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Abstract

The Hilbert–space Gaussian Process (hgp) approach offers a hyperparameter-independent
basis function approximation for speeding up Gaussian Process (gp) inference by projecting
the gp onto M basis functions. These properties result in a favorable data-independent O(M3)
computational complexity during hyperparameter optimization but require a dominating
one-time precomputation of the precision matrix costing O(NM2) operations. In this
paper, we lower this dominating computational complexity to O(NM) with no additional
approximations. We can do this because we realize that the precision matrix can be split into a
sum of Hankel–Toeplitz matrices, each having O(M) unique entries. Based on this realization
we propose computing only these unique entries at O(NM) costs. Further, we develop two
theorems that prescribe sufficient conditions for the complexity reduction to hold generally
for a wide range of other approximate gp models, such as the Variational Fourier Feature
(vff) approach. The two theorems do this with no assumptions on the data and no additional
approximations of the gp models themselves. Thus, our contribution provides a pure speed-up
of several existing, widely used, gp approximations, without further approximations.

1 Introduction

Gaussian Processes (gps, Rasmussen & Williams, 2006) provide a flexible formalism for modeling functions
which naturally allows for the incorporation of prior knowledge and the production of uncertainty estimates in
the form of a predictive distribution. Typically a gp is instantiated by specifying a prior mean and covariance
(kernel) function, which allows for incorporation of prior knowledge. When data becomes available, the
gp can then be conditioned on the observations, yielding a new gp which can be used for predictions and
uncertainty quantification.

†-These authors contributed equally to this work. A reference implementation built on top of GPJax is available at
https://github.com/AOKullberg/hgp-hankel-structure.
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Figure 1: An order of magnitude speed-up without any additional approximations: Wall-clock
time to compute the precision matrix for an increasing number M of basis functions.

While all these operations have closed-form expressions for regression, the computations of the mean and
covariance of the predictive gp require instantiating and inverting the kernel (Gram) matrix, which encodes
pair-wise similarities between all data. These operations require respectively O(N2) and O(N3) computations,
where N is the number of data points. Furthermore, if one wishes to optimize the hyperparameters of the
kernel function, which in gps is typically accomplished by optimizing the log-marginal likelihood, the kernel
matrix needs to be instantiated and inverted multiple times, further hindering the applicability of gps to
large-scale datasets.

The ubiquitous strategy to reduce this computational complexity consists in approximating the kernel matrix
in terms of Basis Functions (bfs), yielding what is essentially a low-rank or “sparse” approximation of
the kernel function (see Rasmussen & Williams, 2006; Quiñonero-Candela & Rasmussen, 2005; Snelson &
Ghahramani, 2005). Computational savings can then be achieved by means of the matrix inversion lemma,
which requires instantiating and inverting the precision matrix (sum of the outer products of the bfs)
instead of the kernel matrix at prediction, thereby lowering the computational complexity of inference to
O(NM2 + M3), where M is the number of bfs. If the number of bfs is chosen smaller than the number
of data points in the training set (M < N), computational benefits arise and the computational costs for
hyperparameter optimization and inference are dominated by O(NM2).

It is less widely known that this cost can be improved further. A notable bf framework is the hgp (Solin
& Särkkä, 2020) which projects the gp onto a dense set of orthogonal, hyperparameter-independent bfs.
This deterministic approximation is particularly attractive as it exhibits fast convergence guarantees to the
full gp in terms of the number of bfs for smooth shift-invariant kernels compared to other approximations.
Furthermore, the fact that the bfs are hyperparameter-independent speeds up gp hyperparameter
optimization considerably, which in the hgp requires only O(M3) operations after a one-time precomputation
of the precision matrix, costing O(NM2). These favorable properties have ensured a relatively wide usage of
the hgp (see e.g. Svensson et al., 2016; Berntorp, 2021; Kok & Solin, 2018), and it is available in, e.g., PyMC
(Abril-Pla et al., 2023) and Stan (Riutort-Mayol et al., 2022). However, as argued by Lindgren et al. (2022),
a high number of bfs may be required for a faithful approximation of the full model. Thus, the hgp is
typically employed in applications where forming the initial O(NM2) projection does not become too heavy.

In this paper, we reduce this complexity to O(NM) with no additional approximations (see Fig. 1), by
exploiting structural properties of the precision matrix. We remark that these structural properties arise
from the bfs that are used to approximate the kernel, not the kernel itself. Our contributions are as follows.

• We show that the hgp precision matrix using basis functions defined on a (hyper-)cubical domain
can be split in a sum of multilevel block-Hankel and a multilevel block-Toeplitz matrix (Fig. 2),
where each summand only has O(M) unique entries instead of O(M2). This allows us to determine
the elements of the full precision matrix at O(NM) instead of O(NM2).

• This method does not only hold for hgp basis functions. We provide sufficient conditions on
the bfs for this reduction in computational complexity to hold. Examples of other bfs where the
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Figure 2: The precision matrix for polynomial basis functions has a nested Hankel structure. The visualization
of the matrix is proportionally darker as the logarithm of each entry increases. The matrices are computed as
the sum of all entries Hn for n = {1, . . . , N}, where the expression for Hn is given below each matrix.

conditions hold, and that therefore can be sped up using the same technique are polynomial, (complex)
exponential and (co)sinusoidal basis functions. We, therefore, enable the speed-up of other bf-based
gp approximations such as variational Fourier features (Hensman et al., 2017).

In the experiments, we demonstrate in practice that our approach lowers the computational complexity of
the hgp by an order of magnitude on simulated and real data.

2 Background

A gp is a collection of random variables, any finite number of which have a joint Gaussian distribution (Ras-
mussen & Williams, 2006). We denote a zero–mean gp by f ∼ GP(0, κ(·, ·)), where κ(x,x′) : RD × RD → R
is the kernel, representing the covariance between inputs x and x′. Given a dataset of input–output pairs
{(xn, yn)}N

n=1, gps are used for non-parametric regression and classification by coupling the latent functions
f with observations through a likelihood model p(y | f) =

∏N
i=1 p(yi | f(xi)).

For notational simplicity, we will in the following focus on gp models with a Gaussian (conjugate) likelihood,
yi ∼ N (f(xi), σ2). The posterior gp, GP(µ⋆(·), Σ⋆(·, ·)) can be written down in closed form by

µ⋆(x⋆) = k⊤
⋆ (K + σ2I)−1y, (1a)

Σ⋆(x⋆, x′
⋆) = k(x⋆,x′

⋆) − k⊤
⋆ (K + σ2I)−1k⋆′ , (1b)

where K ∈ RN×N and k⋆ ∈ RN are defined element-wise as Ki,j := κ(xi,xj) and [k⋆]i := κ(xi,x
⋆) for

i, j ∈ 1, 2, . . . , N , and k⋆′ is defined similarly. Observations are collected into y ∈ RN . Due to the inverse of
(K + σ2I) in the posterior mean and covariance, the computational cost of a standard gp scales as O(N3),
which hinders applicability to large datasets.

