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ABSTRACT

This paper proposes Decomposed Retrieval of Constraints (DRoC), a novel frame-
work aimed at enhancing large language models (LLMs) in exploiting solvers to
tackle vehicle routing problems (VRPs) with intricate constraints. While LLMs
have shown promise in solving simple VRPs, their potential in addressing complex
VRP variants is still suppressed, due to the limited embedded internal knowledge
that is required to accurately reflect diverse VRP constraints. Our DRoC frame-
work mitigates the issue by integrating external knowledge via a novel retrieval-
augmented generation (RAG) approach. More specifically, the DRoC decomposes
VRP constraints, externally retrieves information relevant to each constraint, and
synergistically combines internal and external knowledge to benefit the program
generation for solving VRPs. The DRoC also allows LLMs to dynamically select
between RAG and self-debugging mechanisms, thereby optimizing program gener-
ation without the need for additional training. Experiments across 48 VRP variants
exhibit the superiority of DRoC, with significant improvements in the success rate
and optimality gap delivered by the generated programs. The DRoC framework has
the potential to elevate LLM performance in complex optimization tasks, fostering
the applicability of LLMs in industries such as transportation and logistics.

1 INTRODUCTION

Vehicle routing problems (VRPs) constitute a significant focus in operations research (OR), and
they are widely used to model decision problems in transportation, logistics, and various industrial
domains. Obtaining high-quality solutions for VRPs is usually difficult due to their NP-hardness.
The challenge of solving VRPs escalates substantially along with composite constraints that originate
from real-world scenarios. Different solvers such as OR-tools and Gurobi are commonly used to solve
OR problems like VRPs, due to their accessibility and generic modeling capabilities. Despite easy
applications in simple VRPs, for expert users who lack modelling and optimization skills or domain
knowledge, these solvers are hard to use for solving complex VRPs with composite constraints, since
1) there are few example codes/documentation to explain the modeling of various constraints, and
2) developing programs for complex VRPs necessitates expert-level domain knowledge. Hence, it
is challenging for non-experts to successfully apply the solvers to complex real-world operations
(AhmadiTeshnizi et al., 2024). Consequently, researchers have increasingly focused on automating
problem-solving procedures to mitigate dependence on domain and modelling expertise.

Large language models (LLMs) have demonstrated expert-level performance in several domains
(Almeida et al., 2024) and have recently been applied to optimization problems in OR (Xiao et al.,
2023; Zhang et al., 2024a). Their advanced reasoning and generation capabilities offer the potential
to automate modeling and programming tasks. Despite the success in solving simple optimization
problems, LLMs frequently face limitations when dealing with VRPs characterized by composite
constraints (see Figure 1, which benchmarks GPT-3.5-turbo on 48 VRPs used in this paper). This
challenge arises from LLMs’ bounded internal knowledge since the domain-specific corpus is
insufficient during training processes. As a result, LLMs exhibit deficiencies in generating programs
for VRPs, and they lack of capabilities of 1) the accurate formulation of some specific constraints,
and 2) the integration of heterogeneous constraints within a generated program. They pose significant
obstacles to the widespread application of LLMs in solving complex VRPs in real-world scenarios,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

particularly those distinguished by intricate constraints. For instance, state-of-the-art (SOTA) LLM-
based methods often fail to address complex problems due to incorrect constraint modeling with
coding errors (AhmadiTeshnizi et al., 2024). Therefore, we aim for the integration of external
knowledge into LLMs and target at improving constraint modeling in program generation for VRPs.

Figure 1: The evaluation of GPT-3.5-turbo on 48 VRP
variants with different numbers of composite constraints.
Performance declines with increased constraints.

Inspired by Chain-of-Thought (CoT) (Wei
et al., 2022) and Divide-and-Conquer
(DaC) paradigms (Zhang et al., 2024b),
which showcase that complex tasks can
be solved by an LLM through a decom-
posed manner, we propose a systematic
integration of external knowledge and de-
composition techniques to enhance LLMs
in program generation for VRP solvers.
Specifically, we introduce a novel retrieval-
augmented generation (RAG) framework,
termed Decomposed Retrieval of Con-
straint (DRoC), which enables LLMs to
more effectively address complex VRPs
without additional training. The DRoC
framework facilitates the incorporation of
external knowledge retrieved from docu-
mentation and example codes. Notably,
we perform constraint-based decomposi-
tion for the target VRP during the retrieval
process, which further enhances the correctness and constraint-specificity of generated programs. In
addition, our framework synergistically combines external and internal knowledge by empowering
LLMs to dynamically select between RAG and self-debugging mechanisms, continuously optimizing
the program generation process. We conducted comprehensive experiments across a set of 48 assorted
VRPs, demonstrating the efficacy of the DRoC framework.

2 RELATED WORK

2.1 LLMS FOR VRPS

The advent of LLMs has facilitated advanced approaches to VRPs. LLMs can embed different
problems by natural language and thereby enable a multi-task model for tackling simple OR problems,
including basic travelling salesman problem (TSP) and capacitated vehicle routing problem (CVRP)
(Jiang et al., 2024). The heuristics for addressing VRPs are automatically searched through LLMs
with the aid of evolutionary computation (EC) (Liu et al., 2024; Ye et al., 2024). However, these
methods typically aim to evolve pre-defined algorithm types such as guided local search, necessitating
much domain-specific knowledge and prerequisites. Also, they often entail a substantial number of
LLM invocations for evolution, e.g., for creating and maintaining a population of algorithms.

Alternative research focuses on the modeling and programming of OR problems including VRPs
based on the textual descriptions. These approaches aim to transform user queries into mathematical
formulations and executable code recognizable to external solvers (Zhang et al., 2024a; Tang et al.,
2024). Further, the introduction of multi-agent frameworks enables the coordination among a
structured sequence of LLM agents to perform tasks including formulation, programming, and
evaluation for a target problem (Xiao et al., 2023; AhmadiTeshnizi et al., 2024). Nonetheless, these
methods predominantly rely on the intrinsic knowledge embedded within LLMs, which limits their
efficacy in addressing problems beyond the scope of their training data. This paper delves into
directly generating programs for solving complex VRPs by integrating LLMs’ internal knowledge
and external references, without the process of mathematical model formulation.

