
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DROC: ELEVATING LARGE LANGUAGE MODELS FOR
COMPLEX VEHICLE ROUTING VIA DECOMPOSED RE-
TRIEVAL OF CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes Decomposed Retrieval of Constraints (DRoC), a novel frame-
work aimed at enhancing large language models (LLMs) in exploiting solvers to
tackle vehicle routing problems (VRPs) with intricate constraints. While LLMs
have shown promise in solving simple VRPs, their potential in addressing complex
VRP variants is still suppressed, due to the limited embedded internal knowledge
that is required to accurately reflect diverse VRP constraints. Our DRoC frame-
work mitigates the issue by integrating external knowledge via a novel retrieval-
augmented generation (RAG) approach. More specifically, the DRoC decomposes
VRP constraints, externally retrieves information relevant to each constraint, and
synergistically combines internal and external knowledge to benefit the program
generation for solving VRPs. The DRoC also allows LLMs to dynamically select
between RAG and self-debugging mechanisms, thereby optimizing program gener-
ation without the need for additional training. Experiments across 48 VRP variants
exhibit the superiority of DRoC, with significant improvements in the success rate
and optimality gap delivered by the generated programs. The DRoC framework has
the potential to elevate LLM performance in complex optimization tasks, fostering
the applicability of LLMs in industries such as transportation and logistics.

1 INTRODUCTION

Vehicle routing problems (VRPs) constitute a significant focus in operations research (OR), and
they are widely used to model decision problems in transportation, logistics, and various industrial
domains. Obtaining high-quality solutions for VRPs is usually difficult due to their NP-hardness.
The challenge of solving VRPs escalates substantially along with composite constraints that originate
from real-world scenarios. Different solvers such as OR-tools and Gurobi are commonly used to solve
OR problems like VRPs, due to their accessibility and generic modeling capabilities. Despite easy
applications in simple VRPs, for expert users who lack modelling and optimization skills or domain
knowledge, these solvers are hard to use for solving complex VRPs with composite constraints, since
1) there are few example codes/documentation to explain the modeling of various constraints, and
2) developing programs for complex VRPs necessitates expert-level domain knowledge. Hence, it
is challenging for non-experts to successfully apply the solvers to complex real-world operations
(AhmadiTeshnizi et al., 2024). Consequently, researchers have increasingly focused on automating
problem-solving procedures to mitigate dependence on domain and modelling expertise.

Large language models (LLMs) have demonstrated expert-level performance in several domains
(Almeida et al., 2024) and have recently been applied to optimization problems in OR (Xiao et al.,
2023; Zhang et al., 2024a). Their advanced reasoning and generation capabilities offer the potential
to automate modeling and programming tasks. Despite the success in solving simple optimization
problems, LLMs frequently face limitations when dealing with VRPs characterized by composite
constraints (see Figure 1, which benchmarks GPT-3.5-turbo on 48 VRPs used in this paper). This
challenge arises from LLMs’ bounded internal knowledge since the domain-specific corpus is
insufficient during training processes. As a result, LLMs exhibit deficiencies in generating programs
for VRPs, and they lack of capabilities of 1) the accurate formulation of some specific constraints,
and 2) the integration of heterogeneous constraints within a generated program. They pose significant
obstacles to the widespread application of LLMs in solving complex VRPs in real-world scenarios,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

particularly those distinguished by intricate constraints. For instance, state-of-the-art (SOTA) LLM-
based methods often fail to address complex problems due to incorrect constraint modeling with
coding errors (AhmadiTeshnizi et al., 2024). Therefore, we aim for the integration of external
knowledge into LLMs and target at improving constraint modeling in program generation for VRPs.

Figure 1: The evaluation of GPT-3.5-turbo on 48 VRP
variants with different numbers of composite constraints.
Performance declines with increased constraints.

Inspired by Chain-of-Thought (CoT) (Wei
et al., 2022) and Divide-and-Conquer
(DaC) paradigms (Zhang et al., 2024b),
which showcase that complex tasks can
be solved by an LLM through a decom-
posed manner, we propose a systematic
integration of external knowledge and de-
composition techniques to enhance LLMs
in program generation for VRP solvers.
Specifically, we introduce a novel retrieval-
augmented generation (RAG) framework,
termed Decomposed Retrieval of Con-
straint (DRoC), which enables LLMs to
more effectively address complex VRPs
without additional training. The DRoC
framework facilitates the incorporation of
external knowledge retrieved from docu-
mentation and example codes. Notably,
we perform constraint-based decomposi-
tion for the target VRP during the retrieval
process, which further enhances the correctness and constraint-specificity of generated programs. In
addition, our framework synergistically combines external and internal knowledge by empowering
LLMs to dynamically select between RAG and self-debugging mechanisms, continuously optimizing
the program generation process. We conducted comprehensive experiments across a set of 48 assorted
VRPs, demonstrating the efficacy of the DRoC framework.

2 RELATED WORK

2.1 LLMS FOR VRPS

The advent of LLMs has facilitated advanced approaches to VRPs. LLMs can embed different
problems by natural language and thereby enable a multi-task model for tackling simple OR problems,
including basic travelling salesman problem (TSP) and capacitated vehicle routing problem (CVRP)
(Jiang et al., 2024). The heuristics for addressing VRPs are automatically searched through LLMs
with the aid of evolutionary computation (EC) (Liu et al., 2024; Ye et al., 2024). However, these
methods typically aim to evolve pre-defined algorithm types such as guided local search, necessitating
much domain-specific knowledge and prerequisites. Also, they often entail a substantial number of
LLM invocations for evolution, e.g., for creating and maintaining a population of algorithms.

Alternative research focuses on the modeling and programming of OR problems including VRPs
based on the textual descriptions. These approaches aim to transform user queries into mathematical
formulations and executable code recognizable to external solvers (Zhang et al., 2024a; Tang et al.,
2024). Further, the introduction of multi-agent frameworks enables the coordination among a
structured sequence of LLM agents to perform tasks including formulation, programming, and
evaluation for a target problem (Xiao et al., 2023; AhmadiTeshnizi et al., 2024). Nonetheless, these
methods predominantly rely on the intrinsic knowledge embedded within LLMs, which limits their
efficacy in addressing problems beyond the scope of their training data. This paper delves into
directly generating programs for solving complex VRPs by integrating LLMs’ internal knowledge
and external references, without the process of mathematical model formulation.

