
A Compact Representation for Bayesian Neural
Networks By Removing Permutation Symmetry

Tim Z. Xiao1,2

zhenzhong.xiao@uni-tuebingen.de

Weiyang Liu3,4

wl396@cam.ac.uk

Robert Bamler1

robert.bamler@uni-tuebingen.de
1University of Tübingen 2IMPRS-IS 3University of Cambridge

4Max Planck Institute for Intelligent Systems, Tübingen

Abstract

Bayesian neural networks (BNNs) are a principled approach to modeling predic-
tive uncertainties in deep learning, which are important in safety-critical applica-
tions. Since exact Bayesian inference over the weights in a BNN is intractable,
various approximate inference methods exist, among which sampling methods
such as Hamiltonian Monte Carlo (HMC) are often considered the gold standard.
While HMC provides high-quality samples, it lacks interpretable summary statis-
tics because its sample mean and variance is meaningless in neural networks due
to permutation symmetry. In this paper, we first show that the role of permutations
can be meaningfully quantified by a number of transpositions metric. We then
show that the recently proposed rebasin method [1] allows us to summarize HMC
samples into a compact representation that provides a meaningful explicit uncer-
tainty estimate for each weight in a neural network, thus unifying sampling meth-
ods with variational inference. We show that this compact representation allows
us to compare trained BNNs directly in weight space across sampling methods
and variational inference, and to efficiently prune neural networks trained without
explicit Bayesian frameworks by exploiting uncertainty estimates from HMC.

1 Introduction and Background

After

Before Rebasin

Figure 1: Training dynamics
for models with W0 and W1,
and their interpolations Wλ.

When training a neural network on a data set D, one minimizes
a loss function L(W,D) over weights and biases (collectively re-
ferred to as “weights” and denoted as boldface W in the follow-
ing). Yet, when comparing two trained networks (e.g., to choose a
training algorithm or learning rate), one rarely compares the trained
weights directly. Instead, one compares various performance met-
rics of the two trained networks on a held-out data set. Direct com-
parisons in weight space are difficult, in part because standard dis-
tance metrics (e.g., the euclidean distance) are not meaningful in
weight space due to a permutation symmetry of neural networks
[7, 3, 4, 1]: consider two consecutive layers of a neural network,
which represent a function x 7→ σ2(W2σ1(W1x+ b1)+ b2), where
W1,2, b1,2, and σ1,2 are weight matrices, bias vectors, and (componentwise applied) activation
functions, respectively. It is easy to see that this function does not change if we consider an ar-
bitrary permutation matrix P and replace the weights and biases by W ′

1 := PW1, b′1 := Pb1, and
W ′

2 := W2P
−1. Thus, euclidean distances in weight space like ||W1 −W ′

1||22 are not meaningful.

Recent works [1, 4] propose and analyze a method called rebasin, which efficiently finds a permu-
tation that brings the weights W1 of one neural network as close as possible to the weights W0 of
an independently trained reference network with the same architecture. The authors show that ap-

Preprint.

After

Before Rebasin

Figure 2: Left three: effect of permuting initial weights by different Number of Transpositions (NoT)
on NoT after training, weight-space distance, and loss barrier (shaded regions: ±1σ over 5 runs).
Right: NoT changes monotonically along the interpolation Wλ between two models W0 and W1.

plying this permutation essentially removes the loss barrier [5] when linearly interpolating between
the weights of the two neural networks (see Figure 1 for before and after rebasin, where λ controls
the interpolation Wλ := (λ − 1)W0 + λW1). The authors conjecture that the loss landscape is
quasi-convex up to permutations. In this paper, we build on these findings in three ways

1. We propose to quantify rebasin permutations by their number of transpositions (NoT), see
below. We show empirically that NoT is a valuable metric for analyzing weight-space ge-
ometry as it is remarkably stable over training and correlates strongly with the loss barrier.

2. We argue that a quasi-convex loss landscape is particularly useful for Bayesian neural net-
works (BNNs), which aim to find (an approximation of) the posterior distribution p(W | D)
over weights W that are consistent with the data D. We show empirically that rebasin al-
lows us to summarize the approximate posterior of sampling based inference methods like
Hamiltonian Monte Carlo (HMC) in the same compact representation that variational in-
ference (VI) uses, thus enabling direct comparisons across inference methods.

3. We show that the proposed unifying compact representation of BNNs is interpretable. For
example, unusual for sampling methods in BNNs, we obtain meaningful explicit uncer-
tainty estimates in weight space from HMC. We show that we can use these uncertainty es-
timates from HMC to efficiently prune a neural network trained with deep ensembles [12].

The paper is structured as follows: we introduce and empirically analyzes the NoT metric (item 1
above) in Section 2, discuss BNNs (items 2 and 3 above) in Section 3, and conclude in Section 4.

