
Under review as submission to TMLR

A Simulation Environment and Reinforcement Learning
Method for Waste Reduction

Anonymous authors
Paper under double-blind review

Abstract

In retail (e.g., grocery stores, apparel shops, online retailers), inventory managers have
to balance short-term risk (no items to sell) with long-term-risk (over ordering leading to
product waste). This balancing task is made especially hard due to the lack of informa-
tion about future customer purchases. In this paper, we study the problem of restocking
a grocery store’s inventory with perishable items over time, from a distributional point of
view. The objective is to maximize sales while minimizing waste, with uncertainty about the
actual consumption by costumers. This problem is of a high relevance today, given the grow-
ing demand for food and the impact of food waste on the environment, the economy, and
purchasing power. We frame inventory restocking as a new reinforcement learning task that
exhibits stochastic behavior conditioned on the agent’s actions, making the environment par-
tially observable. We make two main contributions. First, we introduce a new reinforcement
learning environment, RetaiL, based on real grocery store data and expert knowledge. This
environment is highly stochastic, and presents a unique challenge for reinforcement learning
practitioners. We show that uncertainty about the future behavior of the environment is
not handled well by classical supply chain algorithms, and that distributional approaches
are a good way to account for the uncertainty. Second, we introduce GLDQN, a distribu-
tional reinforcement learning algorithm that learns a generalized lambda distribution over
the reward space. GLDQN provides a strong baseline for our environment. It outperforms
other distributional reinforcement learning approaches in this partially observable setting,
in both overall reward and generated waste.

1 Introduction

Retail is an industry that people deal with almost every day. Whether it is to sell clothes, groceries, or shop
on the internet, all retailers require optimized inventory management. Inventory management considers
a multitude of factors. One of growing concern is waste. For example, food waste costs the worldwide
economy around $1 trillion per year.1 On top of this cost, food waste is responsible for around 10% of
worldwide carbon emissions.2 This is one order of magnitude higher than civil aviation.3 This means that
both businesses and non-profits have an interest in working together to reduce waste, given its economic and
ecological impact.

While some waste is produced during production, retailers and consumers also play a significant role in the
generation of food waste. In this paper, we focus on the retailer-side of waste. We use grocery stores as a
canonical example of a retailer. Grocery stores need to manage their inventory in order to meet customer
demand. To do so, they pass orders to warehouses. When restocking an inventory, an order is made to
receive n units of a product at a later time. Often, stocks are provisioned in order to ensure customers
always have access to an item (Horoś & Ruppenthal, 2021). This means that, in the case of perishable items,
they might waste items that have stayed in stock for too long. On the other hand, if items are under-stocked,

1World Food Programme, https://www.wfp.org/stories/5-facts-about-food-waste-and-hunger
2WWF: Driven to Waste, https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_

waste_global_food_loss_on_farms
3https://www.iea.org/reports/aviation

1

https://www.wfp.org/stories/5-facts-about-food-waste-and-hunger
https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_waste_global_food_loss_on_farms
https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_waste_global_food_loss_on_farms
https://www.iea.org/reports/aviation


Under review as submission to TMLR

it might lead to customers not finding the products they want. This results in a balancing problem where
orders have to account for uncertainty in demand, both to minimize waste and meet customer demand. This
process is of course repeated over several periods – a grocery store is usually open 6 to 7 days a week. This
makes inventory replenishment a sequential decision making problem, where actions have potentially delayed
outcomes.

Simulation environment. Simulation environments have proven promising for supply chain prob-
lems (Cestero et al., 2022), as they allow for experimentation from both the concerned community and
machine learning experts. Currently, there is no available framework that allows us to properly simulate
a grocery store that takes waste into account for different items. Hence, to help evaluate the performance
of agents on the inventory restocking (or inventory replenishment) problem, we introduce a grocery store
environment that takes waste and stochastic customer demand into account.

Learning method. The stochasticity of customer consumption makes the inventory replenishment prob-
lem partially observable: the demand being different from its forecast, two identical situations at first sight
can result in different outcomes. This creates a problem: if an action, for a given observation, can result in
various rewards, how do we ensure that we properly learn the dynamics of the environment? A possibility is
to consider non-deterministic action-value functions, where we ascribe the randomness in the environment
to its reward distribution. Given this, as a strong baseline, we propose to make use of distributional re-
inforcement learning (DRL). In DRL, the agent aims to estimate the distribution of the state-action value
function Q rather than its expectation (Bellemare et al., 2017). In this paper, we adopt a new direction to
estimate the distribution. Non-parametric estimations of summary statistics of the probability distribution
are preferred for unconventional data distributions, but are often prone to overfitting and require more sam-
ples (Pados & Papantoni-Kazakos, 1994; Sarle, 1995). To circumvent this limitation, we estimate parameters
of a flexible distribution, in order to facilitate learning. Actual reinforcement-learning based approaches to
waste reduction in the inventory problem do not look at the item-level (Kara & Dogan, 2018). We aim to
fill this gap in perishable item replenishment by making use of distributional reinforcement learning.

We introduce GLDQN, generalized lambda deep Q-network, a reinforcement learning algorithm that estimates
parameters of a well-defined parametric distribution. Currently, distributional approaches rely mostly on
non-parametric estimation of quantiles. We find that distributional algorithms with a reliable mean estimate
outperform non-distributional approaches, with GLDQN outperforming expectile-based approaches. While
we focus on the task of inventory replenishment, GLDQN does not make any assumption on the task we
present here.

Research questions. Overall, we aim to answer the following research questions:

1. Given a forecast for the consumption of a perishable item, can we find an optimal strategy to restock
it while maximizing overall profits?

