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ABSTRACT

Proof autoformalization, the task of translating natural language theorems and
proofs into machine-verifiable code, is a critical step for integrating large lan-
guage models into rigorous mathematical workflows. Current approaches focus
on producing executable code, but they frequently fail to preserve the seman-
tic meaning and logical structure of the original human-written argument. To
address this, we introduce PROOFFLOW, a novel pipeline that treats structural
fidelity as a primary objective. PROOFFLOW first constructs a directed acyclic
graph (DAG) to map the logical dependencies between proof steps. Then, it
employs a novel lemma-based approach to systematically formalize each step as
an intermediate lemma, preserving the logical structure of the original argument.
To facilitate evaluation, we present a new benchmark of 184 undergraduate-level
problems, manually annotated with step-by-step solutions and logical dependency
graphs, and introduce PROOFSCORE, a new composite metric to evaluate syntac-
tic correctness, semantic faithfulness, and structural fidelity. Experimental re-
sults show our pipeline sets a new state-of-the-art for autoformalization, achiev-
ing a PROOFSCORE of 0.545, substantially exceeding baselines like full-proof
formalization (0.279), which processes the entire proof at once, and step-proof
formalization (0.046), which handles each step independently. Our pipeline,
benchmark, and score metric are open-sourced to encourage further progress at
https://anonymous.4open.science/r/ProofFlow-351E.

1 INTRODUCTION

The effort to automate mathematical reasoning is advancing on two key fronts. Recent advances
in large language models (LLMs) have greatly enhanced their ability to solve mathematical prob-
lems (Liang et al., 2025). Meanwhile, symbolic engines such as Lean (Moura & Ullrich, 2021) and
Isabelle (Hales et al., 2017) provide machine-verifiable frameworks that enforce strict logical cor-
rectness. LLM-based automated theorem provers (ATPs), such as Goedel-Prover (Lin et al., 2025)
and Kimina-Prover (Wang et al., 2025a), generate formal proofs for problems that are written in a
symbolic language, which are then checked by the symbolic engine to ensure logical correctness.

This paper studies automated proof formalization: the task of faithfully translating the natural lan-
guage theorem and proof into a machine-verifiable formal representation. This task is distinct from
the aforementioned ATPs, where the goal is to discover a proof from an already formalized problem.
Here, the goal is to translate an existing proof, a crucial step for verification in real-world mathe-
matical workflows. After composing a proof, a mathematician may wish to formalize it to verify
its correctness, uncover missing assumptions, or fill logical gaps. Given the steep learning curve
of formal languages like Lean, a system that can automate this translation is highly desirable. The
manual effort these automated proof formalizers seeks to automate is immense, as demonstrated by
landmark efforts such as the Flyspeck project, which took over 20 years to formalize the Kepler
conjecture (Hales et al., 2017); the Blue-Diamond project for the Polynomial Freiman-Ruzsa con-
jecture (Tao, 2023); and the ongoing formalization of Fermat’s Last Theorem (Buzzard & Taylor,
2025), among other projects (Math Inc., 2025; Scholze, 2021; Gonthier et al., 2013).

A key challenge in autoformalization is the fundamental mismatch between the flexible and high-
level nature of human language and the rigid, low-level syntax of formal systems. To bridge this
gap, ATPs typically generate “tactics” for formal proof assistants like Lean 4. However, this tactic-
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lemma L1
(x:ℝ):
x < 0 → (x^5 < 0 ∧ 7*x^3 < 0 ∧ 5*x < 0) := by  sorry

lemma L2
(x:ℝ)
(L1: x < 0 → (x^5 < 0 ∧ 7*x^3 < 0 ∧ 5*x < 0)) :
x < 0 → x^5 + 7*x^3 + 5*x < 0 := by sorry

lemma L3
(x:ℝ):
x < 0 → (x^4 > 0 ∧ x^2 > 0 ∧ 8 > 0) := by sorry

lemma L4
(x:ℝ)
(L3: x < 0 → (x^4 > 0 ∧ x^2 > 0 ∧ 8 > 0)):
x < 0 → (x^4 + x^2 + 8 > 0) := by sorry

lemma TS
(x:ℝ)
(L2: x < 0 → (x^5 + 7*x^3 + 5*x < 0 ))
(L4: x < 0 → (x^4 + x^2 + 8 > 0)):
x^5 + 7*x^3 + 5*x ≥ x^4 + x^2 + 8 → x ≥ 0:= 
by sorry

TC: Theorem condition 
L1: Lemma 1
L2: Lemma 2
L3: Lemma 3
L4: Lemma 4

TS: Theorem Solution

TC

L1

L3

TS

L2

L4

NL theorem and Proof Lean4: Tactic Approach Lean4: Lemma Approach

Dependency Graph

Theorem: For x∈ℝ, if x5+7x3+5x≥x4+x2+8, then x≥0.

Proof: (Contrapositive) Suppose it is not true that x≥0.
Then x<0, that is, x is negative. Consequently, the
expressions x5, 7x3, and 5x are all negative (note the
odd powers), so x5+7x3+5x<0. 
Similarly, the terms x4, x2, and 8 are all positive (note
the even powers), so 0<x4+x2+8.
From this we get x5+7x3+5x<x4+x2+8, so it is not true
that x5+7x3+5x≥x4+x2+8.

theorem polynomial_inequality (x : ℝ) :
x^5 + 7*x^3 + 5*x ≥ x^4 + x^2 + 8 → x ≥ 0 := by

-- Proof by contrapositive
contrapose!
-- h_neg : x < 0
intro h_neg

linarith [
pow_neg_of_neg h_neg 5,                       --x^5 < 0
mul_neg_of_pos_of_neg (show (7 : ℝ) > 0 from by
norm_num) (pow_neg_of_neg h_neg 3), --7*x^3 < 0
mul_neg_of_pos_of_neg (show (5 : ℝ) > 0 from by
norm_num) h_neg,                                   -- 5*x < 0
pow_pos (neg_pos.mpr h_neg) 4,            -- x^4 > 0
pow_pos (neg_pos.mpr h_neg) 2,            -- x^2 > 0
show (8 : ℝ) > 0 from by norm_num]        -- 8 > 0

Figure 1: Comparison of our PROOFFLOW “Lemma Approach” and the common “Tactic Ap-
proach” in formalizing a natural language (NL) theorem and its proof into Lean 4 code. The Lemma
Approach directly mirrors the sequence of steps and their dependencies in the NL proof. By con-
trast, the Tactic Approach produces tactics that fail to adhere to the structure of the initial NL proof.

based approach often fails to preserve the logical structure of the original human argument. For
instance, as shown in Figure 1, under “Lean 4: Tactic Approach”, the generated tactics do not
follow the sequence of steps in the natural language proof. Furthermore, a single tactic, linarith,
consolidates three distinct steps from the original proof (TS, L2, and L4). This disparity creates two
major issues. First, not all natural language mathematical expressions can be directly translated into
low-level tactics, which can cause the formalization process to fail. Second, even if an automated
system generates a verifiable proof, it may take shortcuts or skip intermediate steps, arriving at the
correct conclusion without mirroring the explicit, step-by-step reasoning of the original proof. This
makes it difficult to verify that the formal proof truly captures the human’s intended logic.

To address these issues and ensure faithful autoformalization, we propose a novel approach that
avoids direct translation into limited, low-level formal tactics. Instead, we deconstruct the natural
language proof into a sequence of structured, high-level lemmas, as illustrated by the “Lemma Ap-
proach” in Fig. 1. The key advantage of this method is that it enables us to explicitly follow the
sequence of steps in the original proof with low friction1. This stands in sharp contrast to the con-
ventional tactic-based approach, which is often convoluted and hinders mirroring the human proof
structure. Second, our lemma-based approach preserves the logical structure of the natural language
proof by explicitly defining dependencies. As shown in Figure 1, the final step, lemma TS (the theo-
rem’s solution), depends only on lemma L2 and lemma L4. This explicit dependency management
is crucial in enforcing structurally faithful formalization, which is often not achieved in a standard
tactic-based workflow. For instance, a common tactic like “have” in Lean 4 feeds the entire preced-
ing context to each new step, not just the specific premises required by the original proof logic. In
contrast, our approach of explicitly defining how lemmas depend on one another prevents the system
from incorrectly using unintended dependencies, a common failure in tactic-based proving. These
two innovations, high-level lemma generation and explicit dependency tracking, form the core of
our new autoformalization pipeline, PROOFFLOW.

