
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROOFFLOW: A DEPENDENCY GRAPH APPROACH TO
FAITHFUL PROOF AUTOFORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Proof autoformalization, the task of translating natural language theorems and
proofs into machine-verifiable code, is a critical step for integrating large lan-
guage models into rigorous mathematical workflows. Current approaches focus
on producing executable code, but they frequently fail to preserve the seman-
tic meaning and logical structure of the original human-written argument. To
address this, we introduce PROOFFLOW, a novel pipeline that treats structural
fidelity as a primary objective. PROOFFLOW first constructs a directed acyclic
graph (DAG) to map the logical dependencies between proof steps. Then, it
employs a novel lemma-based approach to systematically formalize each step as
an intermediate lemma, preserving the logical structure of the original argument.
To facilitate evaluation, we present a new benchmark of 184 undergraduate-level
problems, manually annotated with step-by-step solutions and logical dependency
graphs, and introduce PROOFSCORE, a new composite metric to evaluate syntac-
tic correctness, semantic faithfulness, and structural fidelity. Experimental re-
sults show our pipeline sets a new state-of-the-art for autoformalization, achiev-
ing a PROOFSCORE of 0.545, substantially exceeding baselines like full-proof
formalization (0.279), which processes the entire proof at once, and step-proof
formalization (0.046), which handles each step independently. Our pipeline,
benchmark, and score metric are open-sourced to encourage further progress at
https://anonymous.4open.science/r/ProofFlow-351E.

1 INTRODUCTION

The effort to automate mathematical reasoning is advancing on two key fronts. Recent advances
in large language models (LLMs) have greatly enhanced their ability to solve mathematical prob-
lems (Liang et al., 2025). Meanwhile, symbolic engines such as Lean (Moura & Ullrich, 2021) and
Isabelle (Hales et al., 2017) provide machine-verifiable frameworks that enforce strict logical cor-
rectness. LLM-based automated theorem provers (ATPs), such as Goedel-Prover (Lin et al., 2025)
and Kimina-Prover (Wang et al., 2025a), generate formal proofs for problems that are written in a
symbolic language, which are then checked by the symbolic engine to ensure logical correctness.

This paper studies automated proof formalization: the task of faithfully translating the natural lan-
guage theorem and proof into a machine-verifiable formal representation. This task is distinct from
the aforementioned ATPs, where the goal is to discover a proof from an already formalized problem.
Here, the goal is to translate an existing proof, a crucial step for verification in real-world mathe-
matical workflows. After composing a proof, a mathematician may wish to formalize it to verify
its correctness, uncover missing assumptions, or fill logical gaps. Given the steep learning curve
of formal languages like Lean, a system that can automate this translation is highly desirable. The
manual effort these automated proof formalizers seeks to automate is immense, as demonstrated by
landmark efforts such as the Flyspeck project, which took over 20 years to formalize the Kepler
conjecture (Hales et al., 2017); the Blue-Diamond project for the Polynomial Freiman-Ruzsa con-
jecture (Tao, 2023); and the ongoing formalization of Fermat’s Last Theorem (Buzzard & Taylor,
2025), among other projects (Math Inc., 2025; Scholze, 2021; Gonthier et al., 2013).

A key challenge in autoformalization is the fundamental mismatch between the flexible and high-
level nature of human language and the rigid, low-level syntax of formal systems. To bridge this
gap, ATPs typically generate “tactics” for formal proof assistants like Lean 4. However, this tactic-

1

https://anonymous.4open.science/r/ProofFlow-351E

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

lemma L1
(x:ℝ):
x < 0 → (x^5 < 0 ∧ 7*x^3 < 0 ∧ 5*x < 0) := by sorry

lemma L2
(x:ℝ)
(L1: x < 0 → (x^5 < 0 ∧ 7*x^3 < 0 ∧ 5*x < 0)) :
x < 0 → x^5 + 7*x^3 + 5*x < 0 := by sorry

lemma L3
(x:ℝ):
x < 0 → (x^4 > 0 ∧ x^2 > 0 ∧ 8 > 0) := by sorry

lemma L4
(x:ℝ)
(L3: x < 0 → (x^4 > 0 ∧ x^2 > 0 ∧ 8 > 0)):
x < 0 → (x^4 + x^2 + 8 > 0) := by sorry

lemma TS
(x:ℝ)
(L2: x < 0 → (x^5 + 7*x^3 + 5*x < 0))
(L4: x < 0 → (x^4 + x^2 + 8 > 0)):
x^5 + 7*x^3 + 5*x ≥ x^4 + x^2 + 8 → x ≥ 0:=
by sorry

TC: Theorem condition
L1: Lemma 1
L2: Lemma 2
L3: Lemma 3
L4: Lemma 4

TS: Theorem Solution

TC

L1

L3

TS

L2

L4

NL theorem and Proof Lean4: Tactic Approach Lean4: Lemma Approach

Dependency Graph

Theorem: For x∈ℝ, if x5+7x3+5x≥x4+x2+8, then x≥0.

Proof: (Contrapositive) Suppose it is not true that x≥0.
Then x<0, that is, x is negative. Consequently, the
expressions x5, 7x3, and 5x are all negative (note the
odd powers), so x5+7x3+5x<0.
Similarly, the terms x4, x2, and 8 are all positive (note
the even powers), so 0<x4+x2+8.
From this we get x5+7x3+5x<x4+x2+8, so it is not true
that x5+7x3+5x≥x4+x2+8.

theorem polynomial_inequality (x : ℝ) :
x^5 + 7*x^3 + 5*x ≥ x^4 + x^2 + 8 → x ≥ 0 := by

-- Proof by contrapositive
contrapose!
-- h_neg : x < 0
intro h_neg

linarith [
pow_neg_of_neg h_neg 5, --x^5 < 0
mul_neg_of_pos_of_neg (show (7 : ℝ) > 0 from by
norm_num) (pow_neg_of_neg h_neg 3), --7*x^3 < 0
mul_neg_of_pos_of_neg (show (5 : ℝ) > 0 from by
norm_num) h_neg, -- 5*x < 0
pow_pos (neg_pos.mpr h_neg) 4, -- x^4 > 0
pow_pos (neg_pos.mpr h_neg) 2, -- x^2 > 0
show (8 : ℝ) > 0 from by norm_num] -- 8 > 0

Figure 1: Comparison of our PROOFFLOW “Lemma Approach” and the common “Tactic Ap-
proach” in formalizing a natural language (NL) theorem and its proof into Lean 4 code. The Lemma
Approach directly mirrors the sequence of steps and their dependencies in the NL proof. By con-
trast, the Tactic Approach produces tactics that fail to adhere to the structure of the initial NL proof.

based approach often fails to preserve the logical structure of the original human argument. For
instance, as shown in Figure 1, under “Lean 4: Tactic Approach”, the generated tactics do not
follow the sequence of steps in the natural language proof. Furthermore, a single tactic, linarith,
consolidates three distinct steps from the original proof (TS, L2, and L4). This disparity creates two
major issues. First, not all natural language mathematical expressions can be directly translated into
low-level tactics, which can cause the formalization process to fail. Second, even if an automated
system generates a verifiable proof, it may take shortcuts or skip intermediate steps, arriving at the
correct conclusion without mirroring the explicit, step-by-step reasoning of the original proof. This
makes it difficult to verify that the formal proof truly captures the human’s intended logic.

To address these issues and ensure faithful autoformalization, we propose a novel approach that
avoids direct translation into limited, low-level formal tactics. Instead, we deconstruct the natural
language proof into a sequence of structured, high-level lemmas, as illustrated by the “Lemma Ap-
proach” in Fig. 1. The key advantage of this method is that it enables us to explicitly follow the
sequence of steps in the original proof with low friction1. This stands in sharp contrast to the con-
ventional tactic-based approach, which is often convoluted and hinders mirroring the human proof
structure. Second, our lemma-based approach preserves the logical structure of the natural language
proof by explicitly defining dependencies. As shown in Figure 1, the final step, lemma TS (the theo-
rem’s solution), depends only on lemma L2 and lemma L4. This explicit dependency management
is crucial in enforcing structurally faithful formalization, which is often not achieved in a standard
tactic-based workflow. For instance, a common tactic like “have” in Lean 4 feeds the entire preced-
ing context to each new step, not just the specific premises required by the original proof logic. In
contrast, our approach of explicitly defining how lemmas depend on one another prevents the system
from incorrectly using unintended dependencies, a common failure in tactic-based proving. These
two innovations, high-level lemma generation and explicit dependency tracking, form the core of
our new autoformalization pipeline, PROOFFLOW.

Another primary challenge is defining what constitutes a “faithful” formalization. In existing work,
researchers either focus on syntactic correctness (Hu et al., 2025), i.e., no compilation errors, or
use a simple BLEU score for semantic measurement (Poiroux et al., 2024; Wu et al., 2022), while
ignoring the structural fidelity of the proof. To properly evaluate proof formalizations, we propose
viewing a proof not as a monolithic block of text, but as a structured sequence of theorem condi-

1While we currently use the placeholder “by sorry” for unproven parts, our ultimate goal is to generate Lean
tactics to prove each lemma and the final solution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tions, definitions, and lemmas that form a logical progression toward the final theorem solution or
solutions (see Figure 1). Based on this, we introduce a new and more comprehensive proof autofor-
malization scoring metric (PROOFSCORE), and we also address the lack of an advanced benchmark
by providing a new university-level dataset tailored for this task (PROOFFLOWBENCH).