NCO methods for VRPs. Beyond LLMs, quite a few approaches automate end-to-end solutions for
VRPs through deep (reinforcement) learning, collectively known as neural combinatorial optimization
(NCO) (Kool et al., 2019; Kim et al., 2022; Luo et al., 2023). The predominant NCO methods typically
employ Transformer-like neural architectures to process features (e.g., customer coordinates) in VRP
instances by encoders and construct VRP solutions (i.e., tours) by the decoder. While these methods
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bypass the reliance on manually designed heuristics to some extent, the heavy NCO models are often
trained separately on individual and simple VRP variants (Hottung et al., 2021; Zhou et al., 2023a;
Goh et al., 2024) with massive time cost. Moreover, the simplified constraint-handling strategies
hamper their applicability to complex VRPs with intricate constraints from real-world scenarios.

2.2 RETRIEVAL-AUGMENTED GENERATION

RAG approaches leverage the input sequence to retrieve relevant documents, which are subsequently
utilized as supplementary context while generating the target sequence. As a potent mechanism to
inject external knowledge into LLMs, the RAG is widely studied for language tasks, such as question
answering (QA) (Lewis et al., 2020; Jiang et al., 2023), dialog generation (Shen et al., 2023), and fact
verification (Wang et al., 2023). In addition, there are some efforts applying RAG in code generation,
which generally retrieve information from different sources, such as web content (Parvez et al., 2021),
fixed repository (Zhang et al., 2023), code documentation (Zhou et al., 2023b), or the combination of
multiple resources (Su et al., 2024). Interested readers can refer to (Gao et al., 2023) for a thorough
and systematic review. VRP solvers usually have elaborate documentation and example codes
contributed by the community, which can serve as external knowledge sources for RAG. However,
retrieving irrelevant documents is probably unhelpful and even harmful to performance (Yoran et al.,
2024). To address this, we decompose the retrieval for separate constraints and progressively refine
the documents, which enhances the performance of RAG in generating more accurate programs.

3 PRELIMINARIES

3.1 VEHICLE ROUTING PROBLEMS

The objective of typical VRPs is to determine a set of vehicle routes with the least cost. The basic
constraints are 1) each customer is visited exactly once by a single vehicle, and 2) all vehicles depart
from and return to one or more depots (Braekers et al., 2016). Suppose that there is one depot indexed
by 0, the commonly used objective for a VRP with m vehicles and n customers is formulated as

J = min
∑
k∈M

∑
i∈N

∑
j∈N

cijx
k
ij (1)

where M = {1, . . . ,m} and N = {0, 1, . . . , n} represent the set of vehicles and the locations of
depot and customers, respectively. cij is the traversal cost between customer i and j, and xk

ij is the
binary decision variable, indicating if vehicle k ∈ M traverses from i to j.

A typical set of constraints for VRPs is formulated as follows,∑
k∈M

∑
j∈N

xk
ij = 1 ∀i ∈ N, i ̸= 0 (2)

∑
j∈N

xk
0j = 1 ∀k ∈ M (3)

∑
i∈N

xk
i0 = 1 ∀k ∈ M (4)

∑
j∈N

xk
ij =

∑
j∈N

xk
ji ∀i ∈ N, k ∈ M (5)

where Eq. (2) ensures each customer is visited exactly once by only one vehicle; Eq. (3) and Eq. (4)
means vehicles depart from and return to the depot; Eq. (5) ensures the vehicle flow conservation.
Besides the above basic constraints, different VRP variants are characterized by various constraints
that reflect practical restrictions for vehicle routing in real life.

In this paper, we consider the following additional VRP constraints: 1) Vehicle capacity, limiting
the maximum load a vehicle can carry; 2) Distance (or duration) limit, restricting the total distance
or time a vehicle can travel; 3) Time windows, requiring vehicles to visit customers within specified
time intervals; 4) Multiple depots, allowing vehicles to start and end routes at different depots; 5)
Open route, where the start and end node of vehicles are not specified; 6) Prize collecting, optimizing
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routes by balancing the penalty of locations that are not visited; 7) Pickups and deliveries, managing
paired pickup and drop-off demands within a route; 8) Service time, accounting for the time spent in
serving customers at each location; 9) Resource constraints, limiting the number of vehicles that can
be loaded or unloaded at the depot simultaneously, potentially causing delays in departure or return.
VRP variants featured by combinations of the above constraints are elaborated in Appendix B.

Typically, a VRP, including its objective and constraints, is expected to be properly formulated as a
mathematical program by a human expert. Once the problem is accurately modeled, existing solvers,
such as Gurobi (Gurobi, 2024) and OR-Tools (Furnon & Perron, 2024), are then called to compute
solutions for the given VRP.

3.2 PROBLEM FORMULATION

We solve a code generation (or code completion) problem, without the mathematical model formula-
tion process as done in (Ramamonjison et al., 2022; Xiao et al., 2023; AhmadiTeshnizi et al., 2024).
In our approach, the input to an LLM consists of the name of a VRP variant and the corresponding
function signature, which specifies the function’s name, its parameters, and parameter types. With
each parameter in the function described by the docstring, the LLM is responsible for completing the
"solve" function by invoking a designated solver. We illustrate an example of the function signature
in Appendix B. Compared to using textual descriptions of problems as input (Huang et al., 2024), our
formulation offers better generalization for two reasons: 1) once a function is successfully generated,
it can be applied to all instances of that specific VRP variant, and 2) only describing basic docstrings
reduces the volume of input to an LLM and minimizes the inference effort required for prompting.