Another primary challenge is defining what constitutes a “faithful” formalization. In existing work,
researchers either focus on syntactic correctness (Hu et al., 2025), i.e., no compilation errors, or
use a simple BLEU score for semantic measurement (Poiroux et al., 2024; Wu et al., 2022), while
ignoring the structural fidelity of the proof. To properly evaluate proof formalizations, we propose
viewing a proof not as a monolithic block of text, but as a structured sequence of theorem condi-

1While we currently use the placeholder “by sorry” for unproven parts, our ultimate goal is to generate Lean
tactics to prove each lemma and the final solution.
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tions, definitions, and lemmas that form a logical progression toward the final theorem solution or
solutions (see Figure 1). Based on this, we introduce a new and more comprehensive proof autofor-
malization scoring metric (PROOFSCORE), and we also address the lack of an advanced benchmark
by providing a new university-level dataset tailored for this task (PROOFFLOWBENCH).

Drawing on our new framework, we make the following key contributions:

• PROOFFLOW: In Section 3, we propose a novel pipeline for translating natural language theo-
rems and proofs into structured and formal Lean code, ensuring the preservation of the proof’s
logical structure. When a formalization step fails, the pipeline identifies the error source, be it
in the formalization, the tactic completion process, or the initial NL statement, thereby alerting
mathematicians of potential flaws in their original proof.

• PROOFSCORE: Section 4 introduces a new and comprehensive scoring method to evaluate the
quality of autoformalized proofs. This metric is the first to explicitly measure syntactic correct-
ness, semantic faithfulness, and structural fidelity, providing a more complete assessment than
existing methods.

• PROOFFLOWBENCH: In Section 5, we present a new, manually curated benchmark dataset for
proof autoformalization, containing a collection of 184 undergraduate level problems.

• Comparative Study: Section 6 presents an empirical study using state-of-the-art models to evaluate
our structure-aware pipeline, PROOFFLOW, against alternative strategies. The results show that
PROOFFLOW has significantly higher proof autoformalization quality.

2 BACKGROUND AND RELATED WORK

Proof assistants and automatic theorem proving: Proof assistants like Isabelle (Paulson, 1994),
Lean 4 (Moura & Ullrich, 2021), and Coq (Barras et al., 1997) are software environments for devel-
oping and verifying mathematical proofs. Proofs constructed within these systems are what we call
“formal” proofs, distinguishing them from informal or natural language proofs written in standard
mathematics (e.g., in LATEX). The user’s workflow involves interactively applying tactics, which are
small programs that perform logical inferences, to solve the theorem’s goals (Jiang et al., 2024).
Despite their power, a steep learning curve and the significant manual effort required by their rigid
syntaxes have hindered widespread adoption (Zhou et al., 2024). Recently, Large Language Models
(LLMs) have emerged as powerful automated theorem provers (ATPs) capable of generating com-
plete formal proofs from already formalized theorem statements (Shang et al., 2025; Lin et al., 2025;
Wang et al., 2025b; Ren et al., 2025b). Proof Agents have further advanced this ability (Chen et al.,
2025; Zhou et al., 2025; Baba et al., 2025). In the context of Figure 1, the task of an ATP is to
automatically replace the placeholder command “sorry” with formal tactics to complete the proof.

Autoformalization with LLMs: For a fully automatic theorem-proving system, mathematical prob-
lems originating in natural language must first be translated into a formal language, a process known
as autoformalization. Historically, autoformalization efforts have primarily focused on translating
theorem statements, and not the natural language proof (Huang et al., 2025; Wu et al., 2025; Liu
et al., 2025; Yu et al., 2025b; Poiroux et al., 2024; Pathak, 2024; Patel et al., 2023), often to support
the training of automated provers (Lin et al., 2025; Wang et al., 2025b). A different approach uses
informal proof sketches to guide an LLM’s search for a formal proof (Cao et al., 2025; Zhou et al.,
2024; Jiang et al., 2023). In these methods, the natural language proof sketch is not the target of
formalization itself. Rather, it serves as a high-level guide, often interleaved as comments within
the formal code to steer the generation process. This guidance technique is also employed by recent
ATPs like DeepseekProver-V2 (Ren et al., 2025b) and Goedel Prover V2 (Lin et al., 2025).

Proof Autoformalization: In the literature of proof autoformalization, most existing attempts di-
rectly translate entire proofs using LLMs (Gao et al., 2024; Lu et al., 2024; Cunningham et al., 2023).
This approach, however, remains highly challenging due to frequent syntactic errors and it often pro-
duces outputs that are not semantically trustworthy. Step-level formalization, which involves solving
the autoformalization step-by-step based on the proof’s logical steps, has been explored by Hu et al.
(2025) in Isabelle. However, this approach suffers from two limitations. First, they treated all pre-
vious proof steps as valid premises for the current step, a significant simplification that overlooks
the proper logical structure. Second, their evaluations focused solely on syntactic correctness while
overlooking semantic consistency.

3
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TC L1 L2 L3 L4 TS

TC

L1 L3

L2 L4

TS

TC

L1 L3

L2 L4

TS

TC

L1 L3

L2 L4

TS

Prover allowed to pursue any subgraph 

DAG in StepProof formalization

(a)

Suppose n is an odd
integer. Show that 
n ≡ 1 (mod 8)

Theorem TC1 n is odd

L1 n = 2k+1
k integer

L4

TS

L2

L3L5

L6

k(k+1) even

k(k+1) = 2m
m integer

n^2 = 4k^2 +
4k+1

n^2 =
4k(k+1)  + 1

n^2 = 8m+1

n ≡ 1
(mod 8)

(b)

Figure 2: Comparing structural fidelity in automated proof generation. (a) A scenario for the prob-
lem in Figure 1, where the dependency graph fails to adhere to the structure of the original proof.
(b) This problem was intentionally formalized without enforcing a DAG. This approach sacrificed
structural fidelity, by reusing lemma L1 to prove L3, thereby rendering L2 redundant.

3 PROOF AUTOFORMALIZATION

Although most prior work formalizes entire proofs at once, a notable exception is the “STEP PROOF”
method (Hu et al., 2025). This approach assumes each proof step depends on all preceding steps,
a simplification that creates an unfaithful dependency structure and can lead to an ATP taking a
“shortcut.” This shortcut may involve using only the initial theorem conditions or an incorrect subset
of lemmas to construct a valid proof that does not follow the logic of the original NL proof, as
depicted in Figure 2a. A clear example found in PROOFFLOWBENCH is illustrated in Figure 2b.
In the natural language proof, step L3 directly uses the outcome of L2, which is faithfully followed
by our DAG-enforcing pipeline. By contrast, an ablated version of our pipeline which lacks the
mechanism to enforce the correct dependencies (noDAG) reuses the outcome of L1 to prove L3,
despite having proven L2. Thus, it not only dissipates step L2 but also disregards the structure of
the original proof. More details and examples are found in Appendix A.5.

If the sole objective is to find any correct formal proof for a theorem, which is often the sole goal
of ATPs, these behaviors are not problematic. However, for proof autoformalization, they represent
a critical failure of faithfulness. Our goal is to ensure that each step is proven only taking into
account the correct set of previous lemmas and theorem conditions specified by the original proof’s
logic. Enforcing this correct dependency structure offers significant practical advantages as well.
It improves efficiency by constraining the autoformalizer’s search space, which can lead to fewer
spent tokens and faster verification.

3.1 NEW WORKFLOW FOR PROOF AUTOFORMALIZATION

As shown in Figure 3, our method enforces a correct dependency graph through a three-stage
pipeline, leveraging LLMs at each step to bridge the gap between natural language (NL) and formal
proof code. The first stage, Graph Builder, constructs a dependency directed acyclic graph (DAG)
from the original proof. Next, the Formalizer uses an LLM to translate each proof step into formal
Lean code. Finally, the Tactic Completer fills in the necessary tactics to complete the Lean proof.
The specific LLM models used at each stage are detailed in Section 6.
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Graph Builder

Formalizer

Theorem: Suppose 
A and B are n x n ...