Drawing on our new framework, we make the following key contributions:

• PROOFFLOW: In Section 3, we propose a novel pipeline for translating natural language theo-
rems and proofs into structured and formal Lean code, ensuring the preservation of the proof’s
logical structure. When a formalization step fails, the pipeline identifies the error source, be it
in the formalization, the tactic completion process, or the initial NL statement, thereby alerting
mathematicians of potential flaws in their original proof.

• PROOFSCORE: Section 4 introduces a new and comprehensive scoring method to evaluate the
quality of autoformalized proofs. This metric is the first to explicitly measure syntactic correct-
ness, semantic faithfulness, and structural fidelity, providing a more complete assessment than
existing methods.

• PROOFFLOWBENCH: In Section 5, we present a new, manually curated benchmark dataset for
proof autoformalization, containing a collection of 184 undergraduate level problems.

• Comparative Study: Section 6 presents an empirical study using state-of-the-art models to evaluate
our structure-aware pipeline, PROOFFLOW, against alternative strategies. The results show that
PROOFFLOW has significantly higher proof autoformalization quality.

2 BACKGROUND AND RELATED WORK

Proof assistants and automatic theorem proving: Proof assistants like Isabelle (Paulson, 1994),
Lean 4 (Moura & Ullrich, 2021), and Coq (Barras et al., 1997) are software environments for devel-
oping and verifying mathematical proofs. Proofs constructed within these systems are what we call
“formal” proofs, distinguishing them from informal or natural language proofs written in standard
mathematics (e.g., in LATEX). The user’s workflow involves interactively applying tactics, which are
small programs that perform logical inferences, to solve the theorem’s goals (Jiang et al., 2024).
Despite their power, a steep learning curve and the significant manual effort required by their rigid
syntaxes have hindered widespread adoption (Zhou et al., 2024). Recently, Large Language Models
(LLMs) have emerged as powerful automated theorem provers (ATPs) capable of generating com-
plete formal proofs from already formalized theorem statements (Shang et al., 2025; Lin et al., 2025;
Wang et al., 2025b; Ren et al., 2025b). Proof Agents have further advanced this ability (Chen et al.,
2025; Zhou et al., 2025; Baba et al., 2025). In the context of Figure 1, the task of an ATP is to
automatically replace the placeholder command “sorry” with formal tactics to complete the proof.

Autoformalization with LLMs: For a fully automatic theorem-proving system, mathematical prob-
lems originating in natural language must first be translated into a formal language, a process known
as autoformalization. Historically, autoformalization efforts have primarily focused on translating
theorem statements, and not the natural language proof (Huang et al., 2025; Wu et al., 2025; Liu
et al., 2025; Yu et al., 2025b; Poiroux et al., 2024; Pathak, 2024; Patel et al., 2023), often to support
the training of automated provers (Lin et al., 2025; Wang et al., 2025b). A different approach uses
informal proof sketches to guide an LLM’s search for a formal proof (Cao et al., 2025; Zhou et al.,
2024; Jiang et al., 2023). In these methods, the natural language proof sketch is not the target of
formalization itself. Rather, it serves as a high-level guide, often interleaved as comments within
the formal code to steer the generation process. This guidance technique is also employed by recent
ATPs like DeepseekProver-V2 (Ren et al., 2025b) and Goedel Prover V2 (Lin et al., 2025).

Proof Autoformalization: In the literature of proof autoformalization, most existing attempts di-
rectly translate entire proofs using LLMs (Gao et al., 2024; Lu et al., 2024; Cunningham et al., 2023).
This approach, however, remains highly challenging due to frequent syntactic errors and it often pro-
duces outputs that are not semantically trustworthy. Step-level formalization, which involves solving
the autoformalization step-by-step based on the proof’s logical steps, has been explored by Hu et al.
(2025) in Isabelle. However, this approach suffers from two limitations. First, they treated all pre-
vious proof steps as valid premises for the current step, a significant simplification that overlooks
the proper logical structure. Second, their evaluations focused solely on syntactic correctness while
overlooking semantic consistency.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

TC L1 L2 L3 L4 TS

TC

L1 L3

L2 L4

TS

TC

L1 L3

L2 L4

TS

TC

L1 L3

L2 L4

TS

Prover allowed to pursue any subgraph

DAG in StepProof formalization

(a)

Suppose n is an odd
integer. Show that
n ≡ 1 (mod 8)

Theorem TC1 n is odd

L1 n = 2k+1
k integer

L4

TS

L2

L3L5

L6

k(k+1) even

k(k+1) = 2m
m integer

n^2 = 4k^2 +
4k+1

n^2 =
4k(k+1) + 1

n^2 = 8m+1

n ≡ 1
(mod 8)

(b)

Figure 2: Comparing structural fidelity in automated proof generation. (a) A scenario for the prob-
lem in Figure 1, where the dependency graph fails to adhere to the structure of the original proof.
(b) This problem was intentionally formalized without enforcing a DAG. This approach sacrificed
structural fidelity, by reusing lemma L1 to prove L3, thereby rendering L2 redundant.

3 PROOF AUTOFORMALIZATION

Although most prior work formalizes entire proofs at once, a notable exception is the “STEP PROOF”
method (Hu et al., 2025). This approach assumes each proof step depends on all preceding steps,
a simplification that creates an unfaithful dependency structure and can lead to an ATP taking a
“shortcut.” This shortcut may involve using only the initial theorem conditions or an incorrect subset
of lemmas to construct a valid proof that does not follow the logic of the original NL proof, as
depicted in Figure 2a. A clear example found in PROOFFLOWBENCH is illustrated in Figure 2b.
In the natural language proof, step L3 directly uses the outcome of L2, which is faithfully followed
by our DAG-enforcing pipeline. By contrast, an ablated version of our pipeline which lacks the
mechanism to enforce the correct dependencies (noDAG) reuses the outcome of L1 to prove L3,
despite having proven L2. Thus, it not only dissipates step L2 but also disregards the structure of
the original proof. More details and examples are found in Appendix A.5.

If the sole objective is to find any correct formal proof for a theorem, which is often the sole goal
of ATPs, these behaviors are not problematic. However, for proof autoformalization, they represent
a critical failure of faithfulness. Our goal is to ensure that each step is proven only taking into
account the correct set of previous lemmas and theorem conditions specified by the original proof’s
logic. Enforcing this correct dependency structure offers significant practical advantages as well.
It improves efficiency by constraining the autoformalizer’s search space, which can lead to fewer
spent tokens and faster verification.

3.1 NEW WORKFLOW FOR PROOF AUTOFORMALIZATION

As shown in Figure 3, our method enforces a correct dependency graph through a three-stage
pipeline, leveraging LLMs at each step to bridge the gap between natural language (NL) and formal
proof code. The first stage, Graph Builder, constructs a dependency directed acyclic graph (DAG)
from the original proof. Next, the Formalizer uses an LLM to translate each proof step into formal
Lean code. Finally, the Tactic Completer fills in the necessary tactics to complete the Lean proof.
The specific LLM models used at each stage are detailed in Section 6.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Graph Builder

Formalizer

Theorem: Suppose
A and B are n x n ...

Proof: Since AB=I and
det(I)=1 we know that....

NL Proof

LLM

TC1 L1

L2

TS

Original statement:
Since AB = I, then |A||B|=1.

Dependencies: [TC1, TC2]

Self-contained statement:
We assume:
• A, B are n × n square matrices [TC1]
• AB = I [TC2]
Therefore we conclude:
• |A| |B| = 1 [L2]

Node dictionary

lemma L2
...
{A B : Matrix n n ℝ}
(TC2: A * B = 1) :
det A * det B = 1 := by
sorry

L2

TC2

Formal Lean4 lemma

LLM

lemma L2
...
(TC2: A * B = 1) :
det A * det B = 1 := by
rw [←det_mul, TC2,
 det_one]

Lean4 code with tactics

LLM

Tactic Completer

Lean
errors?

Yes (retry formalization)

Lean
errors?

No

Yes (retry proving)

Figure 3: Our proof autoformalization pipeline with three parts: (1) Graph builder; (2) Lemma
Formalizer; and (3) Tactic Completer. Lean errors are verified by the Lean 4 compiler.

1. Graph Builder: This step parses the natural language (NL) theorem and its proof to construct
a dependency graph with LLM. Formally, this graph is a DAG, G = (V,E), where V is the set of
all nodes and E ⊆ V × V is the set of directed edges. The nodes are partitioned into disjoint sets:
V = VTC ∪VD ∪VL ∪VTS , representing Theorem Conditions, Definitions, Lemmas, and Theorem
Solutions, respectively. Each edge (u, v) ∈ E signifies that node u is a prerequisite for proving
the statement of node v. From the theorem statement, we extract nodes for theorem conditions and
theorem solutions. From the proof statement, we extract nodes for lemmas and extra definitions.
Each node is assigned its original NL statement, its dependencies, and a self-contained NL statement
that provides a complete description of the current proof step (see Figure 3). To ensure the graph’s
validity, the system checks for forward references and cycles and verifies that every node, except the
theorem solutions, has an outgoing edge. If the check fails, we task the LLM to improve the graph.

2. Formalizer: For each node in the graph, the LLM formalizes its self-contained NL statement
into Lean 4 code. This process is iterative: generated errors are fed back to the LLM for correction.
At this stage, each lemma is finalized with the “by sorry” placeholder, as tactics are not yet applied.