Formally, given an input q representing a VRP, an LLM P (y | q) generates a program y recognizable
to a solver, which can be applied to solve the VRP. We assume the availability of a collection of
documents D, where each document corresponds to a part of documentation or example codes for the
solver. During the RAG process, the generation is conditioned on a particular subset of documents
Ds ⊆ D. The marginalized generation probability over all Ds ⊆ D is given by,

P (y | q,D) =
∑

Ds⊆D

P (y | q,Ds) · P (Ds | q,D) (6)

As enumerating all possible subsets is computationally infeasible, we use a retriever R to select the
most probable subset of documents D̂s := argmaxDs⊆D PR(Ds | q,D), and thereby enables the
LLM to produce a program based on the most likely relevant documents:

P (y | q,D) ≈ P (y | q, D̂s) · P (D̂s | q,D) (7)

4 METHODOLOGY

Our approach aims to enable LLMs to invoke solvers more accurately for solving VRPs by decom-
posing the problems and integrating external knowledge. Solving VRPs using LLMs is characterized
by the following aspects: 1) Once the generated program is successfully verified on a single instance,
it can be applied to all problem instances of the same structure (e.g., the same types of constraints and
input parameters). This allows for convenient self-debugging on a simple instance using the LLM
and the code executor; 2) The structure of code for addressing different VRPs is mostly the same
when calling the same solvers, and the primary variation lies in how constraints are programmed
through the solver API functions. These characteristics of LLMs motivate us to perform decomposed
retrievals for specific constraints and enhance the quality of code generation. Therefore, we propose
the DRoC framework that elegantly amalgamates the two aforementioned points. The framework is
illustrated on the left subfigure of Figure 2, which is carried out in the following steps:

• Step 1: Direct code generation: An LLM as the first-time generator is prompted directly
by the input q (i.e., a VRP) to generate a program y, without external information retrieval.
Here the code generation purely depends on the internal knowledge of LLM, prompting it to
solve the problem by its inherent programming capability.

• Step 2: Code check: The program generated in Step 1 is run by a code executor, invoking a
solver to solve the VRP. The LLM will be provided with execution traceback if the code
contains errors, meaning an injection of external knowledge into the LLM.
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Figure 2: Overview of the proposed DRoC framework.

• Step 3: Routing: According to the execution traceback, an LLM as a router determines the
operation in Step 4, either self-debugging (I) or RAG (II).

• Step 4 (I): Self-debugging: An LLM as the self-debugger analyzes the execution traceback
(and errors) and attempts to refine the code, which produces a new version of the program.

• Step 4 (II): Decomposed retrieval: The retrieval is decomposed to refer LLM to external
documentation or example codes for seeking relevant documents on separate constraints of
the target VRP, so as to enhance the accuracy of code generation.

In the following subsections, we present the detailed process of the DRoC framework.

4.1 EXTERNAL KNOWLEDGE SOURCES

As VRP solvers generally have elaborate documentation and example codes contributed by the
community, we incorporate them into our external knowledge sources for retrieval rather than relying
solely on single-source data as is common in literature (Zhang et al., 2023; Zhou et al., 2023b).
For example, Google’s OR-Tools (Furnon & Perron, 2024) provides a detailed tutorial for solving
VRPs in its online documentation1 and has ample example codes in its open-source repository2. The
multi-source information can be more synergistic and actively utilized by the LLM during RAG.

In addition, we leverage feedback from the code executor (e.g., a Python interpreter) to empower
the LLM to precisely identify errors within the code. Unlike the retrieval of documents from other
knowledge sources (e.g., documentation and example codes), which typically requires conducting a
semantic similarity search in embedding space, obtaining execution feedback involves direct access
to information generated by the interpreter (Su et al., 2024), such as error information and traceback.

Using OR-Tools as an example, the external knowledge is briefly shown on the right subfigure
of Figure 2. We also investigate a dynamic knowledge source update via Bootstrap for potential
performance improvement, which is discussed in Appendix E. Note that external knowledge contains
both relevant and irrelevant data, so it is critical to design an effective and precise retrieval mechanism.

4.2 DECOMPOSED RETRIEVAL

Despite the availability of documentation and example codes for a solver, such as those for OR-tools,
generating accurate programs for a VRP (with composite constraints) is still challenging, due to
the difficulty in obtaining an appropriate context to guide LLMs via RAG. On one hand, external
knowledge sources typically contain exemplar problems with simple constraint structures and may

1https://developers.google.com/optimization/routing
2https://github.com/google/or-tools
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not directly provide documents relevant to the target VRP. On the other hand, the retrieval process
may overlook critical constraints if the problem is not properly decomposed. For example, using
keywords like "open capacitated vehicle routing problem" often results in retrieving documents
related to CVRP, neglecting the key constraint of the open route. This underscores the need for a more
nuanced approach to ensure that all relevant constraints are consistently considered. To overcome the
issue, we propose to progressively cope with the constraint in a decomposed manner. We break down
the retrieval into three sub-processes, including problem decomposition, single-constraint resolution,
and context merging. Specifically, we first decompose a target VRP into individual constraints and
then resolve these constraints by retrieving from external knowledge sources. Finally, the retrieved
documents are merged to form the context for the LLMs, which are used to guide the code generation.

Problem decomposition. To formulate queries for retrieval and handle constraints separately, we
decompose the target VRP based on its constraints. In addition to the general constraints formulated
by Eq. (2)∼(5), the VRP variants have their own specific constraints, e.g., the additional constraints
described in Section 3.1. Since these constraints are known (Elshaer & Awad, 2020), LLMs have
a basic understanding of their meaning. Therefore, we employ a decomposer (i.e., an LLM) to
split the constraints of the target VRP into individual items, with each represented by a keyword of
the corresponding constraint. As shown on the middle subfigure of Figure 2, C1, C2, . . ., Cw are
keywords of individual constraints. A VRP with w additional constraints produces w keywords.

Single-constraint resolution. The limited internal knowledge of LLMs hinders their ability to
accurately generate codes for specific constraints. We enhance them by retrieving relevant external
knowledge (i.e., documentation/example codes). We employ OpenAI’s embedding model to transform
external knowledge into embeddings for dense retrieval. The retriever uses the input "Python code of
Ci", i ∈ {1, . . . , w} as query Qi to conduct a semantic similarity search among all the embedded
documents. With the embedding Ed of each document d ∈ D and the embedding EQi

of the i-th query
text, we use squared Euclidean distance to measure the similarity between Qi and each document d:

Distance(Qi, d) =

E∑
j=1

(Ej
Qi

− Ej
d)

2 (8)

where E denotes the dimension of the embedding space. The top-k nearest documents are selected
by the retriever as the candidates for the corresponding constraint.