NCO methods for VRPs. Beyond LLMs, quite a few approaches automate end-to-end solutions for
VRPs through deep (reinforcement) learning, collectively known as neural combinatorial optimization
(NCO) (Kool et al., 2019; Kim et al., 2022; Luo et al., 2023). The predominant NCO methods typically
employ Transformer-like neural architectures to process features (e.g., customer coordinates) in VRP
instances by encoders and construct VRP solutions (i.e., tours) by the decoder. While these methods

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

bypass the reliance on manually designed heuristics to some extent, the heavy NCO models are often
trained separately on individual and simple VRP variants (Hottung et al., 2021; Zhou et al., 2023a;
Goh et al., 2024) with massive time cost. Moreover, the simplified constraint-handling strategies
hamper their applicability to complex VRPs with intricate constraints from real-world scenarios.

2.2 RETRIEVAL-AUGMENTED GENERATION

RAG approaches leverage the input sequence to retrieve relevant documents, which are subsequently
utilized as supplementary context while generating the target sequence. As a potent mechanism to
inject external knowledge into LLMs, the RAG is widely studied for language tasks, such as question
answering (QA) (Lewis et al., 2020; Jiang et al., 2023), dialog generation (Shen et al., 2023), and fact
verification (Wang et al., 2023). In addition, there are some efforts applying RAG in code generation,
which generally retrieve information from different sources, such as web content (Parvez et al., 2021),
fixed repository (Zhang et al., 2023), code documentation (Zhou et al., 2023b), or the combination of
multiple resources (Su et al., 2024). Interested readers can refer to (Gao et al., 2023) for a thorough
and systematic review. VRP solvers usually have elaborate documentation and example codes
contributed by the community, which can serve as external knowledge sources for RAG. However,
retrieving irrelevant documents is probably unhelpful and even harmful to performance (Yoran et al.,
2024). To address this, we decompose the retrieval for separate constraints and progressively refine
the documents, which enhances the performance of RAG in generating more accurate programs.

3 PRELIMINARIES

3.1 VEHICLE ROUTING PROBLEMS

The objective of typical VRPs is to determine a set of vehicle routes with the least cost. The basic
constraints are 1) each customer is visited exactly once by a single vehicle, and 2) all vehicles depart
from and return to one or more depots (Braekers et al., 2016). Suppose that there is one depot indexed
by 0, the commonly used objective for a VRP with m vehicles and n customers is formulated as

J = min
∑
k∈M

∑
i∈N

∑
j∈N

cijx
k
ij (1)

where M = {1, . . . ,m} and N = {0, 1, . . . , n} represent the set of vehicles and the locations of
depot and customers, respectively. cij is the traversal cost between customer i and j, and xk

ij is the
binary decision variable, indicating if vehicle k ∈ M traverses from i to j.

A typical set of constraints for VRPs is formulated as follows,∑
k∈M

∑
j∈N

xk
ij = 1 ∀i ∈ N, i ̸= 0 (2)

∑
j∈N

xk
0j = 1 ∀k ∈ M (3)

∑
i∈N

xk
i0 = 1 ∀k ∈ M (4)

∑
j∈N

xk
ij =

∑
j∈N

xk
ji ∀i ∈ N, k ∈ M (5)

where Eq. (2) ensures each customer is visited exactly once by only one vehicle; Eq. (3) and Eq. (4)
means vehicles depart from and return to the depot; Eq. (5) ensures the vehicle flow conservation.
Besides the above basic constraints, different VRP variants are characterized by various constraints
that reflect practical restrictions for vehicle routing in real life.

In this paper, we consider the following additional VRP constraints: 1) Vehicle capacity, limiting
the maximum load a vehicle can carry; 2) Distance (or duration) limit, restricting the total distance
or time a vehicle can travel; 3) Time windows, requiring vehicles to visit customers within specified
time intervals; 4) Multiple depots, allowing vehicles to start and end routes at different depots; 5)
Open route, where the start and end node of vehicles are not specified; 6) Prize collecting, optimizing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

routes by balancing the penalty of locations that are not visited; 7) Pickups and deliveries, managing
paired pickup and drop-off demands within a route; 8) Service time, accounting for the time spent in
serving customers at each location; 9) Resource constraints, limiting the number of vehicles that can
be loaded or unloaded at the depot simultaneously, potentially causing delays in departure or return.
VRP variants featured by combinations of the above constraints are elaborated in Appendix B.

Typically, a VRP, including its objective and constraints, is expected to be properly formulated as a
mathematical program by a human expert. Once the problem is accurately modeled, existing solvers,
such as Gurobi (Gurobi, 2024) and OR-Tools (Furnon & Perron, 2024), are then called to compute
solutions for the given VRP.

3.2 PROBLEM FORMULATION

We solve a code generation (or code completion) problem, without the mathematical model formula-
tion process as done in (Ramamonjison et al., 2022; Xiao et al., 2023; AhmadiTeshnizi et al., 2024).
In our approach, the input to an LLM consists of the name of a VRP variant and the corresponding
function signature, which specifies the function’s name, its parameters, and parameter types. With
each parameter in the function described by the docstring, the LLM is responsible for completing the
"solve" function by invoking a designated solver. We illustrate an example of the function signature
in Appendix B. Compared to using textual descriptions of problems as input (Huang et al., 2024), our
formulation offers better generalization for two reasons: 1) once a function is successfully generated,
it can be applied to all instances of that specific VRP variant, and 2) only describing basic docstrings
reduces the volume of input to an LLM and minimizes the inference effort required for prompting.

Formally, given an input q representing a VRP, an LLM P (y | q) generates a program y recognizable
to a solver, which can be applied to solve the VRP. We assume the availability of a collection of
documents D, where each document corresponds to a part of documentation or example codes for the
solver. During the RAG process, the generation is conditioned on a particular subset of documents
Ds ⊆ D. The marginalized generation probability over all Ds ⊆ D is given by,

P (y | q,D) =
∑

Ds⊆D

P (y | q,Ds) · P (Ds | q,D) (6)

As enumerating all possible subsets is computationally infeasible, we use a retriever R to select the
most probable subset of documents D̂s := argmaxDs⊆D PR(Ds | q,D), and thereby enables the
LLM to produce a program based on the most likely relevant documents:

P (y | q,D) ≈ P (y | q, D̂s) · P (D̂s | q,D) (7)

4 METHODOLOGY

Our approach aims to enable LLMs to invoke solvers more accurately for solving VRPs by decom-
posing the problems and integrating external knowledge. Solving VRPs using LLMs is characterized
by the following aspects: 1) Once the generated program is successfully verified on a single instance,
it can be applied to all problem instances of the same structure (e.g., the same types of constraints and
input parameters). This allows for convenient self-debugging on a simple instance using the LLM
and the code executor; 2) The structure of code for addressing different VRPs is mostly the same
when calling the same solvers, and the primary variation lies in how constraints are programmed
through the solver API functions. These characteristics of LLMs motivate us to perform decomposed
retrievals for specific constraints and enhance the quality of code generation. Therefore, we propose
the DRoC framework that elegantly amalgamates the two aforementioned points. The framework is
illustrated on the left subfigure of Figure 2, which is carried out in the following steps:

• Step 1: Direct code generation: An LLM as the first-time generator is prompted directly
by the input q (i.e., a VRP) to generate a program y, without external information retrieval.
Here the code generation purely depends on the internal knowledge of LLM, prompting it to
solve the problem by its inherent programming capability.

