without guidance from the teacher network,
 1326 as specified in setting **S3** of the *main manuscript*. Then, we investigate the impact of the teacher net-
 1327 work on the feature space of the student network by progressively adding *supervised* (**Teacher+S4**),
 1328 *self-enhanced* (**Teacher+S5**), and *cross-class confusion* (**Teacher+S6**) settings.

1329

1330 The vanilla student (**S3**) struggles to provide robust representations due to the sensitivity of CNN
 1331 to domain shift and its limited ability to capture relationships among neighboring samples. As
 1332 shown in Figs. 8a and 9a, the target features are highly misalignment compared to those guided by
 1333 the teacher network under the **Teacher+S4** setting (Figs. 8b and 9b) thanks to ability in enriching
 1334 intra-class relations. In cases **Teacher+S5**, the teacher network leverages pseudo labels generated
 1335 from unlabeled target data to enhance intra-class information on the target domain and mitigating
 1336 domain shifts through *class-aware feature alignment*. As shown in Figs. 8c and 9c, the teacher
 1337 network effectively guides the student network using these pseudo labels, enabling the student to
 1338 align source and target features. Additionally, the discriminative ability among the different classes
 1339 of the student network is also improved, as illustrated in Figs. 8g and 9g. Finally, we implement the
 1340 cross-class confusion loss in the **Teacher+S6** setting to reduce ambiguous prediction among classes,
 1341 resulting in a slight improvement, as shown in Figs. 8d and 8h for **Office-Home**, and Figs. 9d and
 1342 9h for **DomainNet**.

1343

1344 H.2 GRAD-CAM VISUALIZATION

1345

1346 We visualize attention maps to examine our gradient-guided ability of the teacher network for the
 1347 student network by using Grad-CAM Selvaraju et al. (2017). To clearly demonstrate the improve-
 1348 ments of our student network, GraDA (**S**), over the vanilla student network (without any guidance),
 1349 we present samples that are misclassified by the vanilla student but correctly classified by GraDA
 1350 (**S**) under the UDA and SSDA settings on the **Office-Home** and **DomainNet** datasets.

1351

1352 **Office-Home.** For the **Office-Home** dataset under UDA, we present attention results for four
 1353 tasks: $\text{Ar} \rightarrow \text{Cl}$, $\text{Cl} \rightarrow \text{Pr}$, $\text{Pr} \rightarrow \text{Rw}$, and $\text{Rw} \rightarrow \text{Ar}$. In both the vanilla student network and GraDA
 1354 (**S**), ResNet50 is utilized as the feature extractor. As shown in Tab. 19, without any guidance, the

1350 vanilla student network struggles to capture object regions in several classes, such as “alarm clock”,
 1351 “keyboard”, “spoon”, “bucket”, “chair”, “couch”, “flipflops”, “flowers”, and “shelf”. Meanwhile,
 1352 GraDA (S) is shown to focus more precise regions, shifting focus from irrelevant to relevant ele-
 1353 ments, such as from a cable to a “keyboard” or a broom to a “bucket”. Upon closer examination, it is
 1354 clear that GraDA (S) closely emulates the behavior of GraDA (T), which itself demonstrates strong
 1355 performance. For example, in the case of the class “bed”, the vanilla student network fails to capture
 1356 the entire bed and instead focuses only on the footboard, leading to the wrong prediction. However,
 1357 our teacher network successfully captures the full object, enabling our student network, GraDA (S),
 1358 to learn and mimic this behavior. Similar observations are evident for “batteries”, “post-it notes”,
 1359 “toothbrush”, and “toys”.

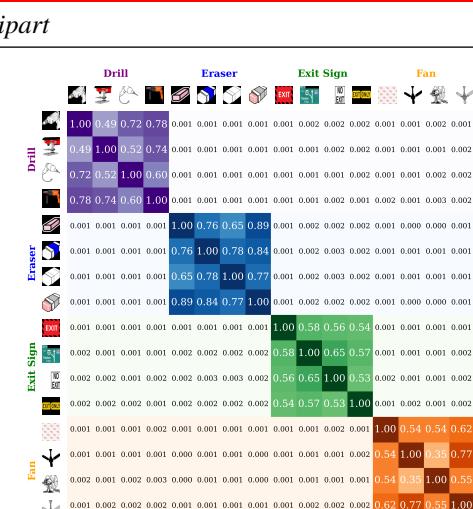
1360 **DomainNet.** For the **DomainNet** dataset under SSDA, we extract the attention results for four tasks:
 1361 rel→clp, clp→skt, skt→pnt, and pnt→rel, which are shown in Tab. 20. ResNet34 is utilized as a
 1362 feature extractor for the student network. Overall, we observe that the teacher network GraDA (T)
 1363 accurately captures the salient regions that strongly represent the class label of the image. For sam-
 1364 ples containing a single instance, such as “crab”, the teacher network accurately focuses on the crab
 1365 in the center, effectively guiding the student to mimic this behavior. In contrast, the vanilla student
 1366 focuses only on the frame, which provides no key information and ultimately leads to misclassifi-
 1367 cation. Same observations are evident for “cell phone”, “spider”, “alarm clock”, “bus”, and “sub-
 1368 marine”. In the case of multiple instances appearing in an image, two scenarios can be identified:
 1369 1) instances with similar characteristics and 2) salient instances that are mixed with miscellaneous
 1370 or less relevant instances. In the first scenario, for example, an ant appears with a book in the “ant”
 1371 class, and a cello appears with a panda in the “cello” class. This can lead to confusion. Interestingly,
 1372 the student network guided by GraDA (T) is shown to correctly focus on the salient instances, pre-
 1373 cisely detecting the ant’s head in the “ant” class and effectively separating the cello from the panda
 1374 in the “cello” class. In contrast, the vanilla student fails to do so, focusing on completely irrelevant
 1375 instances in all cases. Similar observations are evident for the “cactus”, “cell phone”, and “banana”
 1376 classes. In the second scenario, where multiple instances with similar characteristics appear, our
 1377 student network successfully covers all of them. For example, GraDA (S) captures all dolphins and
 1378 all rabbits in the “dolphin” and “rabbit” classes, respectively, whereas the vanilla student focuses on
 1379 only one instance. Similar observations are made for the “whale” and “sheep” classes.

1380
 1381
 1382
 1383

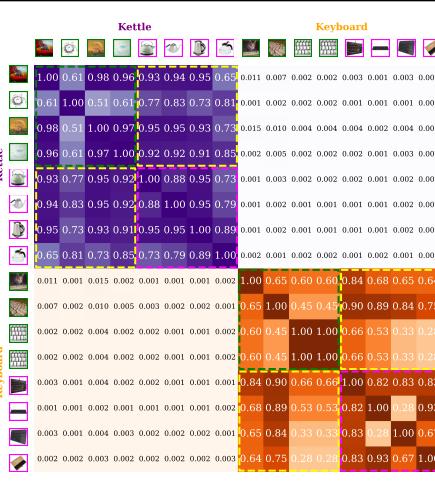
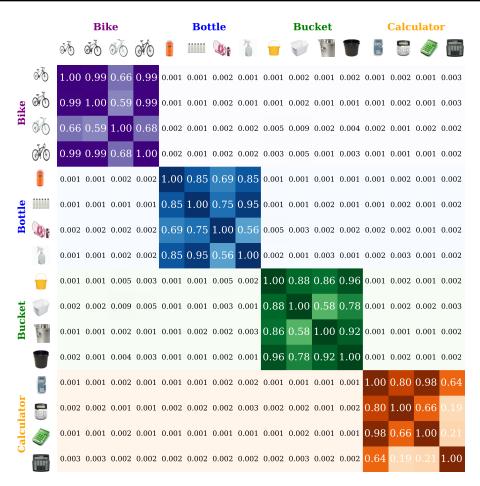
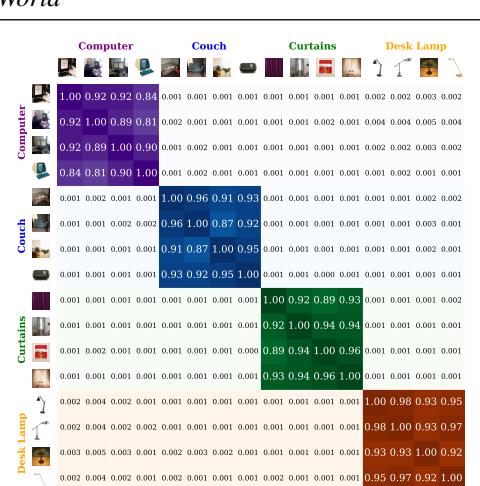
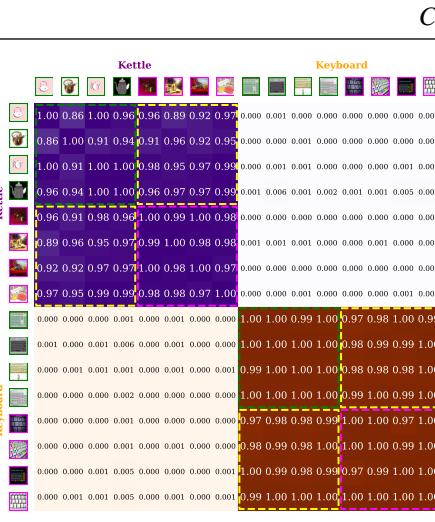
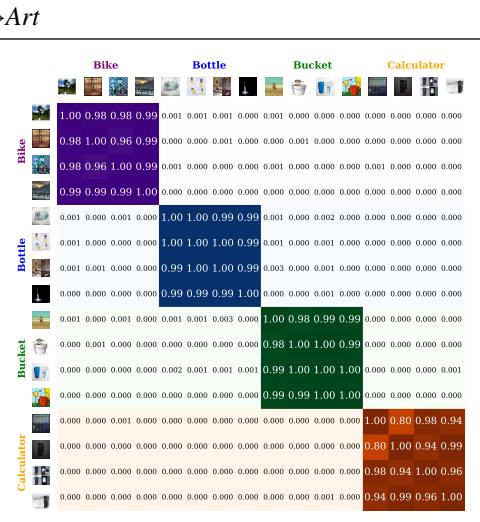
Intra-class relations and Class-aware alignment (during training)