Proof: Since AB=I and
det(I)=1 we know that....

NL Proof

LLM

TC1 L1

L2

TS

Original statement: 
Since AB = I, then |A||B|=1.

Dependencies: [TC1, TC2]

Self-contained statement:
We assume: 
• A, B are n × n square matrices [TC1] 
• AB = I  [TC2]
Therefore we conclude:
• |A| |B| = 1 [L2] 

Node dictionary

lemma L2 
...
{A B : Matrix n n ℝ} 
(TC2: A * B = 1) :
det A * det B = 1 := by
sorry

L2

TC2

Formal Lean4 lemma

LLM

lemma L2 
...
(TC2: A * B = 1) :
det A * det B = 1 := by
rw [←det_mul, TC2,
 det_one]

Lean4 code with tactics

LLM

Tactic Completer

Lean 
errors?

Yes (retry formalization)

Lean 
errors?

No

Yes (retry proving)

Figure 3: Our proof autoformalization pipeline with three parts: (1) Graph builder; (2) Lemma
Formalizer; and (3) Tactic Completer. Lean errors are verified by the Lean 4 compiler.

1. Graph Builder: This step parses the natural language (NL) theorem and its proof to construct
a dependency graph with LLM. Formally, this graph is a DAG, G = (V,E), where V is the set of
all nodes and E ⊆ V × V is the set of directed edges. The nodes are partitioned into disjoint sets:
V = VTC ∪VD ∪VL ∪VTS , representing Theorem Conditions, Definitions, Lemmas, and Theorem
Solutions, respectively. Each edge (u, v) ∈ E signifies that node u is a prerequisite for proving
the statement of node v. From the theorem statement, we extract nodes for theorem conditions and
theorem solutions. From the proof statement, we extract nodes for lemmas and extra definitions.
Each node is assigned its original NL statement, its dependencies, and a self-contained NL statement
that provides a complete description of the current proof step (see Figure 3). To ensure the graph’s
validity, the system checks for forward references and cycles and verifies that every node, except the
theorem solutions, has an outgoing edge. If the check fails, we task the LLM to improve the graph.

2. Formalizer: For each node in the graph, the LLM formalizes its self-contained NL statement
into Lean 4 code. This process is iterative: generated errors are fed back to the LLM for correction.
At this stage, each lemma is finalized with the “by sorry” placeholder, as tactics are not yet applied.

3. Tactic Completer: The final step completes the proofs for the lemmas by replacing the “by
sorry” placeholders in the formalized Lean 4 code with the appropriate Lean 4 tactics.

To streamline the entire workflow illustrated in Figure 3, we developed a user-friendly Python pack-
age for PROOFFLOW. This package automates the complete process, allowing users to provide an in-
formal theorem and proof with just a few lines of code. The package then autonomously executes the
full workflow. It also integrates PROOFSCORE evaluation and our PROOFFLOWBENCH benchmark
for comprehensive assessment. The package is available 2 at https://anonymous.4open.
science/r/ProofFlow-351E, with all the LLM prompts used in this project included in the
repository.

The final output of our package is an interactive diagram that visualizes the proof graph, as seen in
Figure 4. Users can click on each node to get detailed information about its results. The contours
of each node provide an at-a-glance summary of the outcomes, indicating whether its formalization
and solving steps were successful. This allows users to immediately assess the progress of the
autoformalization and pinpoint the locations in the proof graph where manual effort is needed.

2A public GitHub repository containing the package will be made available upon paper acceptance.
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Figure 4: An example of the interactive visualization generated by PROOFFLOW. Node contours
signify the outcome of each step: Red for a formalization error, orange for formalized statement
without Lean 4 tactics, and green for formalized statement with Lean 4 tactics.

4 SCORING PROOF AUTOFORMALIZATION AND ERROR DETECTION

As discussed in Section 1, a faithful autoformalization must satisfy three key properties: (1) Struc-
tural Fidelity, which ensures the proof’s dependency graph is preserved; (2) Syntactic Correctness,
which ensures the output is verifiable code without compilation errors; and (3) Semantic Faith-
fulness, which ensures each formalized statement accurately preserves the precise mathematical
meaning of its original natural language statement.

4.1 PROOFSCORE

To evaluate the effectiveness of our PROOFFLOW pipeline, we introduce PROOFSCORE, a single
unified score that synthesizes these three criteria.

Structural Fidelity is evaluated by checking whether the dependencies for a given node are valid.
For a node vi, we check if its estimated dependencies, Dest(vi) = {u ∈ Vest | (u, vi) ∈ Eest}, match
the dependencies in a ground truth graph. We permit several valid graphs (Gtrue) because the level of
granularity can vary. For example, the calculation 1+ 13+ 5 = 14+ 5 = 19 could be broken down
into either one or two steps, depending on the user’s granularity preference.

Syntactic Correctness is denoted by ci ∈ {0, 1}, where ci = 1 if the formalization of node vi is
free of Lean 4 compilation errors at the end of the Tactic Completer step and ci = 0 otherwise.

Semantic Faithfulness is assessed by adapting the “LeanScore” metric from Yu et al. (2025a),
which was originally designed to evaluate the semantic faithfulness of a theorem statement formal-
ization. A detailed description is given in Appendix A.2. This metric provides a faithfulness score,
fi ∈ [0, 1], for each node vi of the dependency graph, and this score measures the semantic equiva-
lence between the input NL statement and its corresponding formalized Lean 4 lemma. The higher
the score, the more faithful the Lean 4 lemma devotes to the input NL statement.

The final unified PROOFSCORE, for a proof with n steps is computed as:

PROOFSCORE =
1

n

n∑
i

fi ci I[Dest(vi) ∈ Dtrue(vi)],

where ProofScore ∈ [0, 1], and Dtrue(vi) is the set of valid dependencies for node step vi. When
the GraphBuilder is configured to enforce the DAG structure, structural fidelity is guaranteed for all
nodes. Otherwise, we use the Claude-Sonnet-4 LLM with a specialized prompt to verify structural
fidelity. This same LLM model is also used to check for semantic faithfulness, utilizing prompts
available within the PROOFFLOW package. Additional details about PROOFSCORE, including ex-

6
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Node is
Lemma or

 TS

Lean 
tactics
error

Prove
negation

Formalizer error No error

NL statement
error

Tactic completer
errorNo error

No

Yes

No

Yes

No

Yes

failure

sucess

Figure 5: Flowchart illustrating the error detection mechanism. This is applied lemma by lemma
and fi is the semantic faithfulness of node vi and ci = 0 if there are syntactic errors.

amples of natural language proofs paired with their Lean code and respective scores, are provided
in Appendix A.2.

4.2 ERROR ANALYSIS

PROOFFLOW also has an error detection system operating at each proof step. This process (Figure
5) determines the error source, which can be the formalizer, tactic completer, or original natural
language proof. First, a proof node’s semantic faithfulness score is compared against a 0.6 threshold,
following Yu et al. (2025a). If it passes, the system checks if it’s a provable statement (lemma or
theorem solution). Otherwise, the process for that node ends. For provable statements, the tactic
completer attempts to apply Lean 4 tactics. Success means the proof step is complete with no errors.
If the tactics fail, the LLM tries to prove the negation of the statement. If the negation can be proven,
then the original natural language statement is deemed imprecise. Otherwise, the error is considered
to be with the tactic completer LLM, which is incapable of either proving or disproving the step.

5 PROOFFLOWBENCH

Existing mathematical benchmarks are often limited to pure calculation and are designed to test
problem solving accuracy. Previous natural language proof datasets are also not self-contained, often
referencing external sources for non-standard theorems (Welleck et al., 2021). Furthermore, they
focus on specific topics and sometimes also including calculation problems instead of proofs (Sheng
et al., 2025). To address these limitations, we introduce a new benchmark, PROOFFLOWBENCH, to
specifically evaluate automated proof formalization pipelines. The benchmark, provided as part of
the PROOFFLOW package, consists of 184 undergraduate-level mathematics theorems and proofs in
natural language from six key areas: number theory and algebra (27), real analysis (42), inequality
(36), probability and set theory (31), complex analysis (25), and sequences and series (23). To
construct this dataset, we adapted 63 problems from the NaturalProofs benchmark (Welleck et al.,
2021) and 36 problems from the IneqMath benchmark (Sheng et al., 2025).