• Step 2: Code check: The program generated in Step 1 is run by a code executor, invoking a
solver to solve the VRP. The LLM will be provided with execution traceback if the code
contains errors, meaning an injection of external knowledge into the LLM.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the proposed DRoC framework.

• Step 3: Routing: According to the execution traceback, an LLM as a router determines the
operation in Step 4, either self-debugging (I) or RAG (II).

• Step 4 (I): Self-debugging: An LLM as the self-debugger analyzes the execution traceback
(and errors) and attempts to refine the code, which produces a new version of the program.

• Step 4 (II): Decomposed retrieval: The retrieval is decomposed to refer LLM to external
documentation or example codes for seeking relevant documents on separate constraints of
the target VRP, so as to enhance the accuracy of code generation.

In the following subsections, we present the detailed process of the DRoC framework.

4.1 EXTERNAL KNOWLEDGE SOURCES

As VRP solvers generally have elaborate documentation and example codes contributed by the
community, we incorporate them into our external knowledge sources for retrieval rather than relying
solely on single-source data as is common in literature (Zhang et al., 2023; Zhou et al., 2023b).
For example, Google’s OR-Tools (Furnon & Perron, 2024) provides a detailed tutorial for solving
VRPs in its online documentation1 and has ample example codes in its open-source repository2. The
multi-source information can be more synergistic and actively utilized by the LLM during RAG.

In addition, we leverage feedback from the code executor (e.g., a Python interpreter) to empower
the LLM to precisely identify errors within the code. Unlike the retrieval of documents from other
knowledge sources (e.g., documentation and example codes), which typically requires conducting a
semantic similarity search in embedding space, obtaining execution feedback involves direct access
to information generated by the interpreter (Su et al., 2024), such as error information and traceback.

Using OR-Tools as an example, the external knowledge is briefly shown on the right subfigure
of Figure 2. We also investigate a dynamic knowledge source update via Bootstrap for potential
performance improvement, which is discussed in Appendix E. Note that external knowledge contains
both relevant and irrelevant data, so it is critical to design an effective and precise retrieval mechanism.

4.2 DECOMPOSED RETRIEVAL

Despite the availability of documentation and example codes for a solver, such as those for OR-tools,
generating accurate programs for a VRP (with composite constraints) is still challenging, due to
the difficulty in obtaining an appropriate context to guide LLMs via RAG. On one hand, external
knowledge sources typically contain exemplar problems with simple constraint structures and may

1https://developers.google.com/optimization/routing
2https://github.com/google/or-tools

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

not directly provide documents relevant to the target VRP. On the other hand, the retrieval process
may overlook critical constraints if the problem is not properly decomposed. For example, using
keywords like "open capacitated vehicle routing problem" often results in retrieving documents
related to CVRP, neglecting the key constraint of the open route. This underscores the need for a more
nuanced approach to ensure that all relevant constraints are consistently considered. To overcome the
issue, we propose to progressively cope with the constraint in a decomposed manner. We break down
the retrieval into three sub-processes, including problem decomposition, single-constraint resolution,
and context merging. Specifically, we first decompose a target VRP into individual constraints and
then resolve these constraints by retrieving from external knowledge sources. Finally, the retrieved
documents are merged to form the context for the LLMs, which are used to guide the code generation.

Problem decomposition. To formulate queries for retrieval and handle constraints separately, we
decompose the target VRP based on its constraints. In addition to the general constraints formulated
by Eq. (2)∼(5), the VRP variants have their own specific constraints, e.g., the additional constraints
described in Section 3.1. Since these constraints are known (Elshaer & Awad, 2020), LLMs have
a basic understanding of their meaning. Therefore, we employ a decomposer (i.e., an LLM) to
split the constraints of the target VRP into individual items, with each represented by a keyword of
the corresponding constraint. As shown on the middle subfigure of Figure 2, C1, C2, . . ., Cw are
keywords of individual constraints. A VRP with w additional constraints produces w keywords.

Single-constraint resolution. The limited internal knowledge of LLMs hinders their ability to
accurately generate codes for specific constraints. We enhance them by retrieving relevant external
knowledge (i.e., documentation/example codes). We employ OpenAI’s embedding model to transform
external knowledge into embeddings for dense retrieval. The retriever uses the input "Python code of
Ci", i ∈ {1, . . . , w} as query Qi to conduct a semantic similarity search among all the embedded
documents. With the embedding Ed of each document d ∈ D and the embedding EQi

of the i-th query
text, we use squared Euclidean distance to measure the similarity between Qi and each document d:

Distance(Qi, d) =

E∑
j=1

(Ej
Qi

− Ej
d)

2 (8)

where E denotes the dimension of the embedding space. The top-k nearest documents are selected
by the retriever as the candidates for the corresponding constraint.

Given that a large amount of external knowledge may contain irrelevant information, we implement a
two-stage filter process to refine the candidate documents for each constraint. The first stage involves
invoking an LLM (i.e., the first-stage filter) to assess the relevance between the retrieved code and the
given constraint Ci. By doing so, the LLM is tasked with explicitly articulating the rationale behind
the identified documents as relevant, which refer to pertinent code snippets as supporting evidence.
The output is structured into three distinct fields: relevant, code snippet, and summary, with an
example provided in Appendix A.2. If multiple documents remain after the initial filtering, a second
stage is activated. An LLM (i.e., second-stage filter) is instructed to aggregate the documents and
their corresponding summaries, ultimately selecting the most relevant document Di for Ci through a
comparative analysis fulfilled by the LLM itself.

Context merging. After obtaining all the single-constraint contexts, i.e., the most relevant document
for each constraint, we simply concatenate them as the merged generation context, which is defined by
D̂s = {D1, . . . ,Dw}. The context as part of the input to the LLM is used to generate new programs.