3. Tactic Completer: The final step completes the proofs for the lemmas by replacing the “by
sorry” placeholders in the formalized Lean 4 code with the appropriate Lean 4 tactics.

To streamline the entire workflow illustrated in Figure 3, we developed a user-friendly Python pack-
age for PROOFFLOW. This package automates the complete process, allowing users to provide an in-
formal theorem and proof with just a few lines of code. The package then autonomously executes the
full workflow. It also integrates PROOFSCORE evaluation and our PROOFFLOWBENCH benchmark
for comprehensive assessment. The package is available 2 at https://anonymous.4open.
science/r/ProofFlow-351E, with all the LLM prompts used in this project included in the
repository.

The final output of our package is an interactive diagram that visualizes the proof graph, as seen in
Figure 4. Users can click on each node to get detailed information about its results. The contours
of each node provide an at-a-glance summary of the outcomes, indicating whether its formalization
and solving steps were successful. This allows users to immediately assess the progress of the
autoformalization and pinpoint the locations in the proof graph where manual effort is needed.

2A public GitHub repository containing the package will be made available upon paper acceptance.

5

https://anonymous.4open.science/r/ProofFlow-351E
https://anonymous.4open.science/r/ProofFlow-351E

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: An example of the interactive visualization generated by PROOFFLOW. Node contours
signify the outcome of each step: Red for a formalization error, orange for formalized statement
without Lean 4 tactics, and green for formalized statement with Lean 4 tactics.

4 SCORING PROOF AUTOFORMALIZATION AND ERROR DETECTION

As discussed in Section 1, a faithful autoformalization must satisfy three key properties: (1) Struc-
tural Fidelity, which ensures the proof’s dependency graph is preserved; (2) Syntactic Correctness,
which ensures the output is verifiable code without compilation errors; and (3) Semantic Faith-
fulness, which ensures each formalized statement accurately preserves the precise mathematical
meaning of its original natural language statement.

4.1 PROOFSCORE

To evaluate the effectiveness of our PROOFFLOW pipeline, we introduce PROOFSCORE, a single
unified score that synthesizes these three criteria.

Structural Fidelity is evaluated by checking whether the dependencies for a given node are valid.
For a node vi, we check if its estimated dependencies, Dest(vi) = {u ∈ Vest | (u, vi) ∈ Eest}, match
the dependencies in a ground truth graph. We permit several valid graphs (Gtrue) because the level of
granularity can vary. For example, the calculation 1+ 13+ 5 = 14+ 5 = 19 could be broken down
into either one or two steps, depending on the user’s granularity preference.

Syntactic Correctness is denoted by ci ∈ {0, 1}, where ci = 1 if the formalization of node vi is
free of Lean 4 compilation errors at the end of the Tactic Completer step and ci = 0 otherwise.

Semantic Faithfulness is assessed by adapting the “LeanScore” metric from Yu et al. (2025a),
which was originally designed to evaluate the semantic faithfulness of a theorem statement formal-
ization. A detailed description is given in Appendix A.2. This metric provides a faithfulness score,
fi ∈ [0, 1], for each node vi of the dependency graph, and this score measures the semantic equiva-
lence between the input NL statement and its corresponding formalized Lean 4 lemma. The higher
the score, the more faithful the Lean 4 lemma devotes to the input NL statement.

The final unified PROOFSCORE, for a proof with n steps is computed as:

PROOFSCORE =
1

n

n∑
i

fi ci I[Dest(vi) ∈ Dtrue(vi)],

where ProofScore ∈ [0, 1], and Dtrue(vi) is the set of valid dependencies for node step vi. When
the GraphBuilder is configured to enforce the DAG structure, structural fidelity is guaranteed for all
nodes. Otherwise, we use the Claude-Sonnet-4 LLM with a specialized prompt to verify structural
fidelity. This same LLM model is also used to check for semantic faithfulness, utilizing prompts
available within the PROOFFLOW package. Additional details about PROOFSCORE, including ex-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Node is
Lemma or

 TS

Lean
tactics
error

Prove
negation

Formalizer error No error

NL statement
error

Tactic completer
errorNo error

No

Yes

No

Yes

No

Yes

failure

sucess

Figure 5: Flowchart illustrating the error detection mechanism. This is applied lemma by lemma
and fi is the semantic faithfulness of node vi and ci = 0 if there are syntactic errors.

amples of natural language proofs paired with their Lean code and respective scores, are provided
in Appendix A.2.

4.2 ERROR ANALYSIS

PROOFFLOW also has an error detection system operating at each proof step. This process (Figure
5) determines the error source, which can be the formalizer, tactic completer, or original natural
language proof. First, a proof node’s semantic faithfulness score is compared against a 0.6 threshold,
following Yu et al. (2025a). If it passes, the system checks if it’s a provable statement (lemma or
theorem solution). Otherwise, the process for that node ends. For provable statements, the tactic
completer attempts to apply Lean 4 tactics. Success means the proof step is complete with no errors.
If the tactics fail, the LLM tries to prove the negation of the statement. If the negation can be proven,
then the original natural language statement is deemed imprecise. Otherwise, the error is considered
to be with the tactic completer LLM, which is incapable of either proving or disproving the step.

5 PROOFFLOWBENCH

Existing mathematical benchmarks are often limited to pure calculation and are designed to test
problem solving accuracy. Previous natural language proof datasets are also not self-contained, often
referencing external sources for non-standard theorems (Welleck et al., 2021). Furthermore, they
focus on specific topics and sometimes also including calculation problems instead of proofs (Sheng
et al., 2025). To address these limitations, we introduce a new benchmark, PROOFFLOWBENCH, to
specifically evaluate automated proof formalization pipelines. The benchmark, provided as part of
the PROOFFLOW package, consists of 184 undergraduate-level mathematics theorems and proofs in
natural language from six key areas: number theory and algebra (27), real analysis (42), inequality
(36), probability and set theory (31), complex analysis (25), and sequences and series (23). To
construct this dataset, we adapted 63 problems from the NaturalProofs benchmark (Welleck et al.,
2021) and 36 problems from the IneqMath benchmark (Sheng et al., 2025).

The benchmark also contains the natural language proofs divided into proof steps, and the respective
dependency graphs (DAGs), which can be used to evaluate structural fidelity. On average, each
problem’s graph consists of 8.4 total nodes (more statistics provided in Appendix A.3). The proof
graphs have been manually validated. However, we emphasize that for the same proof different
proof graphs are possible depending on the desired level of detail of each proof node.

6 COMPARISON STUDY

To evaluate our PROOFFLOW pipeline, we conduct a comparison study with three main objectives.
First, we assess the effectiveness of formalizing proofs using our high-level, lemma-based approach
(PROOFFLOW) versus low-level tactics. This compares the “Lemma Formalization” (ours) with the
“Tactic Formalization” (existing), as depicted in Figure 1. Secondly, to examine the role of explicit
dependency management in ensuring structural fidelity to the original proof, we compare the DAG-
enforcing version of PROOFFLOW with a variant where this is relaxed (noDAG). Finally, we conduct
the error analysis of Section 4.2, to detect the source of errors in the PROOFFLOW pipeline variants.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6.1 EXPERIMENTAL SETTINGS

PROOFFLOW: We consider the PROOFFLOW variant that explicitly enforces the correct depen-
dency graph as our main method, referred to as PROOFFLOW DAG. To evaluate the role of this de-
pendency enforcement, as an ablation study, we also consider a PROOFFLOW noDAG version, where
such mechanism is relaxed. That is, in PROOFFLOW noDAG, all previous lemmas and premises are
provided when formalizing each step, similarly to how dependency is handled by most prior work.

Existing methods: We compare our pipeline against existing tactic-based formalization methods:
(1) “FULL PROOF” autoformalization (Lu et al., 2024), which calls the LLM once to formalize the
entire theorem and proof using Lean 4 tactics, and (2) “STEP PROOF” autoformalization (Hu et al.,
2025), which formalizes one proof step at a time into Lean 4 tactics. We note that STEP PROOF
utilizes the same Graph Builder LLM and prompt as PROOFFLOW to decomponse the initial NL
proof into steps.

Thinking modes: All methods were evaluated in both thinking and non-thinking modes to pro-
vide a more comprehensive assessment. For existing methods, Goedel-Prover-V2-32B and Gemini-
Flash-2.5 (Gemini Team, 2025) are used for the thinking and non-thinking modes. For our PROOF-
FLOW pipeline, the Graph Builder always uses Gemini-2.5-Pro; the thinking mode utilizes Goedel-
Formalizer-2-32B and Goedel-Prover-V2-32B (Lin et al., 2025) as the Formalizer and the Tactic
Completer, while non-thinking mode utilizes Gemini-2.5-Flash and DeepSeekProver V2 671B (Ren
et al., 2025a) for the two components. All LLM models were given appropriate system prompts.

Evaluation metrics: Our main evaluation metric in PROOFSCORE, supplemented by measures of
syntactic correctness, both at step-level and proof-level. Step-level syntactic correctness of the gen-
erated Lean 4 code is measured at two key stages: after the Formalizer step (Formalizer accuracy)
and after the Tactic Completer step (Tactic accuracy). We also report proof-level “correct syn-
tax”, whether all of the formalizer and solver steps are syntactically valid. All syntactic correctness
checks are verified by LeanServer (Santos et al., 2025) with Lean version v4.15.0. We also adapted
PROOFSCORE (Sect. 4), so it could evaluate the FULL PROOF and STEP PROOF pipelines (see Ap-
pendix A.2.2 for details). Finally, we report the elapsed time and the number of generated tokens.
Since our experiments use both local and API-based model deployments, inference speeds vary.
Therefore, the number of generated tokens is a more meaningful indicator of the effort required.