The benchmark also contains the natural language proofs divided into proof steps, and the respective
dependency graphs (DAGs), which can be used to evaluate structural fidelity. On average, each
problem’s graph consists of 8.4 total nodes (more statistics provided in Appendix A.3). The proof
graphs have been manually validated. However, we emphasize that for the same proof different
proof graphs are possible depending on the desired level of detail of each proof node.

6 COMPARISON STUDY

To evaluate our PROOFFLOW pipeline, we conduct a comparison study with three main objectives.
First, we assess the effectiveness of formalizing proofs using our high-level, lemma-based approach
(PROOFFLOW) versus low-level tactics. This compares the “Lemma Formalization” (ours) with the
“Tactic Formalization” (existing), as depicted in Figure 1. Secondly, to examine the role of explicit
dependency management in ensuring structural fidelity to the original proof, we compare the DAG-
enforcing version of PROOFFLOW with a variant where this is relaxed (noDAG). Finally, we conduct
the error analysis of Section 4.2, to detect the source of errors in the PROOFFLOW pipeline variants.
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6.1 EXPERIMENTAL SETTINGS

PROOFFLOW: We consider the PROOFFLOW variant that explicitly enforces the correct depen-
dency graph as our main method, referred to as PROOFFLOW DAG. To evaluate the role of this de-
pendency enforcement, as an ablation study, we also consider a PROOFFLOW noDAG version, where
such mechanism is relaxed. That is, in PROOFFLOW noDAG, all previous lemmas and premises are
provided when formalizing each step, similarly to how dependency is handled by most prior work.

Existing methods: We compare our pipeline against existing tactic-based formalization methods:
(1) “FULL PROOF” autoformalization (Lu et al., 2024), which calls the LLM once to formalize the
entire theorem and proof using Lean 4 tactics, and (2) “STEP PROOF” autoformalization (Hu et al.,
2025), which formalizes one proof step at a time into Lean 4 tactics. We note that STEP PROOF
utilizes the same Graph Builder LLM and prompt as PROOFFLOW to decomponse the initial NL
proof into steps.

Thinking modes: All methods were evaluated in both thinking and non-thinking modes to pro-
vide a more comprehensive assessment. For existing methods, Goedel-Prover-V2-32B and Gemini-
Flash-2.5 (Gemini Team, 2025) are used for the thinking and non-thinking modes. For our PROOF-
FLOW pipeline, the Graph Builder always uses Gemini-2.5-Pro; the thinking mode utilizes Goedel-
Formalizer-2-32B and Goedel-Prover-V2-32B (Lin et al., 2025) as the Formalizer and the Tactic
Completer, while non-thinking mode utilizes Gemini-2.5-Flash and DeepSeekProver V2 671B (Ren
et al., 2025a) for the two components. All LLM models were given appropriate system prompts.

Evaluation metrics: Our main evaluation metric in PROOFSCORE, supplemented by measures of
syntactic correctness, both at step-level and proof-level. Step-level syntactic correctness of the gen-
erated Lean 4 code is measured at two key stages: after the Formalizer step (Formalizer accuracy)
and after the Tactic Completer step (Tactic accuracy). We also report proof-level “correct syn-
tax”, whether all of the formalizer and solver steps are syntactically valid. All syntactic correctness
checks are verified by LeanServer (Santos et al., 2025) with Lean version v4.15.0. We also adapted
PROOFSCORE (Sect. 4), so it could evaluate the FULL PROOF and STEP PROOF pipelines (see Ap-
pendix A.2.2 for details). Finally, we report the elapsed time and the number of generated tokens.
Since our experiments use both local and API-based model deployments, inference speeds vary.
Therefore, the number of generated tokens is a more meaningful indicator of the effort required.

Data and reproducibility: We utilized the problems in the PROOFFLOWBENCH benchmark for
this comparison study. Reproducible code is provided as part of the PROOFFLOW package.

6.2 EMPIRICAL RESULTS

The results evaluated at a Pass@5 rate are presented in Table 1. This Pass@5 setting allows for up
to five self-correction retries for each stage in the pipelines. If a generated step produces syntacti-
cally incorrect code, the model is re-prompted with the error and its previous output, giving it an
opportunity to fix the mistake. The results for Pass@1 and 3 are show in Appendix A.4.

Existing Methods Comparison: The results clearly demonstrate that our pipeline outperforms ex-
isting methods (FULL PROOF and STEP PROOF), achieving the highest PROOFSCORE (0.545). The
FULL PROOF method calls the LLM once for the entire proof formalization and therefore we only
report proof-level results. This approach achieves a comparatively high syntax passing rates (0.571
for the thinking mode), however, the PROOFSCORE was comparatively low, with the most frequent
errors being the misuse of unknown theorem names and tactic failures. The STEP PROOF method
exhibits the lowest proof-level syntax passing rates (0.005 for the non-thinking mode and 0.119 for
the thinking mode) because the LLM struggles to maintain correct and consistent indentation in Lean
4 across steps. Also, once an error appears in one step, subsequent steps cannot achieve syntactic
correctness. The poor syntax passing rates of the STEP PROOF approach results in correspondingly
low PROOFSCORE values, given that this metric incorporates syntactic correctness as a component.

Ablation Study: The PROOFSCORE evaluation metric establishes the DAG version of PROOFFLOW
as the top-performing method for proof autoformalization. This is most evident in the “thinking”
mode, where the DAG variant achieves a PROOFSCORE of 0.545, compared to the noDAG’s 0.417,
due to improved structural fidelity and syntactic correctness. While the DAG also outperforms the
noDAG variant for all syntax metrics in the thinking mode, we observed a higher syntax passing rate
for the noDAG in the non thinking setting. This is because the noDAG variant provides all previ-
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Table 1: Performance metrics under the Pass@5 setting on our 184-problem benchmark. Step-level
averages are computed over all individual steps, while proof-level averages are computed per proof.
Entries marked with “/” indicate not applicable.

Step-Level Proof-Level

Pipeline
Think
mode

Form.
accuracy

Tactic
accuracy

Proof
Score

Correct
syntax

Time
(mins)

Output
tokens (k)

PROOFFLOW

DAG
No 0.751 0.358 0.355 0.027 8.8 22.4
Yes 0.939 0.742 0.545 0.375 31.8 94.2

PROOFFLOW

noDAG
No 0.807 0.391 0.347 0.049 12.3 25.8
Yes 0.936 0.681 0.417 0.353 32.0 98.5

FULL PROOF
No / / 0.021 0.027 0.8 10.5
Yes / / 0.279 0.571 3.8 15.1

STEP PROOF
No / 0.068 0.046 0.005 0.2 1.2
Yes / 0.129 0.029 0.119 10.6 32.9

ous steps as known conditions to the LLM, and this extra information can lead to higher syntactic
passing rates for weaker models, but often results in a logically inconsistent formal proof structure,
as shown by the lower PROOFSCORE averages. This finding underscores the critical importance of
maintaining structural fidelity.

Computational efficiency: Appendix A.7 provides a detailed breakdown of computational costs
across pipeline components. Our analysis reveals that the Tactic Completer stage is the primary
computational bottleneck, consuming 81–89% of total execution time across all configurations. A
straightforward solution to address this bottleneck, enabled by our DAG-based pipeline design, is
parallelization. Our architecture naturally supports parallel execution at multiple levels: proof nodes
in different branches can be formalized concurrently, and once formalized, tactic completion can
proceed independently across nodes. In principle, our DAG design enables extensive parallelization
that could substantially reduce wall-clock time. However, we did not implement parallelization in
our experiments due to limited GPU resources, which restricted us to sequential processing.

6.3 ERROR ANALYSIS

The error analysis, shown in Table 2, identifies the Formalizer as the primary source of failure,
accounting for 32% to 47% of all autoformalization outcomes, depending on the pipeline configura-
tion. These failures are predominantly semantic, stemming from discrepancies between the natural
language and the formalized Lean 4 code, despite the high syntactic correctness (Table 1). Our most
robust configuration, which uses the PROOFFLOW DAG architecture in thinking mode, has 53.3%
error-free proof steps and clearly outperforms the 42.8% rate of the baseline (noDAG) version. This
confirms that while the DAG architecture improves performance, improving semantic preservation
during the formalization stage remains a challenge for future work.