4.3 IMPLEMENTATION DETAILS

Given the pipeline of DRoC illustrated in Figure 2, we allow the LLM to generate code up to I
iterations, meaning the process will terminate even if a successful program, which outputs feasible
solutions to the given VRP, is not obtained after I attempts. Specifically, if the first-time generator
fails to produce an appropriate program using only its internal knowledge, a router (i.e., an LLM)
is invoked to dynamically choose between two strategies for utilizing external knowledge: self-
debugging or decomposed retrieval. We employ two distinct prompt templates to guide the LLM’s
role in leveraging the retrieved external knowledge: the retrieval-augmented generator and the
retrieval-augmented debugger. More precisely, the retrieval-augmented generator is triggered only
once, in order to generate a completely new program based on the retrieved context, while the
retrieval-augmented debugger is invoked for the remaining I − 2 iterations to progressively refine

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method (gpt-3.5-turbo) SR OG
Standard Prompting 29.17% 73.0%
CoT 29.17% 73.0%
PHP 29.17% 73.0%
Self-debug 25.00% 76.1%
Vanilla RAG 22.92% 77.3%
Self-RAG 20.83% 81.3%
DRoC (Ours) 35.42% 61.5%

Method (gpt-4o) SR OG
Standard Prompting 41.67% 61.8%
CoT 37.5% 65.1%
PHP 37.5% 65.9%
Self-debug 47.92% 51.1%
Vanilla RAG 41.67% 53.6%
Self-RAG 37.5% 66.4%
DRoC (Ours) 60.42% 43.9%

Table 1: Performance of different methods with gpt-3.5-turbo and gpt-4o. The reported values are
averaged over the results of 48 VRP variants.

the previously generated code by incorporating insights from external documents. In addition to the
RAG processes, the self-debugging operation can also be introduced if the LLM thinks the error can
be fixed by itself. This dynamic routing process ensures a more flexible and adaptive framework,
improving the likelihood of generating accurate solutions for complex problems.

The prompts for all components in our framework are provided in Appendix A.1, including the
first-time generator, router, self-debugger, decomposer, filters, retrieval-augmented generator, and
retrieval-augmented debugger. These prompts detail the instructions given to the LLM in the pipeline.

5 EXPERIMENTS

To verify the effectiveness of DRoC, we conduct extensive experiments. We evaluate the DRoC
and other baselines on 48 variants of VRPs by combining different constraints. These VRP variants
are elaborated in Appendix B. In principle, the DRoC framework can work with any LLMs or
optimization solvers. In our experiments, we mainly use ChatGPT (gpt-4o-2024-05-13 and gpt-3.5-
turbo-0125) as the chosen LLM and OR-tools as the optimization solver. In addition, we provide
experimental studies on other proprietary and open-source LLMs (i.e., claude3.5 and llama3.1), and
another widely used solver (i.e., Gurobi), to show the generalizability of DRoC. We set the number
of retrieved documents k = 3 and the number of attempts I = 4. We use the same parameter values
for k and I across all baselines in our experiments to ensure a fair comparison. The best result among
3 independent runs is reported for all the methods. We use the following two performance metrics:

• Success Rate (SR): This metric is defined as SR = Vs

Vt
, where Vt is the total number of

generated programs for different VRP variants, and Vs represents the number of successful
programs that result in a feasible solution for a given VRP variant.

• Optimality Gap (OG): The optimality gap is calculated as OG = 1
Vt

∑Vt

i=1
Oi−O∗

i

O∗
i

, where
Oi is the objective value produced by the generated program for the i-th VRP variant, and
O∗

i is the corresponding optimal solution. In case the produced program is unsuccessful, the
corresponding OG score is set to 1.

5.1 BASELINES

We benchmark DRoC against 6 baselines in the main results: Standard Prompting, Chain-of-Thought
(Wei et al., 2022), Progressive-Hint Prompting (PHP) (Zheng et al., 2023), Self-debug (Chen et al.,
2024), Vanilla RAG (VRAG), and Self-RAG (Asai et al., 2024). In addition, we compare DRoC with
two recent works, Evolution of Heuristics (EoH) (Liu et al., 2024) and Reflective Evolution (ReEvo)
(Ye et al., 2024), which use LLMs to improve heuristics via evolutionary computation. We name
them LLM+EC methods. More details of the baselines are elaborated in Appendix C.

5.2 OVERALL PERFORMANCE

Table 1 presents the performance of the proposed DRoC and 6 baselines in terms of SR and OG. The
results show that although applying a more powerful LLM (i.e., gpt-4o) does improve the performance
of all tested methods, all 6 baselines were able to produce successful programs only for less than 50%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 3: Performance of DRoC and Standard Prompting with different LLMs: (a) SR metric (b) OG
metric. The DRoC is generally applicable to varied LLMs, showing clear performance enhancements.

of tested VRP variants. This demonstrates the difficulty in solving complex NP-hard problems for
SOTA LLMs. We observe that the methods that either rely solely on the internal knowledge of LLMs
(i.e., Standard Prompting, CoT, and PHP) or only combine execution feedback (i.e., Self-debug) do
not result in good performance. Meanwhile, the performance boost from VRAG is minimal, and
Self-RAG actually leads to performance degradation, suggesting that inappropriate or ineffective
retrieval methods fail to provide significant assistance in solving VRPs.

In comparison, the proposed approach achieves the best results in both generating correct programs
and obtaining optimal solutions. Compared to the standard prompting approach, DRoC successfully
solves 18.75% more VRP variants by gpt-4o. Moreover, it produces higher-quality solutions with
much lower optimality gaps. More illustrative results of the generated solutions are provided in
Appendix D, where we present visual plots of the solutions for various VRP instances. Additionally,
we compare the incorrect and correct API-calling code generated before and after applying our
method. These results emphasize the need for more refined retrieval techniques and integration
strategies, as in DRoC, to fully leverage external knowledge in complex problem-solving scenarios.

5.3 EVALUATION WITH DIFFERENT LLMS

To demonstrate that the DRoC is a general tool for enhancing VRP-solving capabilities with LLMs,
we also evaluate its performance with the other two LLMs: claude-3.5-sonnet-20240620 and llama3.1-
70b. The results are presented in Figure 3. We observe that even advanced LLMs, such as gpt-4o and
claude-3.5-sonnet, still struggle to correctly solve VRPs. However, the proposed DRoC consistently
improves the performance of various LLMs, indicating that DRoC can function as a generic tool to
enhance the VRP-solving abilities of LLMs in spite of their different architectures.

5.4 EVALUATION WITH GUROBI SOLVER

LLM SR OG
gpt-4o (Standard Prompting) 10.42% 90.9%

claude-3.5-sonnet (Standard Prompting) 29.17% 75.3%
gpt-4o (DRoC) 39.58% 62.3%

claude-3.5-sonnet (DRoC) 43.75% 59.4%

Table 2: The performance evaluated on Gurobi solver with and without DRoC.

