
Published as a workshop paper at ICLR 2021 neural compression workshop

LOSSLESS COMPRESSION USING CONTINUOUSLY-
INDEXED NORMALIZING FLOWS

Adam Golinski* & Anthony Caterini*
Department of Statistics
University of Oxford
{adamg@robots, anthony.caterini@stats}.ox.ac.uk

ABSTRACT

Recently, a class of deep generative models known as continuously-indexed flows
(CIFs) has expanded the modelling capacity of normalizing flows (NFs) in the con-
text of both density estimation and variational inference. CIFs are provably more
general and expressive than NFs, but do not induce a closed-form density model
and thus require additional considerations when applying in the same contexts that
NFs have shown promise. One such area is lossless compression, where NFs have
been used as the density model to develop a compression scheme, known as local
bits-back, with expected codelength approximately equal to the average negative
log-likelihood of the NF density model. Here, we propose to extend the local
bits-back scheme to CIF-based density models, as the improved expressiveness
inherent in CIFs stands to reduce the expected codelength of compressed data. We
also leverage recent work on compression schemes built with hierarchical varia-
tional auto-encoders – as hierarchical CIFs can themselves be seen as interpolating
between these and NFs – gaining further expressiveness in our density models and
effectiveness in our compression scheme.

1 INTRODUCTION

As datasets become larger, so too do the challenges in both modelling the data-generating process
and providing efficient compression schemes. These two problems are linked through the framework
of entropy encoding, which describes a family of lossless compression techniques making use of a
model of the data probability distribution. A combination of recent advancements on both fronts have
led to the development of practical lossless compression algorithms for high-dimensional data.

Perhaps most notably, Townsend et al. (2019) has demonstrated how the entropy encoding scheme
known as asymmetric numeral systems (ANS) (Duda, 2009) can be integrated into bits-back coding
(Frey & Hinton, 1996) to build a powerful compression method backed by variational auto-encoders
(VAEs) (Kingma & Welling, 2014). Other approaches also combining ANS with bits-back coding,
but making use of other deep generative models such as hierarchical VAEs (Kingma et al., 2019)
and normalizing flows (NFs) (Ho et al., 2019), have emerged and shown promising empirical results,
achieving codelengths close to theoretical optimum. In all cases, the expected codelength of the
compression scheme is negatively correlated with the log-likelihood (or evidence lower bound) of
the generative model, implying that a more expressive generative model will correspond to a better
algorithm for lossless compression.

One way to directly and provably improve the expressiveness of an NF-based model is to use
continuously-indexed flows (CIFs) (Cornish et al., 2020). This recently-proposed framework aug-
ments the generative process of any standard NF with additional indexing variables, relaxing the
restrictive bijectivity constraint imposed on the baseline flow. The cost of increased modelling capac-
ity is a now intractable density model, but this improved expressiveness has been able to overcome
any obstacles stemming from this intractability in the context of both density estimation (Cornish
et al., 2020) and variational inference (Caterini et al., 2020).

In this work we propose an efficient lossless compression scheme for using hierarchical CIFs as the
probability model for bits-back coding. The scheme we propose builds on the ideas of BB-ANS
(Townsend et al., 2019) and local bits-back coding (Ho et al., 2019) to allow for compression using

1

Published as a workshop paper at ICLR 2021 neural compression workshop

a single layer CIF model, as well as Bit-Swap (Kingma et al., 2019) that allows us to decrease the
number of auxiliary bits required to utilize a hierarchical CIF model which significantly decreases
the codelengths in practice, especially for short data sequences.

2 BACKGROUND

2.1 CONTINUOUSLY-INDEXED FLOWS

CIFs (Cornish et al., 2020) propose to model continuous data defined over some space X as the
X-marginal of

Z ∼ pZ , U | Z ∼ pU |Z(· | Z), X = F (Z;U), (1)
where pZ is a density defined over some latent space Z , pU |Z is a parametrized conditional density
defined over an indexing space U , and F : Z × U → X is a function such that F (·;u) is a bijection
for each u ∈ U . If we parametrize F such that, e.g. F (·; 0) = f(·) for a standard normalizing flow
transformation f : Z → X , then it is easy to see that equation 1 strictly generalizes the typical
normalizing flow density model Z ∼ pZ , X = f(Z). The cost for this improvement is an intractable
density model pX(x) =

∫
pX,U (x,u) du, although tractable pX,U emerges from equation 1.