Data and reproducibility: We utilized the problems in the PROOFFLOWBENCH benchmark for
this comparison study. Reproducible code is provided as part of the PROOFFLOW package.

6.2 EMPIRICAL RESULTS

The results evaluated at a Pass@5 rate are presented in Table 1. This Pass@5 setting allows for up
to five self-correction retries for each stage in the pipelines. If a generated step produces syntacti-
cally incorrect code, the model is re-prompted with the error and its previous output, giving it an
opportunity to fix the mistake. The results for Pass@1 and 3 are show in Appendix A.4.

Existing Methods Comparison: The results clearly demonstrate that our pipeline outperforms ex-
isting methods (FULL PROOF and STEP PROOF), achieving the highest PROOFSCORE (0.545). The
FULL PROOF method calls the LLM once for the entire proof formalization and therefore we only
report proof-level results. This approach achieves a comparatively high syntax passing rates (0.571
for the thinking mode), however, the PROOFSCORE was comparatively low, with the most frequent
errors being the misuse of unknown theorem names and tactic failures. The STEP PROOF method
exhibits the lowest proof-level syntax passing rates (0.005 for the non-thinking mode and 0.119 for
the thinking mode) because the LLM struggles to maintain correct and consistent indentation in Lean
4 across steps. Also, once an error appears in one step, subsequent steps cannot achieve syntactic
correctness. The poor syntax passing rates of the STEP PROOF approach results in correspondingly
low PROOFSCORE values, given that this metric incorporates syntactic correctness as a component.

Ablation Study: The PROOFSCORE evaluation metric establishes the DAG version of PROOFFLOW
as the top-performing method for proof autoformalization. This is most evident in the “thinking”
mode, where the DAG variant achieves a PROOFSCORE of 0.545, compared to the noDAG’s 0.417,
due to improved structural fidelity and syntactic correctness. While the DAG also outperforms the
noDAG variant for all syntax metrics in the thinking mode, we observed a higher syntax passing rate
for the noDAG in the non thinking setting. This is because the noDAG variant provides all previ-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Performance metrics under the Pass@5 setting on our 184-problem benchmark. Step-level
averages are computed over all individual steps, while proof-level averages are computed per proof.
Entries marked with “/” indicate not applicable.

Step-Level Proof-Level

Pipeline
Think
mode

Form.
accuracy

Tactic
accuracy

Proof
Score

Correct
syntax

Time
(mins)

Output
tokens (k)

PROOFFLOW

DAG
No 0.751 0.358 0.355 0.027 8.8 22.4
Yes 0.939 0.742 0.545 0.375 31.8 94.2

PROOFFLOW

noDAG
No 0.807 0.391 0.347 0.049 12.3 25.8
Yes 0.936 0.681 0.417 0.353 32.0 98.5

FULL PROOF
No / / 0.021 0.027 0.8 10.5
Yes / / 0.279 0.571 3.8 15.1

STEP PROOF
No / 0.068 0.046 0.005 0.2 1.2
Yes / 0.129 0.029 0.119 10.6 32.9

ous steps as known conditions to the LLM, and this extra information can lead to higher syntactic
passing rates for weaker models, but often results in a logically inconsistent formal proof structure,
as shown by the lower PROOFSCORE averages. This finding underscores the critical importance of
maintaining structural fidelity.

Computational efficiency: Appendix A.7 provides a detailed breakdown of computational costs
across pipeline components. Our analysis reveals that the Tactic Completer stage is the primary
computational bottleneck, consuming 81–89% of total execution time across all configurations. A
straightforward solution to address this bottleneck, enabled by our DAG-based pipeline design, is
parallelization. Our architecture naturally supports parallel execution at multiple levels: proof nodes
in different branches can be formalized concurrently, and once formalized, tactic completion can
proceed independently across nodes. In principle, our DAG design enables extensive parallelization
that could substantially reduce wall-clock time. However, we did not implement parallelization in
our experiments due to limited GPU resources, which restricted us to sequential processing.

6.3 ERROR ANALYSIS

The error analysis, shown in Table 2, identifies the Formalizer as the primary source of failure,
accounting for 32% to 47% of all autoformalization outcomes, depending on the pipeline configura-
tion. These failures are predominantly semantic, stemming from discrepancies between the natural
language and the formalized Lean 4 code, despite the high syntactic correctness (Table 1). Our most
robust configuration, which uses the PROOFFLOW DAG architecture in thinking mode, has 53.3%
error-free proof steps and clearly outperforms the 42.8% rate of the baseline (noDAG) version. This
confirms that while the DAG architecture improves performance, improving semantic preservation
during the formalization stage remains a challenge for future work.

The PROOFFLOW’s error detection process goes beyond simple checks, being able, in some in-
stances, to identify a spectrum of flaws in the initial natural language proof. Examples are provided
in Appendix A.6. These detected issues range from blatant algebraic errors to subtle ambiguities and
unstated assumptions. By flagging these mistakes, pipelines like PROOFFLOW can provide feedback
that not only helps correct errors but also strengthens the overall rigor and clarity of the proof.

7 DISCUSSION

Our results demonstrate the importance of preserving a proof’s structural fidelity. The PROOFFLOW
lemma-based approach significantly outperforms both monolithic (“FULL PROOF”) and sequential
(“STEP PROOF”) methods, which falter by tackling excessive complexity at once or by imposing a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Breakdown of step-level outcomes for different pipeline configurations. “None” indicates
the percentage of total steps completed successfully, while other columns show the percentage of
steps that failed due to a specific error source.

Pipeline Think Total Steps Error Source (%)
None Formalizer Tactic NL Statement

PROOFFLOW DAG No 1735 33.7 46.5 19.6 0.2
PROOFFLOW DAG Yes 1737 53.3 38.9 5.6 2.2

PROOFFLOW noDAG No 1751 32.8 45.6 21.4 0.2
PROOFFLOW noDAG Yes 1755 42.8 47.0 7.6 2.6

linear structure unfaithful to the proof logic. Our method succeeds by using a lemma-based struc-
ture that explicitly models the proof’s dependency graph. This approach deconstructs the problem
into manageable, logically-constrained steps. It guides the LLM along the author’s intended path,
preventing logical “shortcuts” that undermine other approaches. However, performance hinges on
the Formalizer step, where poor semantic preservation remains the primary bottleneck.

A limitation of our work was the exclusive focus on undergraduate-level proofs, omitting research-
level problems. However, this scope reflects the current capabilities of the field rather than intrin-
sic limitations of the pipeline architecture we propose. Testing our system on more challenging
research-level problems did reveal the expected performance drop, consistent with observations
across the literature (e.g., (Jiang et al., 2025)). Critically, our pipeline’s core contributions—the
DAG-based lemma decomposition and structural preservation—are not the primary limiting factors.
The main bottlenecks lie in the underlying formalizer and tactic-completer LLMs, which currently
struggle with research-level concepts, and in MathLib’s incomplete coverage of specialized mathe-
matical domains. As these foundational components mature and the formal mathematics ecosystem
grows, we anticipate that our pipeline’s performance will naturally improve, providing a scalable
framework that is designed to grow more capable alongside these broader advances.

Our modular three-stage pipeline also enables the curation of high-quality training data for both end-
to-end proof autoformalization models and individual Formalizer and Tactic Completer LLMs—a
key direction for future work. Our error detection mechanisms can filter low-quality autoformaliza-
tions at different pipeline stages, creating curated datasets that support multiple training paradigms:
supervised fine-tuning on the complete chain-of-thought reasoning process and reinforcement learn-
ing using detected errors as negative examples.

Ultimately, our work demonstrates that proof autoformalization is an achievable goal: we achieved
37.5% proof-level syntactic accuracy on undergraduate problems, a significant leap from existing
approaches that only achieved 6.10% accuracy on simpler middle-school mathematics (Hu et al.,
2025). More importantly, we establish that for these tools to be truly useful to mathematicians,
they must faithfully represent the structure and logic of the human-created arguments they seek to
formalize. Addressing the current bottlenecks could lead to practical tools that function as a proof
“auto-correct” for mathematicians, pinpointing errors and ambiguities directly in natural language
and in real time.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics and does not involve human subjects, privacy con-
cerns, or ethical issues. The study uses only publicly available mathematical data, with no personal
or sensitive data involved.

The proposed PROOFFLOW pipeline, PROOFSCORE metric, code, and datasets are designed to as-
sist mathematicians in theorem formalization, aiming to advance mathematical research and AI for
mathematics. This work poses no foreseeable harmful applications and contributes positively to the
scientific community by enhancing automated theorem proving capabilities.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we have made all necessary materials openly available.
The complete implementation of the methodology (PROOFFLOW pipeline, PROOFSCORE metric),
all experimental data, LLM prompts and comparison study code are publicly accessible through our
package repository: https://anonymous.4open.science/r/ProofFlow-351E. The
provided GitHub repository includes detailed instructions and documentation for replicating all ex-
perimental results presented in this paper.

11

https://anonymous.4open.science/r/ProofFlow-351E

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based
framework for formal mathematical proofs. arXiv preprint arXiv:2506.19923, 2025.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliâtre, Eduardo
Giménez, Héctor Herbelin, Gérard Mohring, Amokrane Saı̈bi, and Benjamin Werner. The coq
proof assistant reference manual: Version 6.1. Technical Report RT-0203, INRIA, 1997.