We show DRoC can embed different optimization solvers such as the popular Gurobi solver. Different
from OR-tools, which solves VRPs by simply calling the APIs, the use of Gurobi for solving a
particular VRP variant requires us to first build the corresponding Mixed-Integer Programming (MIP)
model, making it a more difficult task. In the experiments, we use the programs of 10 VRP variants,
which only contains 0 or 1 additional constraint, as the external knowledge source, and allow the
DRoC to retrieve from these simple VRP solutions. We evaluate the performance on advanced LLMs,
i.e., gpt-4o and claude-3.5-sonnet. The results (see Table 2) show that DRoC remains effective

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

when working with the Gurobi solver. While we only use VRPs with single constraints as external
knowledge, the LLMs can solve the 48 VRP variants with more composite constraints, indicating
that complex tasks can be fulfilled by our decomposition-based method.

5.5 ABLATION STUDY

We conduct ablation studies for both OR-tools and Gurobi for a more comprehensive comparison.
The studies are based on gpt-4o, which has showcased good performance under different settings.

Method OR-tools Gurobi
SR OG SR OG

DRoC (Full) 60.42% 43.9% 39.58% 63.5%
w/o filter 56.25% 47.8% 27.08% 75.5%
w/o DR 43.75% 59.9% 16.67% 88.12%
w/o router 56.25% 47.8% 35.42% 66.04%

Table 3: The results of ablation studies.

Ablation study on two-satge filter. We first evaluate the necessity of the filter process, which refines
the retrieved documents and reduces extraneous information. As shown in Table 3, we observe a
slight drop in model performance when potentially irrelevant documents are not filtered out. This
outcome is similar to the poor performance observed with VRAG shown in Figure1, suggesting that
the quality and relevance of the context provided during generation significantly impact the final
results. The two-stage filter ensures that only pertinent information is used, which is crucial for
optimizing VRP-solving effectiveness.

Ablation study on decomposed retrieval (DR). In order to evaluate the necessity of DR, we replace
it by direct retrieval of documents, which takes "Python code of {the name of the VRP}" as the
query, aiming at retrieving code that is mostly closed to the target VRP variant. This replacement is
applied whenever the retriever is called, and the final context is obtained by randomly choosing from
top-k retrieved documents. Similarly, there is also a performance drop for both OR-tools and Gurobi,
suggesting that LLM can learn to solve complex VRPs from single-constraint resolutions in the DR.

Ablation study on router. We replace the router with a random routing strategy, which randomly
route the workflow to the self-debugger or retrieval-augmented debugger. There is also a slight
drop in model performance without the router (proposed in this paper), indicating that the selection
between execution-based and documentation-based external knowledge is also important.

5.6 COMPARISON WITH LLM+EC METHODS

Figure 4: Comparison between LLM+EC methods
(EoH and ReEvo) and DRoC.

LLMs can be used to evolve heuristics for solv-
ing VRPs, as shown in the literature. We con-
ducted experiments to find out how such an ap-
proach performs in comparison to our approach
which is based on VRP solvers. We take the
Prize Collecting Travelling Salesman Problem
(PCTSP) as a demonstration problem, which
ChatGPT cannot originally solve due to the in-
correct calls of solver API (see Appendix D),
to conduct a comparison study between SOTA
LLM+EC methods and the proposed DRoC.

We utilize EoH and ReEvo to evolve the ant
colony algorithm, as detailed in (Ye et al., 2024),
and compare the results of these evolutionary ap-
proaches. Specifically, we record both the best
objective values and the number of tokens con-
sumed by the LLM for EoH and ReEvo during
iteration-based evolution. As shown in Figure 4,
compared to DRoC, the LLM+EC methods require a substantial number of tokens (e.g., over 0.1M)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to evolve towards a solution which significantly increases computational costs and potential carbon
emissions. Notably, the best heuristics for EoH and ReEvo achieve objective values of 6.436 and
6.984, respectively, while DRoC with OR-tools yield a superior result of 6.352. The findings suggest
that our DRoC framework is more efficient and competitive than EC methods, providing greater
enhancement of the LLM.

5.7 SENSITIVITY ANALYSIS

(a) (b) (c)

Figure 5: The results for sensitivity analysis on (a) I; (b) k; (c) temperature.

We study how three key parameters influence the performance of DRoC: the maximum number of
generation I , the number of retrieved documents k, and the temperature of the LLM. The analysis is
also based on gpt-4o, and the results are shown in Figure 5.

Sensitivity analysis on I . The performance of DRoC generally improves with the increase of I , but
the improvement turns marginal from 4 to 5. Therefore we set I = 4 across all our main experiments.

Sensitivity analysis on k. The different k seems to have less influence on the performance of DRoC
than I . The performance is slightly improved when varying k from 1 to 3, mainly because more
comprehensive contents are retrieved with a larger k. After that, the performance tends to be stable
because the generation context can be relatively unchanged since redundant documents are filtered
out by the two-stage filter process.

Sensitivity analysis on temperature. The performance of DRoC remains relatively stable across
different temperature parameters. This indicates that the combination of iterative refinement and tar-
geted document selection helps maintain consistent results, regardless of variations in the randomness
of generation influenced by the temperature configuration.

5.8 BOOTSTRAP-BASED OPTIMIZATION

As the LLMs can solve more problems utilizing external knowledge, they can also take the correct
generation as part of the external knowledge, making it possible to improve the performance through
Bootstrap. We also analyze the impact of such a Bootstrap mechanism and find that the integration of
LLM generations and original external knowledge (publicly accessible documentation and codes) can
also boost the accuracy to some extent. The details and result are elaborated in Appendix E, and we
find that more than 70% VRP variants can be resolved after introducing the Bootstrap mechanism.

6 CONCLUSIONS

In this paper, we propose DRoC, an effective framework designed for solving VRPs with complex
constraints, utilizing LLMs and optimization solvers. By integrating external knowledge through
retrieval-augmented generation and decomposing constraints for more accurate retrieval, the DRoC
significantly improves LLM performance across a wide range of VRP variants. For instance, it
improves the success rate of gpt-4o from 41.67% to 60.42%. In the future, we plan to expand our
focus to solving other OR problems beyond VRPs, with the goal of making DRoC a more generalized
method for automating the OR problem-solving process. We will also introduce more external
knowledge sources for better RAG performance and integrate modeling function into our framework,
further enhancing the performance and making the pipeline more automatic.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Scalable optimization modeling
with (MI)LP solvers and large language models. In Forty-first International Conference on Machine
Learning, 2024.

Guilherme F.C.F. Almeida, José Luiz Nunes, Neele Engelmann, Alex Wiegmann, and Marcelo
de Araújo. Exploring the psychology of llms’ moral and legal reasoning. Artificial Intelligence,
333:104145, 2024.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2024.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing problem:
State of the art classification and review. Computers & Industrial Engineering, 99:300–313, 2016.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024.

Raafat Elshaer and Hadeer Awad. A taxonomic review of metaheuristic algorithms for solving the
vehicle routing problem and its variants. Computers & Industrial Engineering, 140:106242, 2020.

