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Abstract

Multilingual pre-trained models have been widely applied in natural language processing
(NLP) tasks, including text classification. However, due to the varying amounts of lan-
guage resources, these models exhibit performance imbalance across different languages,
a phenomenon known as language imbalance. Existing research on mitigating language
imbalance primarily harnesses text and image data, neglecting the auditory aspects of lan-
guages. This neglect results in an incomplete solution to language imbalance, as it fails to
exploit the rich linguistic nuances conveyed through speech. To address these issues, this
paper introduces a novel framework called MultiLingual Contrastive Learning (MLCL)
to reduce language imbalance. By incorporating concepts from comparative linguistics
into neural networks, we utilize the phonetic similarities among languages within the Sino-
Tibetan family to tackle the problem of language imbalance in multilingual pre-trained
models. To evaluate our method’s effectiveness, we conducted tests using two synthetic
datasets derived from the Flores200 and mms datasets across various models. The experi-
mental results show that, in terms of language imbalance metrics, our model surpasses all
baseline models.
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1. Introduction

With the development of artificial intelligence, current models (e.g., GPT (Brown et al.,
2020)) are evolving to support multi-modal and multilingual capabilities. However, these
multilingual pre-trained models primarily focus on high-resource languages and show weaker
performance in low-resource languages, emphasizing the importance of enhancing model
performance in these languages (Haddow et al., 2022).

However, existing research on enhancing the performance of multilingual pre-training
models in low-resource languages often relies solely on text (Gou et al., 2023) or image data
(Dutta Chowdhury et al., 2018), with few studies leveraging the phonetic similarities across
different languages. The oversight of phonetic similarities between languages is significant,
as these similarities can greatly enhance the understanding and performance of models in
processing underrepresented languages.

The study by Wu and Dredze (2020) revealed that the multilingual pre-trained model,
mBERT (Devlin et al., 2019), exhibits uneven performance across different languages, high-
lighting the persistent issue of language imbalance. In studies focusing on low-resource
languages (Lee et al., 2023), enhancing performance often results in reduced effectiveness
in languages with rich resources. This trade-off underscores the fundamental challenge of
language imbalance, yet they lacks a comprehensive metric for assessing this imbalance ef-
fectively, pointing to a gap in evaluating the equitable performance of models across various
languages.

Therefore, our work focuses on leveraging the inherent phonetic similarities among dif-
ferent languages within the Sino-Tibetan language family to address language imbalance
issues when performing text classification across multiple languages. Additionally, to bet-
ter measure the overall capability of models in multilingual contexts, we have incorporated
the Gini coefficient, a metric from economics, into our work. The metric framework we
proposed offers a single, standardized measure that facilitates the comparison of different
models’ overall performance on a specific group of languages. This framework helps in
quantitatively assessing and benchmarking the level of language imbalance.

In this research, our primary contributions are as follows:

1. We integrate the concepts of contrastive linguistics into neural networks, focusing on
the phonetic similarities among languages within the Sino-Tibetan family. By employing
a multi-modal approach, we leverage these similarities to address the language imbalance
issue in multilingual pre-trained models, presenting an innovative solution to the challenge
of language imbalance.

2. We present a framework for evaluating language imbalance in multilingual text
classification that encompasses two dimensions. This metric framework is designed to reflect
the model’s imbalance across different languages as well as the mean accuracy of the model
across these languages.

3. We propose a novel framework called MultiLingual Contrastive Learning (MLCL).
Within this framework, we incorporate two distinct contrastive learning tasks: one focused
on language and the other on modality. The overarching goal of these tasks is to minimize
feature disparities within identical modalities and languages. These tasks capitalize on the
inherent similarities in speech patterns to enhance text classification.
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2. Related Work

2.1. Contrastive Learning

Contrastive learning, a growing technique, is extensively explored and applied in diverse
fields to learn representations. Pan et al. (2021) enhanced translation quality by lever-
aging contrastive learning to fine-tune BERT, focusing on reducing the performance gap
between English and non-English language pairs. Su et al. (2022) used contrastive learning
for multi-label text classification with imbalanced and sparse labels, boosting the model’s
capacity to differentiate between similar labels through better representation learning. Pan
et al. (2022) combined adversarial training with contrastive learning to enhance text classi-
fication models’ robustness and generalization, showing how adversarial examples improve
discriminative text feature learning.