2.1 Basis Function Approximations

The prevailing approach in literature to circumvent the O(N3) computational bottleneck is to approximate
the gp with a sparse approximation, using a finite number of either inducing points or Basis Functions (bfs)
(e.g., Rasmussen & Williams, 2006; Quiñonero-Candela & Rasmussen, 2005; Hensman et al., 2017). The bf
representation is commonly motivated by the approximation

κ(x,x′) ≈ ϕ(x)⊤Λ ϕ(x′). (2)

We use the notation from Solin & Särkkä (2020) to align with the next section. Here, ϕ(·) : RD → RM are the
bfs, ϕ(·) := [ϕ1(·), ϕ2(·), . . . , ϕM (·)]⊤. Further, Λ ∈ RM×M are the corresponding bf weights. Combining
this approximation with the posterior gp, Eq. (1), and applying the Woodbury matrix inversion lemma yields

µ⋆(x⋆) = ϕ(x⋆)⊤ (Φ⊤Φ + σ2Λ−1)−1
Φ⊤y, (3a)

Σ⋆(x⋆,x′
⋆) = σ2ϕ(x⋆)⊤ (Φ⊤Φ + σ2Λ−1)−1

ϕ(x′
⋆). (3b)
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Here, Φ ∈ RN×M is commonly referred to as the regressor matrix and is defined as Φi,: := ϕ(xi)⊤. Further,
Φ⊤Φ ∈ RM×M is the precision matrix which is a central component of the following section. Computing this
precision matrix requires O(NM2) operations. With this approximation, computing the posterior mean and
covariance in Eq. (3) requires instantiating and inverting

(
Φ⊤Φ + σ2Λ−1)−1 which can be performed with

O(NM2 + M3) operations. If we have more samples than bfs (which is the required condition for bfs to
give computational savings), i.e., N ≥ M , the overall computational complexity is then of O(NM2), i.e., the
inversion costs are negligible as compared to the cost of computing the precision matrix.

3 Methods

Our main findings are in the form of two theorems (Theorems 3.1 and 3.4). These theorems prescribe the
necessary conditions that bf expansions need to fulfill to be able to reduce the computational complexity
of computing the precision matrix Φ⊤Φ from O(NM2) to O(NM), applicable to multiple previous works
that rely on parametric basis functions (incl. Lázaro-Gredilla et al., 2010; Hensman et al., 2017; Solin &
Särkkä, 2020; Tompkins & Ramos, 2018; Dutordoir et al., 2020). Since our contribution reduces the cost of
computing the precision matrix to O(NM), it follows that the computational complexity of computing the
posterior mean or covariance is also of O(NM). Further, both of the theorems reduce the memory scaling
from O(M2) to O(M). Note that these reductions are without approximations, only relying on the structural
properties of the considered models.

In the following, we assume that the kernel is a tensor product kernel (Rasmussen & Williams, 2006),
i.e., κ(x, x′) =

∏D
d=1 κ(d)(x(d), x(d)′), where κ(d)(·, ·) is the kernel along the dth dimension. Then, if each

component of the kernel is approximated with md bfs such that

κ(d)(x(d), x(d)′) ≈ ϕ(d)(x(d))⊤
Λ(d) ϕ(d)(x(d)′), (4)

where ϕ(d)(·) : R → Rmd are the bfs [ϕ(d)
1 , ϕ

(d)
2 , . . . , ϕ

(d)
md ]⊤ along the dth dimension and Λ(d) ∈ Rmd×md

contains the associated weights. The full kernel can then be approximated as

κ(x,x′) ≈
∏D

d=1 ϕ
(d)(x(d))⊤

Λ(d) ϕ(d)(x(d)′), (5)
where in this case ϕ(·) : RD → RM and Λ ∈ RM×M are

ϕ(x) = ⊗D
d=1ϕ

(d)(x(d)), (6a)
Λ = ⊗D

d=1Λ
(d). (6b)

Here, M :=
∏D

d=1 md is the total number of bfs. Given this decomposition, the precision matrix can be
expressed as

Φ⊤Φ =
∑N

n=1 ϕ(xn)ϕ(xn)⊤ =
∑N

n=1 ⊗D
d=1ϕ

(d)(x(d)
n )

[
ϕ(d)(x(d)

n )
]⊤

. (7)

This decomposition of the precision matrix is key in the following and we will primarily study the individual
products ϕ(d)(x(d)

n )[ϕ(d)(x(d)
n )]⊤ where certain structure may appear that is exploitable to our benefit. To

provide some intuition, we consider the precision matrix for polynomial bfs in 1D, 2D, and 3D (see Fig. 2).
The 1D case (left) has a Hankel structure and the 2D (middle) and 3D (right) cases have 2-level and 3-level
block Hankel structure, respectively. It is these types of structures that allow a reduction in complexity without
approximations. Next, we provide clear technical definitions of the matrix structures and then proceed to state
our main findings. All of the discussed matrix structures are also visually explained in Table A1 in App. E.

3.1 Hankel and Toeplitz Matrices

An m × m matrix H has Hankel structure iff it can be expressed using a vector γ ∈ R(2m−1) containing all
the unique entries, according to

H =


γ1 γ2 . . . γm

γ2 γ3 . . . γm+1
...

...
. . .

...
γm γm+1 . . . γ2m−1

 . (8)
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︸ ︷︷ ︸
ϕ(d)ϕ(d)⊤

=

︸ ︷︷ ︸∑
n

H(1)

+

︸ ︷︷ ︸∑
n

T (1)

.

Figure 3: The precision matrix for sinusoidal basis functions in one dimension has neither Hankel nor Toeplitz
structure. However, it can be decomposed into a sum of two matrices, where one has a Hankel structure, and
one has Toeplitz structure. Here, 49 bfs are placed along one dimension.

In other words, each element of the Hankel matrix on the ith row and the jth column is given by γi+j−1.
Similarly, an m × m matrix has Toeplitz structure iff it can be expressed using a vector γ ∈ R(2m−1) such
that each element on the ith row and the jth column is given by γi−j+m. See Fig. 3 for an example of what a
Hankel and a Toeplitz matrix visually looks like.

We define a matrix H(D) as a D-level block Hankel matrix if it can be expressed as

H(D) =


H

(D−1)
1 H

(D−1)
2 . . . H

(D−1)
mD

H
(D−1)
2 H

(D−1)
3 . . . H

(D−1)
mD+1

...
...

. . .
...