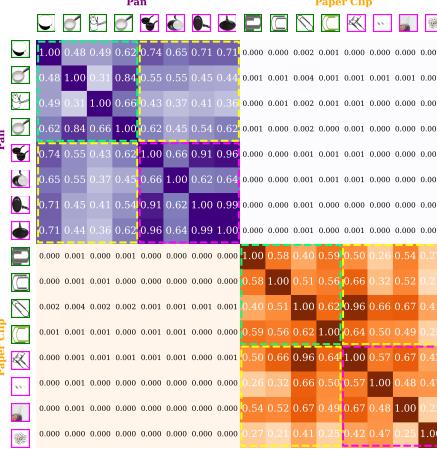
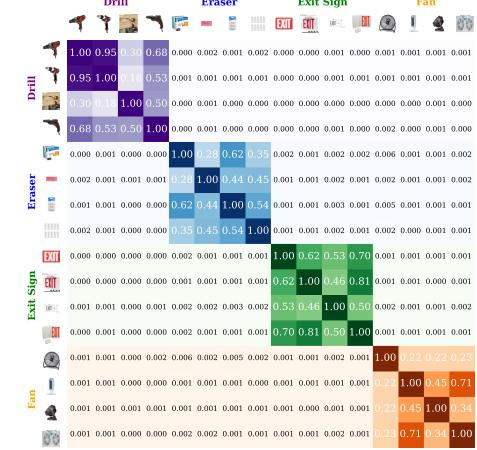
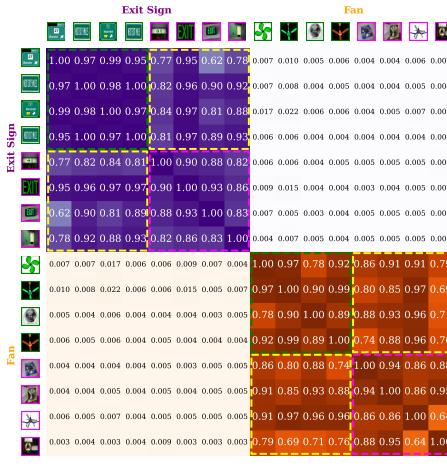
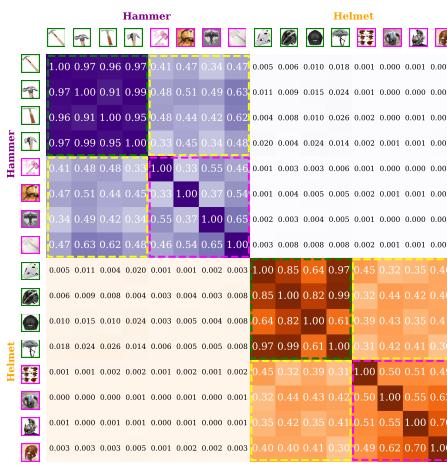
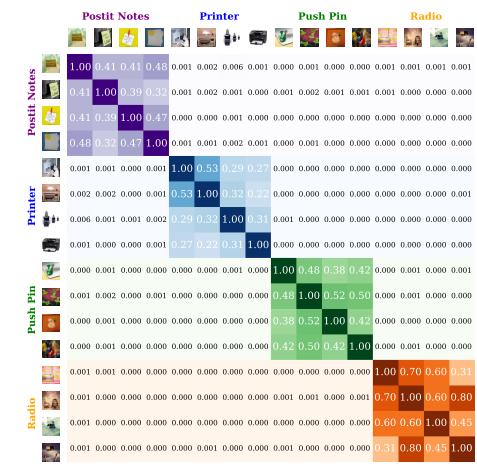
Art→Clipart

Intra-class relations on target domain only (during testing)



1400
 1401
 1402
 1403

1404 1405 1406	Intra-class relations and Class-aware alignment (during training)	Intra-class relations on target domain only (during testing)
<i>Art → Product</i>		
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423		
<i>Art → Real World</i>		
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440		
<i>Clipart → Art</i>		
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457		

1458
1459
1460**Intra-class relations and Class-aware
alignment (during training)**1461
1462*Clipart→Product*1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477**Intra-class relations on target domain only
(during testing)***Clipart→Product*1478
1479*Clipart→Real World*1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
14941495
1496*Product→Art*1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512
1513
1514**Intra-class relations and Class-aware
alignment (during training)**

