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Figure 1: Overview of PrioriTouch: A hierarchical controller coupled with simulation-in-the-loop online
contact preference learning aids in personalizing multi-contact physical human-robot interaction for safe and
comfortable whole-arm manipulation.

Abstract: Physical human—robot interaction (pHRI) requires robots to adapt to
individual contact preferences, such as where and how much force is applied.
Identifying preferences is difficult for a single contact; with whole-arm interaction
involving multiple simultaneous contacts between the robot and human, the
challenge is greater because different body parts can impose incompatible force
requirements. In caregiving tasks, where contact is frequent and varied, such
conflicts are unavoidable. With multiple preferences across multiple contacts,
no single solution can satisfy all objectives—trade-offs are inherent, making
prioritization essential. We present PrioriTouch, a framework for ranking
and executing control objectives across multiple contacts. PrioriTouch can
prioritize from a general collection of controllers, making it applicable not only
to caregiving scenarios such as bed bathing and dressing but also to broader
multi-contact settings. Our method combines a novel learning-to-rank approach
with hierarchical operational space control, leveraging simulation-in-the-loop
rollouts for data-efficient and safe exploration. We conduct a user study on
physical assistance preferences, derive personalized comfort thresholds, and
incorporate them into PrioriTouch. We evaluate PrioriTouch through extensive
simulation and real-world experiments, demonstrating its ability to adapt to user
contact preferences, maintain task performance, and enhance safety and comfort.
Website: https://emprise.cs.cornell.edu/prioritouch.
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1 Introduction

Physical human-robot interaction (pHRI) requires physical contact. Contact is not uniform: individ-
uals have distinct preferences for acceptable forces and contact locations [1, 2, 3, 4, 5]. For pHRI to
be safe and effective, robots must personalize their behavior, and a critical aspect of personalization
is contact preferences. Even for a single contact, identifying and respecting these preferences while
ensuring task success is challenging. Many physical robot caregiving tasks, such as bathing [6, 7],
dressing [8, 9], and transferring [10], require whole-arm pHRI [11], where multiple segments of
the robot arm simultaneously touch the human body. For example, during bed bathing (Fig. 1), the
robot may need to reach over a user to wipe the upper arm while maintaining comfortable forces
on the torso and shoulder. Although whole-arm manipulation expands workspace and improves
maneuverability, it also exacerbates conflicts: different body parts can impose incompatible force
requirements, and no single policy can satisfy all objectives.

To bootstrap personalization, we elicit population-level contact preferences offline and use them
to seed a conservative base policy. However, a one-size-fits-all policy is insufficient: (i) stated
preferences can diverge from realized comfort under true contact (pressure/shear, approach, speed,
duration); and (ii) preferences are context-dependent and time-varying (posture, clothing, fatigue).
Therefore, online interaction is necessary to accommodate individual preferences. Experimenting
directly with the user is risky and inefficient because each update can involve repeated physical
contact and multiple feedback exchanges. This increases the user’s cognitive workload, prolongs
the interaction, and may cause discomfort when forces are suboptimal or excessive.

We introduce PrioriTouch, a framework that casts contact preference learning as a learning-to-rank
problem over control objectives. Given a reference trajectory produced by a high-level policy
(e.g., a contact-aware planner generating end-effector or joint-space paths), PrioriTouch instan-
tiates pose-tracking and force-regulation objectives from the current contact state. We develop
LinUCB-Rank, a contextual bandit that learns a priority policy; H-OSC [12] then executes this
ordering as a null space hierarchy, translating high-level preferences into low-level control. We
initialize the policy with conservative priors derived from population-level user-study statistics.
During interaction, LinUCB-Rank adapts the ordering online using sparse user feedback while
safely refining the policy via simulation-in-the-loop learning before deploying it in real-world
interactions. The framework is controller-agnostic: it can rank heterogeneous objectives, enabling
principled trade-offs across simultaneous objectives.

We evaluate PrioriTouch across simulated and real-world environments, progressively increasing in
complexity and realism. First, we design a simplified simulation scenario with predefined contacts
and a static end-effector pose to isolate and specifically assess LinUCB-Rank’s ability to learn user
contact preferences. Second, we demonstrate PrioriTouch in a simulated caregiving scenario involv-
ing robot-assisted bed bathing, requiring whole-arm contact to safely wipe a user’s limbs. Third,
we showcase our approach’s capability in intricate multi-contact scenarios through a real-world 3D
goal-reaching maze with multiple vertical cylinders representing distinct body-part contact prefer-
ences. Finally, we validate PrioriTouch’s practical feasibility by performing a realistic caregiving
task in a user study with human subjects.