Kevin Buzzard and Richard Taylor. A lean proof of fermat’s last theorem. Technical report, Techni-
cal report, Imperial College of London, 2024. https . . . , 2025.

Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang.
Reviving dsp for advanced theorem proving in the era of reasoning models. arXiv preprint
arXiv:2506.11487, 2025.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated
theorem proving. arXiv preprint arXiv:2507.23726, 2025.

Garett Cunningham, Razvan C Bunescu, and David Juedes. Towards autoformalization of
mathematics and code correctness: Experiments with elementary proofs. arXiv preprint
arXiv:2301.02195, 2023.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
A natural language annotated lean 4 dataset. arXiv preprint arXiv:2410.10878, 2024.

Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities, 2025. URL https://arxiv.org/
abs/2507.06261.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, et al. A machine-checked
proof of the Odd Order Theorem. Lecture Notes in Computer Science, 8332:163–179, 2013.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Le Truong Hoang,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof
of the Kepler conjecture. Forum of Mathematics, Pi, 5, 2017.

Xiaolin Hu, Qinghua Zhou, Bogdan Grechuk, and Ivan Y. Tyukin. Stepproof: Step-by-step veri-
fication of natural language mathematical proofs, 2025. URL https://arxiv.org/abs/
2506.10558.

Yanxing Huang, Xinling Jin, Sijie Liang, Peng Li, and Yang Liu. Formarl: Enhancing autoformal-
ization with no labeled data. arXiv preprint arXiv:2508.18914, 2025.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs, 2023. URL https://arxiv.org/abs/2210.12283.

Albert Q. Jiang, Wenda Li, Mateja Jamnik, Sean B. Holden, and Lawrence C. Paulson. Draft, sketch,
and prove: Guiding formal theorem provers with informal proofs. In The Twelfth International
Conference on Learning Representations (ICLR), 2024. URL https://openreview.net/
forum?id=Vp0Zz0w2V1.

Jiedong Jiang, Wanyi He, Yuefeng Wang, Guoxiong Gao, Yongle Hu, Jingting Wang, Nailing Guan,
Peihao Wu, Chunbo Dai, Liang Xiao, and Bin Dong. Fate: A formal benchmark series for frontier
algebra of multiple difficulty levels, 2025. URL https://arxiv.org/abs/2511.02872.

Zhenwen Liang, Linfeng Song, Yang Li, Tao Yang, Feng Zhang, Haitao Mi, and Dong Yu. Towards
solving more challenging imo problems via decoupled reasoning and proving. arXiv preprint
arXiv:2507.06804, 2025.

12

https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2506.10558
https://arxiv.org/abs/2506.10558
https://arxiv.org/abs/2210.12283
https://openreview.net/forum?id=Vp0Zz0w2V1
https://openreview.net/forum?id=Vp0Zz0w2V1
https://arxiv.org/abs/2511.02872

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling
formal theorem proving with scaffolded data synthesis and self-correction, 2025. URL https:
//arxiv.org/abs/2508.03613.

Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yuntian Liu, Yu Chen, Yang Jiao, and Tao
Luo. Atlas: Autoformalizing theorems through lifting, augmentation, and synthesis of data. arXiv
preprint arXiv:2502.05567, 2025.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, et al. Process-driven autoformalization in lean 4. arXiv
preprint arXiv:2406.01940, 2024.

Math Inc. The strong prime number theorem. https://github.com/math-inc/
strongpnt, 2025. Accessed: 2025-09-11.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In International Conference on Automated Deduction, pp. 625–635. Springer, 2021.

Nilay Patel, Rahul Saha, and Jeffrey Flanigan. A new approach towards autoformalization. arXiv
preprint arXiv:2310.07957, 2023.

Shashank Pathak. Gflean: An autoformalisation framework for lean via gf. arXiv preprint
arXiv:2404.01234, 2024.

Lawrence C. Paulson. Isabelle: A generic theorem prover. In Alan Bundy (ed.), Proceedings of
the 12th International Conference on Automated Deduction (CADE-12), volume 814 of Lecture
Notes in Computer Science, pp. 37–41. Springer, 1994.

Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving autoformalization
using type checking. arXiv preprint arXiv:2406.07222, 2024.

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yux-
uan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decomposition, 2025a. URL
https://arxiv.org/abs/2504.21801.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025b.

Marco Dos Santos, Haiming Wang, Hugues de Saxcé, Ran Wang, Mantas Baksys, Mert Unsal,
Junqi Liu, Zhengying Liu, and Jia Li. Kimina lean server: Technical report, 2025. URL https:
//arxiv.org/abs/2504.21230.

Peter Scholze. The Liquid Tensor Experiment. Xena Blog, 2021. Avail-
able at: https://xenaproject.wordpress.com/2021/05/18/
the-liquid-tensor-experiment/.

Shijie Shang, Ruosi Wan, Yue Peng, Yutong Wu, Xiong-hui Chen, Jie Yan, and Xiangyu Zhang.
Stepfun-prover preview: Let’s think and verify step by step. arXiv preprint arXiv:2507.20199,
2025.

Jiayi Sheng, Luna Lyu, Jikai Jin, Tony Xia, Alex Gu, James Zou, and Pan Lu. Solving inequality
proofs with large language models. arXiv preprint arXiv:2506.07927, 2025.

Michio Sugeno. Theory of fuzzy integrals and its applications. Doctoral Thesis, Tokyo Institute of
Technology, 1974.

13

https://arxiv.org/abs/2508.03613
https://arxiv.org/abs/2508.03613
https://github.com/math-inc/strongpnt
https://github.com/math-inc/strongpnt
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21230
https://arxiv.org/abs/2504.21230
https://xenaproject.wordpress.com/2021/05/18/the-liquid-tensor-experiment/
https://xenaproject.wordpress.com/2021/05/18/the-liquid-tensor-experiment/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Terence Tao. Formalizing the proof of PFR in Lean4 using blueprint: a short tour. What’s
new Blog, 2023. Available at: https://terrytao.wordpress.com/2023/11/18/
formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey,
Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu,
Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani,
Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding
Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying
Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning models with reinforce-
ment learning. 2025a. URL http://arxiv.org/abs/2504.11354.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025b.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun
Cho. Naturalproofs: Mathematical theorem proving in natural language, 2021. URL https:
//arxiv.org/abs/2104.01112.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in neural informa-
tion processing systems, 35:32353–32368, 2022.

Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang, Zidong
Du, Jie Yan, et al. Stepfun-formalizer: Unlocking the autoformalization potential of llms through
knowledge-reasoning fusion. arXiv preprint arXiv:2508.04440, 2025.

Xuejun Yu, Jianyuan Zhong, Zijin Feng, Pengyi Zhai, Roozbeh Yousefzadeh, Wei Chong Ng, Haox-
iong Liu, Ziyi Shou, Jing Xiong, Yudong Zhou, et al. Mathesis: Towards formal theorem proving
from natural languages. arXiv preprint arXiv:2506.07047, 2025a.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, et al. Formalmath: Benchmarking formal mathemati-
cal reasoning of large language models. arXiv preprint arXiv:2505.02735, 2025b.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q. Weinberger, and Yuhuai Wu.
Don’t trust: Verify – grounding llm quantitative reasoning with autoformalization, 2024. URL
https://arxiv.org/abs/2403.18120.

Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang,
Haowei Chen, Allan Jie, Xinbo Zhang, et al. Solving formal math problems by decomposition
and iterative reflection. arXiv preprint arXiv:2507.15225, 2025.

14

https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/
https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/
http://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2104.01112
https://arxiv.org/abs/2104.01112
https://arxiv.org/abs/2403.18120

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE STATEMENT

In this work, Large Language Models (LLMs) were employed in specific components of our research
pipeline and experimental framework. The primary applications of LLMs include:

1. PROOFFLOW Pipeline Implementation: LLMs were utilized as core components within our
proposed ProofFlow pipeline as Graph Builder, Formalizer and Tactic Completer.

2. Existing Methods Comparison: During the experimental evaluation, LLMs were employed to
perform inference with existing methods for comparative analysis against our proposed approach.

3. PROOFSCORE Computation: LLMs were integrated into the calculation process of our pro-
posed PROOFSCORE metric for quantitative assessment of formalization quality.

4. Benchmark Dataset Construction: The proof graphs included in our benchmark dataset were
initially generated by LLMs, followed by human verification.

LLMs served as computational tools in these specific applications and for grammatical correction of
an early draft. All research ideation, methodological design, analysis, and interpretation of results
were conducted exclusively by the human authors, who take full responsibility for the content of
this paper, including any LLM-assisted components.

A.2 ADDITIONAL DETAILS ON PROOFSCORE

A.2.1 EVALUATION OF SEMANTIC EQUIVALENCE OF PROOFSCORE

In this section, we detail how to obtain the semantic equivalence score fi of each node, as proposed
in Section 4. Note that by default, the score fi is 0 if the syntactic check at the formalizer step is not
passed.

In particular, we assess the semantic equivalence between the self-contained natural language state-
ment nlsi and Lean code lci of each node, which are the input and output of the Formalizer step of
PROOFFLOW (Sect. 3.1). The process is as follows:

1. First, we prompt LLM to break down both nlsi and lci into components.

2. We employ an LLM-as-a-judge to evaluate the semantic equivalence between each formalized
component, lci, and its natural language counterpart, nlsi. The LLM is provided with few-shot
examples illustrating specific error types and assigns one of the following evaluations to each
component:

• Perfectly match: The component lci fully captures the reasoning of nlsi. It may include ad-
ditional constraints or conditions that were implicit in the natural language but are necessary
for formal rigor.

