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Rethinking the Architecture Design for Efficient Generic Event
Boundary Detection

Anonymous Authors

ABSTRACT
Generic event boundary detection (GEBD), inspired by human vi-
sual cognitive behaviors of consistently segmenting videos into
meaningful temporal chunks, finds utility in various applications
such as video editing and summarization. In this paper, we demon-
strate that state-of-the-art GEBD models often prioritize final per-
formance over model complexity, resulting in low inference speed
and hindering efficient deployment in real-world scenarios. We
contribute to addressing this challenge by experimentally reexam-
ining the architecture of GEBD models and uncovering several
surprising findings. Firstly, we reveal that a concise GEBD baseline
model already achieves promising performance without any sophis-
ticated design. Secondly, we find that the common design of GEBD
models using image-domain backbones can contain plenty of archi-
tecture redundancy, motivating us to gradually “modernize” each
component to enhance efficiency. Thirdly, we show that the GEBD
models using image-domain backbones conducting the spatiotem-
poral learning in a spatial-then-temporal greedy manner can suffer
from a distraction issue, which might be the inefficient villain for
the GEBD. Using a video-domain backbone to jointly conduct spa-
tiotemporal modeling for GEBD is an effective solution for this issue.
The outcome of our exploration is a family of GEBD models, named
EfficientGEBD, significantly outperforms the previous SOTA meth-
ods by up to 1.7% performance growth and 280% practical speedup
under the same backbone choice. Our research prompts the com-
munity to design modern GEBD methods with the consideration of
model complexity, particularly in resource-aware applications. The
code is available at https://github.com/anonymous.

CCS CONCEPTS
• Computing methodologies→ Video segmentation; Activity
recognition and understanding.

KEYWORDS
Generic event boundary detection, Video understanding

1 INTRODUCTION
Video understanding has gained significant traction in multime-
dia fields recently [10, 34, 53]. Motivated by cognitive science
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Figure 1: The throughput (frames per second, FPS) vs. F1
score of different methods using video and image domain
backbones on Kinetics-GEBD [41].

showing human naturally tends to parse long videos into mean-
ingful segments for subsequent comprehending [36], recent re-
searchers have proposed the Generic Event Boundary Detection
task (GEBD) [41] that aims at detecting the moments in videos as
generic and taxonomy-free event boundaries. Generally, the devel-
opment of GEBD task will be valuable in immediately supporting
applications like video editing [5] and summarization [16], and
more importantly, spurring progress in long-form video, where
GEBD can be implemented as the first step towards segmenting
video into units for further reasoning and understanding.

The potential value of GEBD has promoted the development of
video GEBD benchmark competition, such as LOVEU21-23 [40, 42,
43]. However, the requirements of such competitions tend to encour-
age the models to achieve high performance without considering
model complexity. From Figure 1, we see that some of the existing
GEBD methods [17, 23, 41, 47] indeed suffer from the efficiency
issue and have a low throughput, which can hinder the real-world
applications of GEBD. On one hand, efficiency itself is supposed
to be an important evaluation metric for any GEBD method. On
the other hand, as GEBD can serve as a pre-processing step, its

https://github.com/anonymous
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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high latency will surely lead to the inefficiency of understanding
of long-form videos.

This paper rethinks the design paradigm of the deep network-
based GEBD model and is intended to improve its efficiency. We
surprisingly find that a basic GEBD model containing the most
concise design can already achieve comparable detection perfor-
mance (F1 score of 77.1%) with the soft-label training techniques
in [28, 52]. We call this basic GEBD model as BasicGEBD. Consid-
ering that early GEBD methods [41, 47] do not apply soft-label
during training, we imply a portion of the detection performance
differences between existing GEBD methods may be due to these
training techniques.