H
(D−1)
mD H

(D−1)
mD+1 . . . H

(D−1)
2mD−1

 , (9)

where H
(D−1)
k is a block Hankel matrix, and H

(1)
k is a simple Hankel matrix. Each submatrix H

(d)
k for

d ∈ {1, . . . , D} can be indexed by row and column id, jd ∈ {1, . . . , md} which again yields a submatrix
H

(d−1)
id+jd−1 which can be indexed in the same manner. Therefore, an equivalent definition of a block Hankel

matrix is that each individual entry of H(D), given by a set of indices i1, j1, . . . , iD, jD, is given by the
entry γk1,...,kD

of a tensor γ ∈ RK1×K2×...×KD , where kd = id + jd − 1, and Kd = 2md − 1. Similarly,
T (D−1) is a block Toeplitz matrix if each entry i1, j1, . . . , iD, jD is given by the entry γk1,...,kD

of a tensor
γ ∈ RK1×K2×...×KD , where kd = md + id − jd, and Kd = 2md − 1.

3.2 Block Hankel–Toeplitz Matrices

In addition to block Hankel and block Toeplitz structures, we require a slightly more general but highly
related structure. We call this structure block Hankel–Toeplitz structure and define it as follows. A matrix
G(D) has a D-level block Hankel–Toeplitz structure, if the matrix is defined either as

G(D) =


G

(D−1)
1 G

(D−1)
2 . . . G

(D−1)
mD

G
(D−1)
2 G

(D−1)
3 . . . G

(D−1)
mD+1

...
...

. . .
...

G
(D−1)
mD G

(D−1)
mD+1 . . . G

(D−1)
2mD−1

 , (10)

if level D is Hankel, or as

G(D) =


G

(D−1)
mD . . . G

(D−1)
2 G

(D−1)
1

G
(D−1)
mD+1 . . . G

(D−1)
3 G

(D−1)
2

... . .
. ...

...

G
(D−1)
2mD−1 . . . G

(D−1)
mD+1 G

(D−1)
mD

 , (11)

if level D is Toeplitz. Further, G(D−1)
j are D − 1 level block Hankel–Toeplitz matrices if D − 1 > 2, and a

simple Hankel or Toeplitz matrix if D − 1 = 1. Each submatrix G
(d)
k for d ∈ {1, . . . , D} can be indexed by
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row and column id, jd ∈ {1, . . . , md} which again yields a submatrix defined either as G(d−1)
id+jd−1 or G(d−1)

md+id−jd

(depending on whether the dth-level has Hankel structure as in Eq. (10) or Toeplitz structure as in Eq. (11)).
Each entry in a block Hankel–Toeplitz matrix can also be expressed by the entry γk1,k2,...,kD

of a tensor
γ ∈ RK1×K2×...×KD , where Kd = 2md − 1, and

kd =
{

id + jd − 1, if level d is Hankel
md + id − jd, if level d is Toeplitz.

(12)

A crucial property of the block Hankel–Toeplitz structure is the preservation of structure under addition.
Assume that A and B are two block Hankel–Toeplitz matrices and that they are structurally identical, in
the sense that they have the same number of levels, the same number of entries in each block, and each level
shares either Toeplitz or Hankel properties. Then, let each entry of A and B be given by αk1,k2,...,kD

for
a tensor α ∈ Rm1,...,mD and βk1,k2,...,kD

for β ∈ Rm1,...,mD , respectively, with kd defined in Eq. (15). Each
entry in A + B is then given by the sum of the entries αk1,...,kD

+ βk1,...,kD
. Thus, the sum of two block

Hankel–Toeplitz matrices with identical structure is also a block Hankel–Toeplitz matrix. By associativity of
matrix addition, a sum

∑N
n=1 Gn of N Hankel–Toeplitz matrices {G1, . . . ,GN } with identical structure is

therefore itself a Hankel–Toeplitz matrix.

3.3 Kronecker Products of Hankel–Toeplitz Matrices and Block Hankel–Toeplitz Matrices

A special case of a class of matrices G which has block Hankel–Toeplitz structure are Kronecker products of
D Hankel and Toeplitz matrices {G(1), . . . ,G(D)}, i.e.,

G =
D⊗

d=1
G(d) := G(1) ⊗ G(2) ⊗ · · · ⊗ G(D). (13)

An equivalent definition of the Kronecker product gives each entry on the ith row and jth column in the block
Hankel–Toeplitz matrix G as an expression of the entries on the id

th row and jd
th column of each matrix

G(d) according to
Gi,j =

∏D
d=1 G

(d)
id,jd

. (14)

Note that there is a one-to-one map between each index i, j and the index sets {i1, . . . , iD} and {j1, . . . , jD}.
As each matrix G(d) has Hankel or Toeplitz structure, the entries can equivalently be defined by a vector γ(d)

with 2md − 1 entries. Each entry Gi,j is therefore given by

Gi,j =
∏D

d=1 γ
(d)
kd

= γk1,...,kD
, (15)

where kd is defined in Eq. (12), and where γ :=
⊗D

d=1 γ
(d) is a rank-1 tensor with

∏D
d=1(2md − 1) elements.

3.4 Main Results

We are now ready to state our main findings. The following two theorems rely on the product decomposition
Eq. (5) and study each dimension d separately, as is evidently possible from Eq. (7). Our first theorem
generalizes a result by Greengard et al. (2023) regarding complex exponential basis functions. Our first theorem
establishes that if the product ϕ(d)(x(d)

n )[ϕ(d)(x(d)
n )]⊤ has Hankel or Toeplitz structure, the resulting precision

matrix only has
∏D

d=1(2md − 1) unique entries, reducing the computational complexity of instantiating it
from O(NM2) to O(NM). We formalize this in the following theorem.
Theorem 3.1. If the matrix

G(d)(x(d)
n ) := ϕ(d)(x(d))

[
ϕ(d)(x(d))

]⊤
, (16)

is a Hankel or Toeplitz matrix for all x(d) ∈ R along each dimension d, the information matrix Φ⊤Φ will be
a multi-level block Hankel or Toeplitz matrix, and therefore have

∏D
d=1(2md − 1) unique entries.
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︸ ︷︷ ︸
Φ⊤Φ

=

︸ ︷︷ ︸∑
n

H(1)⊗H(2)

+

︸ ︷︷ ︸∑
n

T (1)⊗H(2)

+

︸ ︷︷ ︸∑
n

H(1)⊗T (2)

+

︸ ︷︷ ︸∑
n

T (1)⊗T (2)

Figure 4: The precision matrix for sinusoidal bfs in two dimensions has neither Hankel nor Toeplitz structure.
However, it can be decomposed into 2D = 4 matrices, which each have block Hankel–Toeplitz structure. Here,
7 bfs are placed along each of the two dimensions, giving a total of 49 bfs.