The PROOFFLOW’s error detection process goes beyond simple checks, being able, in some in-
stances, to identify a spectrum of flaws in the initial natural language proof. Examples are provided
in Appendix A.6. These detected issues range from blatant algebraic errors to subtle ambiguities and
unstated assumptions. By flagging these mistakes, pipelines like PROOFFLOW can provide feedback
that not only helps correct errors but also strengthens the overall rigor and clarity of the proof.

7 DISCUSSION

Our results demonstrate the importance of preserving a proof’s structural fidelity. The PROOFFLOW
lemma-based approach significantly outperforms both monolithic (“FULL PROOF”) and sequential
(“STEP PROOF”) methods, which falter by tackling excessive complexity at once or by imposing a
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Table 2: Breakdown of step-level outcomes for different pipeline configurations. “None” indicates
the percentage of total steps completed successfully, while other columns show the percentage of
steps that failed due to a specific error source.

Pipeline Think Total Steps Error Source (%)
None Formalizer Tactic NL Statement

PROOFFLOW DAG No 1735 33.7 46.5 19.6 0.2
PROOFFLOW DAG Yes 1737 53.3 38.9 5.6 2.2

PROOFFLOW noDAG No 1751 32.8 45.6 21.4 0.2
PROOFFLOW noDAG Yes 1755 42.8 47.0 7.6 2.6

linear structure unfaithful to the proof logic. Our method succeeds by using a lemma-based struc-
ture that explicitly models the proof’s dependency graph. This approach deconstructs the problem
into manageable, logically-constrained steps. It guides the LLM along the author’s intended path,
preventing logical “shortcuts” that undermine other approaches. However, performance hinges on
the Formalizer step, where poor semantic preservation remains the primary bottleneck.

A limitation of our work was the exclusive focus on undergraduate-level proofs, omitting research-
level problems. However, this scope reflects the current capabilities of the field rather than intrin-
sic limitations of the pipeline architecture we propose. Testing our system on more challenging
research-level problems did reveal the expected performance drop, consistent with observations
across the literature (e.g., (Jiang et al., 2025)). Critically, our pipeline’s core contributions—the
DAG-based lemma decomposition and structural preservation—are not the primary limiting factors.
The main bottlenecks lie in the underlying formalizer and tactic-completer LLMs, which currently
struggle with research-level concepts, and in MathLib’s incomplete coverage of specialized mathe-
matical domains. As these foundational components mature and the formal mathematics ecosystem
grows, we anticipate that our pipeline’s performance will naturally improve, providing a scalable
framework that is designed to grow more capable alongside these broader advances.

Our modular three-stage pipeline also enables the curation of high-quality training data for both end-
to-end proof autoformalization models and individual Formalizer and Tactic Completer LLMs—a
key direction for future work. Our error detection mechanisms can filter low-quality autoformaliza-
tions at different pipeline stages, creating curated datasets that support multiple training paradigms:
supervised fine-tuning on the complete chain-of-thought reasoning process and reinforcement learn-
ing using detected errors as negative examples.

Ultimately, our work demonstrates that proof autoformalization is an achievable goal: we achieved
37.5% proof-level syntactic accuracy on undergraduate problems, a significant leap from existing
approaches that only achieved 6.10% accuracy on simpler middle-school mathematics (Hu et al.,
2025). More importantly, we establish that for these tools to be truly useful to mathematicians,
they must faithfully represent the structure and logic of the human-created arguments they seek to
formalize. Addressing the current bottlenecks could lead to practical tools that function as a proof
“auto-correct” for mathematicians, pinpointing errors and ambiguities directly in natural language
and in real time.
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ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics and does not involve human subjects, privacy con-
cerns, or ethical issues. The study uses only publicly available mathematical data, with no personal
or sensitive data involved.

The proposed PROOFFLOW pipeline, PROOFSCORE metric, code, and datasets are designed to as-
sist mathematicians in theorem formalization, aiming to advance mathematical research and AI for
mathematics. This work poses no foreseeable harmful applications and contributes positively to the
scientific community by enhancing automated theorem proving capabilities.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we have made all necessary materials openly available.
The complete implementation of the methodology (PROOFFLOW pipeline, PROOFSCORE metric),
all experimental data, LLM prompts and comparison study code are publicly accessible through our
package repository: https://anonymous.4open.science/r/ProofFlow-351E. The
provided GitHub repository includes detailed instructions and documentation for replicating all ex-
perimental results presented in this paper.
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A APPENDIX

A.1 LLM USAGE STATEMENT

In this work, Large Language Models (LLMs) were employed in specific components of our research
pipeline and experimental framework. The primary applications of LLMs include:

1. PROOFFLOW Pipeline Implementation: LLMs were utilized as core components within our
proposed ProofFlow pipeline as Graph Builder, Formalizer and Tactic Completer.

2. Existing Methods Comparison: During the experimental evaluation, LLMs were employed to
perform inference with existing methods for comparative analysis against our proposed approach.

3. PROOFSCORE Computation: LLMs were integrated into the calculation process of our pro-
posed PROOFSCORE metric for quantitative assessment of formalization quality.

4. Benchmark Dataset Construction: The proof graphs included in our benchmark dataset were
initially generated by LLMs, followed by human verification.

LLMs served as computational tools in these specific applications and for grammatical correction of
an early draft. All research ideation, methodological design, analysis, and interpretation of results
were conducted exclusively by the human authors, who take full responsibility for the content of
this paper, including any LLM-assisted components.

A.2 ADDITIONAL DETAILS ON PROOFSCORE

A.2.1 EVALUATION OF SEMANTIC EQUIVALENCE OF PROOFSCORE

In this section, we detail how to obtain the semantic equivalence score fi of each node, as proposed
in Section 4. Note that by default, the score fi is 0 if the syntactic check at the formalizer step is not
passed.

In particular, we assess the semantic equivalence between the self-contained natural language state-
ment nlsi and Lean code lci of each node, which are the input and output of the Formalizer step of
PROOFFLOW (Sect. 3.1). The process is as follows:

1. First, we prompt LLM to break down both nlsi and lci into components.

2. We employ an LLM-as-a-judge to evaluate the semantic equivalence between each formalized
component, lci, and its natural language counterpart, nlsi. The LLM is provided with few-shot
examples illustrating specific error types and assigns one of the following evaluations to each
component:

• Perfectly match: The component lci fully captures the reasoning of nlsi. It may include ad-
ditional constraints or conditions that were implicit in the natural language but are necessary
for formal rigor.

• Minor inconsistency: The component lci correctly represents the core logic of nlsi but may
feature slight structural reordering or other small deviations.

• Major inconsistency: The component lci either omits a key part of the logic from nlsi or
introduces entirely different reasoning.

3. A Fuzzy measurement score is then computed for each component based on these evaluations,
following the method in Yu et al. (2025a). This score is effectively a weighted average of the
counts for “Perfectly match” and “Minor inconsistency,” with zero tolerance for any component
rated as a “Major inconsistency.”

4. The final score, fi, is calculated by aggregating the Fuzzy measurements using a Sugeno Inte-
gral (Sugeno, 1974).

In brief, the score fi of a proof step is equal to 1 if the Lean code fully captures the self-contained
natural language statement with all necessary conditions and fi is equal to 0 if at least one component
of the Lean code contains major flaws.
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A.2.2 PROOFSCORE FOR FULL PROOF AND STEP PROOF

Our evaluation score, PROOFSCORE, is the average of faithfulness evaluations of individual steps
(nodes in the dependency graph) of our PROOFFLOW method. To create a fair comparison with
FULL PROOF and STEP PROOF, we adapted this evaluation metric as follows. In all cases, any
syntactically incorrect Lean code was automatically assigned a score of 0.

• For FULL PROOF: Since this method generates a single, complete proof for each problem, we
applied the scoring process (detailed in Appendix A.2.1) to the entire proof. The final score in
Tables 1 and 6 is the average score across all problems. Note that if the proof fails Lean syntactic
check, the score is 0 by default.