We then use the BasicGEBD as the starting point to gradually
“modernize” each component of BasicGEBD towards a highly ef-
ficient GEBD model. Our investigation of the backbone reveals
that the commonly applied ResNet50 [15] contains plenty of redun-
dancy and increasing the capacity of the backbone in BasicGEBD is
no benefit to GEBD performance. This motivates us to reduce the
size of the backbone to improve efficiency. We then reexamine the
rest components and find that lightweight designs can effectively
achieve temporal modeling for GEBD. Specifically, we build the
encoder based on difference maps [47] capturing the local relation
and use a small convolution network to process the similarity ma-
trix to extract the global information. Then we further propose
to use a cross-attention module to fuse global-local information
for final predictions. We show that each modified component is
effective yet lightweight compared to previous methods. Finally,
we obtain a family of GEBD models named EfficientGEBD, which
can achieve a new SOTA result (78.3%) on Kinetics-GEBD while
with 2.2× speedup than the previous SOTA methods [28] using the
same backbone (Figure 1).

Then we naturally think about why using high-capacity back-
bone models does not benefit the final GEBD performance. Our
results show that using image-domain backbones conducting the
spatiotemporal learning in a spatial-then-temporal greedy man-
ner can lead to a Distraction issue, which can distract the atten-
tion of the backbone from the true boundary-related objects. Such
an issue can be due to the absence of temporal modeling ability
of the image-domain backbone and therefore will be effectively
addressed by implementing a video-domain backbone to jointly
conduct spatiotemporal modeling for GEBD, which further boosts
the performance of EfficientGEBD by a large margin.

We hope the new observations and discussions can challenge
some common designs and existing evaluation metrics in GEBD
tasks. First, we suggest considering efficiency as an important met-
ric for evaluation to ensure the applicability of GEBD models. Sec-
ond, using small image-domain backbones is sufficient for GEBD
models which improves the efficiency with high detection perfor-
mance. Third, developing a GEBD model directly based on the
video-domain backbone is suggested for future works. Our contri-
butions can be summarized as follows:

• We introduce a strong baseline model for GEBD tasks, Ba-
sicGEBD, which achieve high performance without any so-
phisticated designs.

• By detailed studying each component of BasicGEBD, we ob-
tain a family of GEBD models, named EfficientGEBD, achiev-
ing SOTA performance with high inference speed.

• Implementing video-domain backbone for spatiotemporal
modeling can significantly boost the performance of Effi-
cientGEBD (82.9%) and even BasicGEBD (82.5%).

• Extensive experiments and studies on the Kinetics-GEBD
[41] and TAPOS [38] datasets provide new experimental evi-
dence as well as demonstrate the effectiveness and efficiency
of our work on GEBD tasks.

2 METHODOLOGY
In this section, we provide a trajectory going from a basic GEBD
model to an efficient GEBD model. To start the network designing,
we first build a baseline model, named BasicGEBD, as a starting
point by abstracting existing popular GEBDmethods [24, 28, 41, 47].
By reexamining each component of BasicGEBD, we propose to
reduce the surplus computational costs and improve the model effi-
ciency, resulting in a new family of efficient GEBD models, named
EfficientGEBD. Moreover, by investigating the possible reason why
the larger size of the backbone model turns into surplus costs rather
than improving GEBD performance, we are motivated to jointly
conduct spatiotemporal modeling in the backbone by using a video
domain deep network when building GEBD models. In Figure 2,
we show the procedure and the results we are able to achieve with
each step of the “model modernization”. All models in Section 2 are
trained and evaluated on Kinetics-GEBD [41], a challenging and
well-known GEBD dataset, which will be introduced in Section 3.

Training settings. Due to the similar duration and FPS of all
videos in Kinetics-GEBD, we uniformly sample 100 frames (i.e.,
𝑇 = 100) from each video as inputs. The length of a video clip
is set to 17, where the model is designed to recognize whether
the median frame is the boundary or not. We apply the training
settings in [28, 52] that use Gaussian Smoothing in all the following
studies. The whole model is trained end-to-end for 15 epochs with
Adam [25]. The learning rate is set as 1e-2, which will be divided
by 10 at the 6th and 8th epochs, respectively. We will use this fixed
training recipe with the same hyper-parameters throughout this
section. Here, we briefly introduce the Gaussian Smoothing:

According to [28], Gaussian Smoothing proposes to smooth the
sparse one-hot labels, Y ∈ {0, 1}𝑇 , with a Gaussian kernel with
the width of 𝜎 to generate soft labels Ỹ ∈ [0, 1]𝑇 , where 𝑇 is the
length of video. The smoothed label can provide more boundary
information and is effective in improving detection performance.
We use 𝜎 = 1 for all our experiments.