Proof. Assume that the matrix G(d)(x(d)
n ) := ϕ(d)(x(d)

n )[ϕ(d)(x(d)
n )]⊤ is Hankel or Toeplitz. The precision

matrix can then be expressed as

Φ⊤Φ =
∑N

n=1 ⊗D
d=1ϕ

(d)(x(d)
n )

[
ϕ(d)(x(d)

n )
]⊤

=
∑N

n=1 ⊗D
d=1G

(d)(x(d)
n ), (17)

where the matrix ⊗D
d=1G

(d)(x(d)
n ) is multi-level Hankel or Toeplitz by definition, see Sec. 3.3. Further, the sum

of several D-level block Hankel–Toeplitz matrices is itself a D-level block Hankel–Toeplitz matrix, see Sec. 3.2.
Since each matrix G(d)(x(d)

n ) has at most (2md − 1) unique entries, the matrix Φ⊤Φ =
∑N

n=1 ⊗D
d=1G

(d)(x(d)
n )

therefore has at most M =
∏D

d=1(2md − 1) unique entries.

The preceding theorem holds true for, for instance, polynomial and complex exponential bfs, which we
establish in Corollaries 3.2 and 3.3.
Corollary 3.2. The precision matrix for polynomial bfs defined by

ϕ
(d)
id

(x(d)) = (x(d))id−1, (18)

can be represented by a tensor with
∏D

d=1 2md − 1 entries.

Proof. See App. A for a proof.

Corollary 3.3. The precision matrix for complex exponential bfs defined by

ϕC
j (x) = exp(iπj⊤x) =

∏D
d=1 exp(iπjdxd), (19)

can be represented by a tensor with
∏D

d=1 2md − 1 entries.

Proof. See App. B for a proof.

For some bfs, the structure of the product ϕ(d)(x(d)
n )[ϕ(d)(x(d)

n )]⊤ is more intricate, but is still of a favorable,
exploitable nature. This is clearly evident from Fig. 4, where the precision matrix for sinusoidal bfs in two
dimensions is visualized. In particular, for some bfs, the product is the sum of a Hankel and a Toeplitz
matrix, such that the precision matrix only has

∏D
d=1 3md unique entries, again reducing the computational

cost of computing it to O(NM). We formalize this in the following theorem.

Theorem 3.4. If the product ϕ(d)(x(d)
n )[ϕ(d)(x(d)

n )]⊤ is the sum of a Hankel matrix denoted G(d),(1)(x(d)
n )

and a Toeplitz matrix G(d),(−1)(x(d)
n ), and there exists a function g(d)(kd, x

(d)
n ) such that G

(d),(1)
id,jd

(x(d)
n ) =

g(id + jd, x
(d)
n ) and G

(d),(−1)
id,jd

(x(d)
n ) = −g(id − jd, x

(d)
n ), all entries in the precision matrix can be represented

by a tensor γ(k1, k2, . . . , kD) with
∏D

d=1 3md entries.

7
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Proof. The precision matrix can in this case be expressed as

:=C︷ ︸︸ ︷
Φ⊤Φ =

∑N
n=1 ⊗D

d=1ϕ
(d)(x(d)

n )
[
ϕ(d)(x(d)

n )
]⊤

=
∑N

n=1 ⊗D
d=1

(
G(d),(1)(x(d)

n ) + G(d),(−1)(x(d)
n )
)

=
∑2D

p=1

(∏D
d=1 e

(d)
p

)∑N
n=1 ⊗D

d=1G
(d),(e(d)

p )(x(d)
n ), (20)

where ep = {e
(1)
p , . . . , e

(D)
p } ∈ SD and SD = {1, −1}D is a set containing 2D elements. Each of the 2D

matrices
(∏D

d=1 e
(d)
p

)∑N
n=1 ⊗D

d=1G
(d),(e(d)

p )(x(d)
n ) is now the Kronecker product between D Hankel or Toeplitz

matrices. The entries of C can be expressed element-wise as

Ci,j =
∑2D

p=1

(∏D
d=1 e

(d)
p

)∑N
n=1

∏D
d=1 g(id + e

(d)
p jd, x

(d)
n ). (21)

If we define a tensor γ as
γk1,...,kD

=
∑N

n=1
∏D

d=1 g(kd, x
(d)
n ) (22)

for indices kd = 1 − md, 2 − md, . . . , 2md − 1, 2md, each entry of the precision matrix Ci,j can be expressed as

Ci,j =
∑2D

p=1

(∏D
d=1 e

(d)
p

)
γ

i1+e
(1)
p j1,...,iD+e

(D)
p jD

. (23)

As each sum kd = id+e
(d)
p jd is an integer between 1−md and 2md, the tensor γ will have

∏D
d=1 3md entries.

The preceding theorem applies to, for instance, the bfs in an hgp (Solin & Särkkä, 2020) defined on a
rectangular domain, formalized in Corollary 3.5. It further holds for multiple other works using similar bfs,
formalized in Corollary 3.6. We remark that for D = 1, we require md > 3 for any savings to take effect,
whereas for D > 1, md ≥ 2 suffices.
Corollary 3.5. The precision matrix in an hgp defined on a rectangular domain [−L1, L1] × · · · × [−LD, LD]
can be represented by a tensor with

∏D
d=1 3md entries.

Proof. See App. C for a proof.

Corollary 3.6. The precision matrix in a gp approximated by sinusoidal and cosine bfs with frequencies on
a grid (such as the regular Fourier features described in Hensman et al. (2017) and Wahls et al. (2014), the
Fourier approximations to periodic kernels described in Tompkins & Ramos (2018), the quadrature Fourier
features described in Mutný & Krause (2018), the equispaced-version of sparse spectrum bfs described in
Lázaro-Gredilla et al. (2010), or the one-dimensional special case of Dutordoir et al. (2020)) can be represented
by a tensor with

∏D
d=1 3md entries.

Proof. See App. D for a proof.

3.5 Outlook and Practical Use

Both Theorems 3.1 and 3.4 reduce the computational complexity of calculating the entries of the precision
matrix Eq. (7) from O(NM2) to O(NM). This enables us to scale the number of bfs significantly more
than previously, before running into computational, or storage related, problems. For clarity, the standard
hgp is given in Alg. 1 with the original approach in red and our proposed approach in blue. As compared to
the standard (offline) hgp, the only change we make is the computation of the precision matrix.

We remark that computing the posterior mean and variance of the bf expansion now costs O(NM + M3),
now possibly dominated by the M3 term. This cost also appears in the hyperparameter optimization, as
we choose to optimize the mll as in Solin & Särkkä (2020). Remedies for this cost are out of scope of this
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Algorithm 1 Sketch of an algorithm for Hilbert gp learning and inference. The original approach by Solin
& Särkkä (2020) in red, our proposed approach in blue.