2. Can we ensure that such a policy does not lead to increased waste?

3. Which distributional method is the most efficient to solve the problem?

To answer those questions, we compare various discrete-action based DRL methods, including our newly
proposed GLDQN, as well as classic inventory replenishment heuristics. Previous work has tried to answer
those questions partially. Meisheri et al. (2022) do not look at waste through a cost-based approach. For
instance, De Moor et al. (2022); Ahmadi et al. (2022) solely look at a single item, with unchanging demand
distribution. Likewise, Selukar et al. (2022) look only at a very limited number of items and only consider the
problem in a LIFO manner. Overall, the previous work does not provide a common solution for practitionners
to try new ordering policies, nor do they provide new ordering algorithms.

Contributions. In summary, our contributions are as follows:

• We provide RetaiL, a new, complete simulation environment for reinforcement learning and other
replenishment policies based on realistic data;

2



Under review as submission to TMLR

• We showcase the performance of classic reinforcement learning algorithms on RetaiL;

• Additionally, we propose GLDQN, a new distributional reinforcement learning algorithm for the
evaluation of state-action values; and

• We show that GLDQN outperforms the current state-of-the-art in stochastic environments, while
still reducing wastage of products, making it a strong baseline for RetaiL.

Below, we survey related work, introduce our simulation environment, discuss baselines for sales improvement
and waste reduction in this environment, including our newly proposed distributional reinforcement learning
method, report on the experimental results, and conclude.

2 Related Work

The inventory restocking problem The literature on ordering policies is extensive. Most work is
based on the classic (s, S) policy introduced by Arrow et al. (1951). Yet, their inventory model does not
factor in waste. Inventory policies for fresh products as a field was kick-started to optimize blood bag
management (Jennings, 1968; Brodheim et al., 1975). Since then, there is increased attention in the classic
supply chain literature models to limit waste (van Donselaar et al., 2006; Broekmeulen & van Donselaar,
2009; Minner & Transchel, 2010; Chen et al., 2014). Recently, various reinforcement learning-based policies
have been developed for supply chains; see (e.g., Kim et al., 2005; Valluri et al., 2009; Sui et al., 2010;
Gijsbrechts et al., 2019; Sun et al., 2019). More specifically, Kara & Dogan (2018) pioneered the use of
reinforcement learning for waste reduction in the inventory restocking problem by using a DQN to solve the
problem at hand. Their approach can be improved upon, as they aggregate the total shelf lives of the items
at hand – thus, their agents only have access to the average shelf life of the inventory. Moreover, this makes
it impossible to account for all items independently, to remove expired items from the stock, and to penalize
the agent for the generated waste. Indeed, waste can be considered a tail event as it happens suddenly once
an item has reached its maximum consumption date. Item-level waste is currently not considered in the
literature. This is why we advocate for simulations where the agent considers all of the inventory.

We think it is not enough to limit the agent’s knowledge by only looking at the mean. Indeed, a distribution
has more summary statistics than its first moment, especially to characterize its tail. We should make use of
those, and we believe that this is required for a proper evaluation of waste. With distributional reinforcement
learning, the agent can learn its own summary characteristics, which will be more suited to the task at hand.

Partially observable Markov decision processes. Randomness in environments is common in rein-
forcement learning (Monahan, 1982; Ragi & Chong, 2013; Goindani & Neville, 2020). We can distinguish
two approaches to this stochasticity, that are not necessarily disjoint. The first is to consider robust Markov
decision processes. They make the assumption that a policy should be robust to changes in the data gen-
erating process over time, in order to have a better estimation of the transition matrix (Xu et al., 2021;
Derman et al., 2020). The other approach is to consider the reward as a non-deterministic random variable
whose distribution is conditioned on the environment’s observation and on the agent’s action. This usually
means that the agent acts under partial information about the environment’s state. While one can make the
argument that this is only due to the lack of information about the environment (Doshi-Velez, 2009), this is
not a setting that generalizes well to unseen situations.

In this paper, we consider that our agent can see the current state of the stock for a given item, but is unable
to predict the exact responses of the environment when an action is taken.

Distributional reinforcement learning. Learning the expectation of the Q-value is the most straightfor-
ward way to develop a Q-learning algorithm, but is most likely to be inefficient, as noted by Bellemare et al.
(2017). Bellemare et al. introduce the C51 algorithm, where they divide the possible Q-value interval in 51
sub-intervals, and perform classification on those. This allows one to achieve a gain in performance, compared
to using only the expectation; this paper launched the idea of distributional deep reinforcement learning.
Later, the authors introduced a more generalizable version of their algorithm, the quantile-regression DQN

3



Under review as submission to TMLR

(Dabney et al., 2018). Instead of performing classification on sub-intervals, Dabney et al. directly learn the
quantiles of the Q-value distribution through the use of a pinball loss. While this method proved efficient, its
main drawback is that it does not prevent crossing quantiles – meaning that it is possible in theory to obtain
q1 > q9 (where q1 is the first decile and q9 is the ninth decile). To fix this, different approaches have been
tried to approximate the quantiles of the distribution (Yang et al., 2019; Zhou et al., 2020), through the use
of distribution distances rather than quantile loss. The work listed above takes a non-parametric approach,
from a classic statistical viewpoint, as they do not assume any particular shape for the distribution. While
non-parametric methods are known for their flexibility, they sometimes exhibit a high variance, depending
on their smoothing parameters. Moreover, non-parametric estimations of quantiles prevents aggregation of
agents and their results, as one cannot simply sum quantiles. More recently, research has been conducted
on robust Bayesian reinforcement learning (Derman et al., 2020) to adapt to environment changes. In this
paper, the authors develop a model geared towards handling distributional shifts, but not towards handling
the overall distributional outcomes of the Q-value.

In our paper, we consider a very flexible distribution that is parameterized by its quantiles, and from which
we can both sample and extract summary characteristics (Chalabi et al., 2012).

3 RetaiL, An Inventory Replenishment Simulator

In this section, we detail the inner workings of the simulation environment we introduce.