Our contributions are summarized as follows:

e We propose PrioriTouch, a framework that formulates contact preference learning as a rank-
ing problem over control objectives and executes the learned priority ordering as a null space
hierarchy via H-OSC for whole-arm pHRI.

e We introduce LinUCB-Rank, a contextual bandit that learns priority orderings from sparse user
feedback while accounting for inter-objective coupling in hierarchical control.

e We enable safe and data-efficient learning through simulation-in-the-loop validation, where
candidate priority updates are tested in a digital twin before real-world deployment.

e We conduct a user study to inform realistic models of contact preferences for robot-initiated
touch, which we leverage to simulate authentic user feedback in our evaluation.
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Figure 2: We implement H-OSC which uses a learned priority ranking to modulate multiple contacts during
WAM. We propose LinUCB-Rank, a learning-to-rank contextual bandit algorithm, to update the prioritization
policy using realistic user feedback and simulated interactions.

e We evaluate PrioriTouch through extensive simulation, real-world experiments, and a realistic
caregiving user study, demonstrating effective adaptation to individual contact preferences
without compromising task performance or comfort.

Our framework integrates user contact preference learning with low-level control by parameterizing
operational space control using the outputs of a learned ranking policy. This structured integra-
tion ensures that high-level feedback is directly translated into low-level force regulation and pose
tracking, effectively bridging the gap between user preferences and robot control.

2 Related Work

Whole-Arm Manipulation. Recent whole-arm manipulation (WAM) systems leverage distributed
tactile skins to localize and regulate contact [13, 14, 15, 16]. These capabilities have been applied
to manipulating heavy or bulky objects [17, 15], navigating clutter [18], and providing social touch
[19]. In pHRI scenarios, however, explicitly managing multiple, potentially conflicting contact-force
objectives remains challenging. Park et al. [20] proposed a hierarchical multi-contact controller
that optimizes all contact forces with equal weighting, but their formulation does not account for
preference-related ordering or any dynamic prioritization. In contrast, we build on hierarchical con-
trol but dynamically prioritize contact points using user feedback, enabling robots to accommodate
individualized comfort and safety preferences across different users and body regions.

Online Preference Learning in HRI. While several works have explored online user preference
learning in HRI, spanning high-level action sequences [21] to low-level parameters [22] and com-
binations thereof [23, 24], existing work has not explicitly addressed the challenge of learning user
contact preferences. Most previous research either assumes human-initiated contact [25, 26, 27, 28]
or focuses on user preferences that can be safely explored by adjusting non-contact parameters,
such as trajectory speed [23]. However, in pHRI tasks requiring robot-initiated physical contact, di-
rect trial-and-error exploration to determine acceptable forces is impractical and potentially unsafe.
Exploring contact preferences in multi-contact settings is especially challenging, as mitigating dis-
comfort at one body region may inadvertently increase forces at another, making conflict resolution
substantially harder. We address this gap by casting contact preference learning as a learning-to-rank
problem over control objectives, allowing us to reason about preferences pertaining to multiple si-



multaneous contacts in a structured manner. We also introduce simulation-in-the-loop learning,
allowing robots to refine candidate prioritization policies virtually before resuming real interaction,
enabling safe and personalized estimation of user contact preferences in pHRI.

3 Problem Statement

We ground the problem in whole-arm pHRI (e.g., bed bathing; Fig. 2). An n-DoF robot follows a
reference path Ppp, = {p(1), ..., p(IN)}, where each p(i) € R is an end-effector pose. At time ¢,
the joint configuration is q; and current end-effector pose is p;"**. The controller selects a waypoint
index 4; and defines the desired pose as p®® £ p(i;). The controller applies joint torques 7; € R™

to reduce the pose error and execute the task.

We model the human as a discrete set of body parts B = {b1,...,b,,} with pose configuration h;,
at time ¢. The contact set at time t is Ct = { (1), ¢(2), ..., c:(Ky) }, where K; = |Cy] is the
number of contacts present at time ¢ and ¢;(k) denotes the k-th contact. Each contact ¢;(k) € C;
is associated with a body part via ¢ : C; — B and produces a force vector f;(c;(k)) € R3. For a
body part b € B, the set of contacts on b is given by C;(b) = {ci(k) € C; | ¥(ci(k)) = b},
and the aggregate force magnitude on b is fy(b) = max,,xec, ) ||f(ce(k))]], with f,(b) = 0
if C;(b) = @. The set of body parts in contact at time ¢ is B; £ {b € B | C;(b) # @}. For
convenience, we jointly define the robot-human state as s; = (q, hy, Cy).