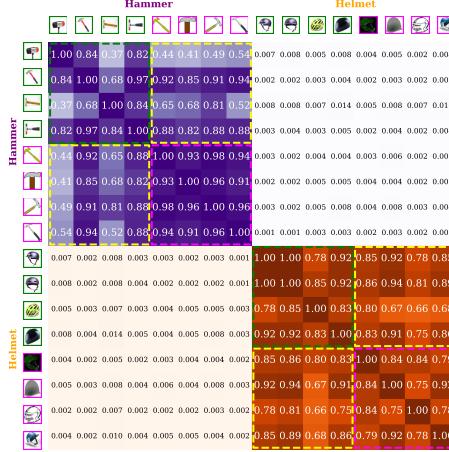
1515

**Intra-class relations on target domain only
(during testing)**

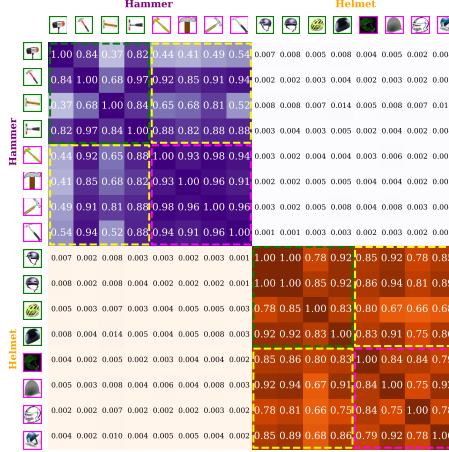
1516

Product→*Clipart*

1517



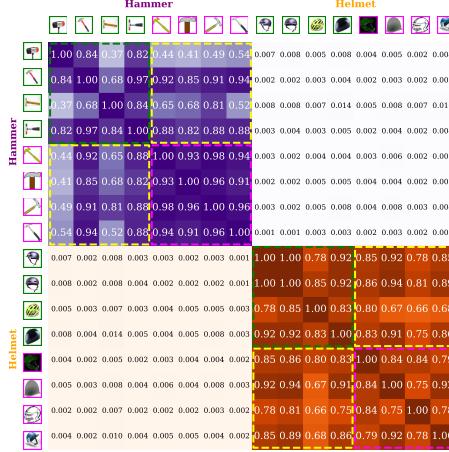
1518



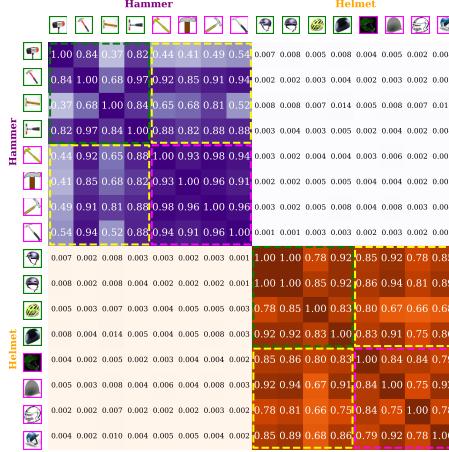
1519



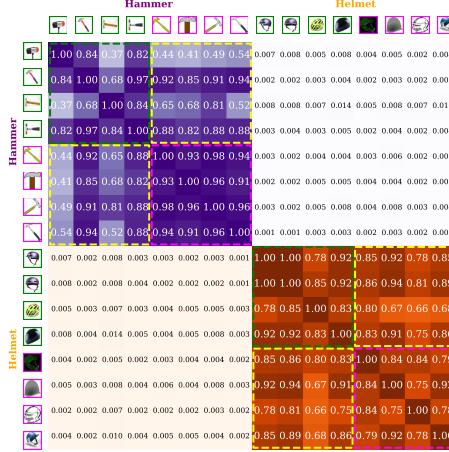
1520



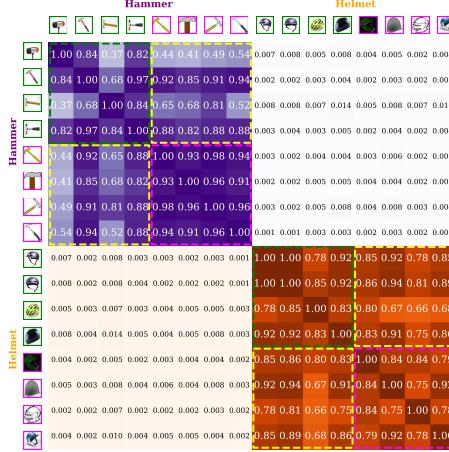
1521



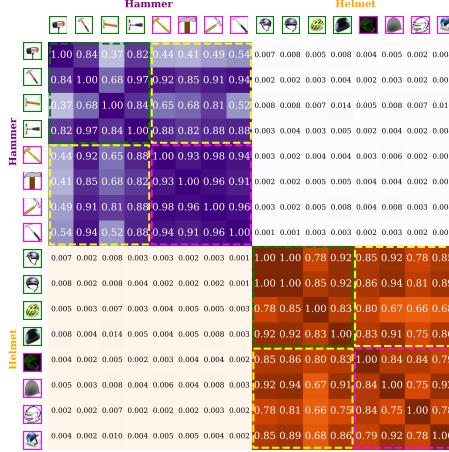
1522



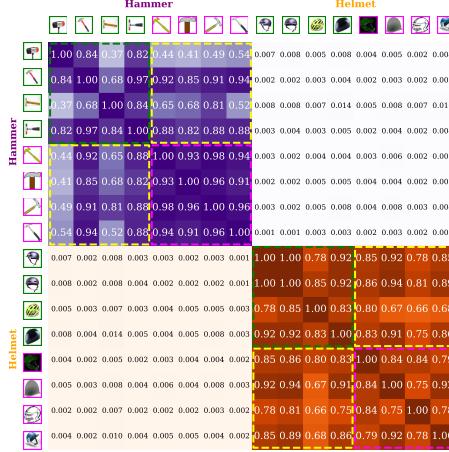
1523



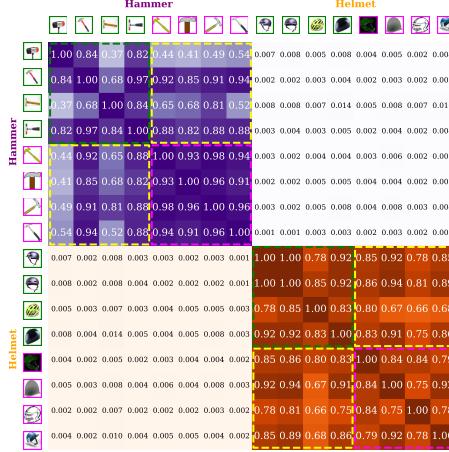
1524



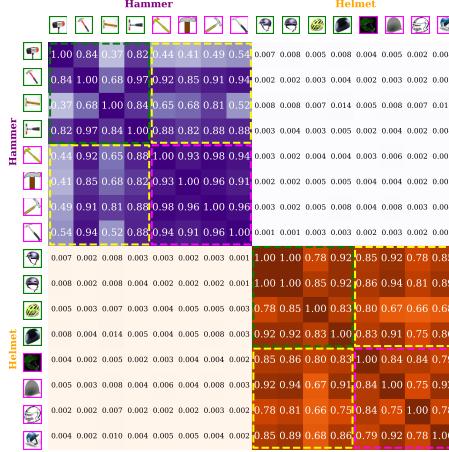
1525



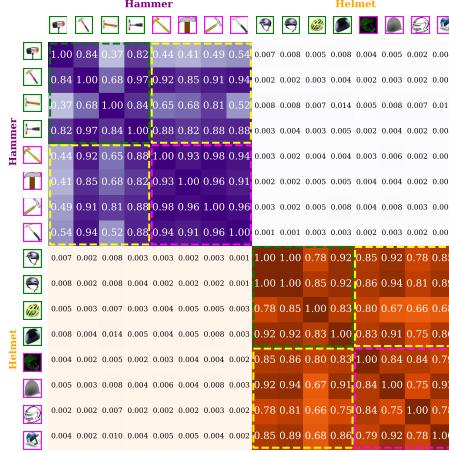
1526



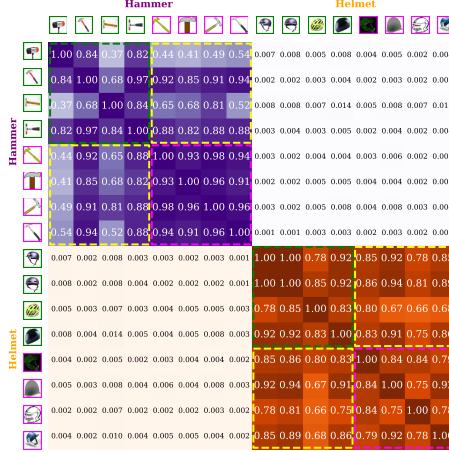
1527



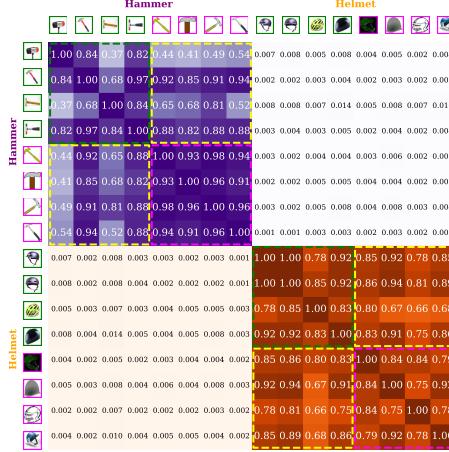
1528



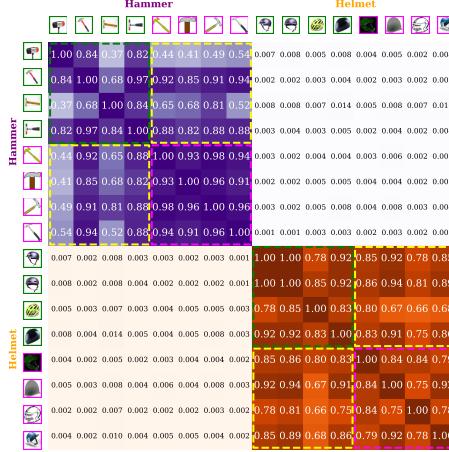
1529



1530



1531

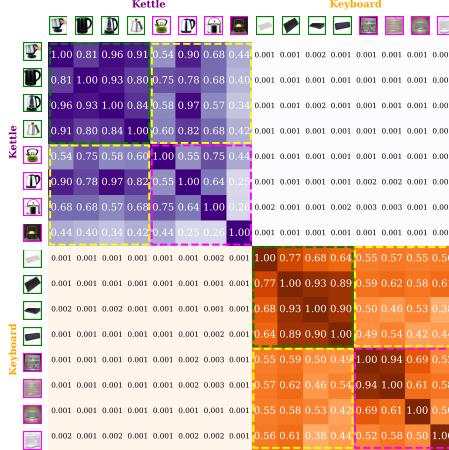


1532

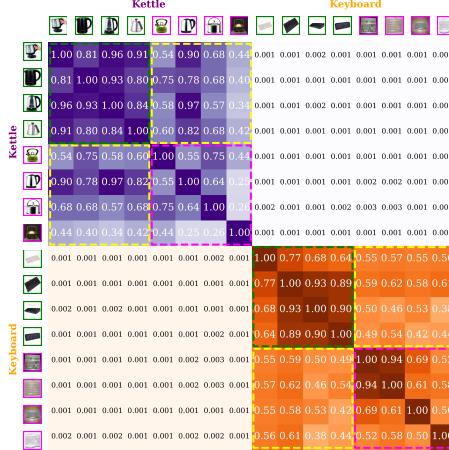
1533

Product→*Real World*

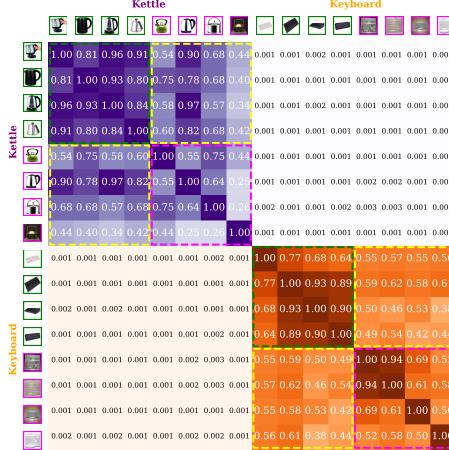
1534



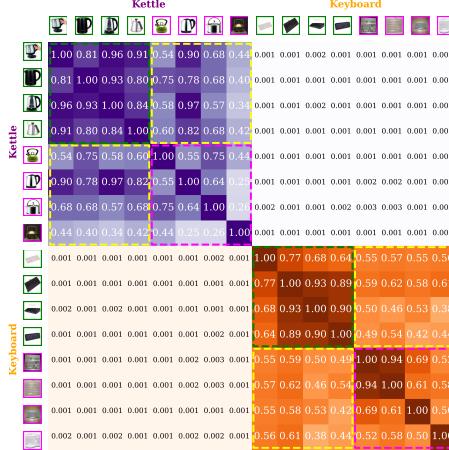
1535



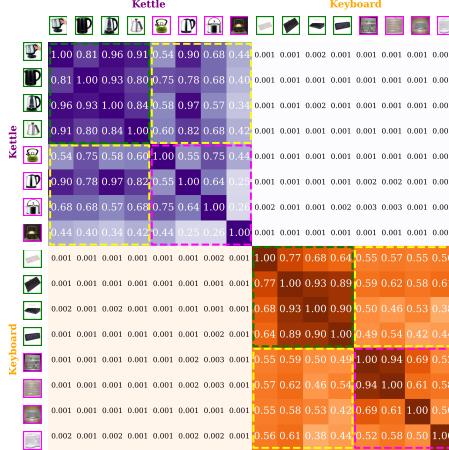