Input: Data as input–output pairs {(xi, yi)}N
i=1,

test inputs x⋆, number of basis functions M
Compute Φ⊤Φ at cost O(NM2) ▷ Eq. (7)
Compute γ at cost O(NM) ▷ Eq. (22)
Construct Φ⊤Φ using γ at cost O(M2)
repeat

Optimize Marginal Log-Likelihood (mll) w.r.t. hyperparameters at cost O(M3)
until Convergence
Perform gp inference using the pre-calculated matrices. This entails computing the posterior mean and
covariance, at a computational cost of O(M3).
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Figure 5: Our proposed computational scheme reduces the computation time for datasets with high-frequency
variations, as these require many bfs to achieve accurate reconstruction. This underwater magnetic field has
lower Negative Log Predictive Density (nlpd) with a large amount (6400) compared to a smaller amount
(400) of bfs. For 6400 bfs, our computational scheme reduced the required time to compute the precision
matrix from 2.7 hours to 1.7 minutes.

paper, but could potentially be reduced through the use of efficient approximate matrix inverses and trace
estimators (see, e.g., Davies, 2015). Another consequence of these theorems is that multi-agent systems that
collaborate to learn the precision matrix such as Jang et al. (2020), Viset et al. (2023) or Pillonetto et al.
(2019) can do this by communicating O(M) bits instead of O(M2) bits.

4 Experiments

We demonstrate the storage and computational savings of our structure exploiting scheme by means of three
numerical experiments. The experiments demonstrate the practical efficiency of our scheme using the hgp.
We reiterate that the savings are without additional approximations and the posterior is therefore exactly equal
to that of the standard hgp. Further, as hgps adhere to Theorem 3.4, this demonstration is a representative
example of the speedups that can be expected using, e.g., regular Fourier features (Hensman et al., 2017), or
bf expansions of periodic kernels (Dutordoir et al., 2020). Since Theorem 3.1 requires computing and storing
only 2DM components whereas Theorem 3.4 requires 3DM , our experiments demonstrate a practical upper
bound on the storage and computational savings, a “worst case”.

Our first experiment demonstrates the computational scaling of our scheme on a simulated 3D dataset.
Secondly, we consider a magnetic field mapping example with data collected by an underwater vessel, as an
application where the high-frequency content of the data requires a large amount of bfs to reconstruct the
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Figure 6: These experiments recover the results from Solin & Särkkä (2020) exactly for predicting yearly
precipitation levels across the US, and measure the wall-clock time needed by our proposed computational
scheme. The hgp efficiently approximates the full gp solution using m1 = m2 = 45, totaling M = 2025 bfs.

field. Thirdly, a precipitation dataset is used, mirroring an example in Solin & Särkkä (2020), improving the
computational scaling in that particular application even further than the standard hgp. Our freely available
hgp reference implementation along with hyperparameter optimization is written for GPJax (Pinder & Dodd,
2022). All timing experiments are run on an HP Elitebook 840 G5 laptop (Intel i7-8550U CPU, 16GB RAM).
For fair comparison, we naively loop over data points, to avoid any possible low-level optimization skewing
the results.

Computational Scaling We compare the time necessary for computing the precision matrix for N = 500
data points for the standard hgp as well as for our structure exploiting scheme. The results are presented
in Fig. 1 for an increasing number of bfs. After M = 14000, the hgp is no longer feasible due to memory
constraints, whereas our formulation scales well above that, but stop at M = 64000 for clarity in the illustration.
Clearly, the structure exploitation gives a significantly lower computational cost than the standard hgp, even
for small quantities of bfs. Further, it drastically reduces the memory requirements, where for M = 14000,
the hgp requires roughly 1.5 GB for storing the precision matrix, while our formulation requires roughly
2.8 MB using 64-bit floats. This makes it possible for us to scale the number of bfs significantly more before
running into computational or storage restrictions. It is noteworthy that even though the implementation is
in a high-level language, we still see significant computational savings.

Magnetic Field Mapping As hgps are commonly used to model and estimate the magnetic field for, e.g.,
mapping purposes (Solin et al., 2015; Kok & Solin, 2018), we consider a magnetic field mapping example and
demonstrate the ability of our computational scheme to scale hgps to spatially vast datasets. The data was
gathered sequentially in a lawn-mower path in a region approximately 7 × 7 km large by an underwater vessel
outside the coast of Norway (d = 2 and N = 1.39 million). The data was split into a training set and test set
with roughly a 50/50 split, deterministically split by a grid pattern, to ensure reasonable predictions in the
entire data domain, see App. F.2 for more details. We vary the amount of bfs and compare the time required
to sequentially include each new data point in the precision matrix as well as the Negative Log Predictive
Density (nlpd). As the underwater magnetic field covers a large area, a large number of bfs are required to
accurately represent the field, see Fig. 5a where the details of the predicted magnetic field is captured more
accurately for an increasing number of bfs. This is also apparent from the decreasing nlpd as the number of
bfs increases, see Fig. 5b. At 6400 bfs, the necessary computation time is several orders of magnitude lower
for our approach compared to the standard hgp.

U.S. Precipitation Data We consider a standard precipitation data set containing US annual precipitation
summaries for year 1995 (d = 2 and N = 5776) (Vanhatalo & Vehtari, 2008). We exactly mimic the setup in
Solin & Särkkä (2020) and primarily focus our evaluation on the calculation of the precision matrix. The
time for computing the precision matrix is visualized in Fig. 6c, where our approach clearly outperforms the
standard hgp. The predictions on a dense grid over the continental US can be found in Figs. 6a and 6b,
where the hgp manages to capture both the large-scale as well as the small-scale variations well.
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5 Related Work

The computational scheme that we detail here can be used to speed up a range of approximate gp and kernel
methods with bfs that satisfy the Hankel–Toeplitz structure we use (see e.g. Tompkins & Ramos, 2018; Solin
& Särkkä, 2020; Hensman et al., 2017). It is also applicable to Lázaro-Gredilla et al. (2010) in the special
case where the considered frequencies of the bfs are equidistant, as well as Dutordoir et al. (2020) when the
input space is one-dimensional. However, there is also a wide range of gp approximations that do not have
the Hankel–Toeplitz structure required for Theorem 3.1 or Theorem 3.4 to apply. While the structure we
exploit in Theorem 3.4 is apparent in the quadrature Fourier feature approach of Mutný & Krause (2018)
when the frequencies are on a structured Cartesian grid, other quadrature-like methods are not possible to
speed-up in similar ways. The most well-known method is the random Fourier feature approach (Rahimi
& Recht, 2007), where speed-up is not possible as the frequencies are sampled at random. Similarly, the
Gaussian quadrature approaches of Dao et al. (2017); Shustin & Avron (2022) and the random quadrature
approach of Munkhoeva et al. (2018) do not constrain frequencies to a regular grid and therefore do not have
the Hankel–Toeplitz structure required by Theorem 3.4.