User contact preferences are represented by an unknown model 7, which assigns a comfort
threshold f™**(b) to each body part b € B (Sec. 5.3). Although H is not directly observable,
the robot receives sparse online feedback ¢, = (b,d), where b € B identifies the body part
of concern, and ¢ is a one-hot vector encoding the requested change. We fix the order as
0 = [dec-Large, dec-Small, inc-Small, inc-Large], so a given ¢ selects decrease/increase
and large/small. For example, “my stomach hurts a bit” implies (abdomen, [0, 1,0, 0]), i.e., a small
decrease on abdomen.

At each timestep ¢, the controller balances two objectives. The pose-tracking objective penalizes
deviation from the desired waypoint, Jp(t) = ||p$"™—pg°s||. The force-regulation objective penalize
comfort-threshold exceedances for each contacted body part, J7,(t) = max(0, f,(b) — f™**(b))
for b € B;. The active objective setis J; = {Jp(t)} U {J;s(t) | b € By}

Because objectives in 7; may conflict depending on s;, they are executed according to a time-varying
ordering o; € &(J;) (denotes all permutations of active objectives) using H-OSC (Sec. 4.1). A
ranking policy 7, (¢) predicts o, at run time with the goal of tracking Pp,n While respecting comfort
thresholds with minimal user feedback. We formulate this as a contextual bandit (CB) problem. At
each timestep t: the context z; is derived from the observable state s;; the action is the ranking o
drawn from the action space A = &(J;); and the reward r; € R is a scalar feedback signal returned
after executing o;. The CB thus selects o, and H-OSC executes it as a strict hierarchy. Details of
how z; and r; are constructed are provided in Sec. 4.2.

4 PrioriTouch: Contact Preference Learning for Whole-arm Manipulation

PrioriTouch casts contact preference learning as a learning-to-rank problem over control objectives.
LinUCB-Rank, a contextual bandit, learns a priority ordering that H-OSC [12] executes as a null
space hierarchy, translating high-level contact preferences into low-level control. For safety and
data efficiency, candidate re-orderings are validated in a digital twin before deployment. We now
detail the components that enable this framework.

4.1 Hierarchical Operational Space Control for WAM

H-OSC [12] enables robots to manage multiple competing objectives by enforcing a strict hierarchy,
making it particularly suitable for WAM scenarios with simultaneous pose tracking and force regu-
lation. Given a ranking o, H-OSC recursively projects lower-priority objectives into the null space
of higher-priority ones, ensuring that higher-priority tasks are executed without interference.



Formally, the robot dynamics can be written as M(q;)d; + C(qe, q¢) + g(q:) = 7. H-OSC gen-
erates torques as 7, = » N ¢ 7;¢, where 7 = J;'rF]‘7t and N ; is the recursively computed
null space projector.

JET:

Operational-space forces F; ; are derived from desired task accelerations. For pose tracking, we use
% = K, (pfes — pfur) — K ps'™, where K, and K are proportional and derivative pose gains.
For force regulation at body part b € B;, we use %, = —K¢(f;(b) — f™**(b)), where K is a scalar
force gain. Detailed derivations appear in Appendix A.1.

4.2 Learning to Rank using Contextual Bandits

Enumerating and testing all permutations of objectives in J; is computationally infeasible. We
therefore formulate control objective prioritization for H-OSC as a learning-to-rank problem guided
by user feedback. We use a contextual bandit (CB) [29] to balance exploration and exploitation,
refining the ranking policy iteratively from sparse feedback.

Preliminaries. At each timestep ¢, a Algorithm 1 LinUCB-Rank
contextual bandit observes a context z;,

selects an action o; € A;, and re-
ceives a reward r(z¢,0¢). The goal .
is to minimizeTthe cumulative regret ».