1536



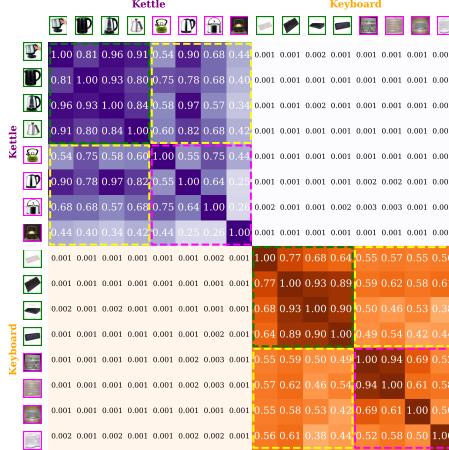
1537



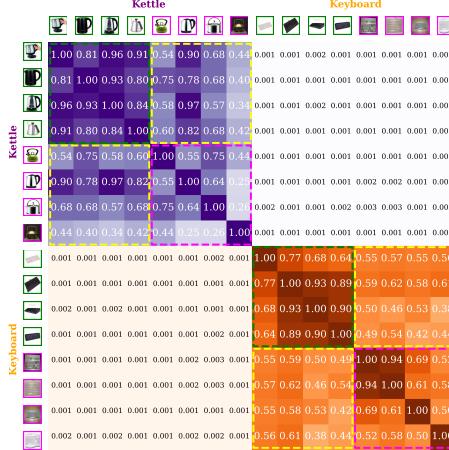
1538



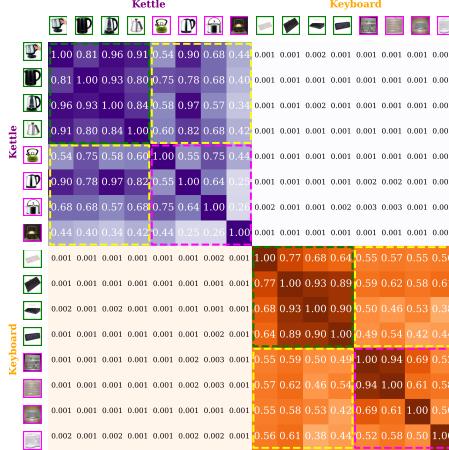
1539



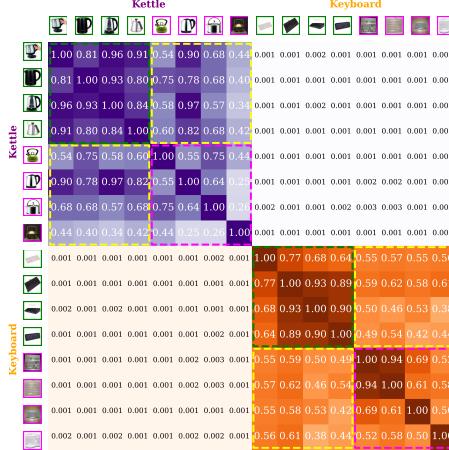
1540



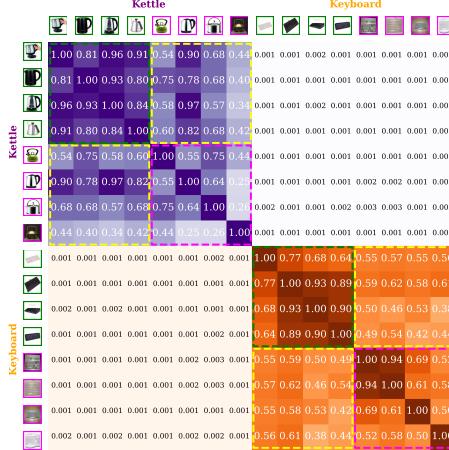
1541



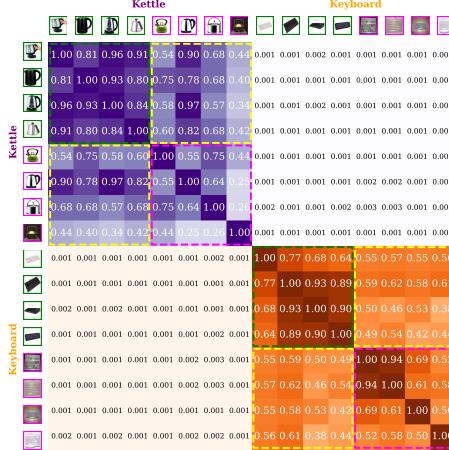
1542



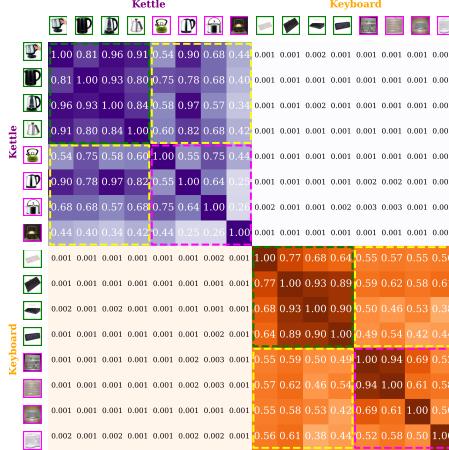
1543



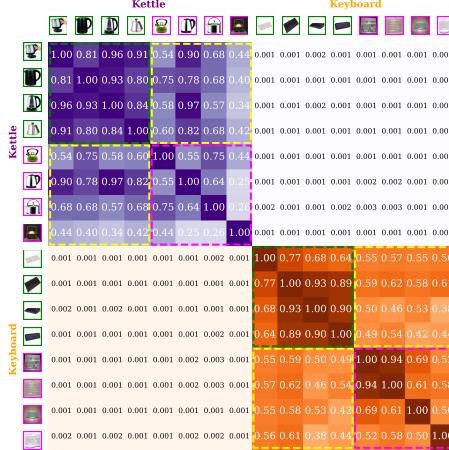
1544



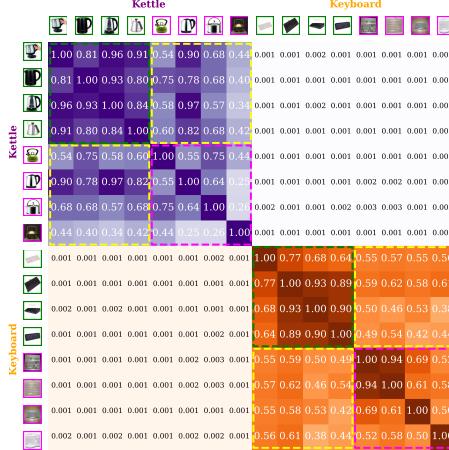
1545



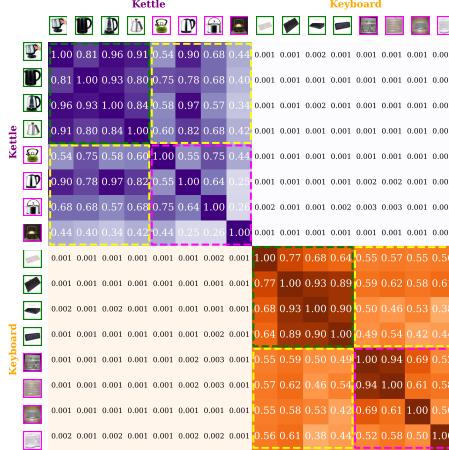
1546



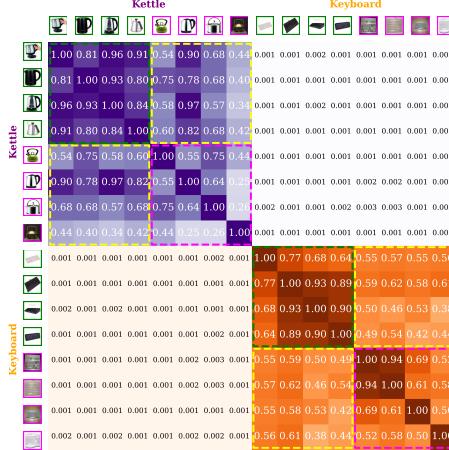
1547



1548



1549



1550

Real World→*Art*

1551



1552

1553

1554

1555

1556



1557

1558

1559

1560

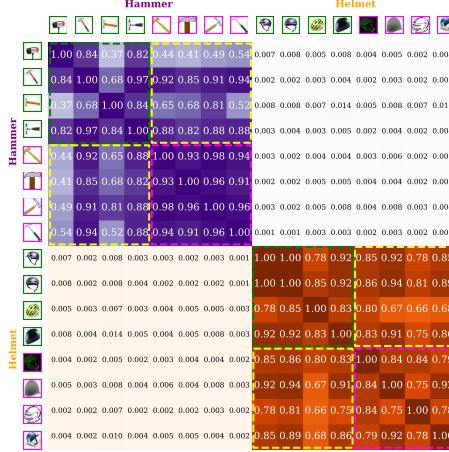
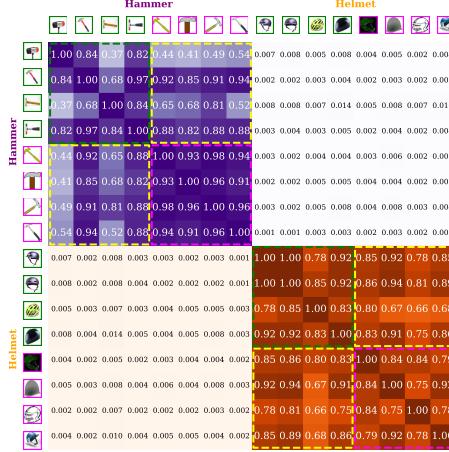
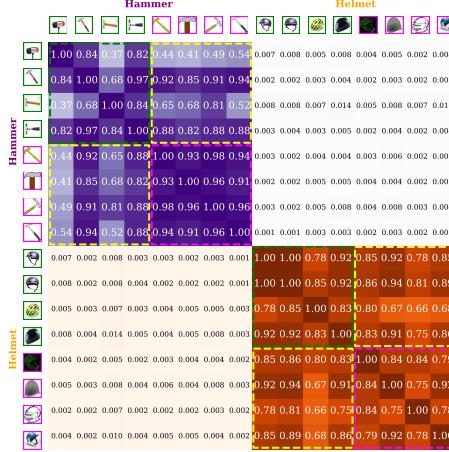
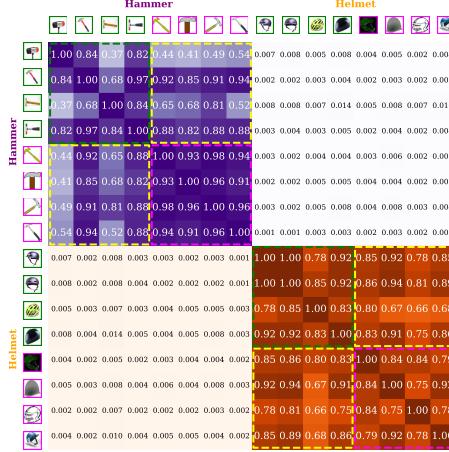
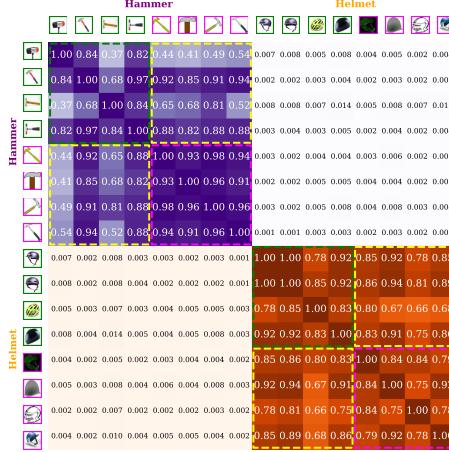
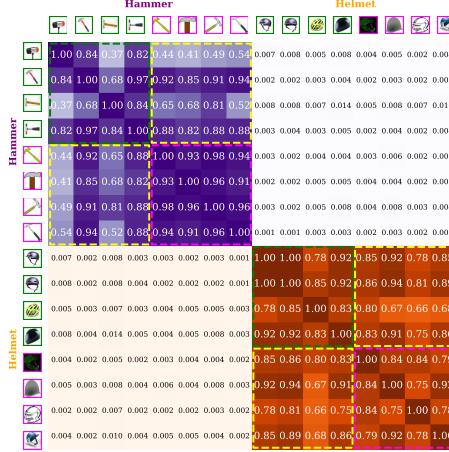
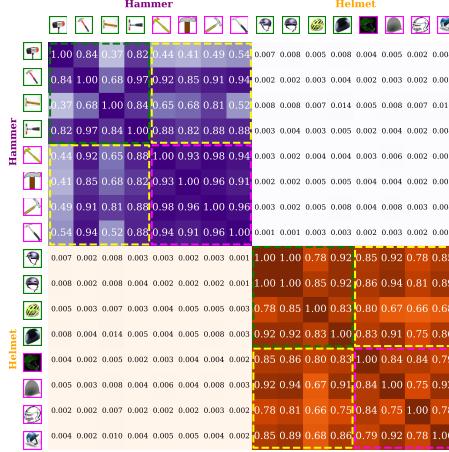
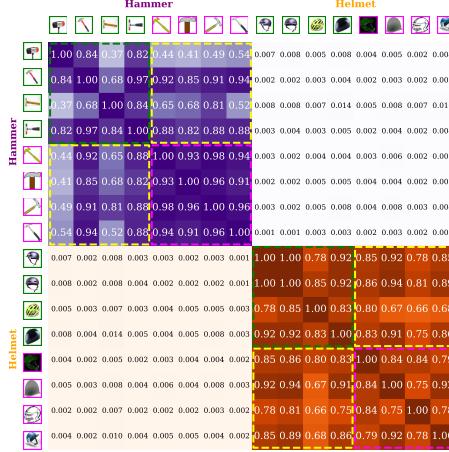
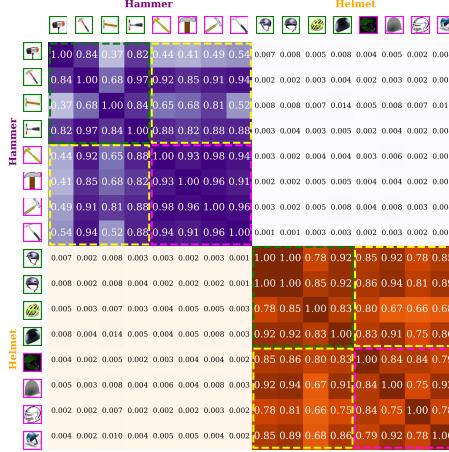
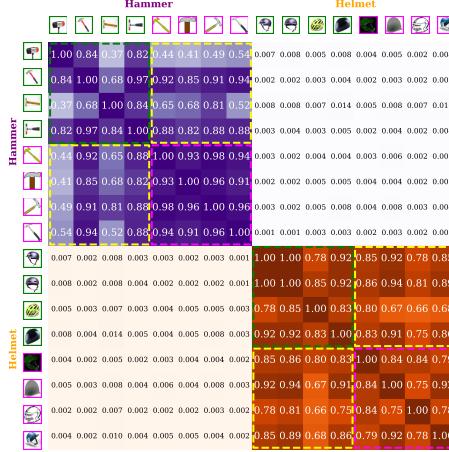