Vincent Furnon and Laurent Perron. Or-tools routing library, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Yong Liang Goh, Zhiguang Cao, Yining Ma, Yanfei Dong, Mohammed Haroon Dupty, and Wee Sun
Lee. Hierarchical neural constructive solver for real-world tsp scenarios. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 884–895, 2024.

Gurobi. Gurobi Optimizer Reference Manual, 2024.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021.

Zhehui Huang, Guangyao Shi, and Gaurav S. Sukhatme. Can large language models solve robot
routing? arXiv preprint arXiv:2403.10795, 2024.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Unco: Towards unifying neural combinato-
rial optimization through large language model. arXiv preprint arXiv:2408.12214, 2024.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 7969–7992, December
2023.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 1936–1949,
2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 9459–9474. Curran Associates, Inc., 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 8845–8864. Curran Associates, Inc., 2023.

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Retrieval
augmented code generation and summarization. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2719–2734, November 2021.

Rindra Ramamonjison, Haley Li, Timothy Yu, Shiqi He, Vishnu Rengan, Amin Banitalebi-dehkordi,
Zirui Zhou, and Yong Zhang. Augmenting operations research with auto-formulation of optimiza-
tion models from problem descriptions. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing: Industry Track, pp. 29–62, December 2022.

Weizhou Shen, Yingqi Gao, Canbin Huang, Fanqi Wan, Xiaojun Quan, and Wei Bi. Retrieval-
generation alignment for end-to-end task-oriented dialogue system. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 8261–8275, December
2023.

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao Yu.
Arks: Active retrieval in knowledge soup for code generation. arXiv preprint arXiv:2402.12317,
2024.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. Orlm: Training large language models for optimization modeling. arXiv preprint
arXiv:2405.17743, 2024.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan Parvez, and Graham Neubig. Learning to filter
context for retrieval-augmented generation. arXiv preprint arXiv:2311.08377, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, volume 35, pp. 24824–24837, 2022.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex operations
research problems. In The Twelfth International Conference on Learning Representations, 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Large language models as hyper-heuristics for combinatorial optimization. In
Advances in Neural Information Processing Systems, 2024.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented language
models robust to irrelevant context. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
and Weizhu Chen. RepoCoder: Repository-level code completion through iterative retrieval and
generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 2471–2484, December 2023.

Jihai Zhang, Wei Wang, Siyan Guo, Li Wang, Fangquan Lin, Cheng Yang, and Wotao Yin. Solv-
ing general natural-language-description optimization problems with large language models. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Compu-
tational Linguisticss, pp. 483–490, June 2024a.

Yizhou Zhang, Lun Du, Defu Cao, Qiang Fu, and Yan Liu. An examination on the effectiveness of
divide-and-conquer prompting in large language models. arXiv preprint arXiv:2402.05359, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models, 2023.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In Proceedings of the 40th International Conference
on Machine Learning, volume 202, pp. 42769–42789, 23–29 Jul 2023a.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Gen-
erating code by retrieving the docs. In The Eleventh International Conference on Learning
Representations, 2023b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROMPT AND OUTPUT TEMPLATES

A.1 PROMPTS

Component Prompt Skeleton
First-time gen-
erator

You are an expert in Python programming for operations research. You are very
good at calling solver in Python and solving problems.
Respond with the syntactically correct code for solving a problem using solver.
Make sure you follow these rules:
1. Read the template. First understand the meaning of the parameters in ’solve’
function, and then complete the code inside the function.
2. Ensure all parameters in the template are used in the function.
3. Do not give additional examples or define main function for testing.
4. Return the objective value of the problem by the ’solve’ function.
5. Ensure any code you provide can be executed with all required imports and
variables defined.
Template: {code_example}
Structure your answer with a description of the code solution, and then list the
imports, and finally list the functioning code block.

Router Your task is to determine how to refine the incorrect Python code, which is
produced by another programmer.
Here is the code: <prep_code>
The code is about solving a problem based on solver, and there is the error
information while running the code:
Error message: <message>
There are several tools that can be called, which can be one of the following:
(1) retrieval_augmented_debug[input]: Retrieve code examples from a repos-
itory, and then refine the current program drawing upon the retrieved codes.
Prioritize it when the error is caused by incorrect use of solver API.
(2) self_debug[input]: Call a pretrained LLM like yourself. Prioritize it when
you are confident in fixing the error yourself, e.g., when the error of the code is
caused by syntax error or wrong import.
Return "1" if you think you should use tool (1), otherwise return "2". Do not
return other things.

Self-debugger You are an expert in Python programming for operations research by calling
solver. Now your responsibility is to debug the code snippet with errors.
The code snippet with bug is as <prep_code>. Here is the error message of the
code: <message>. You can first reason about the error, and finally refine the
code and return the whole fixed function. Ensure any code you provide can
be executed with all required imports and variables defined. Remember, the
final solution should be returned by the ’solve’ function. Do not use other name
for the function and do not give example usage of the function. Structure the
refined solution by firstly giving the reason of the error and the strategy for
fixing it. Then list the imports. Finally list the functioning code block and solve
the problem with ’solve’ function.

Decomposer You will extract the keywords of a vehicle routing problem (VRP) for me. I
give you the name of a VRP and you produce the keywords according to its
constraints. Structure your answer with a list of keywords inside "<>" and use
commas to separate different keywords. Do not return other things.
For example, the output of "Capacitated Vehicle Routing Problem with Time
Windows and Multiple Depots (CVRPTWMD)" should be <Capacitated, Time
Windows, Multiple Depots>, and the output of "Prize Collecting Travelling
Salesman Problem (PCTSP)" should be <Prize Collecting>.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

First-stage fil-
ter

You are an expert in Python programming and solver for vehicle routing prob-
lem.
I will give you a retrieved documents potentially related to keyword, and you
will firstly assess if the document includes Python code to program keyword. If
so, you should explain how the code address the constraint of keyword. Here is
the retrieved document:
{context}
If the document contains Python code related to keyword, grade it as relevant.
After that, extract the code snippet in the document related to keyword. Finally,
produce an explanation on how to program the constraint of keyword, and your
goal is to make other programmers know how to do that. Structure your answer
with the binary score ’yes’ or ’no’ to indicate whether the document is relevant,
and then list the related code snippet, and finally give the summary.
If the document is not related, just return ’no’ for the binary score, and nothing
for the code snippet and the summary.

Second-stage
filter

You are an expert in Python programming and solver for vehicle routing problem
(VRP).
I will give you several retrieved documents (codes) and their explanations
potentially related to keyword, and you should assess which context is the most
relevant one and with minimal redundant information.
Here are the documents, which are seperated by ’====================’:
{contexts}
Return the index of the most relevant document and do not return anything else.
For example, if you think the second document is the most relevant one, just
return 2. Please strictly return integer index following the above instruction.