3.1 Inventory replenishment

We can frame part of the process of inventory replenishment as a manager passing item orders to a warehouse
to restock a store. At every step, items in the store are consumed by customers. Let us consider a single item
i and its observation o(i) with a shelf life si. We study restocking and consumption of this item over a total
of T time periods, each composed of τ ∈ N sub-periods that we call time steps. During each time period
t ∈ {1, . . . , T}, the manager can perform τ orders of up to n instances of the item i. Each of those orders
is then added L time steps later to the inventory – termed the lead-time. In the meantime, τ consumptions
of up to n items are realized by customers. Each of those purchases then results in a profit. Assuming that
not enough instances of i are present in the stock to meet customer demand, it then results in a missed
opportunity for the manager, resulting in a loss. At the end of the period t, all instances of i currently
present in the store have their shelf life decreased by one, down to a minimum of zero. Once an instance of
i reaches a shelf life of zero, it is then discarded from the inventory, and creates a loss of i’s costs for the
manager. Furthermore, the restocking and consumption of i are made in a LIFO way, as customers tend to
prefer items that expire furthest from their purchase date (Li et al., 2017; Cohen & Pekelman, 1978).4

To fulfill their task, the manager has access to a forecast of the customer demand for i in the next w time
steps, contained in o(i). While we could argue that the agent should be able to act without forecast, this does
not hold in real-world applications. In most retail organizations, forecasts are owned by a team and used
downstreams by multiple teams, including the planning ones that take decisions from it. This means that
the forecast is “free-to-use” information for our agent. Moreover, this means that adapting to the forecast
will prove more reliable in the case of macroeconomic tail-events (lockdowns, pandemics, canal blockades,
etc.) as those can be taken into account by the forecast. Obviously, this forecast is only an estimation of
the actual realization of i’s consumption, and is less accurate the further it is from the current time step t.

Items are considered independent, meaning that we do not take exchangeability into account. Using this
information about all individual items in the store, our goal is to learn an ordering policy to the warehouse
that generalizes to all items. An ordering policy simply refers to how many units we need to order at every
time step, given the context information we have about the state. The goal of our policy is to maximize
overall profit, instead of simply sales. This means that waste, and missed sales are also taken into account.
Moreover, while our policies have access to information about the consumption forecast of the items, this
forecast is not deterministic. Indeed, some of the mechanics of the environment are hidden to the agent: the
number of customers per day is hidden. This means that reinforcement learning agents evolve in a partially

4We make the assumption that the price does not depend on the remaining shelf life of the item.

4



Under review as submission to TMLR

observable Markov decision process (POMDP), where an observation and an action correspond to a reward
and state distribution, and not a scalar.

Formally, we can write the problem as finding a policy π∗ : O → N such that:

π∗ = arg max
π

Σi∈IΣt∈T Στ∈tRπ(oτ (i)), (1)

where oτ (i) is the observation of item i at the time-step τ and Rπ the reward function parameterized by the
policy π. In the following sections, we detail how we model the items, the consumption process as well as
the Markov decision process we study.

3.1.1 Item representation

Using real-world data of items being currently sold is impossible, as it would contain confidential information
(e.g., the cost obtained from the supplier). This is why we fit a copula on the data we sourced from the
retailer to be able to generate what we call pseudo-items: tuples that follow the same distribution as our
actual item set. Having pseudo-items also allows us to generate new, unseen item sets for any experiment.
This proves useful for many reinforcement learning endeavors (Tobin et al., 2017).

When an instance of our experimental environment is created, it generates an associated set of pseudo-items
with their characteristics: cost, price, popularity and shelf life. These characteristics are enough to describe
an item in our setting: we do not recommend products, we want to compute waste and profit. We provide
the item generation model and its parameters along with our experiments.

3.1.2 Consumption modelling

We model the consumption as the realization of a so-called n, p process, as this way of separating the number
of customers and purchasing probability is common in retail forecasting (Juster, 1966). We consider that a
day is composed of several time steps, each representing the arrival of a given number of customers in the
store.

3.1.3 POMDP formalization

Customer consumption depends on aleatoric uncertainty, and forecast inaccuracy derives from epistemic
uncertainty. Yet, there is no difference for our agent, as both of them affect the reward and transitions in
the environment. This means that the environment is partially observable to our agent. Formally, we can
write a Partially Observable Markov decision process as a tuple ⟨O, A, R, P ⟩, where O is the observation we
have of our environment, A the action space, R the reward we receive for taking that action, and P the
transition probability matrix. Here, they correspond to:

O The full inventory position of the given item (all its instances and their remaining shelf lives), its shelf
life at order, its consumption forecast, its cost and its price;

A How many instances of the item we need to order; and

R The profit, to which we subtract profit of missed sales and cost of waste.

3.2 Environment modeling

We aim to model a realistic grocery store that evolves on a daily basis through customer purchases and
inventory replenishment. To do so, we rely on expert knowledge from a major grocery retailer in Europe.
Our environment relies on four core components: item generation, demand generation, forecast generation,
and stock update for reward computation.

Item generation. We define an item i as a tuple containing characteristics common to all items in an
item set: shelf life, popularity, retail price, and cost: i = ⟨s, b, v, c⟩.5 As data sourced from the retailer

5Our repository also includes dimensions, to allow for transportation cost computation.

5



Under review as submission to TMLR

contains sensitive information, we want to be able to generate items on-the-fly. As purchases in retail are
highly repetitive, we will base ourselves on the popularity b of the items to generate the demand forecast in
Section 3.2. On top of helping with anonymity, being able to learn in a different but similar environment has
proved to help with the generalization of policies (Tobin et al., 2017). To do so, we fit a Clayton copula (Yan,
2007) on the marginal laws (gamma and log-normal) of our tuple. The parameterized model is available
with the code. Given the parameterized copula, we can generate an unlimited number of tuples that follow
the same multivariate distribution as the items available in the data sourced from the retailer.

Demand generation. To represent a variety of demand scenarios, we based the demand on the popularity
of the items given by the past purchases in the real data. We then modeled a double seasonality for items:
weekly and yearly.6 Overall, given a customer visiting the store, we can write the purchase probability at
time t, pi(t) for a pseudo-item i as:

pi(t) = bi · cos(ωwt + ϕ1,i) · cos(ωyt + ϕ2,i), (2)

where bi is the popularity (or base demand) for item i, ϕ·,i its phases, and ωw, ωy are the weekly and yearly
pulsations of the demand signal, respectively.