We can also stack the final two steps of equation 1 to gain further expressiveness as per Cornish et al.
(2020). Specifically, model X now as the ZL-marginal of the following L-layered model:

Z0 ∼ pZ0 , U` | Z`−1 ∼ pU`|Z`−1
(· | Z`−1), Z` = F`(Z`−1;U`), (2)

where the final two steps are repeated for ` ∈ {1, . . . , L}. We can write the joint density over
(X,U1:L) recursively, but pX remains intractable, cf. equation 12 of Cornish et al. (2020). However,
we can learn the parameters of pX using variational inference, constructing an inference model

qU1:L|X(u1:L | x) :=

L∏
`=1

qU`|Z`
(u` | z`), (3)

where zL := x, z` := F−1
`+1(z`+1;u`+1) recursively for ` ∈ {1, . . . , L}, and each qU`|Z`

is a
parametrized conditional density. We can then train a CIF density model by maximizing the evidence
lower bound (ELBO) objective, given for a single point x ∈ X as:

L(x) := Eu1:L∼qU1:L|X(·|x)

[
log pX,U1:L

(x,u1:L)− log qU1:L|X(u1:L | x)
]
≤ log pX(x). (4)

It is important to note that the factorization of the true posterior over indexing variables pU1:L|X
matches that of equation 3 (Cornish et al., 2020, Appendix B.6), which helps to increase the value of
L(x) as equation 4 is maximized in q when qU1:L|X = pU1:L|X .

2.2 BITS-BACK CODING

Bits-back coding (Frey & Hinton, 1996) is a method that allows for lossless compression using density
models with latent variables, which Townsend et al. (2019) recently combined with asymmetric
numeral systems (ANS) (Duda, 2009) to devise a practical compression scheme based on variational
auto-encoders (VAEs). Specifically, suppose we have access to a VAE with generative model
pX,Z(x, z) := pX|Z(x | z) · pZ(z) and encoder qZ|X(z | x) trained over a dataset D := {xi}i.
Given a stack-like entropy encoding scheme such as ANS, we can iteratively encode each point xi
in the dataset onto a pre-existing bit stack – here denoted m – by performing the following steps:
(i) decode zi from m using qZ|X(· | xi); (ii) encode xi onto m using pX|Z(· | zi); (iii) encode zi
onto m using pZ . We can reverse this procedure to then decode the dataset from m once encoding is
complete. The expected codelength for a point x is approximately equal to the negative evidence
lower bound Ez∼qZ|X(·|x)[log qZ|X(z | x)− log pX,Z(x, z)], which conveniently also serves as the
VAE objective function, underscoring the relationship between performant generative models and
efficient compression schemes.

2.3 LOCAL BITS-BACK CODING

Local bits-back coding is a method allowing for lossless compression using normalizing flows (Ho
et al., 2019). The key idea behind this scheme is reinterpreting z and x, which in the context of

2

Published as a workshop paper at ICLR 2021 neural compression workshop

standard NFs are related by a bijection x = f(z), as random variables which have instead a fuzzy
relationship centred on a sharply peaked normal distribution. In the context of CIFs, the flow F is a
now a bijection between z and x conditioned on u as noted above. Thus, given u ∈ U , the fuzzy
relationship between z and x is given by

p̃Z|X,U (z | x,u) := N (z | F−1(x;u), σ2J(x,u)J(x,u)>) (5)

p̃X|Z,U (x | z,u) := N (x | F (z;u), σ2I) (6)
where, as per Ho et al. (2019), σ > 0 is a small scalar parameter and x̄ are the centres of hypercube
bins of volume δx for the discretization of continuous data x. Furthermore, J(x,u) denotes the
Jacobian of F−1, with respect to its first argument (keeping the second fixed), evaluated at (x,u).