Retrieval-
augmented
generator

You are an expert in Python programming for operations research and combi-
natorial optimization. You are good at calling <solver> in Python and solving
problems.
Respond with the syntactically correct code for solving a problem using solver.
Make sure you follow these rules: 1. Read the template. First understand the
meaning of the parameters in ’solve’ function, and then complete the code inside
the function.
2. The context provides example codes of addressing each constraint of {prob-
lem} by {solver}. Learn to model each constraint and solve the problem
accordingly.
3. Do not give additional examples or define main function for testing. 4. Return
the objective value of the problem by the ’solve’ function. 5. Ensure any code
you provide can be executed with all required imports and variables defined.
Template: {code_example}
Context: {context}
Structure your answer with a description of the code solution, and then list the
imports, and finally list the functioning code block.

Retrieval-
augmented
dubugger

You are responsible for refining the code with errors, which tries to solve
problem by calling solver in Python.
The code snippet with the bug is as <prep_code>.
Here is the error message of the code: <message>.
Make sure you follow these rules: 1. You can first reason about the error, and
then refine the code and return the whole fixed function.
2. The context provides examples of solving problems with different constraints,
referring to the relevant parts and modifying the code accordingly: <context>.
3. Do not give additional examples or define the main function for testing.
4. Return the objective value of the problem by the ’solve’ function.
5. Ensure any code you provide can be executed with all required imports and
variables defined.
Structure your answer with a description of the code solution, then list the
imports, and finally list the functioning code block.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 OUTPUT EXAMPLE OF THE FILTER

relevance="yes",
code_snippet="# Add Capacity constraint\n
def demand_callback(from_index):\n
Convert from routing variable Index to demands NodeIndex\n
from_node = manager.IndexToNode(from_index)\n
return demands[from_node]\n\n
Register the demand callback with the routing model\n
demand_callback_index = routing.RegisterUnaryTransitCallback(
demand_callback)\n routing.AddDimensionWithVehicleCapacity(
demand_callback_index , 0, # null capacity slack\n
vehicle_capacities , # vehicle maximum capacities\n True , # start
cumul to zero\n 'Capacity ')",
summary="To program the Capacitated constraint in the Capacitated
Vehicle Routing Problem with Distance Limit (CVRPL) using OR-tools in
Python , you need to define a demand callback function that maps the

routing variable Index to demands NodeIndex. This function is
registered as a unary transit callback with the routing model. Then ,
the capacity constraint is added using the
AddDimensionWithVehicleCapacity method , specifying the demand
callback index , null capacity slack , vehicle maximum capacities ,
start cumul to zero , and the dimension name 'Capacity '. This ensures
that the vehicle capacities are respected during the routing
optimization process."

Figure 6: The example of the output of the first-stage filter.

B VRP VARIANTS

def solve(time_matrix: list , time_windows: list , demands: list ,
vehicle_capacities: list , num_vehicles: int ,
starts: list , ends: list):

"""
Args:

time_matrix: contains the integer travel times between locations
time_windows: the list of tuples for time windows of the

customers
demands: the list of integer customer demands
vehicle_capacities: the capacity of each vehicle
num_vehicles: the number of the vehicle
starts: the index of the starting depots for vehicles
ends: the index of the ending depots for vehicles

Returns:
obj: a number representing the objective value of the solution

"""
obj = -1
return obj

Figure 7: Function template of CVRPTWMD.

The VRP variants studied in this paper are composed of different additional constraints mentioned
in Section 3.1, and they are shown in Table 5. For each VRP, we use a simple instance to evaluate
the performance of different baselines and our DRoC. The optimal solutions of the instances are
mainly obtained by hybrid genetic search (HGS) (Wouda et al., 2024). We also use OR-tools with
search time limit as 100s to determine the optimal solutions when the used HGS solver does not
support solving the corresponding VRPs. To make the instances more informative, we randomly use

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

a distance matrix or a time matrix to represent the graph of the VRP. Therefore, we impose distance
limits on those with distance matrix and duration limit on those with time matrix.

Different from previous studies (Zhang et al., 2024; Huang et al., 2024), which try to solve OR
problems with natural language description, we just take the name of the problem and the function
signature as input. We take the function signature of the CVRPTWMD as an example, which is
shown in Figure 7.

In this case, the LLM needs to try to understand the meaning of each parameter and generate programs
accordingly. Once a program for a VRP variant is produced successfully, it can be used in all instances
of the same VRP. Compared to natural language-based description, which specifies the data of the
problem, this method is more generalizable.

Table 5: The studied 48 VRP variants with nine additional constraints.

Vehicle
Capacity

Distance
Limit

Time
Window

Multiple
Depots

Open
Route

Prize
Collecting

Pickup and
Delivery

Service
Time

Resource
Constraint

TSP
TSPTW ✓
TSPTWS ✓ ✓
VRP
VRPL ✓
VRPMD ✓
VRPS ✓
VRPSL ✓ ✓
VRPTW ✓
VRPTWL ✓ ✓
VRPTWMD ✓ ✓
VRPTWS ✓ ✓
VRPTWMDL ✓ ✓ ✓
VRPTWSL ✓ ✓ ✓
VRPTWMRC ✓ ✓
VRPTWMRCL ✓ ✓ ✓
CVRP ✓
CVRPL ✓ ✓
CVRPTW ✓ ✓
CVRPMD ✓ ✓
CVRPTWL ✓ ✓ ✓
CVRPMDL ✓ ✓ ✓
CVRPTWMD ✓ ✓ ✓
CVRPTWMDL ✓ ✓ ✓ ✓
CVRPTWRC ✓ ✓ ✓
CVRPTWRCL ✓ ✓ ✓ ✓
PCTSP ✓
PCTSPTW ✓ ✓
PCVRP ✓
PCVRPTW ✓ ✓
PCVRPMD ✓ ✓
PCVRPTWMD ✓ ✓ ✓
OVRP ✓
OVRPL ✓ ✓
OVRPTW ✓ ✓
OCVRP ✓ ✓
OCVRPL ✓ ✓ ✓
OCVRPTW ✓ ✓ ✓
PDP ✓
PDPL ✓ ✓
PDPTW ✓ ✓
PDPMD ✓ ✓
PDPTWL ✓ ✓ ✓
PDPTWMD ✓ ✓ ✓
PDPSL ✓ ✓ ✓
PDPTWS ✓ ✓ ✓
PDPTWSL ✓ ✓ ✓ ✓
PDPTWMDL ✓ ✓ ✓ ✓

C BASELINES

In this section, we elaborate on the implementations of the baselines involved in the experiments:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Standard Prompting: it refers to using the prompt skeleton of the first-time generator in Section A.1.
The generator is called up to I times independently without the injection of any external knowledge.