Given that a large amount of external knowledge may contain irrelevant information, we implement a
two-stage filter process to refine the candidate documents for each constraint. The first stage involves
invoking an LLM (i.e., the first-stage filter) to assess the relevance between the retrieved code and the
given constraint Ci. By doing so, the LLM is tasked with explicitly articulating the rationale behind
the identified documents as relevant, which refer to pertinent code snippets as supporting evidence.
The output is structured into three distinct fields: relevant, code snippet, and summary, with an
example provided in Appendix A.2. If multiple documents remain after the initial filtering, a second
stage is activated. An LLM (i.e., second-stage filter) is instructed to aggregate the documents and
their corresponding summaries, ultimately selecting the most relevant document Di for Ci through a
comparative analysis fulfilled by the LLM itself.

Context merging. After obtaining all the single-constraint contexts, i.e., the most relevant document
for each constraint, we simply concatenate them as the merged generation context, which is defined by
D̂s = {D1, . . . ,Dw}. The context as part of the input to the LLM is used to generate new programs.

4.3 IMPLEMENTATION DETAILS

Given the pipeline of DRoC illustrated in Figure 2, we allow the LLM to generate code up to I
iterations, meaning the process will terminate even if a successful program, which outputs feasible
solutions to the given VRP, is not obtained after I attempts. Specifically, if the first-time generator
fails to produce an appropriate program using only its internal knowledge, a router (i.e., an LLM)
is invoked to dynamically choose between two strategies for utilizing external knowledge: self-
debugging or decomposed retrieval. We employ two distinct prompt templates to guide the LLM’s
role in leveraging the retrieved external knowledge: the retrieval-augmented generator and the
retrieval-augmented debugger. More precisely, the retrieval-augmented generator is triggered only
once, in order to generate a completely new program based on the retrieved context, while the
retrieval-augmented debugger is invoked for the remaining I − 2 iterations to progressively refine

6
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Method (gpt-3.5-turbo) SR OG
Standard Prompting 29.17% 73.0%
CoT 29.17% 73.0%
PHP 29.17% 73.0%
Self-debug 25.00% 76.1%
Vanilla RAG 22.92% 77.3%
Self-RAG 20.83% 81.3%
DRoC (Ours) 35.42% 61.5%

Method (gpt-4o) SR OG
Standard Prompting 41.67% 61.8%
CoT 37.5% 65.1%
PHP 37.5% 65.9%
Self-debug 47.92% 51.1%
Vanilla RAG 41.67% 53.6%
Self-RAG 37.5% 66.4%
DRoC (Ours) 60.42% 43.9%

Table 1: Performance of different methods with gpt-3.5-turbo and gpt-4o. The reported values are
averaged over the results of 48 VRP variants.

the previously generated code by incorporating insights from external documents. In addition to the
RAG processes, the self-debugging operation can also be introduced if the LLM thinks the error can
be fixed by itself. This dynamic routing process ensures a more flexible and adaptive framework,
improving the likelihood of generating accurate solutions for complex problems.

The prompts for all components in our framework are provided in Appendix A.1, including the
first-time generator, router, self-debugger, decomposer, filters, retrieval-augmented generator, and
retrieval-augmented debugger. These prompts detail the instructions given to the LLM in the pipeline.

5 EXPERIMENTS

To verify the effectiveness of DRoC, we conduct extensive experiments. We evaluate the DRoC
and other baselines on 48 variants of VRPs by combining different constraints. These VRP variants
are elaborated in Appendix B. In principle, the DRoC framework can work with any LLMs or
optimization solvers. In our experiments, we mainly use ChatGPT (gpt-4o-2024-05-13 and gpt-3.5-
turbo-0125) as the chosen LLM and OR-tools as the optimization solver. In addition, we provide
experimental studies on other proprietary and open-source LLMs (i.e., claude3.5 and llama3.1), and
another widely used solver (i.e., Gurobi), to show the generalizability of DRoC. We set the number
of retrieved documents k = 3 and the number of attempts I = 4. We use the same parameter values
for k and I across all baselines in our experiments to ensure a fair comparison. The best result among
3 independent runs is reported for all the methods. We use the following two performance metrics:

• Success Rate (SR): This metric is defined as SR = Vs

Vt
, where Vt is the total number of

generated programs for different VRP variants, and Vs represents the number of successful
programs that result in a feasible solution for a given VRP variant.

• Optimality Gap (OG): The optimality gap is calculated as OG = 1
Vt

∑Vt

i=1
Oi−O∗

i

O∗
i

, where
Oi is the objective value produced by the generated program for the i-th VRP variant, and
O∗

i is the corresponding optimal solution. In case the produced program is unsuccessful, the
corresponding OG score is set to 1.

5.1 BASELINES

We benchmark DRoC against 6 baselines in the main results: Standard Prompting, Chain-of-Thought
(Wei et al., 2022), Progressive-Hint Prompting (PHP) (Zheng et al., 2023), Self-debug (Chen et al.,
2024), Vanilla RAG (VRAG), and Self-RAG (Asai et al., 2024). In addition, we compare DRoC with
two recent works, Evolution of Heuristics (EoH) (Liu et al., 2024) and Reflective Evolution (ReEvo)
(Ye et al., 2024), which use LLMs to improve heuristics via evolutionary computation. We name
them LLM+EC methods. More details of the baselines are elaborated in Appendix C.

5.2 OVERALL PERFORMANCE

Table 1 presents the performance of the proposed DRoC and 6 baselines in terms of SR and OG. The
results show that although applying a more powerful LLM (i.e., gpt-4o) does improve the performance
of all tested methods, all 6 baselines were able to produce successful programs only for less than 50%
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(a) (b)

Figure 3: Performance of DRoC and Standard Prompting with different LLMs: (a) SR metric (b) OG
metric. The DRoC is generally applicable to varied LLMs, showing clear performance enhancements.

of tested VRP variants. This demonstrates the difficulty in solving complex NP-hard problems for
SOTA LLMs. We observe that the methods that either rely solely on the internal knowledge of LLMs
(i.e., Standard Prompting, CoT, and PHP) or only combine execution feedback (i.e., Self-debug) do
not result in good performance. Meanwhile, the performance boost from VRAG is minimal, and
Self-RAG actually leads to performance degradation, suggesting that inappropriate or ineffective
retrieval methods fail to provide significant assistance in solving VRPs.