3 METHOD

We first consider using just a single layer CIF as the density model for bits back coding, and then
extend it to the case of hierarchical CIFs. Note that throughout this section the notation u is intended
as per CIF model notation of Cornish et al. (2020), rather than the dequantization notation of Ho et al.
(2019). We discretize the continuous space X into bins of volume δx, and we denote the centres of
the bins the data was quantized to as x̄. Similarly, U and Z are also discretized into bins of volume
δu and δz , respectively, and discretized values are denoted as ū and z̄. NB: As is standard, each
distribution that we are decoding/encoding with respect to is defined over continuous data; these can
be approximately converted into discrete distributions by taking the previous continuous density value
at the respective bin centre and multiplying by the discretization volume, e.g. Q(ū|x̄) = q(ū|x̄)δu.

The CIF-based lossless coding scheme requires one additional constraint on the CIF architecture:
the neural networks parameterizing the distribution pU |Z(u|z) must be constrained to be Lipschitz
continuous. The reasons for that are given in Appendix A.2.

3.1 SINGLE LAYER

The encoding procedure is outlined in Algorithm 1 below, while the decoding procedure is presented
in Algorithm 3 in Appendix A.1.

Algorithm 1 Encoding – Single Layer
Input: data x̄, auxiliary random bits on the ANS message stack m, flow F , CIF distributions qU|X , pU|Z ,
discretization volumes δx, δz , δu, noise level σ
Output: updated ANS message stack m

Current state of the ANS message stack m

Initialize m with auxiliary bits

auxiliary bits used

1: Decode ū ∼ qU|X(· | x̄)δu
2: Decode z̄ ∼ p̃Z|X,U (· | x̄, ū)δz
3: Encode x̄ using p̃X|Z,U (· | z̄, ū)δx
4: Encode ū using pU|Z(· | z̄)δu
5: Encode z̄ using pZ(·)δz

The resulting expected asymptotic codelength of such a scheme, i.e. ignoring the impact of the initial
auxiliary random bits used, is approximately equal to the sum of the CIF negative ELBO, a constant
depending on the discretization precision, and second order term in σ stemming from the use of Local
Bits-Back coding (derivation in the Appendix A.2):

Eu∼qU|X(·|x)

[
− log

pX,U (x,u)

qU |X (u|x)

]
− log δx +O(σ2). (7)

The expected number of initial auxiliary bits required for this scheme to operate is

Ex̄∼pD(·)

[
Eū∼qU|X(·|x̄)δu

[
− log qU |X(ū|x̄)δu︸ ︷︷ ︸

decoding ū

+Ez̄∼p̃Z|X,U (·|x̄,ū)δz

[
− log p̃Z|X,U (z̄|x̄, ū)δz︸ ︷︷ ︸

decoding z̄

]]]
,

where pD is the true marginal data distribution over x ∈ X .

3

Published as a workshop paper at ICLR 2021 neural compression workshop

Figure 1: Naive hierarchical bits-back scheme [left] vs Bit-Swap based scheme [right] for a hierarchi-
cal CIF model with L = 2 layers. Notice that the naive scheme uses a larger number of auxiliary
random bits as compared to for Bit-Swap based scheme. "a.b.u." stands for "auxiliary bits used".

Initializem with auxiliary bits

aux bits used

Decode ū2 ∼ qU2|X(·|x̄)δu
Decode z̄1 ∼ p̃Z1|X,U2

(·|x̄, ū2)δz
Decode ū1 ∼ qU1|Z1

(·|z̄1)δu
Decode z̄0 ∼ p̃Z0|Z1,U1

(·|z̄1, ū1)δz
Encode x̄ using p̃X|Z1,U2

(·|z̄1, ū2)δx
Encode ū2 using pU2|Z1

(·|z̄1)δu
Encode z̄1 using pZ1|Z0,U1

(·|z̄0, ū1)δz
Encode ū1 using pU1|Z0

(·|z̄0)δu
Encode z̄0 using pZ0

(·)δz

Initializem with auxiliary bits

a.b.u.