Together with the purchase probability, we also determine the number of customers who will visit the store
on a given time-step. To do so, we model a multivariate Gaussian over the day sub-periods, with negatively
correlated marginal laws (if a customer comes in the morning, they will not come in the evening). Having
the purchase probability and the number of customers n(t), we can then simply sample from a binomial law
B(n(t), pi(t)) to obtain the number of units ui of item i sold at the time-step t.

Forecast generation. The parameters (n(t), pi(t)) of the aforementioned binomial law (Section 3.2) are
not known to the manager that orders items. Instead, the manager has access to a forecast – an estimator
of the parameters. We simply use a mean estimator for n(t), as seasonality is mostly taken into account via
our construction of pi(t).

As for the purchase probability estimator, we assume that the manager has access to a week-ahead forecast.
We write the estimator as such:

p̂i(t + δt) = pi(t + δt) + δtϵi, (3)

where δt ∈ {1, . . . , 7} and ϵi ∼ N (0, σ). The noise ϵi represents the forecast inaccuracy for the item i, and
the uncertainty about the customer behavior the manager and the store will face in the future. We assume
a single σ for all items and a mean of 0, as most single point forecasts are trained to have a symmetric,
equally-weighted error. δt is used to show the growing uncertainty we have the further we look in the future.

Stock update. To step in the environment, the agent needs to make an order of n units ui of the item i.
We consider that a time period t is a succession of several time-steps.7 At the beginning of a time period,
items that were ordered L time-steps before are added to the stock, where L is the lead time. The generated
demand is then matched to the stock. Items are removed from the stock in a LIFO manner, as is the case
in most of the literature (Li et al., 2017; Cohen & Pekelman, 1978). Items that are removed see their profit
added to the reward. If the demand is higher than the current stock, the lacking items see their profits
removed from the reward (missed sales). Finally, if the step is at the end of the day, all items in store receive
a penalty of one day on their remaining shelf lives. Items that reach a shelf life of 0 are then removed from
the inventory, and their cost is then removed from the reward: these items are the waste.

4 Inventory Replenishment Methods for Perishable Items

In the previous section, we introduced the environment we built, along with its dynamics. In this section,
we introduce the baselines we considered, together with our own algorithm, GLDQN.

6For example, beers are often sold at the end of the week, and ice cream in the summer.
7Usually, a time period would be a day, meaning that a store can be replenished several times during the course of a day.

6



Under review as submission to TMLR

Conv Layer
Stock

Item characteristics
Input

Fully

Connected

Layer
Layer Norm SELU


Activation Output

H times

Figure 1: Neural architecture for all DQN-based models

4.1 Baselines

In this subsection, we introduce the various algorithms that serve as baselines. We drew one example from
the supply chain literature, as well as several from the field of Reinforcement Learning. We focused on
DQN (Mnih et al., 2015) and its derivatives, as they are simple to apprehend.

(s, Q) Ordering policy. The (s, Q) ordering policy (Nahmias & Demmy, 1981) consists of ordering Q
units of stock when the inventory position goes below a certain threshold s. While very simple, it has been
in use (along with some of its derived cousins (Kelle & Milne, 1999; Cachon, 1999)) for decades in supply
chain settings.

Deep-Q-networks (DQN). The first reinforcement learning baseline we use is Deep-Q-Networks (Mnih
et al., 2015). While this model is not SOTA anymore, it is often a reliable approach to a sequential decision-
making problem, mainly in games like Atari, for instance. The idea behind DQN is to predict the Q-value
of all possible actions that can be taken by the agent for a specific input. By using those values, we are able
to use the corresponding policy to evolve in the environment.

C51. Categorical DQN (Bellemare et al., 2017) can be seen as a multinomial DQN with 51 categories and
is a distributional version of DQN. Instead of predicting the Q value, the model divides the possible reward
interval in 51 (can be more or less) intervals. Then, the network assigns a probability to each interval, and
trained like a multinomial classifier.

Quantile regression DQN (QR-DQN). DQN using quantile regression (Dabney et al., 2018) is not
necessarily more performant than C51. Instead of a multinomial classifier, this algorithm performs a regres-
sion on the quantiles of the distribution function. This approach has the benefit of being non-parametric,
but does not guarantee that the quantiles will not cross each other: we can obtain Q10 < Q90, which would
be impossible in theory. While some authors sort the obtained quantiles to remove the contradiction, we
think this results in a bias in the statistics that are learnt that way.

Expectile regression DQN. Expectile regression DQN (ER-DQN) (Rowland et al., 2019) takes the idea
behind QR-DQN and replaces quantiles with expectiles. It is possible to interpret an expectile as the “value
that would be the mean if values above it were more likely to occur than they actually are” (Philipps, 2021).

4.1.1 Underlying neural architecture

All the considered DQN-based algorithms, including the following GLDQN, are based on the same feed-
forward architecture. The individual shelf lives of the already stocked items are first processed together in a
convolution layer. They are then concatenated with the item characteristics and processed through a simple
Feed-Forward Deep Neural Network with Layer Norm and SELU activation (Klambauer et al., 2017).

7



Under review as submission to TMLR

4.2 Generalized lambda deep Q-network

In this section, we introduce a new baseline, generalized lambda deep Q-network (GLDQN), for decision-
making in stochastic environments. As the problem we study requires planning under uncertainty, we need
a baseline that can consider randomness in the signals it receives from the environment. While we can use
classic off-policy architectures like Deep Q Networks, the partial observability of our environment is more
likely to be encompassed by an algorithm that assumes value distributions over actions rather than simple
scalar values.