In comparison, the proposed approach achieves the best results in both generating correct programs
and obtaining optimal solutions. Compared to the standard prompting approach, DRoC successfully
solves 18.75% more VRP variants by gpt-4o. Moreover, it produces higher-quality solutions with
much lower optimality gaps. More illustrative results of the generated solutions are provided in
Appendix D, where we present visual plots of the solutions for various VRP instances. Additionally,
we compare the incorrect and correct API-calling code generated before and after applying our
method. These results emphasize the need for more refined retrieval techniques and integration
strategies, as in DRoC, to fully leverage external knowledge in complex problem-solving scenarios.

5.3 EVALUATION WITH DIFFERENT LLMS

To demonstrate that the DRoC is a general tool for enhancing VRP-solving capabilities with LLMs,
we also evaluate its performance with the other two LLMs: claude-3.5-sonnet-20240620 and llama3.1-
70b. The results are presented in Figure 3. We observe that even advanced LLMs, such as gpt-4o and
claude-3.5-sonnet, still struggle to correctly solve VRPs. However, the proposed DRoC consistently
improves the performance of various LLMs, indicating that DRoC can function as a generic tool to
enhance the VRP-solving abilities of LLMs in spite of their different architectures.

5.4 EVALUATION WITH GUROBI SOLVER

LLM SR OG
gpt-4o (Standard Prompting) 10.42% 90.9%

claude-3.5-sonnet (Standard Prompting) 29.17% 75.3%
gpt-4o (DRoC) 39.58% 62.3%

claude-3.5-sonnet (DRoC) 43.75% 59.4%

Table 2: The performance evaluated on Gurobi solver with and without DRoC.

We show DRoC can embed different optimization solvers such as the popular Gurobi solver. Different
from OR-tools, which solves VRPs by simply calling the APIs, the use of Gurobi for solving a
particular VRP variant requires us to first build the corresponding Mixed-Integer Programming (MIP)
model, making it a more difficult task. In the experiments, we use the programs of 10 VRP variants,
which only contains 0 or 1 additional constraint, as the external knowledge source, and allow the
DRoC to retrieve from these simple VRP solutions. We evaluate the performance on advanced LLMs,
i.e., gpt-4o and claude-3.5-sonnet. The results (see Table 2) show that DRoC remains effective
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when working with the Gurobi solver. While we only use VRPs with single constraints as external
knowledge, the LLMs can solve the 48 VRP variants with more composite constraints, indicating
that complex tasks can be fulfilled by our decomposition-based method.

5.5 ABLATION STUDY

We conduct ablation studies for both OR-tools and Gurobi for a more comprehensive comparison.
The studies are based on gpt-4o, which has showcased good performance under different settings.

Method OR-tools Gurobi
SR OG SR OG

DRoC (Full) 60.42% 43.9% 39.58% 63.5%
w/o filter 56.25% 47.8% 27.08% 75.5%
w/o DR 43.75% 59.9% 16.67% 88.12%
w/o router 56.25% 47.8% 35.42% 66.04%

Table 3: The results of ablation studies.

Ablation study on two-satge filter. We first evaluate the necessity of the filter process, which refines
the retrieved documents and reduces extraneous information. As shown in Table 3, we observe a
slight drop in model performance when potentially irrelevant documents are not filtered out. This
outcome is similar to the poor performance observed with VRAG shown in Figure1, suggesting that
the quality and relevance of the context provided during generation significantly impact the final
results. The two-stage filter ensures that only pertinent information is used, which is crucial for
optimizing VRP-solving effectiveness.

Ablation study on decomposed retrieval (DR). In order to evaluate the necessity of DR, we replace
it by direct retrieval of documents, which takes "Python code of {the name of the VRP}" as the
query, aiming at retrieving code that is mostly closed to the target VRP variant. This replacement is
applied whenever the retriever is called, and the final context is obtained by randomly choosing from
top-k retrieved documents. Similarly, there is also a performance drop for both OR-tools and Gurobi,
suggesting that LLM can learn to solve complex VRPs from single-constraint resolutions in the DR.

Ablation study on router. We replace the router with a random routing strategy, which randomly
route the workflow to the self-debugger or retrieval-augmented debugger. There is also a slight
drop in model performance without the router (proposed in this paper), indicating that the selection
between execution-based and documentation-based external knowledge is also important.

5.6 COMPARISON WITH LLM+EC METHODS

Figure 4: Comparison between LLM+EC methods
(EoH and ReEvo) and DRoC.

LLMs can be used to evolve heuristics for solv-
ing VRPs, as shown in the literature. We con-
ducted experiments to find out how such an ap-
proach performs in comparison to our approach
which is based on VRP solvers. We take the
Prize Collecting Travelling Salesman Problem
(PCTSP) as a demonstration problem, which
ChatGPT cannot originally solve due to the in-
correct calls of solver API (see Appendix D),
to conduct a comparison study between SOTA
LLM+EC methods and the proposed DRoC.

We utilize EoH and ReEvo to evolve the ant
colony algorithm, as detailed in (Ye et al., 2024),
and compare the results of these evolutionary ap-
proaches. Specifically, we record both the best
objective values and the number of tokens con-
sumed by the LLM for EoH and ReEvo during
iteration-based evolution. As shown in Figure 4,
compared to DRoC, the LLM+EC methods require a substantial number of tokens (e.g., over 0.1M)
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to evolve towards a solution which significantly increases computational costs and potential carbon
emissions. Notably, the best heuristics for EoH and ReEvo achieve objective values of 6.436 and
6.984, respectively, while DRoC with OR-tools yield a superior result of 6.352. The findings suggest
that our DRoC framework is more efficient and competitive than EC methods, providing greater
enhancement of the LLM.

5.7 SENSITIVITY ANALYSIS

(a) (b) (c)

Figure 5: The results for sensitivity analysis on (a) I; (b) k; (c) temperature.