Regret(T) = 3, maxseq, Elre(z,0)] 3 ZO N Tt ot <—[]

_ Ethl E[r¢(z¢, 0¢)] LinUCB [30, 31] as- 4 Inltlgllze ranking history z; j, < 0
sumes a linear reward model E[r; | z;, a] = 21 for i = 1to |7;| do
7
8

Require: Objective set J;, exploration parameter
a>0 )
Initialize (0;, A;,b;) foralli =1,... ||
fort =1toT do

OIzt for each atomic action a, and selects Construct context z; ; from state s;
actions using an upper confidence bound

~T T A1
(UCB): UCB,.q = 0, 2, + a\/z] A7 'z,

for each a;; € .Z(i_l) do

AT —
UCB,, ; < 0, 2z, + oy /le-Ai lzt,i

where A, is a covariance matrix and o« > 0 9: end for
controls exploration. 10: Gy 4= Argmax, . ;-1 UCB,, ,
11: O’f,(—O't—FCLt,i

In our setting, the action is a full ranking o;. () (i-1)
Standard LinUCB would choose a single 12: Tp < Ty \{ari}

best element a per round, which is insuf- ii E?:elcfl?; H-OSC with rankine o
ficient for prioritizing multiple coupled ob- ’ & |t 7l
jectives in H-OSC. LinUCB-Rank instead 15: Observe per-slot rewards {ryi };=

constructs o; sequentially, explicitly ac- 16: for i =1to | 7| do

. . . . T
counting for interdependencies: assigning 17: Ai = A+ 2002
hich - biect] d h 18: b; < b; + 72
igher priority to one objective reduces the -
SHet Priofity ) 19: 8, — A;'b;

null space available for those below it. 20: end for

Contextual Bandits for Ranking. We pro- 21: end for

pose LinUCB-Rank (Alg. 1), which extends

LinUCB to learn a ranking policy 7, (¢) by sequentially assigning positions within each timestep.
At every timestep ¢, LinUCB-Rank builds a ranking o; = (a1, .., a4, 7,) by selecting, at each

slot 7, the objective a;; € Jt(%l) with the highest UCB among the remaining candidates. While
Alg. 1 assumes a fixed set of objectives, J; may vary due to changing contacts C;. We therefore rank
a fixed surrogate set, i.e., the set of body parts B; run LinUCB-Rank over 5 to obtain an ordering
pt, then sort active objectives by this order.

The context z; ;, shared across all candidates at rank 4, is derived from s; and includes three parts: (1)
Max force per body part, z, ; € R™, with [z; ], = f.(b); (2) Pose error, z; , = ||p$"™ — pis||;
(3) Ranking state, z; , € R™, an indicator vector that encodes the positions already assigned to
each body part (0 if unassigned).

After constructing o,, H-OSC executes it. The robot then observes sensor data and user feedback
¢, which together define per-slot rewards r; ; for each element a; ;. Each reward has two terms:
(1) Feedback alignment (4, ;), positive if a; ; matches the body part indicated in ¢, and penalized
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Figure 3: Simulation environment and Hardware testbed: (Left) Sphere environment with multiple spheres
colliding with the robot’s arm to test force modulation. (Middle) Simulated robot-assisted bed-bathing scenario
with whole-arm contact to wipe a user’s limbs. (Right) Real-world 3D goal-reaching maze with vertical cylin-
ders, each representing a unique body part with its associated contact preference.

otherwise depending on rank deviation; (2) Threshold violation (r; ; ;), penalizing excess force as
T fi = —Wy maxbeB(O, fi(b) — fmax(b)), where wy > 0. The total reward is 7 ; = 7¢, s + Tt f,i-

4.3 Simulation-in-the-Loop Preference Learning

At run time, H-OSC generates low-level control commands by executing an objective hierarchy
produced by the ranking policy 7, (¢). This policy is updated online by LinUCB-Rank from sparse
user feedback. Because LinUCB-Rank is a contextual bandit, it must explore alternative orderings
to align with user preferences. Performing this exploration directly on the user can induce large
transients: in H-OSC, promoting one objective reduces the null space available to the rest, potentially
increasing forces elsewhere.

To keep adaptation safe and data-efficient, PrioriTouch adopts a simulation-in-the-loop approach,
performing high-risk exploration in a digital twin and deploying the converged policy on the real
system. Specifically, the robot performs the following steps:

Simulation-in-the-Loop Preference Learning

(1) Record feedback: Receive user feedback ¢, update threshold f™**(b), and log state s;.
(@ Retract safely: Move the robot to a predefined safe configuration.

(3) Simulate exploration: Set digital twin at state s;.