2 Quantifying Permutations in Weight Space by Number of Transpositions

We briefly introduce and analyze a metric to quantify the “magnitude” of permutations obtained
from rebasin [1], which proved useful for building up intuition and for debugging implementations
of experiments discussed in Section 3. Readers only interested in BNNs may opt to skip this part.

We propose to measure the magnitude of a permutation by its number of transpositions (NoT), i.e.,
the minimal number of pairwise swaps whose consecutive execution results in the given permutation.
It is a well-known result from algebra [9] that this is always possible, and that NoT can be calculated
efficiently by first factorizing a permutation into non-overlapping cycles and then expressing each
cycle of length k as a product of (k − 1) transpositions. For example, the permutation P that maps
1 7→ 4, 2 7→ 1, 3 7→ 5, 4 7→ 2, and 5 7→ 3 can be written as P = (1 4 2) (3 5) = (1 4) (4 2) (3 5),
where (a1, a2, . . . , ak) denotes a cycle a1 7→ a2 7→ · · · 7→ ak 7→ a1. Thus, NoT(P) = 3.

We find empirically that NoT is a meaningful metric for analyzing weight space geometry. We
consider a neural network for classification of MNIST digits with a single hidden layer and a total
of 512 hidden activations that can be permuted. We trained a network with randomly initialized
weights Winit and a set of networks whose weights were initialized as PWinit where P is a random
permutation with NoT(P) ranging over all values from zero to 511. After training both neural
networks, we obtained a permutation P ′ by matching the two trained networks using rebasin.

As a first high-level check, Figure 2 (left) shows NoT(P ′) as a function of NoT(P) for three ran-
dom Winit. Even though the permuted and unpermuted networks were trained with different ran-

2

dom seeds for the sampling of minibatches, NoT remains almost exactly unaffected by training.
Further, Figure 2 (center two) show that both the euclidean distance in weight space and the barrier
of the loss function after training correlate strongly with NoT. Here, the barrier is defined as in [5]
as maxλ∈[0,1] L(Wλ,D) − 1

2

(
L(W0,D) + L(W1,D)

)
, where Wλ := (λ − 1)W0 + λW1, and

W0 and W1 are the weights of the two trained models. Finally, Figure 2 (right) analyzes NoT(P̃)

both over training epochs and along the linear interpolation λ ∈ [0, 1], where P̃ is obtained by
matching Wλ to W0 using rebasin. We observe that the NoT(P̃) remains flat in the vicinity of
either trained model, and changes smoothly and monotonically in between.

From these observations, we conclude that, while comparing neural network weights by euclidean
distance alone is not meaningful (see Section 1), we can meaningfully quantify weight-space dis-
tances by a pair

(
||W0−PW1||22,NoT(P)

)
where the permutation P matches W1 to W0 by rebasin.

3 A Unifying Compact Representation for Bayesian Neural Networks

Building on the argument [14, 11, 18] that removing permutation degrees of freedom is particularly
useful for Bayesian Neural Networks (BNNs), we propose a framework to combine the strengths of
two classes of inference algorithms in BNNs. Training a BNN amounts to finding (an approxima-
tion of) the so-called posterior distribution p(W | D) of all weights W that are consistent with the
training data D, and thus involves more than a single set of weights. We show below that being able
to meaningfully compare weights makes approximate posteriors of BNNs more interpretable.

The exact posterior distribution is p(W | D) = p(W)p(D |W)/p(D), where p(W) is a prior dis-
tribution that acts like a regularizer (often an isotropic Gaussian), p(D |W) = exp[−L(W,D)],
and p(D) =

∫
p(W)p(D |W) dW. The exact posterior is usually intractable in BNNs, but various

efficient approximation methods have been developed. We group them into two categories:

(a) Parametric methods, such as variational inference (VI; [2]) and Laplace approxima-
tion [15, 10] approximate the posterior p(W | D) explicitly with a simpler distribution
q(W), e.g., a fully factorized normal distribution with fitted means and variances;

(b) Sampling methods, such as Hamiltonian Monte Carlo (HMC; [13]), stochastic gradient
Langevin dynamics [17], and MCDropout [6] draw a set of K samples {W(k)}Kk=1 di-
rectly from p(W | D) without explicit representing their distribution; deep ensembles [12]
is sometimes also considered in this context despite not following the Bayesian framework.