• Minor inconsistency: The component lci correctly represents the core logic of nlsi but may
feature slight structural reordering or other small deviations.

• Major inconsistency: The component lci either omits a key part of the logic from nlsi or
introduces entirely different reasoning.

3. A Fuzzy measurement score is then computed for each component based on these evaluations,
following the method in Yu et al. (2025a). This score is effectively a weighted average of the
counts for “Perfectly match” and “Minor inconsistency,” with zero tolerance for any component
rated as a “Major inconsistency.”

4. The final score, fi, is calculated by aggregating the Fuzzy measurements using a Sugeno Inte-
gral (Sugeno, 1974).

In brief, the score fi of a proof step is equal to 1 if the Lean code fully captures the self-contained
natural language statement with all necessary conditions and fi is equal to 0 if at least one component
of the Lean code contains major flaws.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.2 PROOFSCORE FOR FULL PROOF AND STEP PROOF

Our evaluation score, PROOFSCORE, is the average of faithfulness evaluations of individual steps
(nodes in the dependency graph) of our PROOFFLOW method. To create a fair comparison with
FULL PROOF and STEP PROOF, we adapted this evaluation metric as follows. In all cases, any
syntactically incorrect Lean code was automatically assigned a score of 0.

• For FULL PROOF: Since this method generates a single, complete proof for each problem, we
applied the scoring process (detailed in Appendix A.2.1) to the entire proof. The final score in
Tables 1 and 6 is the average score across all problems. Note that if the proof fails Lean syntactic
check, the score is 0 by default.

• For STEP PROOF: This method generates code for each individual step. Therefore, we applied the
scoring process to each step independently. The final score in the tables is the average across all
individual steps from every problem in the benchmark. If any step fails Lean syntactic check, the
score is 0 by default.

The results of this comparative analysis are presented in Tables 1 and 6.

A.2.3 RELIABILITY AND CONSISTENCY OF PROOFSCORE

As Claude is not involved in any module of the pipeline (Graph builder, Formalizer and Tactic
Completer), we employ Claude-Sonnet-4 to evaluate the semantic faithfulness in PROOFSCORE.

To further validate the reliability of PROOFSCORE, we compare it with 2 variants (using Gemini-
2.5-Flash and DeepSeek-V3 in lieu of Claude) and merely Claude-as-a-Judge. While the variants
of PROOFSCORE evaluate faithfulness on a component basis and aggregate using Sugeno Integral
(see Sect. 4), for Claude-as-a-Judge, we prompt it to evaluate directly whether the Lean code is
semantically equivalent to the natural language proof step.

We employ these methods to evaluate a sample of 200 natural language proof steps from our bench-
mark and check their formalization faithfullness evaluations against the results obtained by a human
expert. For human evaluations, the ground-truth label is “PASS” if the Lean code is semantically
equivalent to natural language and “FAIL” otherwise. Consistently with Section 6, for variants
of PROOFSCORE, a proof score that is larger or equal to 0.6 means the scorer method predicts
“PASS”, and the scorer predicts “FAIL” otherwise. On the other hand, Claude-as-a-Judge predicts
“PASS”/“FAIL” directly. We compute the F1 scores of these predictions versus the ground-truth
labels.

The results are summarized in Table 3. While the variants of PROOFSCORE obtain close perfor-
mances, they all achieve higher scores in judging semantic equivalence than Claude-as-a-Judge.
These results suggest that PROOFSCORE is reliable in judging semantic faithfulness and this relia-
bility is consistent across different Large Language Models.

Table 3: Comparison of F1 scores of variants PROOFSCORE by Claude, Gemini and DeepSeek and
Claude-as-a-Judge against human expert evaluations. All variants of PROOFSCORE achieve a higher
level of correctness in judging semantic equivalence than Claude, demonstrating the reliability and
consistency of PROOFSCORE.

Method Claude-as-a-Judge
PROOFSCORE

Claude (paper)
PROOFSCORE

Gemini
PROOFSCORE

DeepSeek
F1-score 0.83 0.91 0.88 0.9

A.2.4 EXAMPLES OF PROOFSCORE RESULTS

To illustrate how PROOFSCORE behaves for each proof node, we provide several examples in Ta-
bles 4 and 5. Each example shows a natural language proof step paired with its formalized Lean code
and the corresponding PROOFSCORE. Note that we display each proof step’s individual contribu-
tion to the overall PROOFSCORE from Section 4—that is, the product of terms within the summation
(each term in the sum).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In short, any Lean code is assigned a score of 0 if either the code is syntactically incorrect or
the tactics are structurally unfaithful to the proof step or there is at least one component that is
significantly inconsistent with the natural language. By contrast, score 1 means that all components
of the Lean code match perfectly with their counterparts in the natural language proof step.

Natural Language Lean code Score and Explanation
From n = 2k + 1 [l1] and
n2 = 4k2 + 4k + 1 [l2], we
conclude: n2 = 4k(k+1)+1
[l3].
(Example highlighted in Fig-
ure 2(b)).

lemma l3
(n : Z)
(tc_1 : n % 2 = 1)
(l1 : \exists k : Z, n = 2*k

+ 1)
(l2 : nˆ2 = 4 * (Classical.

choose l1)ˆ2 + 4 * (
Classical.choose l1) + 1)
:

nˆ2 = 4 * (Classical.choose l1
) * ((Classical.choose l1)
+ 1) + 1 := by

have h : n = 2 * (Classical.
choose l1) + 1 := by

have h1 : n = 2 * (
Classical.choose l1) + 1
:= by

exact Classical.choose_spec l1
exact h1

have h3 : n ˆ 2 = 4 * (
Classical.choose l1) ˆ 2 +
4 * (Classical.choose l1)
+ 1 := by

have h4 : n ˆ 2 = 4 * (
Classical.choose l1) * ((
Classical.choose l1) + 1)
+ 1 := by

have h5 : 4 * (Classical.
choose l1) ˆ 2 + 4 * (
Classical.choose l1) + 1 =
4 * (Classical.choose l1)
* ((Classical.choose l1)

+ 1) + 1 := by
ring_nf
linarith [h3, h5]
exact h4

Score 0: structurally
unfaithful. The code to
prove L3 only utilizes
header by L1 while ig-
noring L2, structurally
unfaithful to the input
NL proof.

We have: (x−2)2+(y−1)2 =
5 and (x−4)2+(y−1)2 = 5.
So, x = 3.

theorem l3
(x y : R)
(l1 : (x - 2)ˆ2 + (y - 1)ˆ2 =

5)
(l2 : (x - 4)ˆ2 + (y - 1)ˆ2 =

5) :
x = 3 = by sorry

Score 0: wrong syn-
tax. It should be ”:= by
sorry” but ”= by sorry”
was used. As the code
fails Lean check (syn-
tax error), the PROOF-
SCORE is 0.

Table 4: Examples of varying PROOFSCORE with natural language proof step and Lean code.

A.3 BENCHMARK DATASET STATISTICS

The distribution of the number of nodes per proof in the PROOFFLOWBENCH benchmark is shown
in Figure 6. On average, the proofs have 2 theorem conditions, 0.6 definitions, 4.4 lemmas, and 1.2
theorem solutions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Natural Language Lean code Explanation
Because (a+ b− c), (b+ c−
a), (c + a − b) > 0 and we
have: a2 ≥ (a+c−b)(a+b−
c), b2 ≥ (b+c−a)(b+a−c),
and c2 ≥ (c+ b− a)(c+ a−
b). Thus: a2b2c2 ≥ (a + c −
b)(a+ b− c)(b+ c− a)(b+
a− c)(c+ b− a)(c+ a− b).

theorem l6
(a b c : R)
(tc_1 : a > 0 ˆ b > 0 ˆ c > 0

ˆ a + b > c ˆ b + c > a ˆ
c + a > b)

(l4 : (a + b - c > 0) ˆ (b + c
- a > 0) ˆ (c + a - b >

0))
(l5 : aˆ2 >= (a + c - b) * (a

+ b - c) ˆ bˆ2 >= (b + c -
a) * (b + a - c) ˆ cˆ2 >=
(c + b - a) & (c + a - b)

) :
aˆ2 * bˆ2 * cˆ2 > (a + c - b)

* (a + b - c) * (b + c - a
) * (b + a - c) * (c + b -
a) * (c + a - b) := by

sorry

Score 0: major incon-
sistency. The Lean
code is syntactically
correct but contains a
major inconsistency at
the proposition. While
NL has ≥, the propo-
sition in Lean has >.
This results in Proof
Score 0.

As the complex conjugate of
z is z̄ = x− iy, we conclude:
(2−i)z̄ = (2x−y)−i(x+2y).

theorem l3 (x y : E) (z : C) (
h : z = x + y * Complex.I)
:

(2 - Complex.I) * star z = (2
* x - y) - Complex.I * (2
* y + x) := by sorry

Score 0.67: minor in-
consistency. The Lean
code is syntactically
correct and equivalent
to the proof. The right-
hand side of the propo-
sition contains a slight
variable ordering: (x+
2y) vs. (2 ∗ y + x)
in Lean. However, this
change is minor and
still preserves the se-
mantic meaning of the
proof step.