Decode ū2 ∼ qU2|X(·|x̄)δu
Decode z̄1 ∼ p̃Z1|X,U2

(·|x̄, ū2)δz
Encode x̄ using p̃X|Z1,U2

(·|z̄1, ū2)δx
Encode ū2 using pU2|Z1

(·|z̄1)δu
Decode ū1 ∼ qU1|Z1

(·|z̄1)δu
Decode z̄0 ∼ p̃Z0|Z1,U1

(·|z̄1, ū1)δz
Encode z̄1 using pZ1|Z0,U1

(·|z̄0, ū1)δz
Encode ū1 using pU1|Z0

(·|z̄0)δu
Encode z̄0 using pZ0

(·)δz

(a) Naive hierarchical bits-back compression (b) Bit-Swap based scheme

3.2 HIERARCHICAL MODEL

Practically, the only way CIF models can be expressive enough to achieve competitive compression
rates is via multi-layer stacking. However, a naïve application of bits-back coding to multiple layers
of CIF would lead to a linear growth in the required number of auxiliary random bits with respect
to the number of flow layers L. We overcome this limitation and reduce the required number of
auxiliary bits by applying the Bit-Swap algorithm (Kingma et al., 2019), as the stacking of CIF layers
is much like the hierarchical VAEs for which this was originally designed.

Algorithm 2 Hierarchical Encoding
Input: data x̄, auxiliary random bits on the ANS message stackm, flows F`, CIF distributions qU`|Z`

, pU`|Z`−1
,

discretization volumes δx, δz , δu, noise level σ
Output: updated ANS message stack m
1: z̄L ← x̄
2: for ` = L, . . . , 1 do
3: Decode ū` ∼ qU`|Z`

(· | z̄`)δu
4: Decode z̄`−1 ∼ p̃Z`−1|Z`,U`

(· | z̄`, ū`)δz
5: Encode z̄` using p̃Z`|Z`−1,U`

(· | z̄`, ū`)δx
6: Encode ū` using pU`|Z`−1

(· | z̄`−1)δu . Left with z̄`−1 when loop restarts

7: Encode z̄0 using pZ0(·)δz

In the hierarchical case, the resulting expected codelength is analogous to the single layer case:

Eu1:L∼qU1:L|X(·|x)

[
− log

pX,U1:L
(x, u1:L)

qU1:L|X (u1:L|x)

]
− log δx +O(σ2). (8)

4 DISCUSSION

Previous works (Townsend et al., 2019; Ho et al., 2019; Kingma et al., 2019) have empirically shown
that the codelengths they achieve are close to the theoretical optimum for the generative models they
have investigated. Hence we anticipate our compression scheme to achieve codelengths as predicted
by the (negative) log-likelihood performance of CIFs (Cornish et al., 2020). The results reported by
Cornish et al. (2020) are obtained using an importance sampling estimator with K = 100 samples,
which implies that in order to achieve codelengths equal to those we would have to combine our
method with the recently-introduced McBits method, which supports the application of a range of
Monte Carlo inference algorithms as part of the bits-back coding scheme (Ruan et al., 2021).

In future work we intend to extend and formalize our lossless compression scheme for the entire
family of models covered by the SurVAE framework (Nielsen et al., 2020), along with providing a
practical implementation of our proposed method.

4

Published as a workshop paper at ICLR 2021 neural compression workshop

REFERENCES

Anthony Caterini, Rob Cornish, Dino Sejdinovic, and Arnaud Doucet. Variational inference with
continuously-indexed normalizing flows. arXiv preprint arXiv:2007.05426, 2020.

Rob Cornish, Anthony L. Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing Bijectivity
Constraints with Continuously Indexed Normalising Flows. ICML, 2020.

Jarek Duda. Asymmetric numeral systems. arXiv preprint arXiv:0902.0271, 2009.

Brendan J Frey and Geoffrey E Hinton. Free energy coding. In Proceedings of Data Compression
Conference-DCC’96, pp. 73–81. IEEE, 1996.

Jonathan Ho, Evan Lohn, and Pieter Abbeel. Compression with Flows via Local Bits-Back Coding.
NeurIPS, 2019.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR, 2014.

Friso H. Kingma, Pieter Abbeel, and Jonathan Ho. Bit-Swap: Recursive Bits-Back Coding for
Lossless Compression with Hierarchical Latent Variables. NeurIPS, 2019.

Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max Welling. SurVAE Flows:
Surjections to Bridge the Gap between VAEs and Flows. ICML, 2020.

Yangjun Ruan, Karen Ullrich, Daniel Severo, James Townsend, Ashish Khisti, Arnaud Doucet,
Alireza Makhzani, and Chris J. Maddison. Improving lossless compression rates via Monte Carlo
bits-back coding, 2021.

James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent variables
using bits back coding. ICLR, 2019.