As was pointed out by Quiñonero-Candela & Rasmussen (2005), inducing point approaches can also be viewed
as bf approximations. The inducing variable approaches essentially summarize the data in a set of inducing
variables (Snelson & Ghahramani, 2005; Seeger et al., 2003; Csató & Opper, 2002), which most commonly
represent function values at a certain set of inputs, even though other choices are possible (Lázaro-Gredilla
& Figueiras-Vidal, 2009). Another closely related approach which also uses inducing points, with similar
computational complexity of O(NM2), is the variational gp pioneered by Titsias (2009). In light of the bf
viewpoint, all the aforementioned approaches therefore also involve computing a precision matrix, but even for
ordered inducing points on a grid, the particular Hankel–Toeplitz structure we exploit does not exist in general.

A range of related work stacks additional approximations on top of the sparse basis function/inducing
point approximations (Yadav et al., 2021; Izmailov et al., 2018; Hensman et al., 2013). The purpose of
these additional approximations is typically to either reduce the computational complexity of computing
the precision matrix for example by using bfs with compact support, or by implementing an approximate
algorithm for inverting the precision matrix. A well-known structure exploiting method is Structured Kernel
Interpolation (ski) (Wilson & Nickisch, 2015; Yadav et al., 2021; Izmailov et al., 2018), which approximates
the precision matrix through cubic interpolation between inducing points on a regular grid. An alternative
approach that improves the computational complexity of the variational gp, is the Stochastic Variational
gp (svgp) (Hensman et al., 2013). The svgp is the de facto standard approach for large–scale gps, due to
the possibility of utilizing mini-batching for training, greatly speeding up hyperparameter (and variational
parameter) learning (Hensman et al., 2013; 2015), with implementation available in, e.g., GPyTorch and
GPflow (Gardner et al., 2018; de G. Matthews et al., 2017).

While this paper focuses on bf approximations to gps, there is a lot of work on approximating exact gp
regression through means of, e.g., Conjugate Gradient (cg) descent (Gibbs & MacKay, 1996; Artemev
et al., 2021; Gardner et al., 2018). These methods view gp regression as the solution to a linear system of
equations and seek to solve this approximately. This typically reduces the cost of exact gp regression from
O(N3) to O(IN2), where I is the number of cg iterations. Davies (2015) uses cg as the driving scalability
mechanism, but further reduces the computational complexity to O(NMI) through use of M-efficient kernels,
which essentially constitute the approaches from Quiñonero-Candela & Rasmussen (2005) as well as compact
kernels (see, e.g., Kullberg et al., 2021; Buhmann, 2003; Wu, 1995). cg has also been combined with ski
in the kiss-gp framework of Wilson & Nickisch (2015) to reduce the computational complexity of (mean)
inference to O(N + M log M). Pleiss et al. (2018) extended kiss-gp with the Lanczos algorithm to reduce
the complexity of computing the predictive variance to O(k) after pre-computation, where k is the number of
Lanczos iterations. Recently, Stochastic Gradient Descent (sgd) was introduced as an alternative to cg (Lin
et al., 2023a;b), potentially with better performance for ill-conditioned datasets. Technically, any of these
ideas are straightforward to include in the hgp as well and could potentially be used to reduce the O(M3)
complexity of inference and hyperparameter learning.

Other previous work has discovered that functions of difference matrices (a special case of Toeplitz matrices)
are also sums of Hankel and Toeplitz matrices in the one-dimensional case, and Kronecker products of these
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in the two-dimensional case (Strang & MacNamara, 2014). Since our matrices are also Kronecker products
of Hankel and Toeplitz matrices, we end up exploiting similar structures as Strang & MacNamara (2014)
arising in a different situation.

6 Conclusion

Our contribution details a computational approach for exploiting Hankel and Toeplitz structures that
appear in multiple bf approximation schemes to kernels for gps. These structures allow us to reduce the
computational complexity of computing the corresponding precision matrix from O(NM2) to O(NM) without
further approximations. Further, our approach reduces the storage requirement for containing all necessary
information about the posterior to make predictions from O(M2) to O(M). The Hankel and Toeplitz
structures appear because of the particular bfs that are used to approximate the kernel, not the kernel itself.
The reduced computational and storage requirements are particularly beneficial in the hgp where more bfs
allow us to capture higher frequencies of the kernel spectrum, otherwise unattainable without significant
computational resources. We foresee that our contribution will allow hgps to tackle larger problems without
the need for extensive specialized hardware, opening up approximate gp learning and inference for a wider
audience. Future work could investigate if the results can be generalized to wider ranges of bfs, which is
easily verified through Theorems 3.1 and 3.4. Another potential is to investigate ways of approximately
decomposing an already known precision matrix into Hankel–Toeplitz matrices which does not admit an
analytical such decomposition. This would yield the same computational benefits but with some potential
loss of accuracy.

A reference implementation built on top of GPJax is available at https://github.com/AOKullberg/hgp-hankel-
structure.

Impact Statement

This work develops numerical methods for the wide field of machine learning, where the goal is to make
existing methods more compute-efficient and open new avenues for developing future methods. There are
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Appendix

The majoriy of the appendix covers proofs of the corollaries following from Theorems 3.1 and 3.4. The rest
is dedicated to further details on our empirical experiments as well as visual explanations of the structures
that are exploited in the main body of the paper. The appendix is organized as follows. App. A proves
Theorem 3.1 for polynomial Basis Functions (bfs). App. B proves Theorem 3.1 for complex exponential
bfs. App. C proves Theorem 3.4 for Hilbert space bfs defined on a rectangular domain. App. D proves
Theorem 3.4 for ordinary Fourier features. App. E contains visual representations of the structures explained
in the main body of the paper. Lastly, App. F provides a full description of all the included experiments and
the data used in them, with additional plots and results.

A Proof of Corollary 3.2 (use of Theorem 3.1 for Polynomial Basis Functions)

Polynomial bfss (as used in for example Chen et al. (2018)) are defined along each dimension as

ϕ
(d)
id

(x(d)) = (x(d))id−1 (24)

By selecting gid+jd
(x(d)) = (x(d))jd+id−1, the product of two component bfs becomes

ϕ
(d)
id

(x(d))ϕ(d)
jd

(x(d)) = (x(d))id−1(x(d))jd−1 = (x(d))jd+id−1 = gid+jd
, (25)

which shows that the conditions for Theorem 3.1 is satisfied.