Because (a+ b− c), (b+ c−
a), (c + a − b) > 0 and we
have: a2 ≥ (a+c−b)(a+b−
c), b2 ≥ (b+c−a)(b+a−c),
and c2 ≥ (c+ b− a)(c+ a−
b). Thus: a2b2c2 ≥ (a + c −
b)(a+ b− c)(b+ c− a)(b+
a− c)(c+ b− a)(c+ a− b).

theorem l6
(a b c : R)
(tc_1 : a > 0 ˆ b > 0 ˆ c > 0

ˆ a + b > c ˆ b + c > a ˆ
c + a > b)

(l4 : (a + b - c > 0) ˆ (b + c
- a > 0) ˆ (c + a - b >

0))
(l5 : aˆ2 >= (a + c - b) * (a

+ b - c) ˆ bˆ2 >= (b + c -
a) * (b + a - c) ˆ cˆ2 >=
(c + b - a) & (c + a - b)

) :
aˆ2 * bˆ2 * cˆ2 >= (a + c - b)

* (a + b - c) * (b + c -
a) * (b + a - c) * (c + b
- a) * (c + a - b) := by
sorry

Score 1: perfectly
match. The Lean code
is syntactically cor-
rect and semantically
equivalent to the proof
step.

Table 5: Examples of varying ProofScores with natural language proof step and Lean code.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Total Nodes

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Distribution of Total Nodes

0 1 2 3 4 5 6
Count

0

20

40

60

Fr
eq

ue
nc

y

Count of "Theorem Condition" Nodes

0 1 2 3 4 5
Count

0

50

100

Fr
eq

ue
nc

y

Count of "Definition" Nodes

0 1 2 3 4 5 6 7 8 9 10 11
Count

0

20

40

Fr
eq

ue
nc

y

Count of "Lemma" Nodes

0 1 2 3 4
Count

0

50

100

150

Fr
eq

ue
nc

y

Count of "Theorem Solution" Nodes

Figure 6: The distribution of the total number of nodes per problem (left) and the frequency of each
node type (right).

A.4 COMPARISON RESULTS

This section contains extra comparison results. We show in Table 6 the extended version of Table 1,
which includes Pass@1, 3, and 5 rates.

A.5 COMPARISON EXAMPLES

In this section, we present several examples of proof autoformalization to illustrate how different
pipelines perform when formalizing natural language proofs. The examples below, selected from
our comparative study in Section 6, show how PROOFFLOW DAG maintains a high degree of fidelity
to the input proof. In contrast, other approaches, such as PROOFFLOW noDAG, FULL PROOF, and
STEP PROOF, often fail to either adhere to the flow of the natural proof or even generate valid Lean
4 code.

To evaluate structural fidelity, we analyzed the dependencies for each syntactically correct proof
step. By inspecting the Lean tactics, we identified exactly which previously proven steps and theo-
rem conditions the solver utilized. A step was deemed structurally faithful if this set of dependencies
precisely matched the logic of the original natural language proof. If the dependencies differed in
any way, the step was marked as unfaithful.

For the purposes of illustration, the figures presented in this section are based on the actual depen-
dency graph of the input natural language proof, and annotations will be provided in the case the the
logical flow of the generated proof graph deviates from this input dependency graph.

A.5.1 EXAMPLE: PROOFFLOW DAG IS SUPERIOR IN STRUCTURE FIDELITY

This example corresponds to entry “dummy 6” in the PROOFFLOWBENCH benchmark.

Theorem

If n is an odd integer, then n2 ≡ 1 (mod 8).

Proof

Since n is odd, we can write n = 2k + 1 for some integer k. Then n2 = (2k + 1)2 =
4k2 + 4k + 1. We can factor this as n2 = 4k(k + 1) + 1. Now, either k is even or k is odd.
If k is even, then k+ 1 is odd, and if k is odd, then k+ 1 is even. In either case, k(k + 1) is
even, so k(k + 1) = 2m for some integer m. Therefore n2 = 4(2m) + 1 = 8m+ 1, which
means n2 ≡ 1 (mod 8).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Performance metrics for all pipelines, evaluated at Pass@1, 3, and 5 rates on our 184-
problem benchmark. Entries marked with “/” indicate not applicable.

Step-Level Proof-Level

Pipeline
Think
mode

Pass
Form.

accuracy
Tactic

accuracy
Proof
Score

Correct
syntax

Time
(mins)

Output
tokens (k)

PROOFFLOW

DAG

No
1 0.644 0.252 0.320 0.016 3.3 8.1
3 0.722 0.323 0.347 0.027 6.3 15.7
5 0.751 0.358 0.355 0.027 8.8 22.4

Yes
1 0.844 0.629 0.508 0.245 19.3 55.7
3 0.925 0.723 0.541 0.348 27.0 78.0
5 0.939 0.742 0.545 0.375 31.8 94.2

PROOFFLOW

noDAG

No
1 0.697 0.225 0.312 0.022 4.8 9.8
3 0.791 0.328 0.344 0.038 9.0 18.4
5 0.807 0.391 0.347 0.049 12.3 25.8

Yes
1 0.860 0.573 0.397 0.217 18.9 56.0
3 0.921 0.662 0.414 0.332 27.0 80.0
5 0.936 0.681 0.417 0.353 32.0 98.5

FULL PROOF

No
1 / / 0 0 0.2 2.7
3 / / 0.011 0.011 0.5 6.6
5 / / 0.021 0.027 0.8 10.5

Yes
1 / / 0.156 0.309 0.9 3.5
3 / / 0.216 0.467 2.5 9.5
5 / / 0.279 0.571 3.8 15.1

STEP PROOF

No
1 / 0.054 0 0 0.03 0.1
3 / 0.061 0 0 0.05 0.3
5 / 0.068 0.046 0.005 0.2 1.2

Yes
1 / 0.123 0.023 0.065 1.3 4.9
3 / 0.127 0.028 0.092 3.7 12.9
5 / 0.129 0.029 0.119 10.6 32.9

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof Graph (DAG)

Suppose n is an odd
integer. Show that
n ≡ 1 (mod 8)

Theorem

TC1 L1

L2

TS

L4 L5

L3

L6

n is odd n ≡ 1
(mod 8)

n^2 = 8m+1

k(k+1) even k(k+1) i= 2m
m integer

n^2 = 4k^1 +
4k+1

n = 2k+1
k integer

n^2 =
4k(k+1) + 1

Proof Graph (NoDAG)

Suppose n is an odd
integer. Show that
n ≡ 1 (mod 8)

Theorem

TC1 L1

L2

TS

L4 L5

L3

L6

n is odd n ≡ 1
(mod 8)

n^2 = 8m+1

k(k+1) even k(k+1) i= 2m
m integer

n^2 = 4k^1 +
4k+1

n = 2k+1
k integer

n^2 =
4k(k+1) + 1

Figure 7: Comparison of proof structures generated by PROOFFLOW DAG (top) and PROOFFLOW
noDAG (bottom) with respect to the original natural language proof. The red arrow indicates a
dependency in PROOFFLOW noDAG not in the natural language proof. The blue dashed arrow
indicates a dependence in the natural language proof but not included in PROOFFLOW noDAG. The
PROOFFLOW DAG formal proof faithfully follows the dependency of the original proof. However,
the one by PROOFFLOW noDAG proves step L2 then reuses L1 to prove L3, which is structurally
unfaithful to the original proof.

PROOFFLOW DAG: The proof produced by PROOFFLOW DAG follows correctly the structure of
the natural language proof and generates syntatically correct Lean code (see Figure 7).

PROOFFLOW noDAG: PROOFFLOW noDAG fails to adhere to the dependency structure of the
natural language proof. In particular, as illustrated in Fig. 7, the transition from step L2 to L3 was
inherent in the natural language proof but neglected in noDAG. The proof code for step L3 utilized
step L1 to reprove the result of step L2. In other words, step L2 was made redundant.

FULL PROOF: FULL PROOF failed to generate syntactically correct Lean code (the first syntax
error is “unknown identifier”).

STEP PROOF: STEP PROOF failed to generate syntactically correct Lean code for steps L4, L5,
L6, and TS (the first syntax error was “type mismatch”).

A.5.2 EXAMPLE: PROOFFLOWDAG IS SUPERIOR IN PROVER ACCURACY

This example corresponds to entry “dummy 7” in the PROOFFLOWBENCH benchmark.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Theorem

If P (A) = 0.6 and P (B) = 0.7, then P (A ∩B) ≥ 0.3.

Proof

We know that P (A ∪ B) = P (A) + P (B) − P (A ∩ B). Since P (A ∪ B) ≤ 1, we have
P (A) +P (B)−P (A∩B) ≤ 1. Substituting the given values: 0.6+ 0.7−P (A∩B) ≤ 1,
which gives 1.3− P (A ∩B) ≤ 1. Therefore P (A ∩B) ≥ 0.3.

Proof Graph (DAG)

P(A) = 0.6, P(B) = 0.7
So: P(A ∩ B) >= 0.3

Theorem

TC1

L2

TS

L1

L3

L4

P(A ∩ B)
>= 0.3

P(A ∪ B)
=P(A)+ P(B)
-P(A ∩ B) 1.3-P(A ∩ B)

 <= 1

P(A) = 0.6,
P(B) = 0.7

P(A)+P(B) -
P(A ∩ B)<=1

P(A ∪ B)
 <= 1

Figure 8: The structure of the proof produced by PROOFFLOW DAG faithfully follows the depen-
dency graph of the input natural language proof.