We study how three key parameters influence the performance of DRoC: the maximum number of
generation I , the number of retrieved documents k, and the temperature of the LLM. The analysis is
also based on gpt-4o, and the results are shown in Figure 5.

Sensitivity analysis on I . The performance of DRoC generally improves with the increase of I , but
the improvement turns marginal from 4 to 5. Therefore we set I = 4 across all our main experiments.

Sensitivity analysis on k. The different k seems to have less influence on the performance of DRoC
than I . The performance is slightly improved when varying k from 1 to 3, mainly because more
comprehensive contents are retrieved with a larger k. After that, the performance tends to be stable
because the generation context can be relatively unchanged since redundant documents are filtered
out by the two-stage filter process.

Sensitivity analysis on temperature. The performance of DRoC remains relatively stable across
different temperature parameters. This indicates that the combination of iterative refinement and tar-
geted document selection helps maintain consistent results, regardless of variations in the randomness
of generation influenced by the temperature configuration.

5.8 BOOTSTRAP-BASED OPTIMIZATION

As the LLMs can solve more problems utilizing external knowledge, they can also take the correct
generation as part of the external knowledge, making it possible to improve the performance through
Bootstrap. We also analyze the impact of such a Bootstrap mechanism and find that the integration of
LLM generations and original external knowledge (publicly accessible documentation and codes) can
also boost the accuracy to some extent. The details and result are elaborated in Appendix E, and we
find that more than 70% VRP variants can be resolved after introducing the Bootstrap mechanism.

6 CONCLUSIONS

In this paper, we propose DRoC, an effective framework designed for solving VRPs with complex
constraints, utilizing LLMs and optimization solvers. By integrating external knowledge through
retrieval-augmented generation and decomposing constraints for more accurate retrieval, the DRoC
significantly improves LLM performance across a wide range of VRP variants. For instance, it
improves the success rate of gpt-4o from 41.67% to 60.42%. In the future, we plan to expand our
focus to solving other OR problems beyond VRPs, with the goal of making DRoC a more generalized
method for automating the OR problem-solving process. We will also introduce more external
knowledge sources for better RAG performance and integrate modeling function into our framework,
further enhancing the performance and making the pipeline more automatic.
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A PROMPT AND OUTPUT TEMPLATES

A.1 PROMPTS

Component Prompt Skeleton
First-time gen-
erator

You are an expert in Python programming for operations research. You are very
good at calling solver in Python and solving problems.
Respond with the syntactically correct code for solving a problem using solver.
Make sure you follow these rules:
1. Read the template. First understand the meaning of the parameters in ’solve’
function, and then complete the code inside the function.
2. Ensure all parameters in the template are used in the function.
3. Do not give additional examples or define main function for testing.
4. Return the objective value of the problem by the ’solve’ function.
5. Ensure any code you provide can be executed with all required imports and
variables defined.
Template: {code_example}
Structure your answer with a description of the code solution, and then list the
imports, and finally list the functioning code block.

Router Your task is to determine how to refine the incorrect Python code, which is
produced by another programmer.
Here is the code: <prep_code>
The code is about solving a problem based on solver, and there is the error
information while running the code:
Error message: <message>
There are several tools that can be called, which can be one of the following:
(1) retrieval_augmented_debug[input]: Retrieve code examples from a repos-
itory, and then refine the current program drawing upon the retrieved codes.
Prioritize it when the error is caused by incorrect use of solver API.
(2) self_debug[input]: Call a pretrained LLM like yourself. Prioritize it when
you are confident in fixing the error yourself, e.g., when the error of the code is
caused by syntax error or wrong import.
Return "1" if you think you should use tool (1), otherwise return "2". Do not
return other things.

Self-debugger You are an expert in Python programming for operations research by calling
solver. Now your responsibility is to debug the code snippet with errors.
The code snippet with bug is as <prep_code>. Here is the error message of the
code: <message>. You can first reason about the error, and finally refine the
code and return the whole fixed function. Ensure any code you provide can
be executed with all required imports and variables defined. Remember, the
final solution should be returned by the ’solve’ function. Do not use other name
for the function and do not give example usage of the function. Structure the
refined solution by firstly giving the reason of the error and the strategy for
fixing it. Then list the imports. Finally list the functioning code block and solve
the problem with ’solve’ function.

Decomposer You will extract the keywords of a vehicle routing problem (VRP) for me. I
give you the name of a VRP and you produce the keywords according to its
constraints. Structure your answer with a list of keywords inside "<>" and use
commas to separate different keywords. Do not return other things.
For example, the output of "Capacitated Vehicle Routing Problem with Time
Windows and Multiple Depots (CVRPTWMD)" should be <Capacitated, Time
Windows, Multiple Depots>, and the output of "Prize Collecting Travelling
Salesman Problem (PCTSP)" should be <Prize Collecting>.
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First-stage fil-
ter

You are an expert in Python programming and solver for vehicle routing prob-
lem.
I will give you a retrieved documents potentially related to keyword, and you
will firstly assess if the document includes Python code to program keyword. If
so, you should explain how the code address the constraint of keyword. Here is
the retrieved document:
{context}
If the document contains Python code related to keyword, grade it as relevant.
After that, extract the code snippet in the document related to keyword. Finally,
produce an explanation on how to program the constraint of keyword, and your
goal is to make other programmers know how to do that. Structure your answer
with the binary score ’yes’ or ’no’ to indicate whether the document is relevant,
and then list the related code snippet, and finally give the summary.
If the document is not related, just return ’no’ for the binary score, and nothing
for the code snippet and the summary.

Second-stage
filter

You are an expert in Python programming and solver for vehicle routing problem
(VRP).
I will give you several retrieved documents (codes) and their explanations
potentially related to keyword, and you should assess which context is the most
relevant one and with minimal redundant information.
Here are the documents, which are seperated by ’====================’:
{contexts}
Return the index of the most relevant document and do not return anything else.
For example, if you think the second document is the most relevant one, just
return 2. Please strictly return integer index following the above instruction.