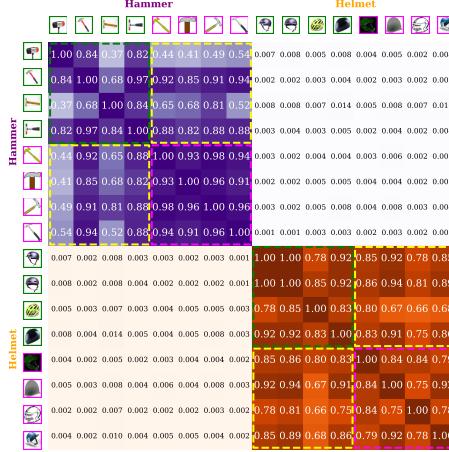
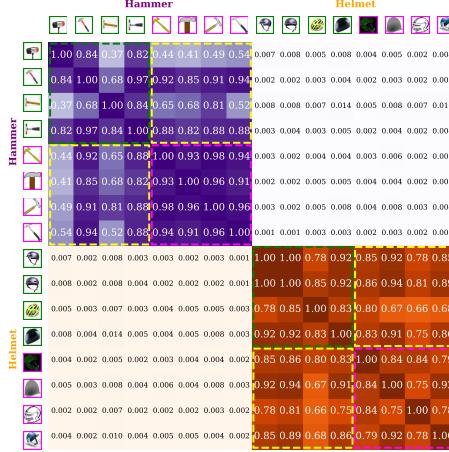
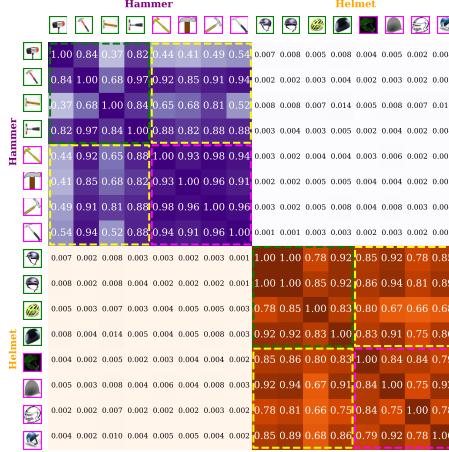
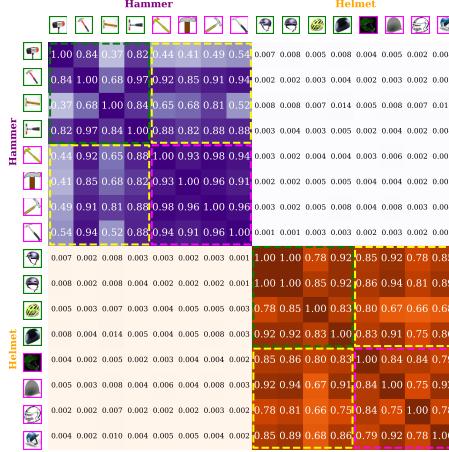
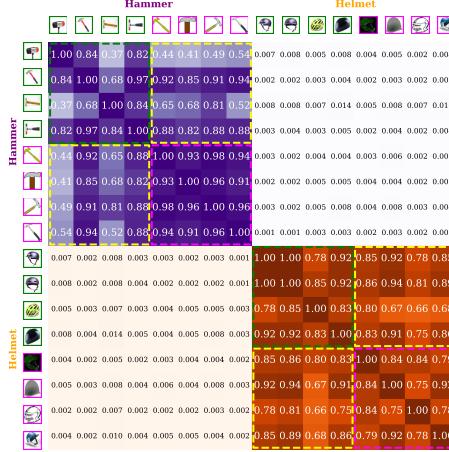
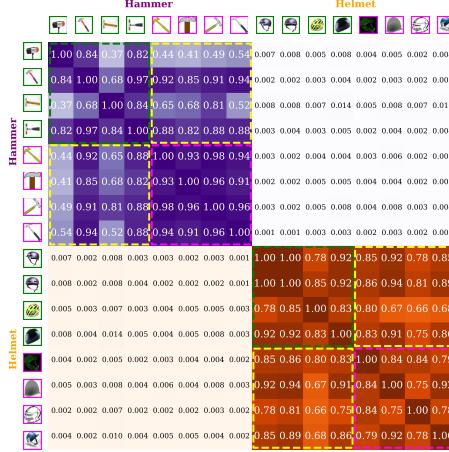
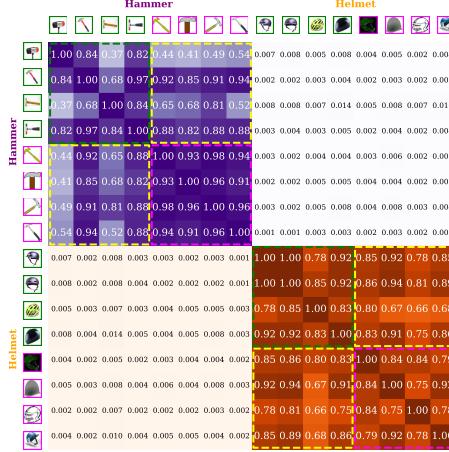
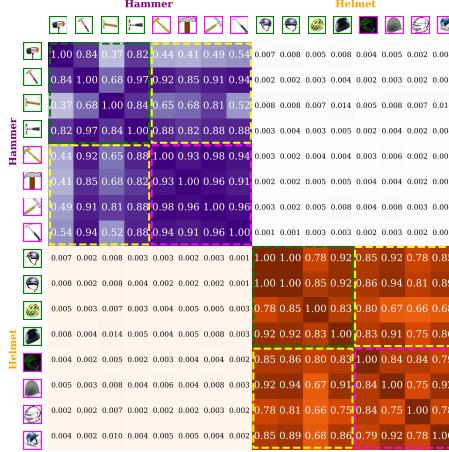
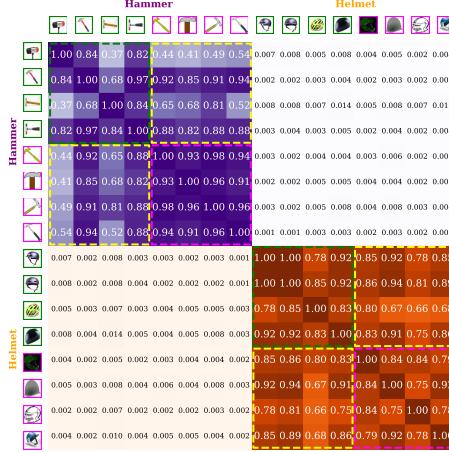
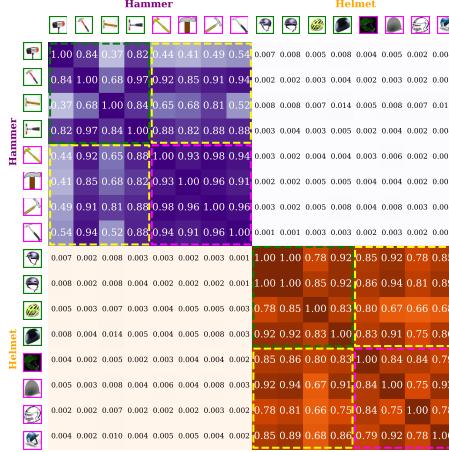
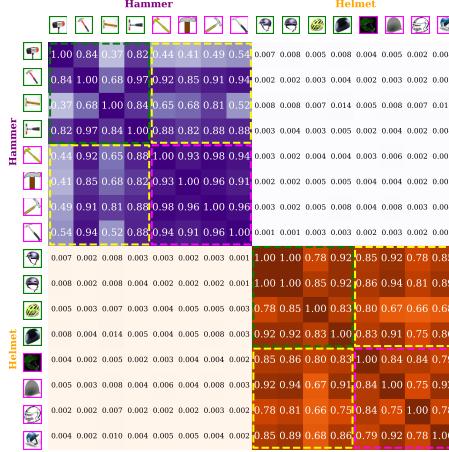
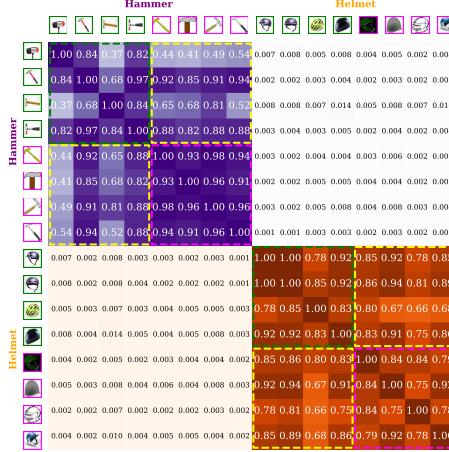
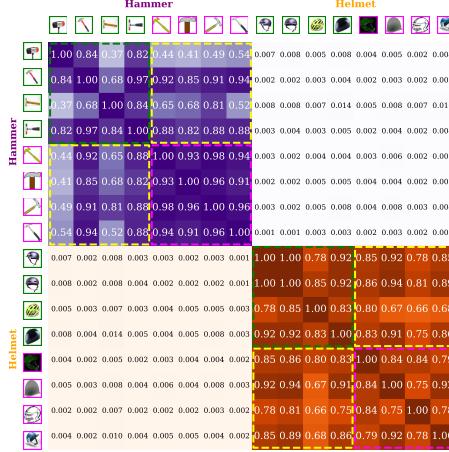
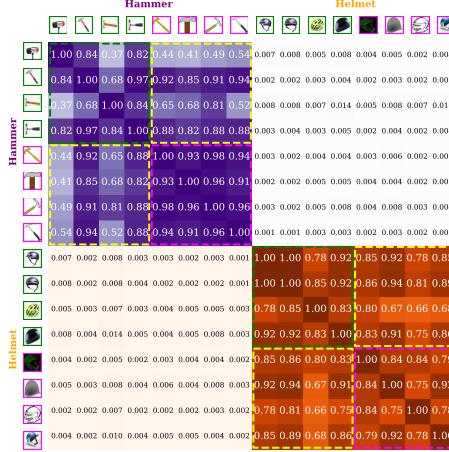
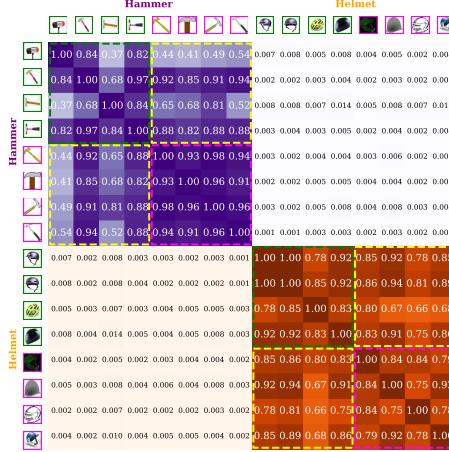
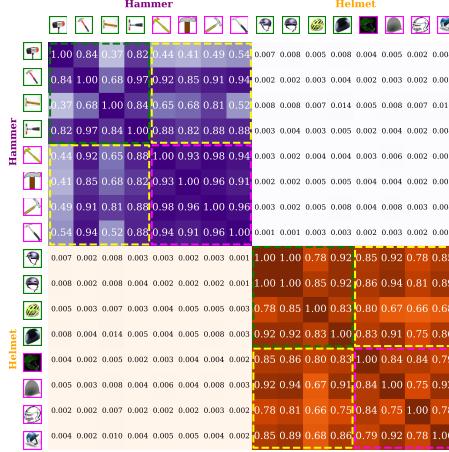
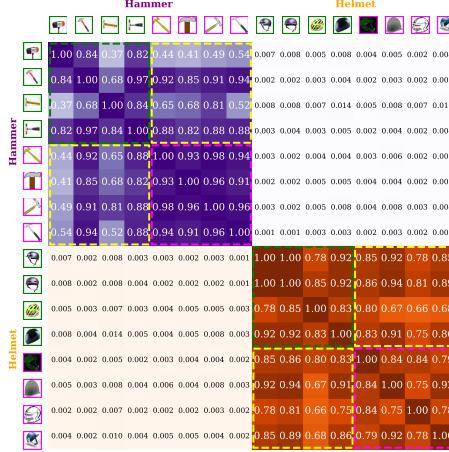
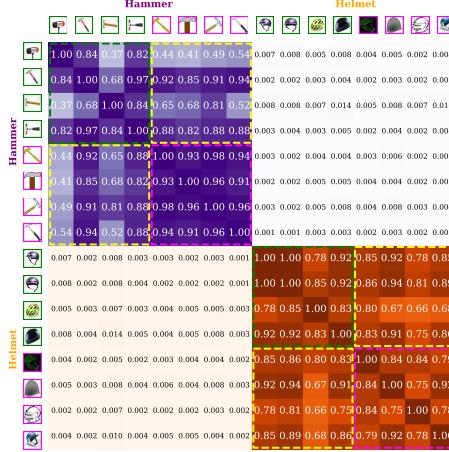
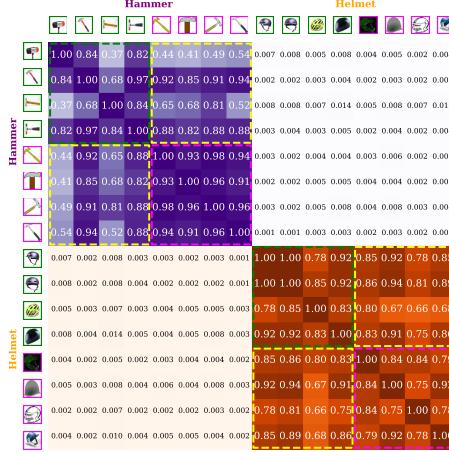
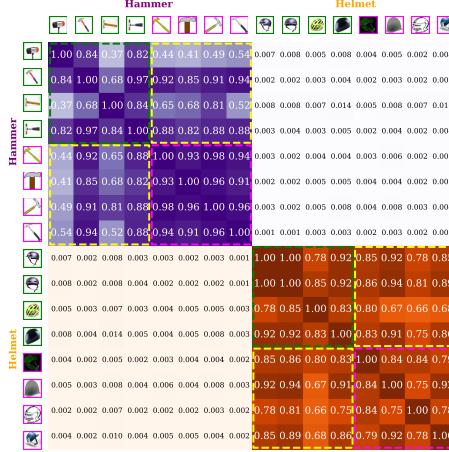
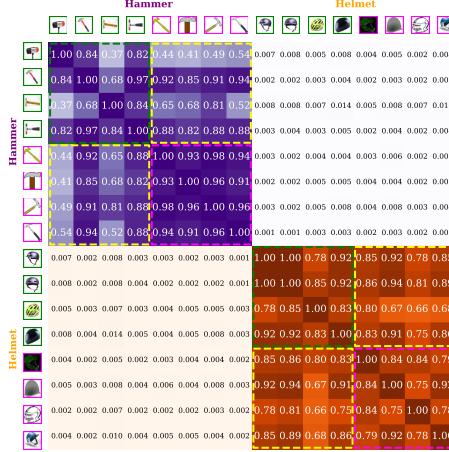
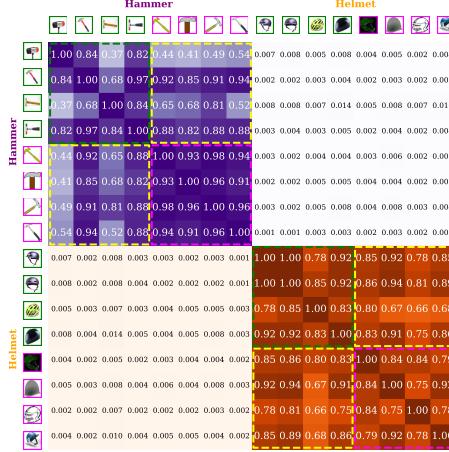
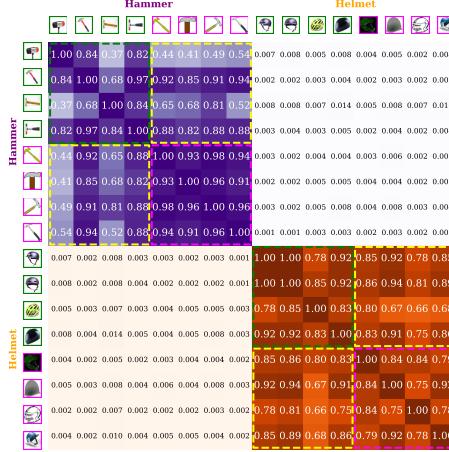
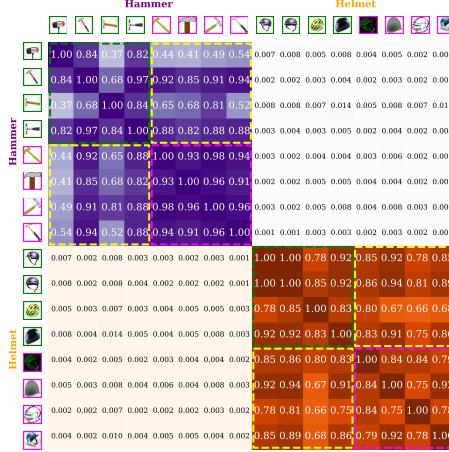
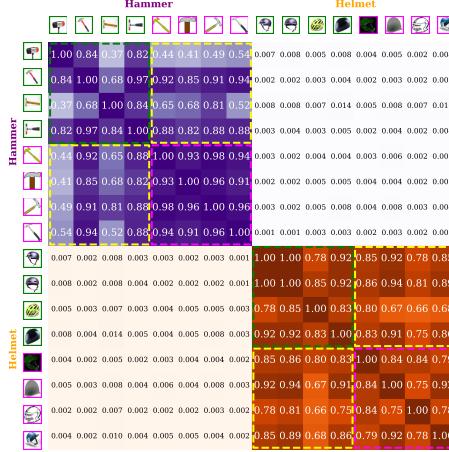
1561