Some studies have used contrastive learning for multimodal tasks. For example, CLIP
(Radford et al., 2021) improved image-text semantic links by optimizing similarities of
matched pairs and differences of unmatched ones, showing strong zero-shot learning results.
Similarly, Lin and Hu (2022) combined single-mode coding and cross-modal prediction
in a multimodal contrastive learning framework (MMCL) to enhance sentiment analysis
accuracy by capturing both intra-modal and inter-modal dynamics.

2.2. Research On Boosting Low-Resource Language Performance

By boosting the performance of models on low-resource languages, the issue of language
imbalance can be alleviated. Elbayad et al. (2023) tackled the problem of MoE models
over-fitting in low-resource languages by introducing effective regularization strategies, sig-
nificantly improving performance without negatively impacting high-resource tasks. Gou
et al. (2023) proposed a novel framework that uses cross-lingual data augmentation to im-
prove dialogue generation in low-resource languages, leveraging high-resource languages for
enhanced performance. Hangya et al. (2022) introduced an unsupervised method to boost
cross-lingual representations for low-resource languages, achieving performance enhance-
ments in both word representation quality and downstream tasks using only non-parallel
resources. Chronopoulou et al. (2023) proposed language-family adapters on mBART-50,
significantly improving translation for low-resource languages and extending support to
languages beyond the initial pretraining scope.

2.3. Research On Correlations Across Modalities and Languages

The composition of language is intricate, involving both textual and auditory components.
CLAP (Elizalde et al., 2023) introduces a model that learns audio concepts from natural
language supervision, integrating text and audio for improved multimodal understanding.

Researchers have also extensively explored the relevance of texts across diverse lan-
guages. For instance, Gey (2005) delves into the similarities and disparities between Chinese
and Japanese within the realm of cross-lingual information retrieval (CLIR), illuminating
both the practical applications and inherent challenges of CLIR technologies in transcending
language barriers.

Auditory information is key for capturing emotional nuances in communication. It
conveys emotions through intonation, stress, and rhythm, which text alone cannot fully
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Figure 1: The MLCL framework.

express. This makes auditory data crucial for text classification tasks. In Multimodal
Sentiment Recognition (MSR) (Zhu et al., 2023), combining audio and text data provides
a fuller understanding of emotional context. Additionally, comparative linguistics studies
the similarities and differences between languages. It helps understand their development
and relationships, particularly within the Sino-Tibetan languages.

Compared to existing research, our work uniquely combines comparative linguistics and
contrastive learning to address the language imbalance issue in multilingual pre-trained
models for the Sino-Tibetan language family. Different from the existing research mentioned
above, our study focuses on exploiting phonetic links and the integration of auditory and
textual information to improve the model’s performance on low-resource languages, thereby
mitigating the language imbalance issue.

3. Method

3.1. Problem Definition

In our task, the input consists of textual and acoustic modalities, where the input modality
m ∈ {T,A}. The sequences of these two modalities are represented as pair(T,A), including
the textual modality T ∈ RNt×dt and acoustic modality A ∈ RNa×da where Nm denotes
the sequence length of corresponding modality and dm denotes the dimensionality. The
objective of this task is to learn a mapping f(T,A) for inferring the classification score
ŷ ∈ R.
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3.2. Overall Architecture

In Figure 1, we present the MultiLingual Contrastive Learning (MLCL) framework, which
is specifically designed to enhance classification accuracy and reduce imbalances in the Sino-
Tibetan language family, focusing on three languages: Chinese, Tibetan, and Burmese. This
framework consists of four principal components: feature extraction, contrastive learning,
feature fusion, and classification. For feature extraction, we utilize a multilingual pre-trained
model (mBERT) to capture textual features. We employ two Text-to-Speech (TTS) tools
for audio generation: gTTS1 for Chinese and Burmese, and MaryTTS2 for Tibetan. Addi-
tionally, in the feature extraction phase, we have used the wav2vec 2.0 model, a multilingual
audio pre-trained model, by incorporating an adapter structure to extract features from the
raw audio signals generated by these tools. Through contrastive learning, the framework
adeptly minimizes the distance between differing modalities within the same language and
similar modalities across different languages. This method, further enhanced by the CM-
BERT (Yang et al., 2020) technique for feature fusion, ensures a deep integration of textual
and audio features.