• For STEP PROOF: This method generates code for each individual step. Therefore, we applied the
scoring process to each step independently. The final score in the tables is the average across all
individual steps from every problem in the benchmark. If any step fails Lean syntactic check, the
score is 0 by default.

The results of this comparative analysis are presented in Tables 1 and 6.

A.2.3 RELIABILITY AND CONSISTENCY OF PROOFSCORE

As Claude is not involved in any module of the pipeline (Graph builder, Formalizer and Tactic
Completer), we employ Claude-Sonnet-4 to evaluate the semantic faithfulness in PROOFSCORE.

To further validate the reliability of PROOFSCORE, we compare it with 2 variants (using Gemini-
2.5-Flash and DeepSeek-V3 in lieu of Claude) and merely Claude-as-a-Judge. While the variants
of PROOFSCORE evaluate faithfulness on a component basis and aggregate using Sugeno Integral
(see Sect. 4), for Claude-as-a-Judge, we prompt it to evaluate directly whether the Lean code is
semantically equivalent to the natural language proof step.

We employ these methods to evaluate a sample of 200 natural language proof steps from our bench-
mark and check their formalization faithfullness evaluations against the results obtained by a human
expert. For human evaluations, the ground-truth label is “PASS” if the Lean code is semantically
equivalent to natural language and “FAIL” otherwise. Consistently with Section 6, for variants
of PROOFSCORE, a proof score that is larger or equal to 0.6 means the scorer method predicts
“PASS”, and the scorer predicts “FAIL” otherwise. On the other hand, Claude-as-a-Judge predicts
“PASS”/“FAIL” directly. We compute the F1 scores of these predictions versus the ground-truth
labels.

The results are summarized in Table 3. While the variants of PROOFSCORE obtain close perfor-
mances, they all achieve higher scores in judging semantic equivalence than Claude-as-a-Judge.
These results suggest that PROOFSCORE is reliable in judging semantic faithfulness and this relia-
bility is consistent across different Large Language Models.

Table 3: Comparison of F1 scores of variants PROOFSCORE by Claude, Gemini and DeepSeek and
Claude-as-a-Judge against human expert evaluations. All variants of PROOFSCORE achieve a higher
level of correctness in judging semantic equivalence than Claude, demonstrating the reliability and
consistency of PROOFSCORE.

Method Claude-as-a-Judge
PROOFSCORE

Claude (paper)
PROOFSCORE

Gemini
PROOFSCORE

DeepSeek
F1-score 0.83 0.91 0.88 0.9

A.2.4 EXAMPLES OF PROOFSCORE RESULTS

To illustrate how PROOFSCORE behaves for each proof node, we provide several examples in Ta-
bles 4 and 5. Each example shows a natural language proof step paired with its formalized Lean code
and the corresponding PROOFSCORE. Note that we display each proof step’s individual contribu-
tion to the overall PROOFSCORE from Section 4—that is, the product of terms within the summation
(each term in the sum).
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In short, any Lean code is assigned a score of 0 if either the code is syntactically incorrect or
the tactics are structurally unfaithful to the proof step or there is at least one component that is
significantly inconsistent with the natural language. By contrast, score 1 means that all components
of the Lean code match perfectly with their counterparts in the natural language proof step.

Natural Language Lean code Score and Explanation
From n = 2k + 1 [l1] and
n2 = 4k2 + 4k + 1 [l2], we
conclude: n2 = 4k(k+1)+1
[l3].
(Example highlighted in Fig-
ure 2(b)).

lemma l3
(n : Z)
(tc_1 : n % 2 = 1)
(l1 : $\exists$ k : Z, n = 2*k

+ 1)
(l2 : nˆ2 = 4 * (Classical.

choose l1)ˆ2 + 4 * (
Classical.choose l1) + 1)
:

nˆ2 = 4 * (Classical.choose l1
) * ((Classical.choose l1)
+ 1) + 1 := by

have h : n = 2 * (Classical.
choose l1) + 1 := by

have h1 : n = 2 * (
Classical.choose l1) + 1
:= by

exact Classical.choose_spec l1
exact h1

have h3 : n ˆ 2 = 4 * (
Classical.choose l1) ˆ 2 +
4 * (Classical.choose l1)
+ 1 := by

have h4 : n ˆ 2 = 4 * (
Classical.choose l1) * ((
Classical.choose l1) + 1)
+ 1 := by

have h5 : 4 * (Classical.
choose l1) ˆ 2 + 4 * (
Classical.choose l1) + 1 =
4 * (Classical.choose l1)
* ((Classical.choose l1)

+ 1) + 1 := by
ring_nf
linarith [h3, h5]
exact h4

Score 0: structurally
unfaithful. The code to
prove L3 only utilizes
header by L1 while ig-
noring L2, structurally
unfaithful to the input
NL proof.

We have: (x−2)2+(y−1)2 =
5 and (x−4)2+(y−1)2 = 5.
So, x = 3.

theorem l3
(x y : R)
(l1 : (x - 2)ˆ2 + (y - 1)ˆ2 =

5)
(l2 : (x - 4)ˆ2 + (y - 1)ˆ2 =

5) :
x = 3 = by sorry

Score 0: wrong syn-
tax. It should be ”:= by
sorry” but ”= by sorry”
was used. As the code
fails Lean check (syn-
tax error), the PROOF-
SCORE is 0.

Table 4: Examples of varying PROOFSCORE with natural language proof step and Lean code.

A.3 BENCHMARK DATASET STATISTICS

The distribution of the number of nodes per proof in the PROOFFLOWBENCH benchmark is shown
in Figure 6. On average, the proofs have 2 theorem conditions, 0.6 definitions, 4.4 lemmas, and 1.2
theorem solutions.
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Natural Language Lean code Explanation
Because (a+ b− c), (b+ c−
a), (c + a − b) > 0 and we
have: a2 ≥ (a+c−b)(a+b−
c), b2 ≥ (b+c−a)(b+a−c),
and c2 ≥ (c+ b− a)(c+ a−
b). Thus: a2b2c2 ≥ (a + c −
b)(a+ b− c)(b+ c− a)(b+
a− c)(c+ b− a)(c+ a− b).

theorem l6
(a b c : R)
(tc_1 : a > 0 ˆ b > 0 ˆ c > 0

ˆ a + b > c ˆ b + c > a ˆ
c + a > b)

(l4 : (a + b - c > 0) ˆ (b + c
- a > 0) ˆ (c + a - b >

0))
(l5 : aˆ2 >= (a + c - b) * (a

+ b - c) ˆ bˆ2 >= (b + c -
a) * (b + a - c) ˆ cˆ2 >=
(c + b - a) & (c + a - b)

) :
aˆ2 * bˆ2 * cˆ2 > (a + c - b)

* (a + b - c) * (b + c - a
) * (b + a - c) * (c + b -
a) * (c + a - b) := by

sorry

Score 0: major incon-
sistency. The Lean
code is syntactically
correct but contains a
major inconsistency at
the proposition. While
NL has ≥, the propo-
sition in Lean has >.
This results in Proof
Score 0.

As the complex conjugate of
z is z̄ = x− iy, we conclude:
(2−i)z̄ = (2x−y)−i(x+2y).

theorem l3 (x y : E) (z : C) (
h : z = x + y * Complex.I)
:

(2 - Complex.I) * star z = (2
* x - y) - Complex.I * (2
* y + x) := by sorry

Score 0.67: minor in-
consistency. The Lean
code is syntactically
correct and equivalent
to the proof. The right-
hand side of the propo-
sition contains a slight
variable ordering: (x+
2y) vs. (2 ∗ y + x)
in Lean. However, this
change is minor and
still preserves the se-
mantic meaning of the
proof step.