B Proof of Corollary 3.3 (use of Theorem 3.1 for Complex Exponential Basis
Functions)

Complex exponential bfs (as used in for example Novikov et al. (2018)) are defined along each dimension as

ϕ
(d)
id

(x(d)) = exp(iπjdx(d)) (26)

By selecting gid+jd
(x(d)) = exp(iπ(jd + id)x(d)), the product of two component bfs becomes

ϕ
(d)
id

(x(d))ϕ(d)
jd

(x(d)) = exp(iπidx(d)) exp(iπjdx(d)) = exp(iπ(jd + id)x(d)) = gid+jd
, (27)

which shows that the conditions for Theorem 3.1 is satisfied.

C Proof of Corollary 3.5 (use of Theorem 3.4 for Hilbert Space Basis Functions on a
Rectangular Domain)

Hilbert space bfs on a rectangular domain are defined according to (Solin & Särkkä, 2020)

ϕi(x) =
D∏

d=1

1√
Ld

sin
(

πid(xd + Ld)
2Ld

)
=

D∏
d=1

1√
Ld

cos
(

πid(xd + Ld)
2Ld

− π

2

)
, (28)

where the indices i = 1, . . . , MD has a one-to-one mapping with all possible combinations of the indices
i1, i2, . . . , iD, given that each index id = {1, . . . , D}.

This corresponds to defining the bfs according to Eq. (6a), with each entry of ϕ(d)(x) defined as

ϕ
(d)
id

(x) = 1√
Ld

sin
(

πid(x + Ld)
2L

)
= 1√

Ld
cos
(

πid(x + Ld)
2Ld

− π

2

)
,

where id ∈ {1, . . . , m}. Define a linear function θid
: R → R as

θid
(x) = πid(x + Ld)

2Ld
− π

2 .
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Hence, the bfs can be written as

ϕ(d)(x) = 1√
Ld

 cos(θ1)
...

cos(θM )

 .

The product ϕ(d)(x(d)
n )ϕ(d)(x(d)

n )⊤ is then given by

ϕ(d)(x(d)
n )ϕ(d)(x(d)

n )⊤ = 1
Ld

N∑
n=1

 cos(θ1) cos(θ1) . . . cos(θ1) cos(θM )
...

. . .
...

cos(θM ) cos(θM ) . . . cos(θM ) cos(θM )

 .

Then, note that
cos(u) cos(v) = cos(u + v) + cos(u − v)

2 . (29)

When we apply this to each entry in the matrix, we get that

ϕ(d)(x(d)
n )ϕ(d)(x(d)

n )⊤ =

1
2Ld

(
N∑

n=1

 cos(θ1 + θ1) . . . cos(θ1 + θM )
...

. . .
...

cos(θM + θ1) . . . cos(θM + θM )


︸ ︷︷ ︸

≜Gd,(1)

+
N∑

n=1

 cos(θ1 − θ1) . . . cos(θ1 − θM )
...

. . .
...

cos(θM − θ1) . . . cos(θM − θM )


︸ ︷︷ ︸

≜Gd,(−1)

)
,

where Gd,(1) and Gd,(−1) are a Hankel and a Toeplitz matrix, respectively. Then, since cos(θid
± θjd

) =
± sin(θid±jd

) ≜ g(id ± jd) = g(kd), there exists a function g(kd) that fulfills conditions for Theorem 3.4.

D Proof of Corollary 3.6 (use of Theorem 3.4 for Ordinary Fourier Features)

Ordinary Fourier features for separable kernels are defined slightly differently from Hilbert Space bfs (Hensman
et al., 2017), in that they consider both a sine and a cosine function for each considered frequency. The set of
bfs are given by

ϕ(d)(x) =
[
ϕ

(d)
sin(x) ϕ

(d)
cos(x)

]
=
[
sin(∆x) sin(2∆x) . . . sin(md∆) cos(∆x) cos(2∆x) . . . cos(md∆)

]
,

(30)

where ∆ determines the spacing of the Fourier features in the frequency domain. The precision matrix can
therefore be expressed as

Φ⊤Φ =
[
Φ⊤

sinΦsin (Φ⊤
cosΦsin)⊤

Φ⊤
cosΦsin Φ⊤

cosΦcos

]
, (31)

and we can apply Theorem 3.4 directly to entries Φ⊤
sinΦsin and Φ⊤

sinΦcos to prove that each of these have a
block Hankel–Toeplitz structure.

For the matrix Φ⊤
sinΦsin, the product ϕsin(x(d)

n )ϕsin(x(d)
n )⊤ can be expanded as

{ϕsin(x(d)
n )ϕsin(x(d)

n )⊤}i,j = sin(i∆x(d)) sin(j∆x(d)) = {G(d),(−1)}i,j + {G(d),(1)}i,j , (32)

where
{G(d),(1)}i,j = cos(i∆x(d) + j∆x(d)), (33)

and
{G(d),(−1)}i,j = cos(∆x(d) − ∆x(d)). (34)

The entry at row i and column j of G(d),(1) can therefore be defined by the function g(i + j) = − cos(i +
j)∆x(d), and the entry at row i and column j of G(d),(−1) is given by −g(i − j), satisfying the requirements
for Theorem 3.4.
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For the matrix Φ⊤
cosΦsin, the product ϕcos(x(d)

n )ϕsin(x(d)
n )⊤ can be expanded as

{ϕcos(x(d)
n )ϕsin(x(d)

n )⊤}i,j = cos(i∆x(d)) sin(j∆x(d)) = {G(d),(−1)}i,j + {G(d),(1)}i,j ; (35)

where
{G(d),(1)}i,j = sin(i∆x(d) + j∆x(d)), (36)

and
{G(d),(−1)}i,j = sin(i∆x(d) − j∆x(d)) (37)

The entry at row i and column j of G(d),(1) can therefore be defined by the function g(i + j) = − cos((i +
j)∆x(d)), and the entry at row i and column j of G(d),(−1) is given by −g(i − j), satisfying the requirements
for Theorem 3.4.

For the matrix Φ⊤
cosΦcos, the product ϕcos(x(d)

n )ϕcos(x(d)
n )⊤ can be expanded as

{ϕcos(x(d)
n )ϕcos(x(d)

n )⊤}i,j = cos(i∆x(d)) cos(j∆x(d)) = {G(d),(−1)}i,j + {G(d),(1)}i,j ; (38)

where
{G(d),(1)}i,j = cos(i∆x(d) + j∆x(d)), (39)

and
{G(d),(−1)}i,j = cos(i∆x(d) − j∆x(d)). (40)

The entry at row i and column j of G(d),(1) can therefore be defined by the function g(i+j) = cos((i+j)∆x(d)),
and the entry at row i and column j of G(d),(−1) is given by g(i−j). An important notion for this matrix which
makes it different from ΦsinΦ

⊤
sin and ΦcosΦ

⊤
sin is that this does not exactly satisfy the criteria for Theorem 3.4.