Given a sample set D = {(TX
1 , T Y

1 , AX
1 , AY

1 , y1), (T
X
2 , T Y

2 , AX
2 , AY

2 , y2), ..., (T
X
n , T Y

n , AX
n ,

AY
n , yn)}, where TX

i and AX
i are the representations of sample i in the textual modality

(T ) and acoustic modality (A) with language X, T Y
i and AY

i in modality T and A with
language Y . yi is the desired label of sample i, where yi ∈ Y . Y denotes the category set
of the text classification task.

3.3. Feature Extraction Module

The mBERT model, using Transformer architecture and trained on 102 languages, enables
cross-lingual text classification and sentiment analysis through unified semantic encoding.
Therefore, our feature extraction module utilizes mBERT as the foundational model to
obtain sentence vector features of different languages. For the i-th text input TX

i and T Y
i

of languages X and Y respectively, their corresponding feature vector representations are
as follows:

eTi
X = mBERT (TX

i ), (1)

eTi
Y = mBERT (T Y

i ). (2)

The wav2vec 2.0 (Baevski et al., 2020) model, based on the Transformer architecture, is
pre-trained on a large amount of unlabeled audio data to learn general audio representations
and is commonly used for audio processing and Automatic Speech Recognition (ASR) tasks.
Therefore, our feature extraction module utilizes wav2vec 2.0 as the foundational model to
obtain speech vector features of different languages.

Adapter modules are compact modules added to a pre-trained Transformer model and
fine-tuned for downstream tasks, with the original model parameters remaining unchanged.
The architecture of the adapter module is shown in Figure 2.

Inspired by Hou et al. (2021b), we incorporate the adapter structure into the trans-
former architecture of the wav2vec2 model. In our experiments, we employed two types of

1. https://gtts.readthedocs.io/
2. https://marytts.github.io/
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Figure 2: Architecture of the adapter module.

structures: MetaAdapter (Hou et al., 2021a) and SimAdapter (Hou et al., 2021b). For the
i-th audio input AX

i and AY
i of languages X and Y respectively, their corresponding feature

vector representations are as follows:

eAi
X = wav2vec2(AX

i ), (3)

eAi
Y = wav2vec2(AY

i ). (4)

3.4. Contrastive Learning Module

In the contrastive learning module, we introduced two sub-tasks: First, “Language-based
Contrastive Learning (LCL)”, which aims to reduce the feature distance between differ-
ent languages within the same modality; Secondly, “Modality-based Contrastive Learning
(MCL)”, designed to diminish the feature disparities across different modalities within the
same language. By reducing linguistic distances in LCL, the model achieves a more gener-
alized representation that effectively bridges linguistic gaps, enhancing performance across
diverse languages. Similarly, by aligning features from different modalities in MCL, such as
text and speech, the model leverages complementary information, increasing its robustness
and accuracy in processing complex linguistic inputs. These efforts allow our model to
capture shared linguistic features more effectively, aiding in the recognition of low-resource
languages and mitigating language imbalance.

In each training batch, we randomly select N pairs of samples to construct a mini-batch.
For the i-th input, the language-based contrastive learning loss LLCL can be given by:

sim(eX , eY ) = eX · eY , (5)

L(eX , eY ) = − log
exp(sim(eX , eY )/τ)∑2N

k=1 1[k ̸=i] exp(sim(eX , eiY )/τ)
, (6)
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LLCL = L(eTX , eTY ) + L(eAX , eAY ), (7)

where eX and eY can be eTX and eTY , or eAX and eAY . τ controls the temperature and sim(·)
denotes the cosine similarity.

Much like LLCL ,the modality-based contrastive learning loss LMCL can be given by:

sim(eA, eT ) = eA · eT , (8)

L(eA, eT ) = − log
exp(sim(eA, eT )/τ)∑2N

k=1 1[k ̸=i] exp(sim(eA, eTi)/τ)
, (9)

LMCL = L(eAX , eTX) + L(eAY , e
T
Y ), (10)

where eA and eT can be eAX and eTX , or eAY and eTY .