Thus, we assume that the Q-value follows a generalized lambda distribution. The generalized lambda
distribution can be expressed with its quantile function α as follows:

αΛ(u) = λ1 + 1
λ2

[uλ3 − (1− u)λ4 ], (4)

where Λ = (λ1, λ2, λ3, λ4) is the tuple of four parameters that define our distribution. The use of four
parameters allows for a very high degree of flexibility of shapes for this distribution family (Chalabi et al.,
2012): unimodal, s-shaped, monotone, and even u-shaped. Those parameters can then be used to compute
the distribution’s four first moments (mean, variance, kurtosis and skewness), if they are defined.

Thus, we build our Q-network not to predict the expected Q-value nor its quantiles, but to predict the
parameters λ1, λ2, λ3, λ4 of a generalized lambda distribution. This allows us to obtain both guarantees on
the behavior of the distribution’s tail, and non-crossing quantiles. Still, we perform our Bellman updates by
estimating the quantiles derived from the values of the distribution’s parameters.

The Bellman operator we use is a contraction (Bellemare et al., 2017). To perform our updates with quantiles,
we use a smoothed pinball loss (Yang et al., 2019). While written differently in most of the literature, the
classic pinball loss can be written as follows:

PLu(y, ŷ(u)) = (y − ŷ(u)) · u + max(0, ŷ(u)− y), (5)

where u is a quantile, y the realized value, and ŷ(u) the predicted value of quantile u. Its δ-smoothed version
is obtained by plugging this loss estimator instead of the square error in a Huber loss (Huber, 1992). This
gives us the following loss function:

Lδ
u(y, ŷΛ(u)) =

{ 1
2 [y − ŷΛ(u)]2 ∆), for |y − ŷΛ(u)| ≤ δ
δ (|y − ŷΛ(u)| − δ/2) ∆), otherwise, (6)

with ∆ = PLu(y, ŷΛ(u)), where δ is a smoothing parameter and u the considered quantile for the loss.
Algorithm 1 shows the way we update the parameters of our network through temporal difference learning
adapted to a quantile setting.

Unlike C51 (Bellemare et al., 2017) and QR-DQN (Dabney et al., 2018), we do not select the optimal action
(line 2 of Algorithm 1) via an average of the quantile statistics, but via a mean estimator obtained via our
GLD distribution’s parameters (Fournier et al., 2007):

µ̂(Λ) = λ1 +
1

1+λ3
− 1

1+λ4

λ2
. (7)

This approach is closer to the implementation of ER-DQN (Rowland et al., 2019), where only the expectile 0.5
is used, rather than QR-DQN, where the quantiles are averaged to obtain an estimation of the mean (Dabney
et al., 2018).

5 Experiments

In this section, we compare the performance in inventory replenishment simulation of our new baseline
against a number of baselines (RQ3), for a variety of scenarios. We want to see whether we can improve
overall profit (RQ1), and, if so, if it comes at the cost of generating more waste (RQ2).

8



Under review as submission to TMLR

Algorithm 1: Generalized Lambda Distribution Q-Learning
Require: quantiles {q1, . . . , qN}, parameter δ
Input : o, a, r, o′, γ ∈ [0, 1]

1 Λ(o′, a′),∀a′ ∈ A # Compute distribution parameters ;
2 Λ∗ ← arg maxa′ µ̂(Λ(o′, a′)) # Compute optimal action (Equation 7) ;
3 T qi ← r + γαΛ∗(qi),∀i # Update projection via Equation 4 ;
4 Optimize via loss function (Equation 6) ;

Output : ΣN
j=1Ei[Lδ

qj
(T qi, αΛ(o,a)(qj))]

5.1 Experimental setup

We train our DQN-family policies (baselines and GLDQN) on a total of 6 000 pseudo-items, for transitions
of 5 000 steps. We do so in order to expose our agents to a variety of possible scenarios and items.

We evaluate the performance of our agents on a total of 30 generations of 100 unseen pseudo-items, for 2 000
steps. We repeat this for 3 different scenarios of randomness, indicating how observable the environment is.
We name them H = 0, H = 1, H = 2:

H = 0 In this scenario, the environment’s mechanics are not random. In this scenario, there is little need
for adaptability as the inter-day variations in customer behavior are close to non-existent.

H = 1 In this scenario the environment’s mechanics are slightly random and overall exhibit little variation.
In this scenario, the agent needs to learn how to interpret the week-ahead forecast and leverage it
to increase profit.

H = 2 In this scenario, the environment is highly noisy and becomes much harder to predict.

These scenarios allow us to verify whether an agent has learned a decent policy and is able to generalize to
unseen data. Real grocery stores with a “good” forecast are more likely to be represented by the H = 1 and
H = 2 scenarii (Ramanathan, 2012).

We perform two experiments, where we look at overall profit performance and waste reduction relative to a
baseline, respectively.

Experiment 1: Impact of forecast inaccuracy. In this experiment, we measure the overall performance
of the various agents, for the different levels of environment randomness (RQ1). This experiment allows us
to measure the impact of randomness and unpredictability of consumption behavior on our agents, and to
see whether they are an improvement over a deterministic heuristic.

Experiment 2: Impact of unstable order behavior on waste. In this experiment, we show how the
orders translate into generated waste. This way, we can see whether the improvement in the previous section
comes at the cost of more waste or not (RQ2).

Implementation and computational details. Our code was implemented in PyTorch (Paszke et al.,
2019) and is available on GitHub.8 We ran our experiments on a RTX A6000 GPU, 16 CPU cores and 128GB
RAM. All models use the same underlying neural network architecture as shown in Figure 1. We noticed
that GLDQN was approximately 3 times faster than QR-DQN and ER-DQN for more than 4 quantiles, due
to it needing estimating a constant number of parameters.

8https://anonymous.4open.science/r/GLDQN-retail/README.md

9

https://anonymous.4open.science/r/GLDQN-retail/README.md


Under review as submission to TMLR

Table 1: Human-normalized profit (higher is better). Results on transitions of length 2 000, averaged over
6 000 items, for 3 different consumption volatility scenarios. Bold indicates best.