The difference is that for the criteria to be exactly satisfied, entry {G(d),(−1)}i,j would have to be equal to
−g(i − j) rather than g(i − j). However, by applying the proof of Theorem 3.4, but now noticing that the
entries of C = Φ⊤

cosΦcos can be expressed element-wise as

Ci,j =
2D∑

p=1

N∑
n=1

D∏
d=1

g(id + e(d)
p jd), (41)

which allows us to use the tensor γ as defined in Eq. (22) to express each entry of C according to

Ci,j =
2D∑
p

γ
i1+e

(1)
p

, . . . , iD + e(D)
p . (42)

E Overview of Hankel, Toeplitz, and D-level Block Hankel–Toeplitz Matrix Structures

An overview of Hankel, Toeplitz and D-level Block Hankel–Toeplitz matrix structures are given in Table A1.

F Experiment Details

More specific details of the numerical experiments are provided here with additional visualizations and
explanations.

F.1 U.S. Precipitation Data

The precipitation data is two-dimensional with N = 5776 data points first considered in (Vanhatalo & Vehtari,
2008). We perform regression in the lat/lon domain and first center the data (but do not perform scaling)
and use a simple squared-exponential kernel. We optimized the mll using GPJax (Pinder & Dodd, 2022)
for both the hgp as well as the standard gp for 100 iterations using Adam (Kingma & Adam, 2015). The
hyperparameters of the kernel and likelihood were initialized as l = 1, σ2

SE = 10 and σe = 1, where l is the
lengthscale, σ2

SE is the kernel variance and σe the noise standard deviation. Purely for visualization purposes,
the inputs were projected to a local coordinate system given by CRS 5070 which are used for all of the plots.
The original data is plotted in Fig. A7. The timing experiments were run using md = 5, 10, . . . , 65 bfs along
each dimension, totaling between M = 25 and M = 4225 bfs.
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Table A1: An overview of the matrix structure and tensor representation for Hankel, Toeplitz, block Hankel,
block Toeplitz and block Hankel matrices. The illustrations are examples of matrices with the property
described in each row. The illustrations contain one square for each matrix entry, where the color of the
square corresponds to the value.

Structure Definition Visual Domain

Hankel H =


γ1 γ2 . . . γm

γ2 γ3 . . . γm+1
...

...
. . .

...
γm γm+1 . . . γ2m−1

 γ ∈ RK

Toeplitz T =


γm . . . γ2 γ1

γm+1 . . . γ3 γ2
... . .

. ...
...

γ2m−1 . . . γm+1 γm

 γ ∈ RK

D-level block Han-
kel H(D) =


H

(D−1)
1 H

(D−1)
2 . . . H

(D−1)
mD

H
(D−1)
2 H

(D−1)
3 . . . H

(D−1)
mD+1

...
...

. . .
...

H
(D−1)
mD H

(D−1)
mD+1 . . . H

(D−1)
2mD−1

 γ ∈ RK1×...×KD

D-level block
Toeplitz T (D) =


T

(D−1)
mD . . . T

(D−1)
2 T

(D−1)
1

T
(D−1)
mD+1 . . . T

(D−1)
2 T

(D−1)
2

... . .
. ...

...

T
(D−1)
2mD−1 . . . T

(D−1)
mD+1 T

(D−1)
mD

 γ ∈ RK1×...×KD

D-level block
Hankel–Toeplitz,
level D is Hankel

G(D) =


G

(D−1)
1 G

(D−1)
2 . . . G

(D−1)
mD

G
(D−1)
2 G

(D−1)
3 . . . G

(D−1)
mD+1

...
...

. . .
...

G
(D−1)
mD G

(D−1)
mD+1 . . . G

(D−1)
2mD−1

 γ ∈ RK1×...×KD

D-level block
Hankel–Toeplitz,
level D is Toeplitz

G(D) =


G

(D−1)
mD . . . G

(D−1)
2 G

(D−1)
1

G
(D−1)
mD+1 . . . G

(D−1)
3 G

(D−1)
2

... . .
. ...

...

G
(D−1)
2mD−1 . . . G

(D−1)
mD+1 G

(D−1)
mD

 γ ∈ RK1×...×KD
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Figure A7: Raw data from precipitation data set. Each data point is visualized as a cross with color indicating
the precipitation. The data set contains mostly low frequency content with some high frequency content
apparent in the west coast as well as the south eastern parts.

F.2 Magnetic Field Mapping

The magnetic field data has N ≈ 1.4 million data points and is collected with an underwater vehicle outside
the Norwegian coast. The data used were collected by MARMINE/NTNU research cruise funded by the
Research Council of Norway (Norges Forskningsråd, NFR) Project No. 247626/O30 and associated industrial
partners. Ocean Floor Geophysics provided magnetometer that was used for magnetic data acquisition and
pre-processed the magnetic data. The data was later split into a training set and test set, at a roughly 50%
split. The nature of the data split is visualized in Fig. A8b. However, in practice, we selected the width
of the test squares and the training squares smaller than the one displayed in the illustration and they are
merely that big for visualization purposes. The illustration displays squares that are 0.01 latitudinal degrees
wide and 0.03 longitudinal degrees tall, corresponding to approximately 1 km in Cartesian coordinates in this
area. The split we actually used was squares which were 0.001 latitudinal degrees wide and 0.003 longitudinal
degrees tall, corresponding to approximately 100 m in both directions in Cartesian coordinates in that area.
gp regression with a squared exponential kernel is able to extrapolate for approximately one lengthscale,
but will not necessarily give a very informative prediction one or two lengthscales away from the nearest
measurement. Although we do not know the lengthscale that would optimize the likelihood of the data before
using training data to find it, we see from a zoomed-in version of Fig. 5b approximately how fast the magnetic
field is changing across the spatial dimension and use this to make a reasonable guess at the distance we
expect a well-tuned gp to be able to extrapolate the learned magnetic field. We then project the data into
a local coordinate system using WGS84 and perform regression in Cartesian coordinates. We center and
standardize the data with the mean and standard deviation of the training data. A squared-exponential
kernel was used and we optimize the mll in GPJax (Pinder & Dodd, 2022) using Adam (Kingma & Adam,
2015) for 100 iterations to find hyperparameters. The hyperparameters were initialized as l = 200 m, σ2

SE = 1
and σ2

y = 1. The resulting hyperparameters were lSE = 190, σ2
y = 0.0675, σ2

SE = 7.15.
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(a) Raw magnetic field measurements for the underwater
magnetic field data. The plotted data is subsampled to
100th of the data for visualization purposes.
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(b) Data divided into training and test set. Determin-
istically split to ensure ensure that the lengthscale is
captured properly in the training data.

Figure A8: Magnetic field training data and test data. The data is roughly 50/50 split between training and
test set. Both training and test data are normalized only by the mean and standard deviation of the training
data.
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