(@) Learn preferences: Iteratively refine policy 7, () using LinUCB-Rank (Sec. 4.2).

@ Resume operation: Upon convergence, resume real-world interaction with updated 7, (¢).

Exploration occurs off-body in the twin, reducing the need for real-world user interactions to per-
sonalize the hierarchy. Only orderings that perform well under the simulated reward signals are
deployed, yielding safer and more data-efficient adaptation.

5 Experiments

We evaluate PrioriTouch across three settings: (1) simulation to selectively evaluate learning and
force modulation effects, (2) a hardware testbed to assess it on complex trajectories in the real
world, and (3) user studies to model contact preferences and evaluate PrioriTouch in a real-world
pHRI scenario. We use RCareWorld [32] for simulation and a Kinova Gen3 arm with distributed
tactile sensing for all experiments; full system details are in the Appendix A.4.

Baselines. We compare LinUCB-Rank against the following methods:

e Fixed Priority (FP): Maintains a static priority ordering derived from aggregate user-study
preferences (Sec. 5.3), without adapting based on feedback.

e Heuristic-based Priority (HP): Starts from the same initial ordering as FP but reorders objec-
tives based on violations of force thresholds. For multiple violations, contacts are prioritized
based on the magnitude of the violations.

e LinUCB (Sorted): Independently learns contact force preferences using LinUCB, by sorting
estimated upper confidence bounds. This baseline ignores dependencies between objectives.
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Evaluation Metrics. We assess performance using:

Number of User Feedback Signals: Number of ¢, received before achieving correct ordering.
Force Threshold Violation: Number of timesteps with f;(b) > f™2*(b).

Time to Task Completion: Time taken to track the entire reference path Ppa.

Average Force Exerted Per Body Part: How well a method respects user force thresholds for
different body parts across different paths.

5.1 Simulation Experiments

(a) Sphere Environment. We simulate 2—4 spheres moving toward a stationary arm (Fig. 3, Left) to
isolate force regulation. Each sphere represents a body part with predefined priorities and comfort
thresholds; feedback is simulated accordingly (see Appendix A.2). As shown in Fig. 4 (Top-Left),
LinUCB-Rank attains better sample efficiency than LinUCB (Sorted) as the number of spheres in-
creases; with only two spheres, the simpler baseline is competitive, but the advantages of iterative
ranking grow with multi-contact coupling.

(b) Robot-assisted Bed Bathing. We simulate a wheelchair-mounted arm performing a sponge-
wiping task on a user lying in a hospital bed (Fig. 3, Middle). The path induces incidental whole-
arm contacts with seven body regions. We evaluate LinUCB-Rank against FP and HP over four
trajectories and three user models with varied preferences. Results (Fig. 4) show significantly fewer
threshold violations than FP and HP (paired t-test, p < 0.05). Unlike HP, which reorders abruptly
on violation spikes, LinUCB-Rank anticipates preferences and reduces excessive forces. While FP
can finish faster by adhering to fixed priorities at the expense of comfort, LinUCB-Rank maintains
comparable completion times while improving comfort. It also adheres more closely to varying user
thresholds (Fig. 4, Bottom).

5.2 Hardware Testbed. We deploy PrioriTouch in a challenging real-world 3D goal-reaching
maze (Fig. 5), where vertical cylinders encode distinct body parts and preferences. The robot follows
a predefined trajectory that necessarily induces whole-arm contact. When thresholds are exceeded,
the robot retracts, updates the priority policy within a digital twin, and resumes with the refined
policy, enabling steady progress toward the goal (see supplementary video on website).

5.3 User Studies

(a) Eliciting Population-Level Contact Preferences. We conducted a user study on robot-initiated
contact in caregiving contexts (standing, bathing, dressing). Participants (n=98; ages 32-77, mean


https://emprise.cs.cornell.edu/prioritouch/

Real __—Digil Twin Digital Twin

X 1
- m\\ T / E
- R KN 1
\ L. :
: > Y 1
. i ’) L gt f : - !
"~';-",m -l ’ I ’ll‘ as ) b i
Starting Position User Feedback Trlggered Safe Conhguratlon loration 0 ploration 1 P q
\‘ ‘ ( T & Digital Twin S(ep ‘ -~
& - 1S
} : ~ J I~ .
(ol il \ | if ‘ ’r 4
: 7 J’ T ‘ % 9 u i .
Resume in real world Safe Conﬂgurahon Resume in real world Goal reached =

Figure 5: Real-world demonstration of PrioriTouch in a 3D goal-reaching maze. As the robot moves toward the
goal, it periodically exceeds force thresholds (red cylinders), triggering user feedback. This feedback prompts
LinUCB-Rank to update the priority policy within a digital twin. The robot then resumes with the refined
policy, successfully progressing toward the goal.