Chain-of-Thought: similar to the CoT baseline in (Xiao et al., 2023), we add the sentence "Let’s
think step by step" in the standard prompting to guide the model’s thought process, aiming at using
the internal knowledge of the LLMs for reasoning as much as possible.

Progressive-Hint Prompting: similar to the PHP baseline in (Xiao et al., 2023), we produce an
initial program and then use previously generations as hints to progressively guide the LLM toward
the correct solutions. It is fulfilled by verifying if the current response is the same as the previous one.

Self-debug: it is based on the method proposed by Chen et al. (2024), using the error information
and corresponding traceback produced by the executor to teach the LLM conduct debug without any
human feedback on the code correctness. Specifically, it follows the prompt of the self-debugger in
Section A.1. The number of generations is also up to I .

Vanilla RAG: The VRAG approach retrieves relevant context before each round of program genera-
tion. In the first iteration, the query is set as "Python code of the name of the VRP." For subsequent
iterations, the query consists of the generated code from the previous iteration to retrieve the most
relevant documents. During program generation, the top-k retrieved documents are included as part
of the input to guide the model in generating a more accurate solution.

Self-RAG: Originally proposed by Asai et al. (2024), we adapt Self-RAG to the VRP tasks. Similar
to VRAG, a retriever is used to obtain relevant documents, followed by a relevance grader to assess
whether each retrieved document is pertinent to the target VRP. We implement this process using the
first-stage filtering mechanism from our DRoC framework. The remaining relevant documents are
then used in parallel to generate solutions. Each generated program is executed until one can run
successfully. Additionally, the code generated in previous iterations is used as a query for further
retrieval, continuing until the maximum number of generations I is reached.

EoH: EoH evolves the codes of heuristics by diverse prompt strategies. We basically follow the
configuration in the original paper (Liu et al., 2024). We use 30 populations at the initial stage and 10
populations for each iteration. We allow for at most 300 times of evaluations on the PCTSP instances.

ReEvo: ReEvo uses the reflection mechanism to progressively evolve the heuristics. We follow the
default settings in Ye et al. (2024) with also up to 300 evaluations on the instances.

For the comparison study of EoH and ReEvo, The evolution is conducted on 10 PCTSP instances
with 50 nodes, which are randomly sampled from a unit square. Let the distance between node i and
the depot be di, and dmax = maxi(di), the prize of node i is set to prizei =

1+⌊99·r⌋
4maxi(1+⌊99·r⌋) where

r = di

dmax
. The penalty values for unvisited nodes are set the same as the prizes.

D GENERATED SOLUTIONS

(a) (b) (c) (d)

Figure 8: Example solutions generated by DRoC. (a) CVRPTWRC solved by OR-tools; (b) PCVRP
solved by OR-tools; (c) PDPSL solved by Gurobi; (4) VRPTWL solved by Gurobi.

We present several examples of solutions that our DRoC method can achieve, which the standard
approach fails to generate, as illustrated in Figure 8. These VRPs often involve multiple constraints
that pose significant challenges for LLMs to address effectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Define the prize collection callback
def prize_callback(from_index):

from_node = manager.IndexToNode(from_index)
return prizes[from_node]

prize_callback_index = routing.RegisterUnaryTransitCallback(
prize_callback)

routing.AddDimensionWithVehicleCapacity(
prize_callback_index ,
0, # no slack
[sum(prizes)] * num_vehicle , # vehicle maximum prize capacity
True , # start cumul to zero
'Prize ')

Setting the objective to maximize the prize collection
prize_dimension = routing.GetDimensionOrDie('Prize ')
for vehicle_id in range(num_vehicle):

routing.SetFixedCostOfVehicle(-sum(prizes), vehicle_id)

(a) Generated code snippet by Standard Prompting. (Incorrect)

Allow to drop nodes.
for node in range(1, len(distance_matrix)):

routing.AddDisjunction ([manager.NodeToIndex(node)], prizes[node])

(b) Generated code snippet by DRoC. (Correct)

Figure 9: Comparison of code snippets for Prize Collecting constraint.

We use gpt-4o to invoke OR-tools for solving VRPs with the Prize Collecting constraint. The primary
distinction between the Standard Prompting and DRoC methods lies in how they handle the constraint,
with the former failing to produce a correct solution, while the latter succeeds. As shown in Figure 9,
the programming approaches for the Prize Collecting constraint differ significantly. DRoC enables
vehicles to drop nodes, effectively accommodating the constraint. In contrast, the standard method
produces meaningless content, leading to hallucinations during the generation.

E BOOTSTRAP-BASED OPTIMIZATION

Figure 10: Performance of the DRoC-BBO.

We have introduced DRoC using static external
knowledge sources. However, as LLMs, pow-
ered by DRoC, begin generating more accurate
solutions, we can dynamically update the exter-
nal knowledge by incorporating these generated
solutions. Specifically, we first solve all solvable
VRP variants using the static DRoC approach,
and subsequently embed all the generated pro-
grams, which have been executed successfully,
to the knowledge base. We create a new re-
triever for these LLM-generated solutions and
ensemble it with the retriever of other knowl-
edge. Following this, we initiate a new round
of generation aimed at solving the previously
unsolved problems. By leveraging the solutions
generated by the LLMs, we enhance the model’s
performance in a Bootstrap-based manner, a process we term DRoC with Bootstrap-based optimiza-
tion (DRoC-BBO). This iterative approach allows the LLM to improve progressively by utilizing
its own outputs as external knowledge, thereby improving its problem-solving capabilities over
successive iterations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Experimentally, the DRoC-BBO can slightly improve the performance with more rounds of generation
with updated knowledge sources, which is shown in Figure 10. This indicates that the LLMs can also
be enhanced through Bootstrap for solving optimization problems like VRP.

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2024.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024.

Zhehui Huang, Guangyao Shi, and Gaurav S Sukhatme. From words to routes: Applying large
language models to vehicle routing. arXiv preprint arXiv:2403.10795, 2024.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024.

Niels A. Wouda, Leon Lan, and Wouter Kool. Pyvrp: A high-performance vrp solver package.
INFORMS Journal on Computing, 36(4):943–955, 2024.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex operations
research problems. In The Twelfth International Conference on Learning Representations, 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Large language models as hyper-heuristics for combinatorial optimization. In
Advances in Neural Information Processing Systems, 2024.

Jihai Zhang, Wei Wang, Siyan Guo, Li Wang, Fangquan Lin, Cheng Yang, and Wotao Yin. Solv-
ing general natural-language-description optimization problems with large language models. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Compu-
tational Linguisticss, pp. 483–490, June 2024.

20