1562

1563

1564

1565

Product→*Clipart*

1566	Intra-class relations and Class-aware 1567 alignment (during training)												Intra-class relations on target domain only 1568 (during testing)														
1569	<i>Real World</i> \rightarrow <i>Clipart</i>																										
1571		Exit Sign												Fan													
1572		1.00	0.67	0.89	0.89	0.82	0.85	0.90	0.84	0.003	0.003	0.003	0.004	0.005	0.003	0.005	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003			
1573		0.67	1.00	0.85	0.88	0.86	0.61	0.63	0.59	0.004	0.004	0.006	0.008	0.003	0.003	0.005	0.003	0.003	0.005	0.003	0.003	0.003	0.003	0.003			
1574		0.89	0.85	1.00	0.93	0.80	0.88	0.91	0.89	0.003	0.004	0.004	0.005	0.005	0.003	0.005	0.003	0.005	0.003	0.005	0.003	0.005	0.003	0.003			
1575		0.89	0.88	0.93	1.00	0.64	0.80	0.84	0.81	0.007	0.009	0.013	0.009	0.006	0.006	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007			
1576		0.82	0.36	0.80	0.64	1.00	0.95	0.97	0.91	0.005	0.005	0.003	0.004	0.003	0.005	0.006	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
1577		0.85	0.61	0.88	0.86	0.95	1.00	0.96	0.98	0.004	0.004	0.004	0.003	0.002	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004			
1578		0.90	0.63	0.91	0.84	0.97	0.96	1.00	0.94	0.004	0.004	0.004	0.003	0.003	0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
1579		0.84	0.59	0.89	0.81	0.91	0.98	0.94	1.00	0.003	0.004	0.003	0.002	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004			
1580		0.003	0.004	0.004	0.004	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
1581		0.003	0.006	0.004	0.013	0.003	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003			
1582		0.004	0.005	0.005	0.006	0.006	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002			
1583		0.005	0.005	0.005	0.007	0.006	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004			
1584		0.003	0.004	0.003	0.007	0.005	0.004	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004			
1585		<i>Real World</i> \rightarrow <i>Product</i>																									
1586		Alarm Clock												Backpack													
1589		1.00	0.55	0.58	0.84	0.45	0.66	0.36	0.56	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
1590		0.55	1.00	0.53	0.58	0.60	0.70	0.47	0.69	0.001	0.000	0.001	0.001	0.000	0.002	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
1591		0.58	0.53	1.00	0.88	0.73	0.72	0.38	0.49	0.001	0.000	0.001	0.003	0.000	0.002	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
1592		0.84	0.58	0.88	1.00	0.69	0.78	0.39	0.46	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
1593		0.45	0.60	0.73	0.69	1.00	0.75	0.56	0.81	0.000	0.003	0.001	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
1594		0.66	0.70	0.72	0.78	0.75	1.00	0.80	0.69	0.001	0.003	0.001	0.002	0.001	0.002	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
1595		0.38	0.47	0.39	0.56	0.80	1.00	0.60	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
1596		0.50	0.69	0.49	0.46	0.81	0.69	0.60	1.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
1597		0.001	0.001	0.001	0.001	0.000	0.000	0.003	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000			
1598		0.001	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
1599		0.004	0.001	0.003	0.002	0.001	0.002	0.001	0.001	0.000	0.56	0.36	0.45	1.00	0.58	0.51	0.38	0.45	0.38	0.45	0.38	0.45	0.38	0.45	0.38		
1600		0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.73	0.87	0.78	0.59	1.00	0.44	0.40	0.39	0.46	0.37	0.44	0.39	0.46	0.37	0.44		
1601		0.001	0.000	0.000	0.000	0.000	0.000	0.002	0.001	0.000	0.49	0.38	0.45	0.51	0.44	1.00	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26		
1602		0.001	0.001	0.001	0.001	0.000	0.000	0.001	0.001	0.000	0.66	0.80	0.77	0.31	0.90	0.26	1.00	0.73	1.00	0.73	1.00	0.73	1.00	0.73	1.00		
1603		<i>Real World</i> \rightarrow <i>Product</i>																									
1609		Pan												Paper Clip													
1610		1.00	0.88	0.78	0.92	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.001	1.00	0.68	0.76	0.80	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
1611		0.88	1.00	0.83	1.00	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.78	0.84	1.00	0.84	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	
1612		0.78	0.83	1.00	0.73	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		
1613		0.93	1.00	0.73	0.70	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		
1614		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	1.00	0.71	0.64	0.61	0.001	0.003	0.002	0.002	0.001	0.003	0.002	0.001	
1615		0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.71	1.00	0.59	0.81	0.003	0.009	0.006	0.004	0.002	0.008	0.003	0.001
1616		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.64	0.59	1.00	0.35	0.002	0.007	0.002	0.003	0.001	0.004	0.003	0.001
1617		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		
1618		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		
1619		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		

Table 16: Similarity matrix \tilde{S} of the 12 UDA tasks on the **Office-Home** dataset. Dashed green and pink boxes are marked for the relationships of samples within the source and target domains, respectively. The dashed yellow boxes outline the relationships of cross-domain samples. Higher values reflect greater similarity scores.