As sampling methods (b) lack explicit uncertainty information, one might be tempted to fit samples
with a parametric distribution, e.g., a Gaussian qd(W) = N (µd,diag(σ

2
d)), where µd and σ2

d are
the sample mean and variance, and the subscript ‘d’ is for ‘direct’. However, we show in Section 3.1
that qd is a poor posterior approximation, likely because the posterior is multimodal due to the
permutation symmetry. However, the quasi-convexity conjecture [1, 4] suggests that the posterior is
unimodal once we remove the permutation degrees of freedom. Therefore, we propose to summarize
samples from, e.g., HMC, with a diagonal Gaussian qr(W) = N (µr,diag(σ

2
r)) where µr and σ2

r
are the sample mean and variance after using rebasin [1] to match each sample to an arbitrary
shared reference sample. We show in Section 3.1 that qr approximates the posterior well despite its
compactness, and in Section 3.2 that having a unifying compact representation allows us to combine
the respective strengths of different inference methods, thus going beyond the findings in [18].

All experiments were done with a simple fully connected network for MNIST classification with a
single hidden layer of size 512. We compare qd and qr across HMC, deep ensemble, and VI.

3.1 Compact Representation as an Approximate Posterior

Before we use qr(W) to compare models directly in weight space, we first evaluate whether it
provides a good approximation of the posterior despite radically reducing the amount of information
available in the samples. Evaluations of BNNs are typically done by comparing the predictive
distribution p(y∗ |x∗,D) =

∫
p(y∗ |x∗,W)p(W | D) dW on a test set Dtest, where x∗ is the

input, y∗ is the prediction, and we assume that p(y∗ |x∗,W) is described by the neural network.
There are two popular metrics to compare predictive distributions between a method p and HMC
(which is often considered the most precise approximation of a BNN posterior [8]): agreement and

3

Table 1: Performance of different BNNs (qd: before rebasin; qr: after rebasin) on their agreement (Eq. (1))
and total variation (TV; Eq. (2)) to HMC samples, and on their test set accuracy.

HMC Ensemble VI
Sample qd(W) qr(W) Sample qd(W) qr(W) q(W)

(↑) Agreement with HMC samples 1. 0.1212 0.8249 0.9931 0.5239 0.9868 0.9885

(↓) TV to HMC samples 0. 0.8641 0.6570 0.0229 0.7210 0.0495 0.0235

Test Accuracy (%) of Samples 98.43 11.11 82.34 98.66 52.25 97.72 98.11

Test Accuracy (%) of µd and µr N/A 28.06 92.25 N/A 86.40 97.97 98.04

1 2
σ

101

103

105

C
ou

nt
s

(i
n

lo
g

sc
al

e)

HMC

0.00 0.25 0.50
σ

Ensemble

0.0 0.5 1.0
σ

VI

σr (i.e., after rebasin) σd (i.e., before rebasin) σ (VI)

100 70 50 30 10
0

25

50

75

100

T
es

t
A

cc
ur

ac
y

(%
)

HMC

100 70 50 30 10
(%) Fraction of the parameters retained

Ensemble

100 70 50 30 10

VI

µr net pruned according to σr

µd net pruned according to σd

A sample net pruned according to σr

µ net pruned according to σ

Ensemble µr net pruned according to HMC σr

Figure 3: Left: histograms of the standard deviation σ of weights before (σd) and after (σr) rebasin.
Right: test accuracy vs. various levels of weight pruning (retaining only weights with lowest σ).

total variation (TV) [19] (in the following, I[·] is the indicator function),

Agree.(p, pHMC) =
1

|Dtest|
∑

x∗∈Dtest

I
[
argmax

y∗
p(y∗ |x∗,D) = argmax

y∗
pHMC(y

∗ |x∗
i ,D)

]
; (1)

TV(p, pHMC) =
1

|Dtest|
∑

x∗∈Dtest

1

2

∑
y∗

∣∣p(y∗ |x∗
i ,D)− pHMC(y

∗ |x∗
i ,D)

∣∣. (2)

Results in Table 1 show that: (i) qr(W) has much better performance than qd(W) for both HMC and
ensemble; thus, rebasin is crucial for obtaining a accurate compact representation; (ii) ensemble out-
performs HMC in qr(W), which could indicate issues of the activation matching algorithm [1] when
applied between networks with different loss levels, e.g., within HMC samples; and (iii) qr(W) pro-
vides a parameter efficient representation for ensemble with competitive performance.

3.2 Comparing and Merging BNNs in Weight Space

Figure 3 (left) shows histograms of the variances σd and σr for HMC and ensemble, and the vari-
ances fitted by VI. We observe that (i) permuting all samples into the same basin reduces variances
overall, as expected; and (ii) the two Bayesian methods (HMC and VI) have lots of weights with a
variance close to one, which is not affected by rebasin in HMC. This indicates mode collapse since
we used a standard Gaussian prior, i.e., the Bayesian methods identify these weights as unnecessary.