Retrieval-
augmented
generator

You are an expert in Python programming for operations research and combi-
natorial optimization. You are good at calling <solver> in Python and solving
problems.
Respond with the syntactically correct code for solving a problem using solver.
Make sure you follow these rules: 1. Read the template. First understand the
meaning of the parameters in ’solve’ function, and then complete the code inside
the function.
2. The context provides example codes of addressing each constraint of {prob-
lem} by {solver}. Learn to model each constraint and solve the problem
accordingly.
3. Do not give additional examples or define main function for testing. 4. Return
the objective value of the problem by the ’solve’ function. 5. Ensure any code
you provide can be executed with all required imports and variables defined.
Template: {code_example}
Context: {context}
Structure your answer with a description of the code solution, and then list the
imports, and finally list the functioning code block.

Retrieval-
augmented
dubugger

You are responsible for refining the code with errors, which tries to solve
problem by calling solver in Python.
The code snippet with the bug is as <prep_code>.
Here is the error message of the code: <message>.
Make sure you follow these rules: 1. You can first reason about the error, and
then refine the code and return the whole fixed function.
2. The context provides examples of solving problems with different constraints,
referring to the relevant parts and modifying the code accordingly: <context>.
3. Do not give additional examples or define the main function for testing.
4. Return the objective value of the problem by the ’solve’ function.
5. Ensure any code you provide can be executed with all required imports and
variables defined.
Structure your answer with a description of the code solution, then list the
imports, and finally list the functioning code block.
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A.2 OUTPUT EXAMPLE OF THE FILTER

relevance="yes",
code_snippet="# Add Capacity constraint\n
def demand_callback(from_index):\n
# Convert from routing variable Index to demands NodeIndex\n
from_node = manager.IndexToNode(from_index)\n
return demands[from_node ]\n\n
# Register the demand callback with the routing model\n
demand_callback_index = routing.RegisterUnaryTransitCallback(
demand_callback)\n routing.AddDimensionWithVehicleCapacity(
demand_callback_index , 0, # null capacity slack\n
vehicle_capacities , # vehicle maximum capacities\n True , # start
cumul to zero\n 'Capacity ')",
summary="To program the Capacitated constraint in the Capacitated
Vehicle Routing Problem with Distance Limit (CVRPL) using OR-tools in
Python , you need to define a demand callback function that maps the

routing variable Index to demands NodeIndex. This function is
registered as a unary transit callback with the routing model. Then ,
the capacity constraint is added using the
AddDimensionWithVehicleCapacity method , specifying the demand
callback index , null capacity slack , vehicle maximum capacities ,
start cumul to zero , and the dimension name 'Capacity '. This ensures
that the vehicle capacities are respected during the routing
optimization process."

Figure 6: The example of the output of the first-stage filter.

B VRP VARIANTS

def solve(time_matrix: list , time_windows: list , demands: list ,
vehicle_capacities: list , num_vehicles: int ,
starts: list , ends: list):

"""
Args:

time_matrix: contains the integer travel times between locations
time_windows: the list of tuples for time windows of the

customers
demands: the list of integer customer demands
vehicle_capacities: the capacity of each vehicle
num_vehicles: the number of the vehicle
starts: the index of the starting depots for vehicles
ends: the index of the ending depots for vehicles

Returns:
obj: a number representing the objective value of the solution

"""
obj = -1
return obj

Figure 7: Function template of CVRPTWMD.

The VRP variants studied in this paper are composed of different additional constraints mentioned
in Section 3.1, and they are shown in Table 5. For each VRP, we use a simple instance to evaluate
the performance of different baselines and our DRoC. The optimal solutions of the instances are
mainly obtained by hybrid genetic search (HGS) (Wouda et al., 2024). We also use OR-tools with
search time limit as 100s to determine the optimal solutions when the used HGS solver does not
support solving the corresponding VRPs. To make the instances more informative, we randomly use
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a distance matrix or a time matrix to represent the graph of the VRP. Therefore, we impose distance
limits on those with distance matrix and duration limit on those with time matrix.

Different from previous studies (Zhang et al., 2024; Huang et al., 2024), which try to solve OR
problems with natural language description, we just take the name of the problem and the function
signature as input. We take the function signature of the CVRPTWMD as an example, which is
shown in Figure 7.

In this case, the LLM needs to try to understand the meaning of each parameter and generate programs
accordingly. Once a program for a VRP variant is produced successfully, it can be used in all instances
of the same VRP. Compared to natural language-based description, which specifies the data of the
problem, this method is more generalizable.

Table 5: The studied 48 VRP variants with nine additional constraints.

Vehicle
Capacity

Distance
Limit

Time
Window

Multiple
Depots

Open
Route

Prize
Collecting

Pickup and
Delivery

Service
Time

Resource
Constraint

TSP
TSPTW ✓
TSPTWS ✓ ✓
VRP
VRPL ✓
VRPMD ✓
VRPS ✓
VRPSL ✓ ✓
VRPTW ✓
VRPTWL ✓ ✓
VRPTWMD ✓ ✓
VRPTWS ✓ ✓
VRPTWMDL ✓ ✓ ✓
VRPTWSL ✓ ✓ ✓
VRPTWMRC ✓ ✓
VRPTWMRCL ✓ ✓ ✓
CVRP ✓
CVRPL ✓ ✓
CVRPTW ✓ ✓
CVRPMD ✓ ✓
CVRPTWL ✓ ✓ ✓
CVRPMDL ✓ ✓ ✓
CVRPTWMD ✓ ✓ ✓
CVRPTWMDL ✓ ✓ ✓ ✓
CVRPTWRC ✓ ✓ ✓
CVRPTWRCL ✓ ✓ ✓ ✓
PCTSP ✓
PCTSPTW ✓ ✓
PCVRP ✓
PCVRPTW ✓ ✓
PCVRPMD ✓ ✓
PCVRPTWMD ✓ ✓ ✓
OVRP ✓
OVRPL ✓ ✓
OVRPTW ✓ ✓
OCVRP ✓ ✓
OCVRPL ✓ ✓ ✓
OCVRPTW ✓ ✓ ✓
PDP ✓
PDPL ✓ ✓
PDPTW ✓ ✓
PDPMD ✓ ✓
PDPTWL ✓ ✓ ✓
PDPTWMD ✓ ✓ ✓
PDPSL ✓ ✓ ✓
PDPTWS ✓ ✓ ✓
PDPTWSL ✓ ✓ ✓ ✓
PDPTWMDL ✓ ✓ ✓ ✓

C BASELINES

In this section, we elaborate on the implementations of the baselines involved in the experiments:
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Standard Prompting: it refers to using the prompt skeleton of the first-time generator in Section A.1.
The generator is called up to I times independently without the injection of any external knowledge.