3.5. Framework’s Overall Loss

At last, we integrate text and audio representations using the CM-BERT fusion method,
capturing effective interactions between different modalities, to attain the final multimodal
representation FM . Together with the ground truth classification label y, our regression
task loss LCE is calculated using the weights W and bias b, which are learnable parameters
of the model, to map the fused representation to the prediction space.

FM = CM -BERT ({eA; eT }), (11)

LCE = CrossEntropy(W · FM + b, y). (12)

Combined with the two contrastive learning losses above, the total loss for the training
can be formulated as:

Ltotal = (1 − α− β) · LCE + α · LMCL + β · LLCL, (13)

where α and β are weighted hyperparameters, which are used to balance the learning density
of each module.

4. Experiment

4.1. Datasets

To evaluate the effectiveness of our proposed framework, we carry out experiments on two
datasets: Flores200 and mms. Flores200 is used for domain classification, while mms is
employed for sentiment classification. Flores200 (Costa-jussà et al., 2022) is a machine
translation (MT) benchmark dataset connecting English with low-resource languages. mms
(Augustyniak et al., 2024) is a multilingual corpus for sentiment analysis, encompassing 27
languages from 79 selected datasets, aimed at enhancing sentiment analysis in lower-resource
languages with its extensive, culturally nuanced data.

We extracted parallel Chinese, Tibetan, and Burmese text from Flores200 and converted
them to audio via TTS. Similarly, we processed Chinese data from mms, translating it into
Burmese and Tibetan with GPT-4, and then used TTS for parallel audio generation. The
detailed information of two synthetic datasets is shown in Table 1.
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Table 1: Dataset Information
Dataset Number of Texts Average Length Total Speech Length

Flores200 2008 23 words 20.22 hours
mms 6162 25 words 60.18 hours

4.2. Baseline

In this section, we outline the baseline methods utilized in our study. Given the challenges
of language limitations in multilingual pre-trained models, we’ve chosen the following four
methods for comparison.

mBERT-Unique: Similar to Lin et al. (2023), our research has been applied to BERT,
where we fine-tune BERT to measure its performance on tasks of domain classification and
sentiment classification. For each language, we conduct “Unique training” using BERT.

mBERT-Combined: To fully learn the information of different languages, we employ
a “Combined Training” fine-tuning approach with BERT. Through this method, we obtain
a single model, on which we conduct tests to measure the model’s performance in tasks of
topic classification and sentiment classification.

mBERT+PGD: We utilize adversarial training, notably Projected Gradient Descent
(PGD) (Madry et al., 2018), to enhance the robustness of the BERT model, tackling lan-
guage imbalance. Through parallel corpora and strategic perturbations, we obscure sensi-
tive language attributes, leading to a more equitable treatment of languages in the model’s
learning process.

mBERT+FGM: Another adversarial training technique, FGM (Miyato et al., 2017),
a single-step method, boosts BERT’s robustness and mitigates language imbalance by ob-
structing precise identification of sensitive features, leading to more balanced language
processing.

4.3. Experimental Setting

All experiments were conducted using the PyTorch3 framework on an NVIDIA A100 GPU
with 40GB of VRAM. Our framework is built upon a transformer architecture, incorporating
pre-trained models such as “bert-base-multilingual-uncased”4 and “wav2vec2-base-960h”5.
To ensure a consistent hyperparameter space across runs, we fixed the random seed to 42.
The training configuration includes a batch size of 8, a feature dimension of 768, a total
of 5 epochs, and a maximum input length of 128. For the PGD method, we set epsilon to
0.01, alpha to 0.01, and the number of steps to 10. In contrast, for FGM, epsilon was set
to 0.03. The learning rate for BERT model training was set to 3e-5, utilizing the Adam
optimizer for adjustments. For the tasks of LCL and MCL, τ is tuned over the range {0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.3, 0.5}. The framework employs Hyperopt
to optimize the weights of loss parameters α and β, as well as the temperature τ in the
contrastive learning process.