Because (a+ b− c), (b+ c−
a), (c + a − b) > 0 and we
have: a2 ≥ (a+c−b)(a+b−
c), b2 ≥ (b+c−a)(b+a−c),
and c2 ≥ (c+ b− a)(c+ a−
b). Thus: a2b2c2 ≥ (a + c −
b)(a+ b− c)(b+ c− a)(b+
a− c)(c+ b− a)(c+ a− b).

theorem l6
(a b c : R)
(tc_1 : a > 0 ˆ b > 0 ˆ c > 0

ˆ a + b > c ˆ b + c > a ˆ
c + a > b)

(l4 : (a + b - c > 0) ˆ (b + c
- a > 0) ˆ (c + a - b >

0))
(l5 : aˆ2 >= (a + c - b) * (a

+ b - c) ˆ bˆ2 >= (b + c -
a) * (b + a - c) ˆ cˆ2 >=
(c + b - a) & (c + a - b)

) :
aˆ2 * bˆ2 * cˆ2 >= (a + c - b)

* (a + b - c) * (b + c -
a) * (b + a - c) * (c + b
- a) * (c + a - b) := by
sorry

Score 1: perfectly
match. The Lean code
is syntactically cor-
rect and semantically
equivalent to the proof
step.

Table 5: Examples of varying ProofScores with natural language proof step and Lean code.
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Figure 6: The distribution of the total number of nodes per problem (left) and the frequency of each
node type (right).

A.4 COMPARISON RESULTS

This section contains extra comparison results. We show in Table 6 the extended version of Table 1,
which includes Pass@1, 3, and 5 rates.

A.5 COMPARISON EXAMPLES

In this section, we present several examples of proof autoformalization to illustrate how different
pipelines perform when formalizing natural language proofs. The examples below, selected from
our comparative study in Section 6, show how PROOFFLOW DAG maintains a high degree of fidelity
to the input proof. In contrast, other approaches, such as PROOFFLOW noDAG, FULL PROOF, and
STEP PROOF, often fail to either adhere to the flow of the natural proof or even generate valid Lean
4 code.

To evaluate structural fidelity, we analyzed the dependencies for each syntactically correct proof
step. By inspecting the Lean tactics, we identified exactly which previously proven steps and theo-
rem conditions the solver utilized. A step was deemed structurally faithful if this set of dependencies
precisely matched the logic of the original natural language proof. If the dependencies differed in
any way, the step was marked as unfaithful.

For the purposes of illustration, the figures presented in this section are based on the actual depen-
dency graph of the input natural language proof, and annotations will be provided in the case the the
logical flow of the generated proof graph deviates from this input dependency graph.

A.5.1 EXAMPLE: PROOFFLOW DAG IS SUPERIOR IN STRUCTURE FIDELITY

This example corresponds to entry “dummy 6” in the PROOFFLOWBENCH benchmark.

Theorem

If n is an odd integer, then n2 ≡ 1 (mod 8).

Proof

Since n is odd, we can write n = 2k + 1 for some integer k. Then n2 = (2k + 1)2 =
4k2 + 4k + 1. We can factor this as n2 = 4k(k + 1) + 1. Now, either k is even or k is odd.
If k is even, then k+ 1 is odd, and if k is odd, then k+ 1 is even. In either case, k(k + 1) is
even, so k(k + 1) = 2m for some integer m. Therefore n2 = 4(2m) + 1 = 8m+ 1, which
means n2 ≡ 1 (mod 8).
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Table 6: Performance metrics for all pipelines, evaluated at Pass@1, 3, and 5 rates on our 184-
problem benchmark. Entries marked with “/” indicate not applicable.

Step-Level Proof-Level

Pipeline
Think
mode

Pass
Form.

accuracy
Tactic

accuracy
Proof
Score

Correct
syntax

Time
(mins)

Output
tokens (k)

PROOFFLOW

DAG

No
1 0.644 0.252 0.320 0.016 3.3 8.1
3 0.722 0.323 0.347 0.027 6.3 15.7
5 0.751 0.358 0.355 0.027 8.8 22.4

Yes
1 0.844 0.629 0.508 0.245 19.3 55.7
3 0.925 0.723 0.541 0.348 27.0 78.0
5 0.939 0.742 0.545 0.375 31.8 94.2

PROOFFLOW

noDAG

No
1 0.697 0.225 0.312 0.022 4.8 9.8
3 0.791 0.328 0.344 0.038 9.0 18.4
5 0.807 0.391 0.347 0.049 12.3 25.8

Yes
1 0.860 0.573 0.397 0.217 18.9 56.0
3 0.921 0.662 0.414 0.332 27.0 80.0
5 0.936 0.681 0.417 0.353 32.0 98.5

FULL PROOF

No
1 / / 0 0 0.2 2.7
3 / / 0.011 0.011 0.5 6.6
5 / / 0.021 0.027 0.8 10.5

Yes
1 / / 0.156 0.309 0.9 3.5
3 / / 0.216 0.467 2.5 9.5
5 / / 0.279 0.571 3.8 15.1

STEP PROOF

No
1 / 0.054 0 0 0.03 0.1
3 / 0.061 0 0 0.05 0.3
5 / 0.068 0.046 0.005 0.2 1.2

Yes
1 / 0.123 0.023 0.065 1.3 4.9
3 / 0.127 0.028 0.092 3.7 12.9
5 / 0.129 0.029 0.119 10.6 32.9
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Proof Graph (DAG)

Suppose n is an odd
integer. Show that 
n ≡ 1 (mod 8)

Theorem

TC1 L1

L2

TS

L4 L5

L3

L6

n is odd n ≡ 1
(mod 8)

n^2 = 8m+1

k(k+1) even k(k+1) i= 2m
m integer

n^2 = 4k^1 +
4k+1

n = 2k+1
k integer

n^2 =
4k(k+1)  + 1

Proof Graph (NoDAG)

Suppose n is an odd
integer. Show that 
n ≡ 1 (mod 8)

Theorem

TC1 L1

L2

TS

L4 L5

L3

L6

n is odd n ≡ 1
(mod 8)

n^2 = 8m+1

k(k+1) even k(k+1) i= 2m
m integer

n^2 = 4k^1 +
4k+1

n = 2k+1
k integer

n^2 =
4k(k+1)  + 1

Figure 7: Comparison of proof structures generated by PROOFFLOW DAG (top) and PROOFFLOW
noDAG (bottom) with respect to the original natural language proof. The red arrow indicates a
dependency in PROOFFLOW noDAG not in the natural language proof. The blue dashed arrow
indicates a dependence in the natural language proof but not included in PROOFFLOW noDAG. The
PROOFFLOW DAG formal proof faithfully follows the dependency of the original proof. However,
the one by PROOFFLOW noDAG proves step L2 then reuses L1 to prove L3, which is structurally
unfaithful to the original proof.

PROOFFLOW DAG: The proof produced by PROOFFLOW DAG follows correctly the structure of
the natural language proof and generates syntatically correct Lean code (see Figure 7).

PROOFFLOW noDAG: PROOFFLOW noDAG fails to adhere to the dependency structure of the
natural language proof. In particular, as illustrated in Fig. 7, the transition from step L2 to L3 was
inherent in the natural language proof but neglected in noDAG. The proof code for step L3 utilized
step L1 to reprove the result of step L2. In other words, step L2 was made redundant.

FULL PROOF: FULL PROOF failed to generate syntactically correct Lean code (the first syntax
error is “unknown identifier”).

STEP PROOF: STEP PROOF failed to generate syntactically correct Lean code for steps L4, L5,
L6, and TS (the first syntax error was “type mismatch”).

A.5.2 EXAMPLE: PROOFFLOWDAG IS SUPERIOR IN PROVER ACCURACY

This example corresponds to entry “dummy 7” in the PROOFFLOWBENCH benchmark.
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Theorem

If P (A) = 0.6 and P (B) = 0.7, then P (A ∩B) ≥ 0.3.

Proof

We know that P (A ∪ B) = P (A) + P (B) − P (A ∩ B). Since P (A ∪ B) ≤ 1, we have
P (A) +P (B)−P (A∩B) ≤ 1. Substituting the given values: 0.6+ 0.7−P (A∩B) ≤ 1,
which gives 1.3− P (A ∩B) ≤ 1. Therefore P (A ∩B) ≥ 0.3.

Proof Graph (DAG)

P(A) = 0.6, P(B) = 0.7
So: P(A ∩ B) >= 0.3

Theorem

TC1

L2

TS

L1

L3

L4

P(A ∩ B)
>= 0.3

P(A ∪ B)
=P(A)+ P(B)
-P(A ∩ B) 1.3-P(A ∩ B)

 <= 1

P(A) = 0.6,
P(B) = 0.7

P(A)+P(B) -
P(A ∩ B)<=1

P(A ∪ B)
 <= 1

Figure 8: The structure of the proof produced by PROOFFLOW DAG faithfully follows the depen-
dency graph of the input natural language proof.