Chain-of-Thought: similar to the CoT baseline in (Xiao et al., 2023), we add the sentence "Let’s
think step by step" in the standard prompting to guide the model’s thought process, aiming at using
the internal knowledge of the LLMs for reasoning as much as possible.

Progressive-Hint Prompting: similar to the PHP baseline in (Xiao et al., 2023), we produce an
initial program and then use previously generations as hints to progressively guide the LLM toward
the correct solutions. It is fulfilled by verifying if the current response is the same as the previous one.

Self-debug: it is based on the method proposed by Chen et al. (2024), using the error information
and corresponding traceback produced by the executor to teach the LLM conduct debug without any
human feedback on the code correctness. Specifically, it follows the prompt of the self-debugger in
Section A.1. The number of generations is also up to I .

Vanilla RAG: The VRAG approach retrieves relevant context before each round of program genera-
tion. In the first iteration, the query is set as "Python code of the name of the VRP." For subsequent
iterations, the query consists of the generated code from the previous iteration to retrieve the most
relevant documents. During program generation, the top-k retrieved documents are included as part
of the input to guide the model in generating a more accurate solution.

Self-RAG: Originally proposed by Asai et al. (2024), we adapt Self-RAG to the VRP tasks. Similar
to VRAG, a retriever is used to obtain relevant documents, followed by a relevance grader to assess
whether each retrieved document is pertinent to the target VRP. We implement this process using the
first-stage filtering mechanism from our DRoC framework. The remaining relevant documents are
then used in parallel to generate solutions. Each generated program is executed until one can run
successfully. Additionally, the code generated in previous iterations is used as a query for further
retrieval, continuing until the maximum number of generations I is reached.

EoH: EoH evolves the codes of heuristics by diverse prompt strategies. We basically follow the
configuration in the original paper (Liu et al., 2024). We use 30 populations at the initial stage and 10
populations for each iteration. We allow for at most 300 times of evaluations on the PCTSP instances.

ReEvo: ReEvo uses the reflection mechanism to progressively evolve the heuristics. We follow the
default settings in Ye et al. (2024) with also up to 300 evaluations on the instances.

For the comparison study of EoH and ReEvo, The evolution is conducted on 10 PCTSP instances
with 50 nodes, which are randomly sampled from a unit square. Let the distance between node i and
the depot be di, and dmax = maxi(di), the prize of node i is set to prizei =

1+⌊99·r⌋
4maxi(1+⌊99·r⌋) where

r = di

dmax
. The penalty values for unvisited nodes are set the same as the prizes.

D GENERATED SOLUTIONS

(a) (b) (c) (d)

Figure 8: Example solutions generated by DRoC. (a) CVRPTWRC solved by OR-tools; (b) PCVRP
solved by OR-tools; (c) PDPSL solved by Gurobi; (4) VRPTWL solved by Gurobi.

We present several examples of solutions that our DRoC method can achieve, which the standard
approach fails to generate, as illustrated in Figure 8. These VRPs often involve multiple constraints
that pose significant challenges for LLMs to address effectively.
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# Define the prize collection callback
def prize_callback(from_index):

from_node = manager.IndexToNode(from_index)
return prizes[from_node]

prize_callback_index = routing.RegisterUnaryTransitCallback(
prize_callback)

routing.AddDimensionWithVehicleCapacity(
prize_callback_index ,
0, # no slack
[sum(prizes)] * num_vehicle , # vehicle maximum prize capacity
True , # start cumul to zero
'Prize ')

# Setting the objective to maximize the prize collection
prize_dimension = routing.GetDimensionOrDie('Prize ')
for vehicle_id in range(num_vehicle):

routing.SetFixedCostOfVehicle(-sum(prizes), vehicle_id)

(a) Generated code snippet by Standard Prompting. (Incorrect)

# Allow to drop nodes.
for node in range(1, len(distance_matrix)):

routing.AddDisjunction ([ manager.NodeToIndex(node)], prizes[node])

(b) Generated code snippet by DRoC. (Correct)

Figure 9: Comparison of code snippets for Prize Collecting constraint.

We use gpt-4o to invoke OR-tools for solving VRPs with the Prize Collecting constraint. The primary
distinction between the Standard Prompting and DRoC methods lies in how they handle the constraint,
with the former failing to produce a correct solution, while the latter succeeds. As shown in Figure 9,
the programming approaches for the Prize Collecting constraint differ significantly. DRoC enables
vehicles to drop nodes, effectively accommodating the constraint. In contrast, the standard method
produces meaningless content, leading to hallucinations during the generation.

E BOOTSTRAP-BASED OPTIMIZATION

Figure 10: Performance of the DRoC-BBO.

We have introduced DRoC using static external
knowledge sources. However, as LLMs, pow-
ered by DRoC, begin generating more accurate
solutions, we can dynamically update the exter-
nal knowledge by incorporating these generated
solutions. Specifically, we first solve all solvable
VRP variants using the static DRoC approach,
and subsequently embed all the generated pro-
grams, which have been executed successfully,
to the knowledge base. We create a new re-
triever for these LLM-generated solutions and
ensemble it with the retriever of other knowl-
edge. Following this, we initiate a new round
of generation aimed at solving the previously
unsolved problems. By leveraging the solutions
generated by the LLMs, we enhance the model’s
performance in a Bootstrap-based manner, a process we term DRoC with Bootstrap-based optimiza-
tion (DRoC-BBO). This iterative approach allows the LLM to improve progressively by utilizing
its own outputs as external knowledge, thereby improving its problem-solving capabilities over
successive iterations.
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Experimentally, the DRoC-BBO can slightly improve the performance with more rounds of generation
with updated knowledge sources, which is shown in Figure 10. This indicates that the LLMs can also
be enhanced through Bootstrap for solving optimization problems like VRP.
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