Quantiles H = 0 H = 1 H = 2
DQN – 146.1% 178.8% 146.5%
C51 – 142.7% 173.0% 156.1%

QR-DQN

5 146.7% 190.4% 176.6%
9 147.2% 204.2% 189.5%

15 146.7% 193.3% 161.6%
19 146.1% 198.7% 170.1%

ER-DQN

5 147.4% 203.5% 172.5%
9 145.1% 177.7% 174.2%

15 148.7% 202.2% 168.0%
19 146.1% 209.3% 170.3%

GLDQN
(ours)

5 147.8% 213.3% 186.2%
9 147.9% 208.3% 194.1%

15 143.1% 209.5% 192.8%
19 147.3% 212.6% 191.8%

5.2 Results

In this section, we detail the performance of the various baselines as well as GLDQN, introduced in Section
4.2, for both resistance to uncertainty and waste reduction. We averaged the results of the different algorithms
over a total of 6,000 pseudo-items.

5.2.1 Overall performance

We report the performance in Table 1 as the improvement relative to a simple (s, Q) policy, as this kind
of policy is still prominent in supply chain practices (Jalali & Van Nieuwenhuyse, 2015). In this table, we
see that all models perform better than the baseline when there is no uncertainty (H = 0). Yet, there is no
significant difference between them.

In the second scenario with medium volatility (H = 1), the performance improvement of distributional
methods over deterministic ones shows clearly, highlighting the performance of QR-DQN, GLDQN and
ER-DQN. C51 exhibits a performance closer to DQN than to the other distributional approaches. It is
additionally much slower to train than all others. C51 being unable to update its bucket values might be
a reason why its performance is slightly disappointing – yet, it still is a clear improvement over the (s, Q)
baseline.

In the third scenario (H = 2), it is made even more obvious that the non-bounded distributional approaches
can capture the uncertainty, as they widen the gap with the more simple DQN. Our method, GLDQN, is
overall better than ER-DQN, that bases itself on expectiles. Our method is relatively more stable with
respect to how many quantiles or expectiles it estimates with. Moreover, its computation time is much lower
than ER-DQN and QR-DQN for N > 4, as it does not estimate new parameters.

Looking closer at the results in Figure 2, we can see that improvements in profit by GLDQN relative to
the baseline are strictly one-sided in high-entropy scenarios. This means that using GLDQN results in a
consistent improvement in profit performance.

5.2.2 Waste reduction

In Table 2, we visualize the waste generated relative to our simple (s, Q) policy baseline. In all scenarios,
we see that all methods reduce waste relative to the baseline. This means that they managed to improve

10



Under review as submission to TMLR

Table 2: Human-normalized waste (lower is better). Results on transitions of length 2 000, averaged over
6 000 items, for 3 different consumption volatility scenarios. Bold indicates best.

Quantiles H = 0 H = 1 H = 2
DQN – 16.8% 23.0% 13.2%
C51 – 2.6% 66.9% 17.3%

QR-DQN

5 32.1% 16.5% 9.6%
9 46.7% 13.9% 12.6%

15 20.1% 17.7% 16.3%
19 13.8% 19.4% 11.1%

ER-DQN

5 46.5% 26.7% 13.3%
9 6.1% 23.4% 12.8%

15 8.4% 14.5% 11.5%
19 30.1% 13.1% 11.3%

GLDQN
(ours)

5 15.6% 13.8% 14.6%
9 8.1% 19.3% 16.2%

15 4.9% 14.5% 16.3%
19 6.1% 13.9% 15.9%

80 90 100 110 120 130
Improvement relative to (s,Q) baseline, in %

0

1

2

3

4

5

6

7

8

Co
un

t

Figure 2: Improvement of GLDQN over (s, Q)-policy, for the H = 2 scenario, for 30 generations of 100 items.

the overall score (Table 1), without increasing waste: they ordered more than the baseline, and wasted less
products. This is not surprising: the baseline only considers the number of items in the stock, not when
they expire. Learning this both contributes to increased score and reduced waste. In all scenarios, we see
that all methods reduce waste relative to the baseline.

11



Under review as submission to TMLR

Table 3: Comparison of normalized performance in profit and generated waste of GLDQN with and without
Equation 7 (bold indicates best). Results on transitions of length 2 000, averaged over 6 000 items, for 3
different consumption volatility scenarios.

Profit Waste
H = 0 H = 1 H = 2 H = 0 H = 1 H = 2

GLDQN without Equation 7 141.5% 150.5% 132.1% 93.6% 39% 40.1%
GLDQN 147.8% 213.3% 186.2% 15.6% 13.8% 14.6%

In the scenario with full information, C51 performs very well, followed closely by GLDQN and some verisons
of ER-DQN. In the the H = 1 scenario, where the environment is partially observable, both GLDQN
and QRDQN perform similarly. Surprisingly, C51 does not perform well and is the worst of all models
considered here. Given the significant improvement over the baseline in a partially observable environment
brought by those methods, we conclude that they were able to adapt to the environment’s dynamics and its
randomness, while still taking the potential waste into account. Finally, in the H = 2 scenario, all models
perform comparably well.

Note that GLDQN is constantly in the same neighborhood as the ebst solution, no matter the number of
computed quantiles or the randomness of the environment.

5.2.3 Impact of the mean estimator

It is of interest to know why GLDQN performs well on this environment, despite it not being tuned for it.
We thus perform an ablation study, where we estimated our parameter vector Λ = ⟨λ1, λ2, λ3, λ4⟩. However,
instead of using Equation 7 to select the optimal action, we compute 5 quantiles and average them to estimate
the mean, as it is the case in QR-DQN. As shown in Table 3, our mean estimator in Equation 7 has a strong
impact, both on waste and profit.

In conclusion, we have shown that it is possible to improve the restocking strategy for perishable items
by using a distributional algorithm (RQ1). Moreover, this improvement in overall profit does translate to
lower waste (RQ2). Finally, we have shown that the algorithm we propose, GLDQN, does present a strong
alternative to other distributional algorithms, as it is constant in its good performance (RQ3).