PROOFFLOW DAG: PROOFFLOW DAG generates step-by-step proof faithfully following the log-
ical transition of the natural language proof (see Fig. 8).

PROOFFLOW noDAG: The Lean code proof achieves very low prover accuracy. This is likely
attributed to the fact that each step is given all previous steps, in contrast to only the necessary steps.
As a consequence, the prover fails to produce concise and correct Lean code.

FULL PROOF: FULL PROOF failed to generate syntactically correct Lean code to prove this theo-
rem (the first syntax error is “unknown identifier”).

STEP PROOF: STEP PROOF failed to generate syntactically correct Lean code to prove this theorem
(the first syntax error is function type error).

A.5.3 EXAMPLE: PROOFFLOW DAG IS SUPERIOR IN PROOF EFFICIENCY

This example corresponds to entry “dummy 9” in the PROOFFLOWBENCH benchmark.

Theorem

If (an) is an arithmetic sequence with a1 = 5 and a3 = 11, then a5 = 17.

Proof

Since (an) is arithmetic, there exists a common difference d such that an = a1 + (n− 1)d
for all n. From the given information, a3 = a1 + 2d. Substituting the values: 11 = 5 + 2d,
which gives us 2d = 6, so d = 3. Now we can find a5 = a1+4d = 5+4(3) = 5+12 = 17.

PROOFFLOW DAG: PROOFFLOW DAG generates step-by-step proof faithfully following the log-
ical transition of the natural language proof (Fig. 9).
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Proof Graph (DAG)

(a_n): arithmetic
sequence, a_1 = 5,
a_3 = 11, so a_5 = 17

Theorem

TC2
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Figure 9: Comparison of proof structures generated by PROOFFLOW DAG (top) and PROOFFLOW
noDAG (bottom) with respect to the original natural language proof. The red arrow indicates a
dependency in PROOFFLOW noDAG not in the natural language proof. The blue dashed arrow
indicates a dependence in the natural language proof but servered in PROOFFLOW noDAG. The
one by PROOFFLOW DAG faithfully follows the dependency of the original proof. However, the
one by PROOFFLOW noDAG proves the final step TS solely by the two given theorem conditions
TC1 and TC2 and step L5. This is not only structurally unfaithful to the structure of the natural
language proof but also inefficient as the efforts to prove all intermediate steps L1, L2, L3, L4 are
squandered.

PROOFFLOW noDAG: The Lean code proof by PROOFFLOW noDAG is not only structurally un-
faithful but also inefficient. As illustrated in Fig. 9, the final step TS is proven by the tactics stem-
ming from theorem conditions TC1 and TC2 and intermediate step L5 (direct result of TC1) while
neglecting all intermediate steps L1, L2, L3, L4. These steps are proven but not utilized for the
final goal of the proof. As a consequence, the logical flow of the proof by PROOFFLOW noDAG
fails to adhere to the structural of the natural language proof and squanders the resources used to
prove L1, L2, L3, L4.

FULL PROOF: FULL PROOF failed to generate syntactically correct Lean code to prove this theo-
rem (the first syntax error is function type error).
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STEP PROOF: STEP PROOF failed to generate syntactically correct Lean code to prove this theorem
(the first syntax error is function type error).

A.6 EXAMPLES OF ERRORS IN THE NATURAL LANGUAGE PROOF

The errors listed in Table 7 were identified using the thinking mode of our PROOFFLOW DAG
pipeline at pass@5. These examples were specifically extracted from proof steps that our error
detection pipeline (detailed in Section 4.2) flagged as an “NL statement error.”

We have decided to keep these issues in the benchmark because they reflect the kinds of common and
subtle ambiguities made by humans when writing proofs. For example, using ambiguous informal
language like “we get [result x]” is a frequent occurrence in practice. By including these ambiguities,
we ensure the benchmark remains a realistic representation of human-written proofs, rather than an
overly artificial one.

Original Natural Language Error Type Comment
3a3−3a2b−3ab2+3b3 = (a2−b2)(a−
b)

Incorrect Statement An outright algebraic error. The
left-hand side is exactly three times
the right-hand side.

Let n be a natural number. If n = 1, ...
If n is prime, we are done. If n is com-
posite, then n = ab ... By induction...

Logical Flaw The proof sketch is intuitively cor-
rect but structurally flawed. It con-
flates the base case and the in-
ductive step of a strong induction
proof.

...we get (r
√
3
2 )2 + (r/2− 1)2 = 1 Ambiguity The phrase “we get” misleadingly

suggests a general identity, when
this is actually a conditional equa-
tion that only holds for the specific
value r = 1.

From the condition Arg(z) = π/6, we
can write z = r(

√
3
2 + i

2 ) for some r >
0.

Missing Assump-
tion

The statement is incomplete be-
cause it relies on the unstated pre-
condition that z ̸= 0 for the Arg(z)
function to be well-defined.

Hence, (X ·Y )2 ≤ |X|2|Y |2, because if
not, then p would have two distinct real
zeros...

Incomplete Argu-
ment

The reasoning, based on the dis-
criminant of a quadratic, is incom-
plete as it fails for the case where
Y = 0, where the polynomial de-
generates.

Integrating... yields v(x, y) = 2xy +
3y + g(x), where g(x) is a function of
x.

Incomplete State-
ment

The statement is true but insuffi-
cient. In the context of solving
a PDE, it omits the crucial condi-
tion that the function of integration
g(x) must also be differentiable.

Table 7: Analysis of Flaws Identified in Natural Language Proof Steps

A.7 COMPUTATIONAL EFFICIENCY

We provide comprehensive diagnostics of the pipeline by examining each subcomponent in detail.
Table 8 presents key metrics across different pipeline configurations.

Our analysis reveals that the current pipeline bottleneck, in terms of both time and token efficiency,
lies primarily in the Tactic Completer stage. The Graph Builder demonstrates high reliability, suc-
ceeding on the first attempt in most cases (1.01–1.08 tries per problem). In contrast, the Formalizer
typically requires 1–2 attempts depending on the thinking mode, while the Tactic Completer de-
mands significantly more iterations, averaging 2–3 attempts in thinking mode and 3–4 attempts in
non-thinking mode per node to generate valid Lean code. The temporal distribution further empha-
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Table 8: Performance breakdown of ProofFlow pipeline components across different configurations.
Metrics include average number of attempts per component, time distribution percentages, and token
usage distribution.

Metric ProofFlow DAG ProofFlow noDAG
Think Mode No Yes No Yes

Average Attempts
Graph Builder (per problem) 1.08 1.08 1.01 1.01
Formalizer (per node) 2.20 1.39 1.94 1.37
Tactic Completer (per node) 4.04 2.39 3.69 2.67

Time Distribution (%)
Graph Builder 13.8 3.9 10.1 3.3
Formalizer 4.9 9.8 4.7 7.9
Tactic Completer 81.2 86.3 85.3 88.8

Total Time (mins) 8.8 31.8 12.3 32.0
Token Distribution (%)

Graph Builder 44.5 10.0 36.7 8.3
Formalizer 14.1 9.0 19.0 7.5
Tactic Completer 41.4 81.0 44.3 84.2

Total Tokens (k) 22.4 94.2 25.8 98.5

sizes this bottleneck: the Tactic Completer consumes 81–89% of the total execution time across all
configurations, with the Graph Builder and Formalizer accounting for substantially smaller fractions.

Regarding token generation, we observe a difference between thinking and non-thinking modes. In
thinking mode, the Tactic Completer dominates token usage (81–84%), primarily due to Goedel
models generating substantial informal reasoning and extensive thinking before producing formal
proofs. Conversely, in non-thinking mode, token distribution is more balanced, with both the Graph
Builder and Tactic Completer each accounting for approximately 40% of tokens. This difference
stems from the reasoning-heavy output of Gemini-2.5-Pro in the Graph Builder stage, contrasting
with DeepSeek-Prover-V2, which was instructed to minimize preliminary reasoning.
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