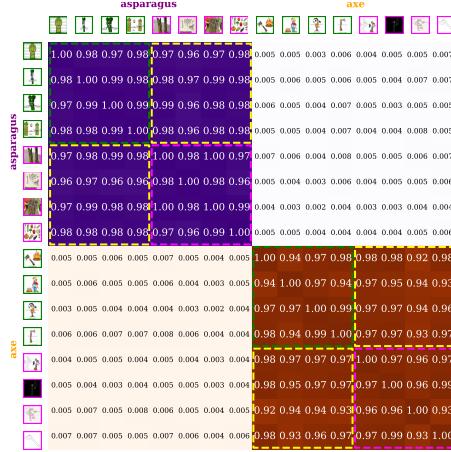
1620	Intra-class relations and Class-aware alignment (during training)		Intra-class relations on target domain only (during testing)	
<i>real</i> \rightarrow <i>clipart</i>				
1623				
1624				
1625		ant		blackberry
1626		anvil		blueberry
1627				bottlecap
1628				broccoli
1629	ant			
1630				blackberry
1631				blueberry
1632				bottlecap
1633				broccoli
1634				
1635	moll			
1636				
1637				
1638				
1639				
1640	<i>real</i> \rightarrow <i>painting</i>			
1641				
1642		cactus		leaf
1643		cake		lion
1644				lipstick
1645	cactus			lobster
1646				
1647				
1648				
1649				
1650				
1651				
1652				
1653				
1654				
1655				
1656				
1657	<i>painting</i> \rightarrow <i>clipart</i>			
1658				
1659		bus		cat
1660		butterfly		ceiling_fan
1661				cello
1662	bus			cell_phone
1663				
1664				
1665				
1666				
1667				
1668				
1669				
1670				
1671				
1672				
1673				

1674
1675
1676**Intra-class relations and Class-aware alignment (during training)**

1677

clipart \rightarrow *sketch*

1678



1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

Intra-class relations on target domain only (during testing)

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

sketch \rightarrow *painting*

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

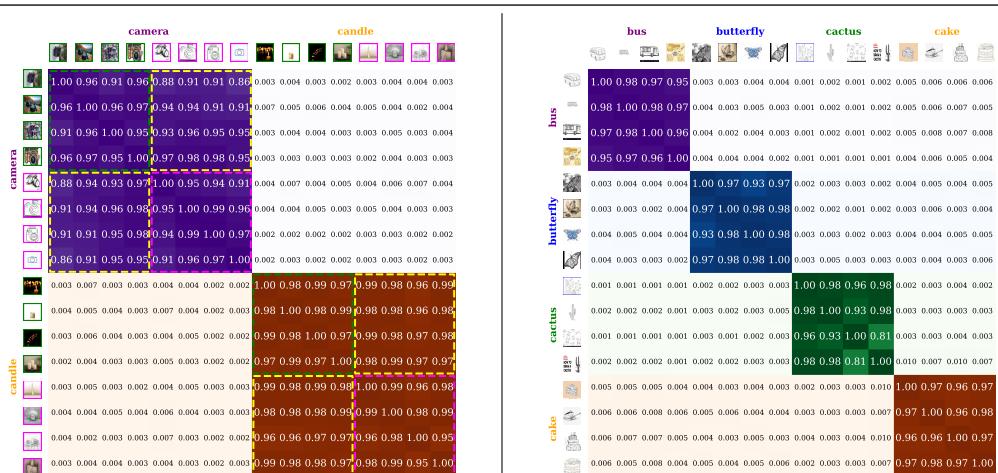
1723

1724

1725

1726

1727

real \rightarrow *sketch*

1728	Intra-class relations and Class-aware 1729 alignment (during training)										Intra-class relations on target domain only 1730 (during testing)									
1731	<i>painting</i> \rightarrow <i>real</i>																			
1733		carrot		castle																
1734																				
1735																				
1736																				
1737																				
1738																				
1739																				
1740																				
1741																				
1742																				
1743																				
1744																				
1745																				
1746																				
1747																				
1748																				
1749	Table 17: The similarity matrix \tilde{S} of the 7 SSDA tasks on the DomainNet dataset.																			

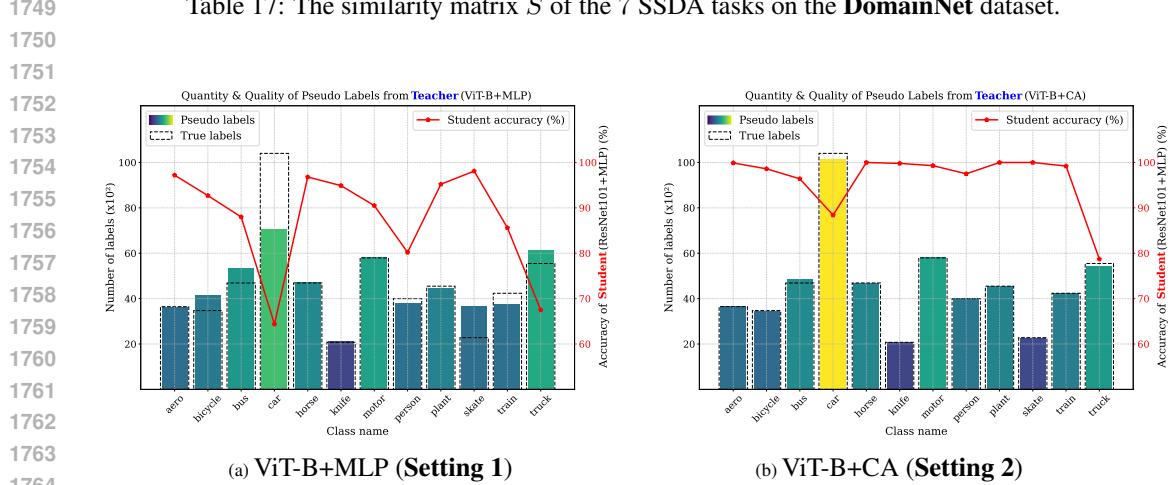
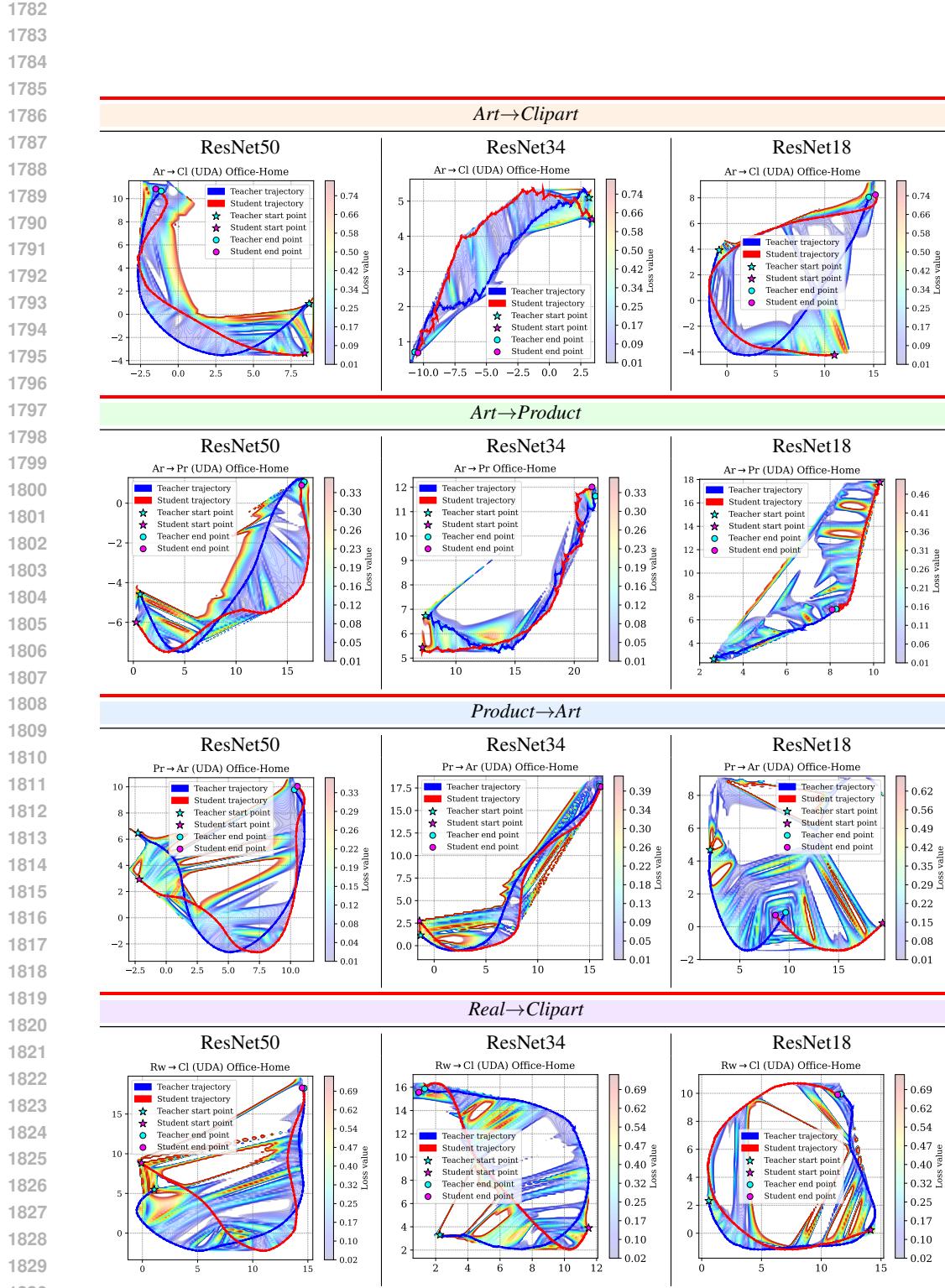
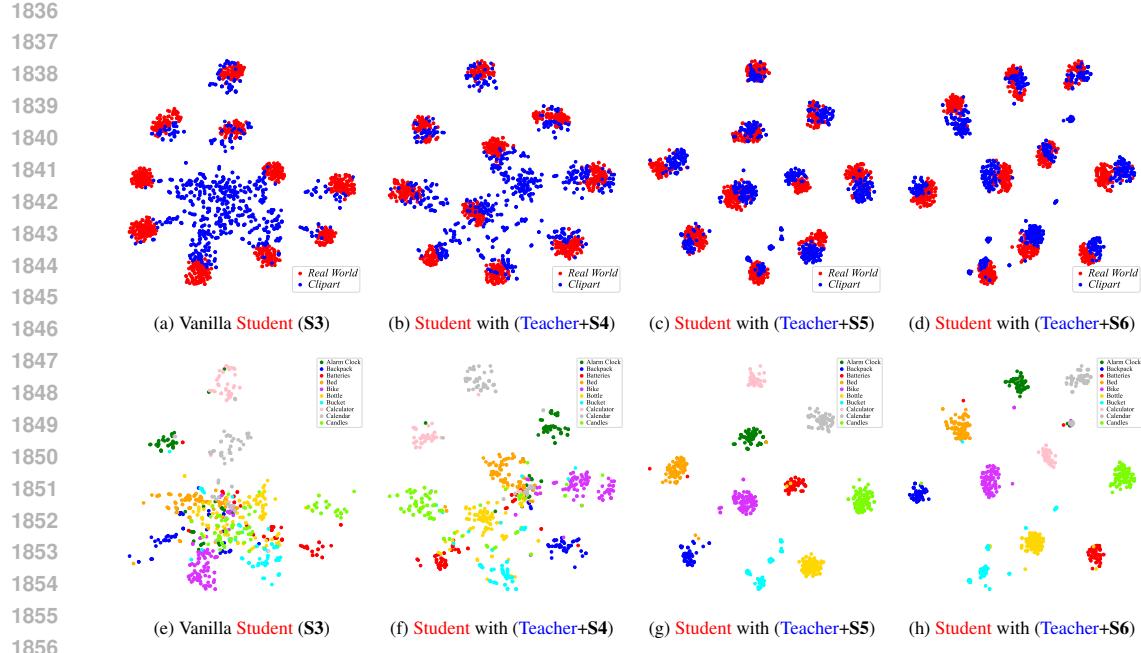