3. https://pytorch.org/
4. https://huggingface.co/google-bert/bert-base-multilingual-uncased
5. https://huggingface.co/facebook/wav2vec2-base-960h
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4.4. Language Balance Metrics

Despite extensive research on enhancing models for low-resource languages, there remains a
performance trade-off, with a notable lack of metrics for overall efficacy in language balance.
We propose a dual-dimension framework for multilingual text classification evaluation, tar-
geting both the language balance across different languages (G) and the mean classification
accuracy (M), to provide a comprehensive assessment of language performance equity.

The Gini coefficient (G), developed by Gini (1912) and widely used in economics,
quantifies inequality in a distribution. It ranges from 0, representing perfect equality where
all entities have equal shares, to 1, indicating maximum inequality where one entity holds
all resources. Adapting this concept to multilingual classification systems, we have applied
G, and its pseudocode is provided in Algorithm 1.

Algorithm 1 Calculate Gini Coefficient & Mean Value

Input: A list of classification scores S1, S2, S3

1: Calculate total sum: total =
∑

(S1, S2, S3)
2: Compute mean value: M = total/count(S1, S2, S3)
3: Normalize each value: normalized values = [v/total for each v in (S1, S2, S3)]
4: Sort the normalized values in ascending order
5: Construct the Lorenz curve with a starting point of 0
6: Use the trapezoidal rule to calculate the area under the Lorenz curve, denoted as B
7: Calculate A = 0.5 −B
8: Calculate the Gini coefficient G = A/(A + B)

Output: The Gini coefficient G and the mean value M of the input list

The mean classification accuracy (M) represents the mean value of classification
accuracies for all languages in a given dataset. When combining the two metrics (G)
and (M), we can comprehensively assess the performance of multi-language classification
systems, not only focusing on average performance but also identifying and quantifying the
uneven distribution of performance. This evaluation approach is particularly suitable for
scenarios requiring balancing and optimizing support for multiple languages, ensuring that
no language is unequally treated due to imbalanced system performance.

4.5. Results

Table 2: Experimental Results of Different Models on the Flores200 Dataset

Flores200
Accuracy ↑

G ↓ M ↑
Chinese Tibetan Burmese

mBERT-Unique 78.61% 50.25% 28.86% 0.2103 0.5257
mBERT-Combined 87.24% 58.38% 46.19% 0.1427 0.6394

mBERT+PGD 85.26% 32.68% 33.65% 0.2312 0.5053
mBERT+FGM 84.74% 38.05% 40.87% 0.1902 0.5455
OUR MODEL 84.67% 59.21% 48.71% 0.1245 0.6420
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On the Flores200 dataset, mBERT-Combined achieved higher accuracies than mBERT-
Unique across Chinese, Tibetan, and Burmese languages. Its accuracy on Chinese reached
the maximum value among all baselines, reaching 87.24%. For Tibetan and Burmese, the
accuracies were 58.38% and 46.19%, respectively, slightly lower than our model’s 59.21%
and 48.71%. Upon adversarial training using PGD and FGM on top of mBERT-Combined,
the model’s accuracies decreased across all three languages, the M value of the model
dropped from 0.6394 to 0.5053 and 0.5455, and the G value increased from 0.1427 to 0.2312
and 0.1901, respectively. Our model achieved the minimum G value among all baselines,
at 0.1245, and the highest M value, at 0.6420, which indicated that our model possessed
superior language balance performance.

Table 3: Experimental Results of Different Models on the mms Dataset

mms
Accuracy ↑

G ↓ M ↑
Chinese Tibetan Burmese

mBERT-Unique 71.91% 42.17% 25.54% 0.2216 0.4656
mBERT-Combined 80.25% 45.15% 39.01% 0.1672 0.5480

mBERT+PGD 79.67% 44.76% 37.07% 0.1759 0.5383
mBERT+FGM 77.82% 44.23% 35.58% 0.1786 0.5254
OUR MODEL 79.70% 48.42% 42.01% 0.1477 0.5671

We conducted experiments on the second dataset, mms, using the same approach as the
Flores200 dataset, where SimAdapter was used to initialize the adapter parameters. Similar
to the results on the Flores200 dataset, mBERT-Combined achieved the best performance
on the Chinese task, reaching 80.25. Our model obtained the best performance on Tibetan
and Burmese tasks, with accuracies of 48.42% and 42.01%, respectively. Additionally, our
model also demonstrated superior language balance performance on the mms dataset, with
both G and M values outperforming other models, while maintaining the lowest G value
when achieving the highest M value.