58), recruited via Tetra Insights, included many with mobility limitations or disabilities. Each rated
comfort for robot contact across 37 predefined body regions and three touch categories (functional
assistance, emergency, sympathetic). Arms/hands and upper/lower back were most preferred for
functional assistance, particularly among right-handed participants who needed support; sensitive
regions (e.g., buttocks, genitals) were rarely selected. Fingers and toes were excluded because
assistive tasks typically involve larger surface areas. See Appendix A.5 for details.

These findings directly inform our realistic user Heatmap: Physically Assistive Touch
modeling approach, which includes: (1) a base

ranking of contact openness by body part and
(2) per-part comfort force thresholds. At run
time, the robot enforces these thresholds to
avoid exceeding comfort limits and uses the
base ranking to resolve concurrent violations.
We combine survey-derived preferences with

biomechanical pain limits (see Table 8 in [5])

via fmaX(h) = ~ fPan(p) S, where fPi"(b) is

from [5], v = 0.7 is a conservative base frac- Figure 6: Outline of a human bOdy divided into 37 re-
tion, and S, is the sensitivity ratio computed as giops; darl(er indica’t’es greater touch acceptance, white
the selection frequency for a body part divided indicates "no touch.

by the maximum frequency across parts. This normalization assigns higher ratios to frequently
selected regions, yielding a realistic basis for modeling contact preferences.

(b) PrioriTouch Evaluation with Humans. To
validate the practical feasibility of our approach
in caregiving scenarios, we conducted a user
study with 8 participants (without visible mo-
bility limitations) performing the robot-assisted
bed-bathing task (Fig. 7). We use an RGBD
camera (RealSense D455) and OpenPose to
generate an aligned digital twin. In this
evaluation, 7 out of 8 participants preferred
our approach over the baseline (HP) for tasks 3
involving WAM. Our method received higher B AN Spawn Digital
ratings in perceived safety, comfort, and overall _—
task performance (see Appendix A.6). Qualita- Figure 7: Experiment Setup: We use an overhead
tive feedback was strongly positive, including RGBD camera to perform pose estimation and spawn
comments such as: “Both methods initially got 2 digital twin for sim-in-the-loop preference learning.
stuck, but [ours] did pretty well on the second attempt” (second attempt implies post policy update),
and “It performed the task very well, the contacts felt seamless and natural.”




6 Limitations

Although PrioriTouch provides a novel way of integrating user contact preferences into low-level
control for whole-arm manipulation in pHRI, it has several limitations.

Tactile Sensing and digital twin fidelity. PrioriTouch benefits from distributed tactile sensing and
a digital twin for simulation-in-the-loop learning. While our experiments indicate robustness to
moderate modeling errors in collision modeling (see Appendix A.7), the use of more accurate tactile
sensing and richer human avatars, obtained using real-time tactile and visual feedback [33, 34],
would further improve sensitivity and sim-to-real transfer.

Handling ambiguous or noisy user feedback. Contact preference learning is currently driven by
sparse real-time verbal feedback parsed into structured signals. Highly ambiguous early feedback
can slow personalization; uncertainty-aware querying and complementary cues (e.g., visuo—tactile
patterns) are promising extensions.

Access to reference path with whole-arm contact. We currently assume the robot has access to
a feasible reference path that induces whole-arm contact, which is produced via teleoperation in
our current workflow. Future work can explore contact-aware path planning, allowing PrioriTouch
to support a broader range of assistive tasks (e.g., transferring, dressing) requiring more dexterous
whole-arm maneuvers.

Real-world deployment. Lastly, we intend to deploy our method to assist individuals with mobility
limitations. This will require unifying the improvements outlined above, including higher-fidelity
sensing, better digital twins, and contact-aware planning, into a reliable whole-arm pHRI framework
suitable for real-world use.
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A Appendix

A.1 Detailed Derivation of Hierarchical Operational Space Control (H-OSC)

H-OSC executes multiple objectives with a strict priority ordering. Consider an n-DOF robot ma-
nipulator with dynamics

M(a)a: + Car, a:) + glar) = 7+,
where q; € R" is the joint configuration, M(q;) € R™*" is the inertia matrix, C(q;, ;) € R" are
Coriolis/centrifugal terms, and g(q;) € R™ are gravity torques.