6 Conclusion

In this paper, we have introduced a new reinforcement learning environment, RetaiL, for both supply chain
and reinforcement learning practitioners and researchers. This environment is based on expert knowledge and
uses real-world data to generate realistic scenarios. By taking waste at the item-level into account, and by
being able to tune the forecast accuracy as well as the customer’s behavior, we can act on the environment’s
noisiness; this results in a partially observable MDP, with tunable stochasticity, which is lacking for most
RL tasks. Inventory management in RetaiL needs the agent to pick up seasonal patterns, unpredictability
of customer demand, as well as delayed action effects, and credit assignment as it works in a FIFO manner.

Additionally, we have proposed Generalized Lambda Deep Q Networks (GLDQN), a new algorithm aimed
at estimating a wide range of distributions, based on DQN. GLDQN offers the consistency of parameterized
distributions, but can be trained by quantile loss instead of likelihood-based approaches. Moreover, GLDQN
can represent a wide array of distributions, and does not suffer from the quantile crossing phenomenon.
We have found that GLDQN outperforms other methods from the same family in most cases for the task
replenishment of perishable items under uncertainty. GLDQN does so by using a quantile loss to optimize
a well-defined distribution’s parameters and selecting optimal actions using a mean estimator. GLDQN
does not require any assumption specific to the simulation environment we provide. We have also found that
GLDQN can offer significant and constant improvement over our classic supply chain baseline, as well as over
other distributional approaches, outperforming ER-DQN in highly unpredictable environments. Moreover,
GLDQN does this without generating more waste through its replenishment policies, hinting that it learnt

12



Under review as submission to TMLR

the environment’s dynamics better than the baselines. Our results point towards distributional reinforcement
learning as a way to solve POMDPs.

As to the broader impact of our work, the simulation environment we provide with the paper rewards
weighting the risks of wasting an instance of an item and the profit from selling it. This might favor
resupply of stores in more wealthy geographical areas where the average profit per item is higher. Thus, any
deployment of such an automated policy should be evaluated on different sub-clusters of items, to ensure it
does not discriminate on the purchasing power of customers. This kind of simulation can be replicated for
all domains that face uncertainty and inventory that lowers in perceived quality with time – for instance,
the fashion industry.

A limitation of our work is that we only considered discrete action spaces, whereas our environment would
more be adapted to infinite-countable ones. Moreover, we consider marginal demand between items to be
independent, which is unlikely to be the case in real life. Finally, our environment, RetaiL, assumes no cost
to restock. This most likely inflates slightly the performance of the algorithms we consider for stores that
do not have scheduled restocking as the ones we consider.

For future work, we intend to model price elasticity of customers in order to model item consumption in case
of out-of-stock items. We also want to add a restocking cost based on volume and weight of items. We plan
to extend GLDQN for multi-agent reinforcement learning, as our estimation of parameters gives us access
to cumulants, that can be used to sum rewards of various agents and policies. This would be especially
interesting given the low amount of parameters in GLDQN. Furthermore, we plan to extend it to continuous
action spaces, to leverage the structure of the data more efficiently. Finally, we plan to study whether those
automated replenishment policies based on balancing profits and waste do not disadvantage some categories
of customers more than others.

References
E. Ahmadi, H. Mosadegh, R. Maihami, I. Ghalehkhondabi, M. Sun, and G. A. Süer. Intelligent inventory

management approaches for perishable pharmaceutical products in a healthcare supply chain. Computers
& Operations Research, 147:105968, nov 2022.

K. J. Arrow, T. Harris, and J. Marshak. Optimal inventory policy. Economic Information, Decision, and
Prediction, 19(3):5–28, 1951.

M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement learning. In
International Conference on Machine Learning, 2017.

E. Brodheim, C. Derman, and G. Prastacos. On the evaluation of a class of inventory policies for perishable
products such as blood. Management Science, 21(11):1320–1325, 1975.

R.A.C.M. Broekmeulen and K.H. van Donselaar. A heuristic to manage perishable inventory with batch
ordering, positive lead-times, and time-varying demand. Computers and Operations Research, 36(11):
3013–3018, 2009.

Gérard P. Cachon. Managing supply chain demand variability with scheduled ordering policies. Management
Science, 45(6):843–856, 1999.

J. Cestero, M. Quartulli, A. M. Metelli, and M. Restelli. Storehouse: a reinforcement learning environment
for optimizing warehouse management. In International Joint Conference on Neural Networks, pp. 1–9.
IEEE, 2022.

Y. Chalabi, D. J. Scott, and D. Wuertz. Flexible distribution modeling with the generalized lambda distri-
bution. Munich Personal RePEc Archive, 43333, 2012.

X. Chen, Z. Pang, and L. Pan. Coordinating inventory control and pricing strategies for perishable products.
Operations Research, 62(2):284–300, 2014.

M. A. Cohen and D. Pekelman. Lifo inventory systems. Management Science, 24(11):1150–1162, 1978.

13



Under review as submission to TMLR

W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforcement learning with
quantile regression. In AAAI Conference on Artificial Intelligence, 2018.

B. J. De Moor, J. Gijsbrechts, and R. N. Boute. Reward shaping to improve the performance of deep
reinforcement learning in perishable inventory management. European Journal of Operational Research,
301(2):535–545, sep 2022.

E. Derman, D. Mankowitz, T. Mann, and S. Mannor. A bayesian approach to robust reinforcement learning.
In Uncertainty in Artificial Intelligence, pp. 648–658. PMLR, 2020.

F. Doshi-Velez. The infinite partially observable markov decision process. Advances in Neural Information
Processing Systems, 22, 2009.

B. Fournier, N. Rupin, M. Bigerelle, D. Najjar, A. Iost, and R. Wilcox. Estimating the parameters of a
generalized lambda distribution. Computational Statistics & Data Analysis, 51(6):2813–2835, 2007.

J. Gijsbrechts, R.N. Boute, J.A. Van Mieghem, and D. Zhang. Can deep reinforcement learning improve in-
ventory management? Performance and implementation of dual sourcing-mode problems. SSRN 3302881,
2019.