The proposed unifying compact representation allows us to merge different BNNs by stitching the
means µr from one model with the variances σ2

r from another. Figure 3 (right) shows test accuracies
of neural networks after pruning weights with high σ2

r (a simplified variant of the compression
method in [20, 16]). The purple curve uses weights µr from ensemble but σ2

r from HMC, thus
combining the predictive strength of ensemble with the accurate uncertainty estimates of HMC. It
significantly outperforms both variants that use only the ensemble or only HMC (green curves).

4 Conclusion

When doing Bayesian inference in BNNs, it is straightforward to go from parametric based to sam-
pling based inference, e.g., one can easily draw samples from a variational distribution. But permu-
tation symmetry makes it difficult to go in the reverse direction. In this work, we use the recently
proposed rebasin method to remove the permutation symmetry. We propose a unifying compact rep-
resentation for Bayesian inference in BNNs, which allows us to go from sampling based inference to
parametric based inference, and to combine the respective strengths of different inference methods.

4

Acknowledgments and Disclosure of Funding

The authors would like to thank Yingzhen Li, Takeru Miyato, Johannes Zenn, Nicolò Zottino and
Andi Zhang for helpful discussions. Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC number 2064/1 – Project
number 390727645. This work was supported by the German Federal Ministry of Education and Re-
search (BMBF): Tübingen AI Center, FKZ: 01IS18039A. Robert Bamler acknowledges funding by
the German Research Foundation (DFG) for project 448588364 of the Emmy Noether Programme.
The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-
IS) for supporting Tim Z. Xiao.

References
[1] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging mod-

els modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022. 1, 2, 3, 4

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural network. In International conference on machine learning, pages 1613–1622.
PMLR, 2015. 3

[3] Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry
in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the
loss landscape. arXiv preprint arXiv:1907.02911, 2019. 1

[4] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296,
2021. 1, 3

[5] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learn-
ing, pages 3259–3269. PMLR, 2020. 2, 3

[6] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–
1059. PMLR, 2016. 3

[7] Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In
Advanced Neural Computers, pages 129–135. Elsevier, 1990. 1

[8] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson.
What are bayesian neural network posteriors really like? In International conference on ma-
chine learning, pages 4629–4640. PMLR, 2021. 3

[9] Anthony W Knapp. Basic algebra. Springer Science & Business Media, 2007. 2

[10] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit,
fixes overconfidence in relu networks. In International conference on machine learning, pages
5436–5446. PMLR, 2020. 3

[11] Richard Kurle, Tim Januschowski, Jan Gasthaus, and Yuyang Bernie Wang. On symmetries in
variational bayesian neural nets. 2021. 3

[12] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles. Advances in neural information process-
ing systems, 30, 2017. 2, 3

[13] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011. 3

[14] Arya A Pourzanjani, Richard M Jiang, and Linda R Petzold. Improving the identifiability
of neural networks for bayesian inference. In NIPS Workshop on Bayesian Deep Learning,
volume 4, page 31, 2017. 3

5

[15] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for
neural networks. In 6th International Conference on Learning Representations, ICLR 2018-
Conference Track Proceedings, volume 6. International Conference on Representation Learn-
ing, 2018. 3

[16] Zipei Tan and Robert Bamler. Post-Training Neural Network Compression With Variational
Bayesian Quantization. In Advances in Neural Information Processing Systems, Workshop on
Challenges in Deploying and Monitoring Machine Learning Systems, 2022. 4

[17] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011. 3

[18] Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan
Günnemann, and David Rügamer. Towards efficient mcmc sampling in bayesian neural net-
works by exploiting symmetry. arXiv preprint arXiv:2304.02902, 2023. 3

[19] Andrew Gordon Wilson, Pavel Izmailov, Matthew D Hoffman, Yarin Gal, Yingzhen Li,
Melanie F Pradier, Sharad Vikram, Andrew Foong, Sanae Lotfi, and Sebastian Farquhar. Eval-
uating approximate inference in bayesian deep learning. In NeurIPS 2021 Competitions and
Demonstrations Track, pages 113–124. PMLR, 2022. 4

[20] Yibo Yang, Robert Bamler, and Stephan Mandt. Variational bayesian quantization. In Interna-
tional Conference on Machine Learning, pages 10670–10680. PMLR, 2020. 4

6

A Experiment Setup

We use a fully connected network with a single hidden layer of size 512 for all models in MNIST
classification setting. More specifically, for deep ensemble, we use 5 randomly initialized members,
trained with Adam for 50 epochs using a maximum a posteriori (MAP) with standard Gaussian prior.
For VI, the network has double the size of parameters since we need to model both the mean and
variance. It is also trained with Adam for 50 epochs. When evaluating their predictive distribution,
for both ensemble and VI, we use 100 samples in Monte Carlo integration.

For HMC, we use 600 epochs for burn-in, then we save a sample for every 10 epochs. Each epoch
uses 500 leapfrog steps. In total, we generated 1000 HMC samples for the evaluations in the paper.

7