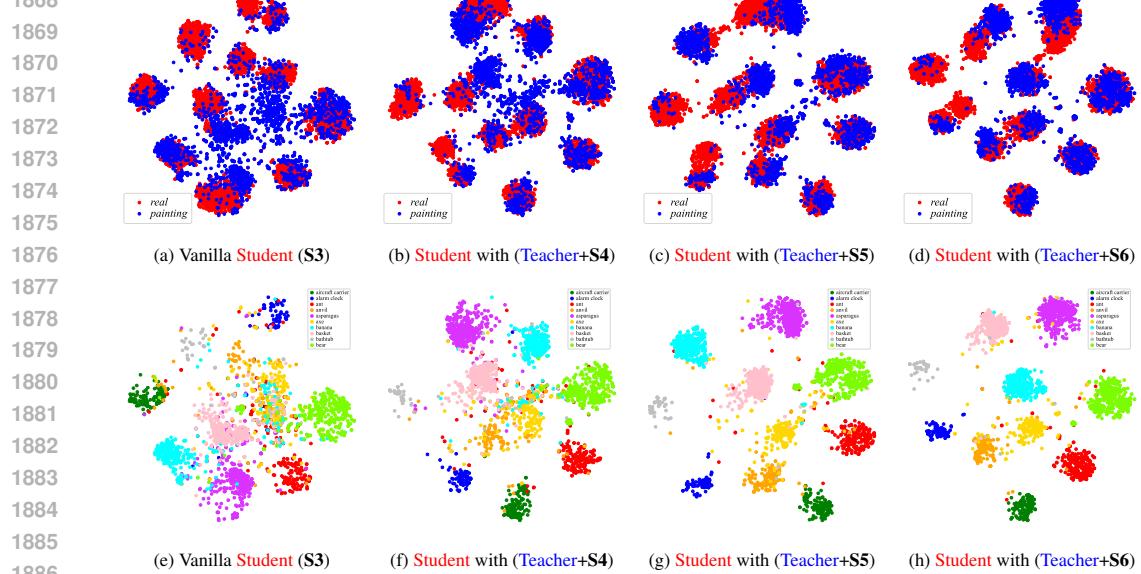
Figure 7: Comparison of the quantity and quality of pseudo labels between two different teachers (a) ViT-B+MLP and (b) ViT-B+CA on **VisDA2017** under the UDA setting. The bar plots illustrate the number of true labels (outlined in dash lines) and pseudo labels (filled with color) across 12 classes. The red line represents the classification accuracy of the student network (ResNet101+MLP) for each class.



1831 Table 18: 2D visualization of the convergence trajectory in the loss landscape of the teacher network
1832 with various student networks.



1857 Figure 8: Feature visualization of the student network under different settings. We use t-SNE to
1858 visualize for 10 classes of the *Real World*→*Clipart* task on **Office-Home** under the UDA setting.
1859 In (a) and (e), the student network is trained by setting **S3** without the support of teacher guidance.
1860 In (b), (c), (d), (f), (g), and (h), the student network is guided by the teacher network, progressively
1861 adding **S4** (Supervised), **S5** (Self-Enhanced), and **S6** ($\mathcal{L}_{cc}^T(p_T(x_i^{tar}))$), respectively. For easy iden-
1862 tification of domain alignment features, source features are represented by **red** markers, and target
1863 features by **blue** markers in Figs. (a), (b), (c), and (d). Target features are shown in Figs. (e), (f), (g),
1864 and (h), we use 10 distinct colors to indicate the 10 classes.



1887 Figure 9: Feature visualization of the student network under different settings on **DomainNet** (3-
1888 shot SSDA, *real*→*painting*).
1889

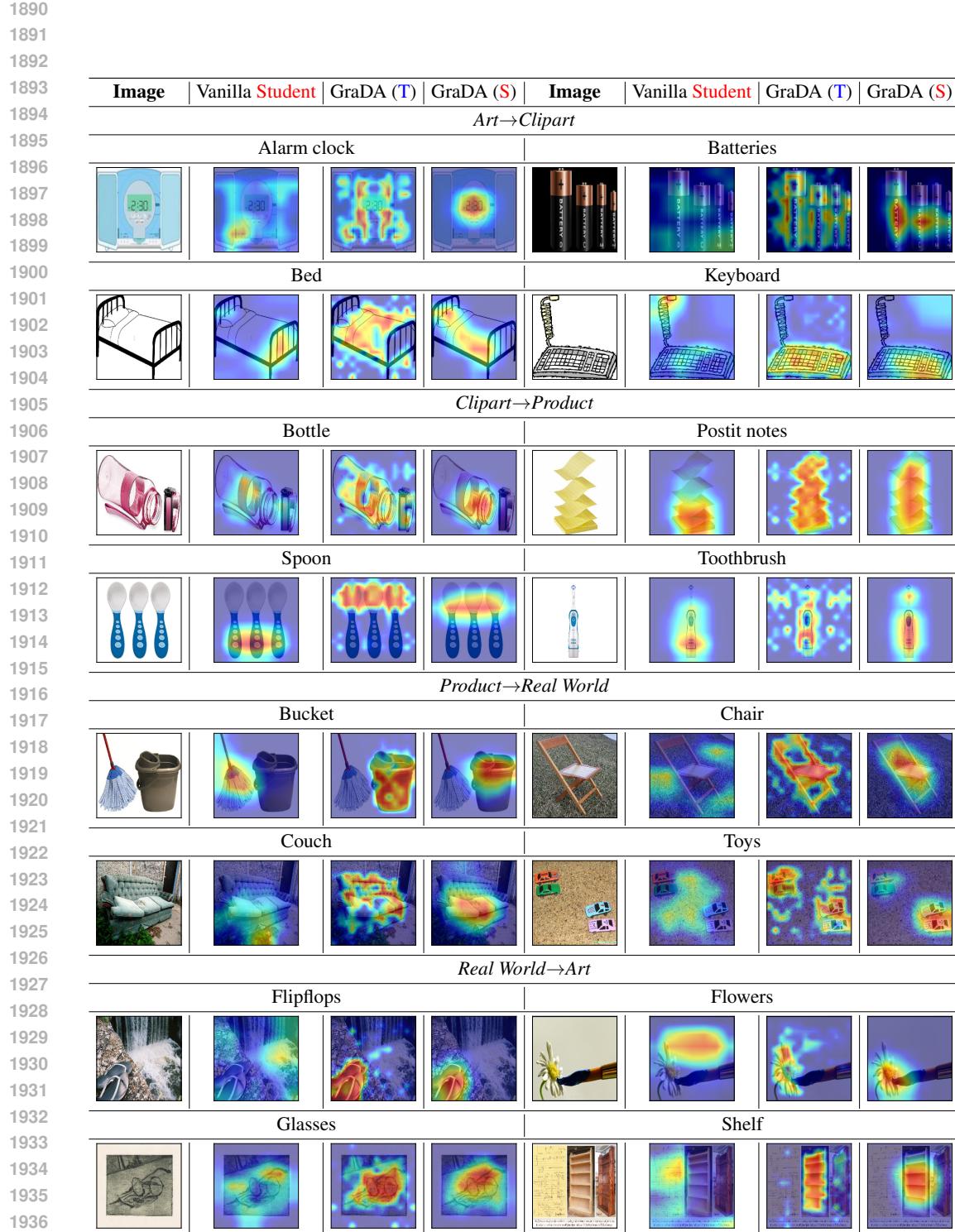


Table 19: Attention maps of the teacher network GraDA (T), and the student network with the vanilla and GraDA (S) variants, on **Office-Home** under the UDA setting. We use Grad-CAM Selvaraju et al. (2017) to identify class-discriminative regions in 4 various samples for each task: Ar \rightarrow Cl, Cl \rightarrow Pr, Pr \rightarrow Rw, and Rw \rightarrow Ar.

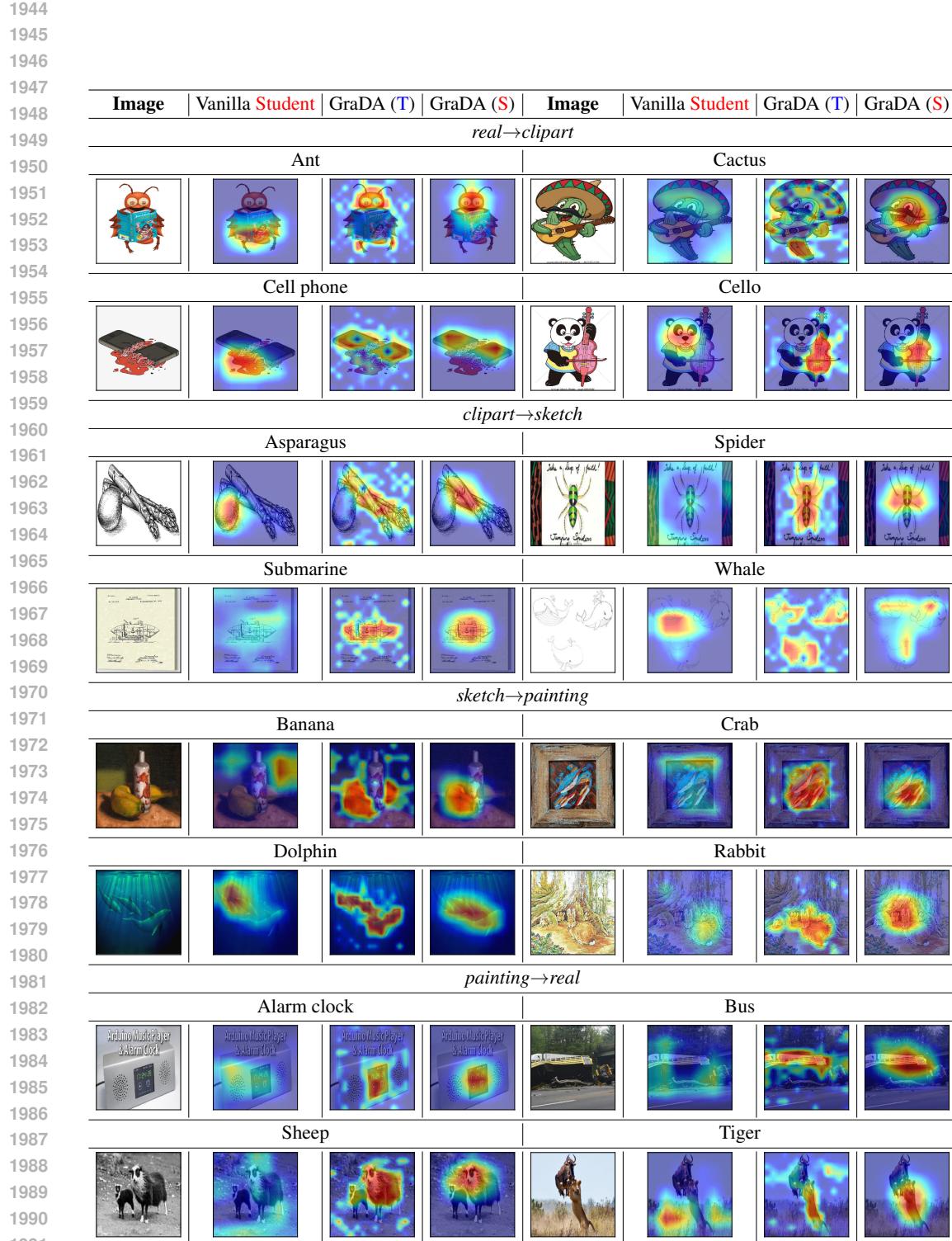


Table 20: Attention maps of the teacher and student networks on **DomainNet** in the 3-shot SSDA setting. The visualization displays class-discriminative regions in 4 diverse samples from the *rel → clp*, *clp → skt*, *skt → pnt*, and *pnt → rel* tasks.

1992
1993
1994
1995
1996
1997