M. Goindani and J. Neville. Social reinforcement learning to combat fake news spread. In Uncertainty in
Artificial Intelligence, pp. 1006–1016. PMLR, 2020.

I. K. Horoś and T. Ruppenthal. Avoidance of food waste from a grocery retail store owner’s perspective.
Sustainability, 13(2):550, 2021.

P. J. Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pp. 492–518. Springer,
1992.

H. Jalali and I. Van Nieuwenhuyse. Simulation optimization in inventory replenishment: a classification. IIE
Transactions, 47(11):1217–1235, 2015.

J. B. Jennings. An analysis of hospital blood bank whole blood inventory control policies. Transfusion, 8
(6):335–342, 1968.

F. T. Juster. Consumer buying intentions and purchase probability: An experiment in survey design. Journal
of the American Statistical Association, 61(315):658–696, 1966.

A. Kara and I. Dogan. Reinforcement learning approaches for specifying ordering policies of perishable
inventory systems. Expert Systems with Applications, 91:150–158, January 2018.

Peter Kelle and Alistair Milne. The effect of (s, s) ordering policy on the supply chain. International Journal
of Production Economics, 59(1-3):113–122, 1999.

C. O. Kim, J. Jun, J. K. Baek, R. L. Smith, and Y. D. Kim. Adaptive inventory control models for supply
chain management. International Journal of Advanced Manufacturing Technology, 26(9-10):1184–1192,
October 2005.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural
networks. Advances in neural information processing systems, 30, 2017.

Q. Li, P. Yu, and X. Wu. Shelf life extending packaging, inventory control and grocery retailing. Production
and Operations Management, 26(7):1369–1382, 2017.

H. Meisheri, N. N. Sultana, M. Baranwal, V. Baniwal, S. Nath, S. Verma, B. Ravindran, and H. Khadilkar.
Scalable multi-product inventory control with lead time constraints using reinforcement learning. Neural
Computing and Applications, 34(3):1735–1757, feb 2022.

S. Minner and S. Transchel. Periodic review inventory-control for perishable products under service-level
constraints. OR Spectrum, 32(4):979–996, 2010.

14



Under review as submission to TMLR

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. W., S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015.

G. E. Monahan. State of the art—a survey of partially observable markov decision processes: Theory, models,
and algorithms. Management Science, 28(1):1–16, 1982.

S. Nahmias and W. S. Demmy. Operating characteristics of an inventory system with rationing. Management
Science, 27(11):1236–1245, 1981.

D.A. Pados and P. Papantoni-Kazakos. A note on the estimation of the generalization error and the preven-
tion of overfitting [machine learning]. In IEEE International Conference on Neural Networks, volume 1,
pp. 321–326 vol.1, 1994.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems, pp. 8024–8035. Curran Associates, Inc., 2019.

C Philipps. Interpreting expectiles. ERN: Value-at-Risk (Topic), 2021.

S. Ragi and E. K. P. Chong. Uav path planning in a dynamic environment via partially observable markov
decision process. IEEE Transactions on Aerospace and Electronic Systems, 49(4):2397–2412, 2013.

U. Ramanathan. Supply chain collaboration for improved forecast accuracy of promotional sales. Interna-
tional Journal of Operations & Production Management, 2012.

M. Rowland, R. Dadashi, S. Kumar, R. Munos, M. G. Bellemare, and W. Dabney. Statistics and samples in
distributional reinforcement learning. In International Conference on Machine Learning, pp. 5528–5536.
PMLR, 2019.

W. S. Sarle. Stopped training and other remedies for overfitting. In Symposium on the Interface of Computing
Science and Statistics, pp. 352–360, 1995.

M. Selukar, P. Jain, and T. Kumar. Inventory control of multiple perishable goods using deep reinforcement
learning for sustainable environment. Sustainable Energy Technologies and Assessments, 52, aug 2022.

Z. Sui, A. Gosavi, and L. Lin. A reinforcement learning approach for inventory replenishment in vendor-
managed inventory systems with consignment inventory. Engineering Management Journal, 22(4):44–53,
2010.

R. Sun, P. Sun, J. Li, and G. Zhao. Inventory cost control model for fresh product retailers based on dqn.
In IEEE International Conference on Big Data, pp. 5321–5325, 2019.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for transferring
deep neural networks from simulation to the real world. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 23–30, 2017.

A. Valluri, M. J. North, and C. M. Macal. Reinforcement learning in supply chains. International journal
of neural systems, 19(05):331–344, 2009.

K. van Donselaar, T. van Woensel, R. Broekmeulen, and J. Fransoo. Inventory control of perishables in
supermarkets. International Journal of Production Economics, 104(2):462–472, 2006.

L. Xu, A. Perrault, F. Fang, H. Chen, and M. Tambe. Robust reinforcement learning under minimax regret
for green security. In Uncertainty in Artifical Intelligence, 2021.

J. Yan. Enjoy the joy of copulas: with a package copula. Journal of Statistical Software, 21:1–21, 2007.

15



Under review as submission to TMLR

D. Yang, L. Zhao, Z. Lin, T. Qin, J. Bian, and T. Liu. Fully parameterized quantile function for distribu-
tional reinforcement learning. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

F. Zhou, J. Wang, and X. Feng. Non-crossing quantile regression for distributional reinforcement learning.
In Advances in Neural Information Processing Systems, volume 33, pp. 15909–15919. Curran Associates,
Inc., 2020.

16


	Introduction
	Related Work
	RetaiL, An Inventory Replenishment Simulator
	Inventory replenishment
	Item representation
	Consumption modelling
	POMDP formalization

	Environment modeling

	Inventory Replenishment Methods for Perishable Items
	Baselines
	Underlying neural architecture

	Generalized lambda deep Q-network

	Experiments
	Experimental setup
	Results
	Overall performance
	Waste reduction
	Impact of the mean estimator


	Conclusion