PROOFFLOW DAG: PROOFFLOW DAG generates step-by-step proof faithfully following the log-
ical transition of the natural language proof (see Fig. 8).

PROOFFLOW noDAG: The Lean code proof achieves very low prover accuracy. This is likely
attributed to the fact that each step is given all previous steps, in contrast to only the necessary steps.
As a consequence, the prover fails to produce concise and correct Lean code.

FULL PROOF: FULL PROOF failed to generate syntactically correct Lean code to prove this theo-
rem (the first syntax error is “unknown identifier”).

STEP PROOF: STEP PROOF failed to generate syntactically correct Lean code to prove this theorem
(the first syntax error is function type error).

A.5.3 EXAMPLE: PROOFFLOW DAG IS SUPERIOR IN PROOF EFFICIENCY

This example corresponds to entry “dummy 9” in the PROOFFLOWBENCH benchmark.

Theorem

If (an) is an arithmetic sequence with a1 = 5 and a3 = 11, then a5 = 17.

Proof

Since (an) is arithmetic, there exists a common difference d such that an = a1 + (n− 1)d
for all n. From the given information, a3 = a1 + 2d. Substituting the values: 11 = 5 + 2d,
which gives us 2d = 6, so d = 3. Now we can find a5 = a1+4d = 5+4(3) = 5+12 = 17.

PROOFFLOW DAG: PROOFFLOW DAG generates step-by-step proof faithfully following the log-
ical transition of the natural language proof (Fig. 9).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof Graph (DAG)

(a_n): arithmetic
sequence, a_1 = 5,
a_3 = 11, so a_5 = 17

Theorem

TC2

L2

TS

L1

L3 L4

11 = 5+2d

a_1 = 5,
 a_3 = 11

2d = 6

TC1 L5

(a_n) is
arithmetic

a_5=a_1+4d

a_5 = 17

d = 3

a_n=a_1+(n-1)d
 a_3=a_1+2d

Proof Graph (NoDAG)

(a_n): arithmetic
sequence, a_1 = 5,
a_3 = 11, so a_5 = 17

Theorem

TC2

L2

TS

L1

L3 L4

11 = 5+2d

a_1 = 5,
 a_3 = 11

2d = 6

TC1 L5

(a_n) is
arithmetic

a_5=a_1+4d

a_5 = 17

d = 3

a_n=a_1+(n-1)d
 a_3=a_1+2d

Figure 9: Comparison of proof structures generated by PROOFFLOW DAG (top) and PROOFFLOW
noDAG (bottom) with respect to the original natural language proof. The red arrow indicates a
dependency in PROOFFLOW noDAG not in the natural language proof. The blue dashed arrow
indicates a dependence in the natural language proof but servered in PROOFFLOW noDAG. The
one by PROOFFLOW DAG faithfully follows the dependency of the original proof. However, the
one by PROOFFLOW noDAG proves the final step TS solely by the two given theorem conditions
TC1 and TC2 and step L5. This is not only structurally unfaithful to the structure of the natural
language proof but also inefficient as the efforts to prove all intermediate steps L1, L2, L3, L4 are
squandered.

PROOFFLOW noDAG: The Lean code proof by PROOFFLOW noDAG is not only structurally un-
faithful but also inefficient. As illustrated in Fig. 9, the final step TS is proven by the tactics stem-
ming from theorem conditions TC1 and TC2 and intermediate step L5 (direct result of TC1) while
neglecting all intermediate steps L1, L2, L3, L4. These steps are proven but not utilized for the
final goal of the proof. As a consequence, the logical flow of the proof by PROOFFLOW noDAG
fails to adhere to the structural of the natural language proof and squanders the resources used to
prove L1, L2, L3, L4.

FULL PROOF: FULL PROOF failed to generate syntactically correct Lean code to prove this theo-
rem (the first syntax error is function type error).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

STEP PROOF: STEP PROOF failed to generate syntactically correct Lean code to prove this theorem
(the first syntax error is function type error).

A.6 EXAMPLES OF ERRORS IN THE NATURAL LANGUAGE PROOF

The errors listed in Table 7 were identified using the thinking mode of our PROOFFLOW DAG
pipeline at pass@5. These examples were specifically extracted from proof steps that our error
detection pipeline (detailed in Section 4.2) flagged as an “NL statement error.”

We have decided to keep these issues in the benchmark because they reflect the kinds of common and
subtle ambiguities made by humans when writing proofs. For example, using ambiguous informal
language like “we get [result x]” is a frequent occurrence in practice. By including these ambiguities,
we ensure the benchmark remains a realistic representation of human-written proofs, rather than an
overly artificial one.

Original Natural Language Error Type Comment
3a3−3a2b−3ab2+3b3 = (a2−b2)(a−
b)

Incorrect Statement An outright algebraic error. The
left-hand side is exactly three times
the right-hand side.

Let n be a natural number. If n = 1, ...
If n is prime, we are done. If n is com-
posite, then n = ab ... By induction...

Logical Flaw The proof sketch is intuitively cor-
rect but structurally flawed. It con-
flates the base case and the in-
ductive step of a strong induction
proof.

...we get (r
√
3
2)2 + (r/2− 1)2 = 1 Ambiguity The phrase “we get” misleadingly

suggests a general identity, when
this is actually a conditional equa-
tion that only holds for the specific
value r = 1.

From the condition Arg(z) = π/6, we
can write z = r(

√
3
2 + i

2) for some r >
0.

Missing Assump-
tion

The statement is incomplete be-
cause it relies on the unstated pre-
condition that z ̸= 0 for the Arg(z)
function to be well-defined.

Hence, (X ·Y)2 ≤ |X|2|Y |2, because if
not, then p would have two distinct real
zeros...

Incomplete Argu-
ment

The reasoning, based on the dis-
criminant of a quadratic, is incom-
plete as it fails for the case where
Y = 0, where the polynomial de-
generates.

Integrating... yields v(x, y) = 2xy +
3y + g(x), where g(x) is a function of
x.

Incomplete State-
ment

The statement is true but insuffi-
cient. In the context of solving
a PDE, it omits the crucial condi-
tion that the function of integration
g(x) must also be differentiable.

Table 7: Analysis of Flaws Identified in Natural Language Proof Steps

A.7 COMPUTATIONAL EFFICIENCY

We provide comprehensive diagnostics of the pipeline by examining each subcomponent in detail.
Table 8 presents key metrics across different pipeline configurations.

Our analysis reveals that the current pipeline bottleneck, in terms of both time and token efficiency,
lies primarily in the Tactic Completer stage. The Graph Builder demonstrates high reliability, suc-
ceeding on the first attempt in most cases (1.01–1.08 tries per problem). In contrast, the Formalizer
typically requires 1–2 attempts depending on the thinking mode, while the Tactic Completer de-
mands significantly more iterations, averaging 2–3 attempts in thinking mode and 3–4 attempts in
non-thinking mode per node to generate valid Lean code. The temporal distribution further empha-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: Performance breakdown of ProofFlow pipeline components across different configurations.
Metrics include average number of attempts per component, time distribution percentages, and token
usage distribution.

Metric ProofFlow DAG ProofFlow noDAG
Think Mode No Yes No Yes

Average Attempts
Graph Builder (per problem) 1.08 1.08 1.01 1.01
Formalizer (per node) 2.20 1.39 1.94 1.37
Tactic Completer (per node) 4.04 2.39 3.69 2.67

Time Distribution (%)
Graph Builder 13.8 3.9 10.1 3.3
Formalizer 4.9 9.8 4.7 7.9
Tactic Completer 81.2 86.3 85.3 88.8

Total Time (mins) 8.8 31.8 12.3 32.0
Token Distribution (%)

Graph Builder 44.5 10.0 36.7 8.3
Formalizer 14.1 9.0 19.0 7.5
Tactic Completer 41.4 81.0 44.3 84.2

Total Tokens (k) 22.4 94.2 25.8 98.5

sizes this bottleneck: the Tactic Completer consumes 81–89% of the total execution time across all
configurations, with the Graph Builder and Formalizer accounting for substantially smaller fractions.

Regarding token generation, we observe a difference between thinking and non-thinking modes. In
thinking mode, the Tactic Completer dominates token usage (81–84%), primarily due to Goedel
models generating substantial informal reasoning and extensive thinking before producing formal
proofs. Conversely, in non-thinking mode, token distribution is more balanced, with both the Graph
Builder and Tactic Completer each accounting for approximately 40% of tokens. This difference
stems from the reasoning-heavy output of Gemini-2.5-Pro in the Graph Builder stage, contrasting
with DeepSeek-Prover-V2, which was instructed to minimize preliminary reasoning.

25

	Introduction
	Background and related work
	Proof autoformalization
	New workflow for proof autoformalization

	Scoring Proof autoformalization and error detection
	ProofScore
	Error analysis

	ProofFlowBench
	Comparison study
	Experimental Settings
	Empirical Results
	Error analysis

	Discussion
	Appendix
	LLM Usage Statement
	Additional Details on ProofScore
	Evaluation of semantic equivalence of ProofScore
	ProofScore for Full Proof and Step Proof
	Reliability and Consistency of ProofScore
	Examples of ProofScore results

	Benchmark dataset statistics
	Comparison results
	Comparison Examples
	Example: ProofFlow DAG is superior in structure fidelity
	Example: ProofFlowDAG is superior in prover accuracy
	Example: ProofFlow DAG is superior in proof efficiency

	Examples of errors in the natural language proof
	Computational efficiency