5

Published as a workshop paper at ICLR 2021 neural compression workshop

A APPENDIX

A.1 DECODING ALGORITHMS

Algorithm 3 Decoding – Single Layer
Input: ANS message stack m, flow F , CIF distributions qU|X , pU|Z , discretization volumes δx, δz , δu,
noise level σ
Output: quantized data x̄, auxiliary random bits on the ANS message stack m
1: Decode z̄ ∼ pZ(·)δz
2: Decode ū ∼ pU|Z(· | z̄)δu
3: Decode x̄ ∼ p̃X|Z,U (· | z̄, ū)δx
4: Encode z̄ using p̃Z|X,U (· | x̄, ū)δz
5: Encode ū using qU|X(· | x̄)δu

Algorithm 4 Hierarchical Decoding
Input: ANS message stack m, flows F`, CIF distributions qU`|Z`

, pU`|Z`−1
, discretization volumes δx, δz , δu,

noise level σ
Output: quantized data x̄, auxiliary random bits on the ANS message stack m
1: Decode z̄0 ∼ pZ0(·)δz
2: for ` = 1, . . . , L do
3: Decode ū` ∼ pU`|Z`−1

(· | z̄`−1)δu
4: Decode z̄` ∼ p̃Z`|Z`−1,U`

(· | z̄`, ū`)δx
5: Encode z̄`−1 using p̃Z`−1|Z`,U`

(· | z̄`, ū`)δz
6: Encode ū` using qU`|Z`

(· | z̄`)δu
7: x̄← z̄L

A.2 EXPECTED CODELENGTH

To compute the expected codelength let us sum the expected codelengths of the individual terms
coded in Algorithm 1 in their coding order:

Eū∼qU|X(·|x̄)δu

[
Ez̄∼p̃Z|X,U (·|x̄,ū)δz [Σ·]

]
=Eū,z̄

[
log qU |X(ū|x̄)δu + log p̃Z|X,U (z̄|x̄, ū)δz − log p̃X|Z,U (x̄|z̄, ū)δx − log pU |Z(ū|z̄)δu − log pZ(z̄)δz

]
=Eū,z̄

[
log qU |X(ū|x̄) + log p̃Z|X,U (z̄|x̄, ū)− log p̃X|Z,U (x̄|z̄, ū)︸ ︷︷ ︸

− log|detJ(x̄,ū)|+O(σ2)
as per Ho et al. (2019) eq. (7)

− log pU |Z(ū|z̄)− log pZ(z̄)
]
− log δx

=Eū,z̄

[
log qU |X(ū|x̄)− log |detJ(x̄, ū)| − log pU |Z(ū|z̄)− log pZ(z̄)

]
− log δx +O(σ2) (9)

Now, we notice that the second, third, and fourth terms are very close to the CIF joint distribution

log pX,U (x,u) = log |detJ(x,u)|+ log pU |Z(u | F−1(x;u)) + log pZ(F−1(x;u)), (10)

but now z is not exactly equal to F−1(x;u), as the two are related according to the local bits-back
model

z̄ = F−1(x̄; ū) + σJ(x̄, ū)ε, (11)
for some ε ∼ N (0, I) (with z̄ representing the quantized version of this relationship). However, since
σ � 1, we expect equation 10 to approximately hold and thus (like in Ho et al. (2019)) we consider
the asymptotics of equation 9 in σ.

6

Published as a workshop paper at ICLR 2021 neural compression workshop

Firstly, let us consider log pZ , which will typically be a standard normal distribution. If we assume
this to be the case, then for any ξ ∈ Rd, with ε ∼ N (0, I):

Eε log pZ (ξ + σε) = C − 1

2
Eε(ξ + σε)T (ξ + σε)

= C − 1

2
EεξT ξ − EεσεT ξ − σ2 1

2
EεεT ε

= log pZ(ξ) +O(σ2),

where the O(σ) term disappears because Eε[ε] = 0.

Therefore,

Ez̄ log pZ(z̄) ≈ log pZ(F−1(x̄; ū)) +O(σ2), (12)

with the approximation error stemming from quantization.