Given a priority ranking oy = (as1,...,a4,7,) over the active objectives J;, H-OSC computes
torques by projecting lower-priority objectives into the null space of higher-priority ones:

= Nyt
JET:

with each unprojected torque 7, ; = j;':tFj_,t, where J; ; is the null space projected Jacobian. The
null space projectors are updated recursively as

Nji1e =Ny =73 N, Ny =1L
Here J; ; is the Jacobian of objective j, and J ft its dynamically consistent generalized inverse:
# _ N-17T (7 -1737 !
Jie =M (3 M7 )
The operational-space dynamics for objective j at time ¢ are

AjiXje + pje + 8 = Fj,

where A, is the operational-space inertia, j1; the Coriolis/centrifugal effects, and g; . gravity
terms.

Desired task accelerations X, ; depend on the objective type:

des curr

* Pose-tracking objective: Jp(1): %, = K, (p§® — p¢
gains.

* Force-regulation objective: J¢ (t) for body part b € By: %, = =Ky (f:(b) — f™**(b)),
where f;(b) is the measured aggregate force and f™**(b) its comfort threshold.

) — Kap$*™, where K,,, K,; are pose

Finally, operational-space forces F; ; are mapped back into joint torques as 7, ; = J ,;r,tFj,t and then
combined using null space projectors to enforce the ranking o.

A.2 Simulating User Feedback

We create a user model by initializing a base priority ID and comfort threshold for each body part.
Given contact forces at timestep ¢, we compare the forces with the corresponding force thresholds.
In case there is a body part for which the forces are above the threshold and the degree by which the
forces are off. Using a sensitivity ratio (see Sec. 5.3), which is a function of the comfort threshold
itself, we generate the feedback for this body part. In case of multiple violations, we use the base
priority ID to decide which body part to generate feedback for. Feedback is generated for body parts
with higher base priority unless the force violation is beyond a safety force limit (set manually and
the same for each user).

A.3 Comparison of Feedback Mechanisms Using NASA-TLX

Our system currently solicits user feedback in a descriptive form, where users describe the affected
body part and how they feel (e.g., “I feel slightly uncomfortable around my abdomen’). An alter-
native is magnitude-based feedback, in which users specify a numerical change in force (in New-
tons). While magnitude-based feedback offers more precision, we hypothesize that most users prefer
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1 feel uncomfortable
on my right arm

Figure 8: User study setup for comparing different feedback mechanisms in two different configurations. Left
shows the participant lying down on the bed along with an example of the magnitude-based feedback, and Right
shows the participant sitting on a wheelchair with an example of the descriptive feedback.

providing descriptive input due to the lower mental burden of recalling numeric force values. To
investigate this, we conducted a Wizard-of-Oz study comparing these two feedback mechanisms via
a modified NASA-TLX workload assessment.

Study Procedure.

We recruited 11 participants (8 male, 3 female; ages 21-28) without mobility limitations. Each
participant experienced two configurations (see Figure 8): i) sitting in a wheelchair with the robot’s
forearm contacting their right arm, and ii) lying on a bed with the robot’s forearm or upper arm
contacting their lower abdomen. For each configuration, participants performed a separate trial
under each of the two feedback mechanisms. At the end of every trial, they rated the method on a
5-point Likert scale for mental demand, hurriedness, and irritation. We repeated each configuration
two times, counterbalancing the order of feedback mechanisms across participants. This study was
approved by our organization’s Institutional Review Board, and all participants provided written
consent.

_ e Descriptive
- - Magnitude-based

*x

mandind riedness \pritation

mentally O€ Hur

Figure 9: User study with 11 participants. Description-based feedback yields significantly lower cognitive
workload (lower score is better) than magnitude-based controls.

Results and Analysis. Ten of the 11 participants preferred description-based feedback. Figure 9
shows that description-based feedback yielded significantly lower cognitive workload than the
magnitude-based approach. A paired-sample #-test indicated statistically significant differences in
mental demand (p < 0.001), hurriedness (p < 0.05), and irritation (p < 0.001) between the two
methods. These findings support our hypothesis that descriptive feedback results in significantly
lower mental burden, presenting a reasonable tradeoff between ease of feedback and precision of
feedback.