Table 4: Experimental Results of Different Adapters on the Flores200 Dataset

Flores200
Accuracy ↑

G ↓ M ↑
Chinese Tibetan Burmese

SimAdapter 85.01% 55.61% 46.65% 0.1366 0.6242
MetaAdapter 84.67% 59.21% 48.71% 0.1245 0.6420

To evaluate the impact of two adapter initialization techniques, SimAdapter and Meta-
Adapter, on multilingual classification, we utilized these methods to set the adapter param-
eters and then proceeded to train our model using the Flores200 dataset. The experimental
outcomes revealed that, with MetaAdapter, the model’s classification accuracy in Burmese
and Tibetan significantly improved, outperforming SimAdapter by 2.06% and 3.60%, respec-
tively. Conversely, in the Chinese language, MetaAdapter’s performance slightly declined
by 0.34% compared to SimAdapter. More importantly, the overall evaluation demonstrated
that MetaAdapter enhanced the model’s performance, as evidenced by improved G and M
values of 0.1245 and 0.6420, respectively.
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Figure 3: Performance of MetaAdapter and SimAdapter Across Different Data
Lengths(Metric G)

Figure 4: Performance of MetaAdapter and SimAdapter Across Different Data
Lengths(Metric M)



Fang Huang Yang Zhou Lin

To investigate the performance variation of the model under different adapter initializa-
tion methods across different dataset sizes, we conducted tests on the synthetic mms dataset.
In total, we generated a dataset of 60.18 hours of speech data. Across these datasets, we
conducted experiments using both MetaAdapter and SimAdapter. From Figures 3 and 4,
it can be observed that when the dataset size is relatively small at 10 hours, the G value
of SimAdapter, 0.1518, is lower than that of MetaAdapter, 0.1688, while the M value of
SimAdapter, 0.5626, is higher than that of MetaAdapter, 0.5436. At the 50-hour mark,
the M values of both methods are similar, with MetaAdapter at 0.5690 and SimAdapter
at 0.5691. As the duration of the dataset increases to 60 hours, both G values continue to
decrease, while both M values continue to increase. At the 60-hour mark, the G values of
both methods are identical at 0.1466, with MetaAdapter achieving an M value of 0.5734,
higher than SimAdapter’s M value of 0.5691.

4.6. Ablation Study

Table 5: Ablation Results of Different Models on the Flores200 Dataset

Model
Accuracy ↑

G ↓ M ↑
Chinese Tibetan Burmese

OUR MODEL 84.67% 59.21% 48.71% 0.1245 0.6420
OUR MODEL w/o LCL 85.98% 58.61% 46.33% 0.1385 0.6364
OUR MODEL w/o MCL 86.44% 58.49% 46.70% 0.1383 0.6388

OUR MODEL w/o Adapter 69.26% 42.91% 33.17% 0.1655 0.4845

To validate the effectiveness of our proposed framework, we conducted a series of ablation
experiments on the Flores200 dataset. As shown in Table 5, removing either the LCL, MCL,
or adapter component from the framework results in performance degradation of the model.
When either the MCL or LCL component is removed, the model’s performance improves
in the Chinese language but declines in Tibetan and Burmese languages, demonstrating a
trade-off relationship. Particularly, when the adapter component is removed, the model’s
performance significantly decreases across all three languages, indicating the effectiveness
of the adapter structure in MCML.

5. Conclusion

In this paper, we focus on the task of multi-language text classification and propose a novel
framework to address the issue of language imbalance in multi-language pre-trained models.
Our core idea is to leverage the correlations between speech among Sino-Tibetan languages
to enhance the model’s performance on low-resource languages, thereby mitigating language
imbalance. However, our current work is limited by the lack of real-world data and does
not encompass other languages within the Sino-Tibetan language family. In future work,
we aim to explore the integration of more modalities, including text, speech, and images,
and experiment with larger language models to verify the effectiveness of our method.
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