As for the log pU |Z term, we have a bit more work to do. We will assume this is a conditional diagonal
Gaussian with a covariance matrix diag(s(z)) where diag(·) returns a matrix with consecutive values
of the vector s on the diagonal. Hence, log pU |Z is defined as

log pU |Z(u | z) = logN (u | µ(z), diag(s(z)))

= −1

2
log 2π − 1

2

∑
i

log si(z)− 1

2

∑
i

si(z)−1(ui − µi(z))2,

where µ and s are two different outputs of the same neural network. We see that log pU |Z depends
on µ(z) and s(z). Thus, if µ and s are parametrized such that small changes in their inputs can only
induce small changes in their outputs—say if they are 1-Lipschitz functions—then, as we show below
(discussion starting from equation 14), we can say that

Ez̄ log pU |Z(ū | z̄) ≈ log pU |Z(ū | F−1(x̄; ū)) +O(σ2), (13)

where again the error originates from the discretization.

Thus, we can finally rewrite equation 9 as:

Eū∼qU|X(·|x̄)δu

[
Ez̄∼p̃Z|X,U (·|x̄,ū)δz [Σ·]

]
=Eū∼qU|X(·|x̄)δu

[
− log

pX,U (x̄, ū)

qU |X(ū|x̄)

]
− log δx +O(σ2),

and now, assuming δu is small enough that the probability mass function qU |X(ū|x̄)δu is approxi-
mately equivalent to the probability distribution function qU |X(u|x̄), then

≈Eu∼qU|X(·|x̄)

[
− log

pX,U (x̄,u)

qU |X(u|x̄)

]
− log δx +O(σ2).

Now, we give further details on the analysis of pU |Z(ū | z̄) : First recall that (up to discretization
error)

z̄ = F−1(x̄; ū) + σJ(x̄, ū)ε

for ε ∼ N (0, I). Now let’s write out pU |Z :

log pU |Z(ū | z̄) = logN (ū | µ(z̄), diag(s(z̄))) (14)

=− 1

2
log 2π−1

2

∑
i

log si(z̄)︸ ︷︷ ︸
(a)

−1

2

∑
i

si(z̄)−1(ūi − µi(z̄))2

︸ ︷︷ ︸
(b)

. (15)

7

Published as a workshop paper at ICLR 2021 neural compression workshop

For term (b),

Eε [(b)] = Eε

[
− 1

2

∑
i

si(z̄)−1 · (ūi − µi(z̄))2

]
,

taking Taylor expansion of s (y + σJε)
−1 and µ (y + σJε) around y = F−1(x̄; ū)

= Eε

[
− 1

2

∑
i

(
si(y)−1 − (∇ysi(y))TσJε+O(σ2)

)
·
(
ūi −

(
µi(y) + (∇yµi(y))

T
σJε+O(σ2)

))2
]
,

rearranging, for some term C independent of σ and ε we get

= Eε

[
− 1

2

∑
i

si(y)−1 · (ūi − µi(y))2 − 1

2

∑
i

CσJε+O(σ2)

]
,

since ε is independent of all other terms

=− 1

2

∑
i

si(y)−1 · (ūi − µi(y))2 − 1

2

∑
i

CσJEε

[
ε

]
+O(σ2),

and since Eε[ε] = 0

=− 1

2

∑
i

si(y)−1 · (ūi − µi(y))2 +O(σ2).

Now, for term (a),

Eε [(a)] =Eε

[
−1

2

∑
i

log si(z̄)

]
,

taking Taylor expansion of log s(y + σJε) around y = F−1(x̄; ū)

=Eε

[
−1

2

∑
i

(
log si(y) + (si(y))−1(∇ysi(y))TσJε+O(σ2)

)]
and again, since ε is independent of all other terms and Eε[ε] = 0

=− 1

2

∑
i

(
log si(y) + (si(y))−1(∇ysi(y))TσJEε [ε] +O(σ2)

)
=− 1

2

∑
i

log si(y) +O(σ2).

Hence, we have

−1

2
log 2π + Eε [(a)] + Eε [(b)] = logN (ū | µ(y), diag(s(y)))

for y = F−1(x̄; ū), and thus

Eε
[
log pU |Z(ū | z̄)

]
≈ log pU |Z(ū | F−1(x̄; ū)) +O(σ2), (16)

leading to equation 13.

8

	Introduction
	Background
	Continuously-Indexed Flows
	Bits-back coding
	Local bits-back coding

	Method
	Single layer
	Hierarchical Model

	Discussion
	Appendix
	Decoding algorithms
	Expected codelength