A4 Additional System Details

Sensors are modeled as soft bodies in Obi (Unity) and made using piezoresistive taxels (modified
from [13]) in the real-world implementation. Each sensor provides contact location and force data.
We integrate these sensor readings with H-OSC implemented using PyBullet [35]. H-OSC with
LinUCB-Rank can operate at up to approximately 250 Hz, interfacing with a compliant low-level
controller (1 kHz), ensuring robust handling of abrupt motions, such as muscle spasms. After stabi-
lization, the system quickly refocuses on reference trajectories.

A.5 Additional Details of Contact Preference User Study

Study Procedure. Participants were recruited via Tetra Insights, a platform providing financially
compensated, high-quality respondents. Our study was approved by our Institutional Review Board.
Each participant was asked to envision a home-helper robot with a human-like form factor depicted
through a hand-sketched illustration featuring inflated, soft materials. Participants indicated their
comfort with robot-initiated touch on a graphical interface that included 37 predefined body regions,
identified with input from two medical doctors (general practitioners). Participants also had the
option to provide additional insights through open-ended responses.

Participant Demographics. The study included 98 adults (ages 32—77, mean age 58), of whom
42 participants were aged 65 or older and 56 were younger. Among participants, 67 identified as
female (including 1 transgender female), and 31 identified as male. Forty-nine participants reported
having a disability, 42 reported past injuries, and 7 chose not to disclose.

Detailed Findings. Overall, 40% of participants provided detailed open-ended responses elab-
orating on their choices. Arms and hands received the highest number of selections (779 total)
across all touch categories. Right-handed participants specifically favored their dominant arm or
hand for lighter supportive tasks, whereas the upper and lower back regions were predominantly
selected for scenarios involving more substantial support or bracing. Regions such as the buttocks
and genitals received minimal selections across all categories, highlighting privacy and comfort
boundaries. Fingers and toes were deliberately excluded, as assistive interactions typically involve
broader body regions.

A.6 Real-world user study with human subjects

Study Procedure. Participants first received an introduction describing the purpose of the
study—evaluating two robotic arm control methods designed for robot-assisted caregiving
involving whole-arm contact. Participants were informed about the specific caregiving scenario
(bed bathing), their evaluation tasks (performance in clearing artificial dirt (ground coffee),
perceived safety, and comfort), and how to provide verbal feedback during uncomfortable
contacts. Before experimental trials, participants completed a supervised sample trial to practice
providing feedback and simulating a person with mobility limitations. They used a provided
digital questionnaire to record evaluations after each trial, identified via method IDs. In the actual
trials, each participant experienced two distinct contact configurations across two methods, with
two trajectories each (wiping arm and leg). Participants were repeatedly reminded to keep their
responses independent of previous trials and to remain stationary during contact interactions. After
completing all trials, participants filled out a final questionnaire before concluding the study.

Results. Below are the results from the study conducted with 8 participants with no visible mobility
limitations.

Table 1: User—study ratings (mean + SD on a 1-5 Likert scale).
Task Perf. Safety Comfort

Heuristic 253£094 459+0.71 4.65+0.61
LinUCB-Rank (Ours) 3.06 £0.97 4.65+0.61 4.82+0.39
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In the post-study questionnaire, participants were asked to select which of the two methods they
would prefer for caregiving applications involving whole-arm contact. Seven out of eight partici-
pants preferred our method.

A.7 Additional Experiments

Simulation-in-the-Loop Learning: Pauses and Accuracy.

Pauses: We measured execution times for preference learning convergence in simulation
(52.4 4+ 21.7s). These pauses reduced progressively (to ~30s) as user-contact preference estimates
improved, indicating suitability for online use.

Simulation Fidelity (Sim-to-Real Gap): To test robustness to simulation inaccuracies, we varied
the fidelity of the digital twin’s collision model (quality = 1: exact fit to visual mesh; quality =
0.75: 75% fit). Lower fidelity led to only a modest (12.21%) increase in required feedback signals,
demonstrating our method’s resilience.

Comparison with Alternative Baselines.
We evaluated PrioriTouch against two additional baselines:

e Residual Reinforcement Learning: Did not achieve stable convergence within our online-
learning constraints, showing no force-violation reduction even after 20 minutes of training.

e Jain et al.’s MPC-based whole-arm manipulation (IJRR 2013): Adapted to our trajectories, this
baseline resulted in roughly 3x more force-threshold violations than PrioriTouch.
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