Evaluation Protocol. As mentioned in [41], the Relative Dis-
tance (Rel.Dis.), which represents the error between the detected
and ground truth timestamps divided by the length of the corre-
sponding action instance, is used to determine whether detection is
correct or not. Following [40, 42, 43], we report the F1 scores with
the Rel.Dis. of 0.05 in this section. Moreover, theoretical (GFLOPs)
and practical (FPS) speeds are used for efficiency evaluation. The
throughput is tested using the maximal batch size for each model
running on a NVIDIA RTX 4090 GPU with mixed precision.

2.1 A baseline model for GEBD: BasicGEBD
Although the design paradigms, such as unsupervised or self super-
vised manners, can also be used for building GEBD methods, in this
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Figure 2:Wemodernize the proposed BasicGEBD towards the
design of an efficient GEBD model. The foreground bars are
the model F1@0.05 score of the detection performance. The
GFLOPs of the model are depicted by grey bars. A hatched
bar means the modification is not adopted. In the end, our
EfficientGEBD with ResNet50-L2* can outperform the previ-
ous SOTA method (SC-Transformer [28]), and can be further
obviously improved by using CSN backbone [49].

paper, we mainly focus on the GEBD models that treat the bound-
ary detection tasks as supervised video clip binary classification
tasks, which are trained in an end-to-end manner. Other types, such
as detection-based GEBD models in an off-line feature extraction
manner (Temporal Perceiver [46]), are not included in our study.
SBoCo [24], DDM-Net [47], and SC-Transformer [28] (SC-Trans.)
are selected as the representative supervised GEBD networks. By
studying their architectures, we show that these models follow the
five components design paradigm: (1) The backbone for feature ex-
traction; (2) The encoder for temporal modeling; (3) The similarity
map (Sim. Map); (4) The decoder processing the similarity map; (5)
The feature fusion module. These components are summarized in

Table 1. Generally, these methods conduct the spatiotemporal mod-
eling in a greedy step-by-step manner, where the backbone is first
used to extract the spatial representations and then the temporal
modeling is conducted by the subsequent modules. More details
can be found in our Supplementary materials.

As a baseline model, we use the most concise design for each
component: (1) The widely used ResNet50 [15] pre-trained on Im-
ageNet [6] is applied as the backbone. (2) A 1-d Conv layer, con-
sisting of BN [22], Conv (Kernel=3) and ReLU, is implemented as
the encoder. (3) The cosine similarity (CosSim.) is used to gener-
ate the similarity matrix. (4) A fully convolutional network (FCN),
which normally consists of a mini ResNet101 following previous
designs [29, 47, 52] as the decoder. (5) As only DDM-Net applies
the fusion module, we do not use it in our baseline model. The
obtained architecture is shown in Figure 3 and we call this basic
GEBD model BasicGEBD in our research.

Figure 3: The architecture of BasicGEBD.

Surprisingly, we found that the performance of the proposed
BasicGEBD can be up to 77.1% in the term of F1@0.05 with the
training settings used in [28, 52], which is already superior to most
existing GEBD methods (shown in Table 2). It is amazing that such
a concise model can achieve high detection results without any
additionally sophisticated architecture designs as well as also show
high efficiency in terms of both theoretical (FLOPs) and practical
(Throughput) speed (shown in Figure 2 and Table 1). From the re-
sults, we conclude that apart from the design of the GEBD network
architecture, the training procedure also affects the ultimate per-
formance of GEBD models. Therefore, we infer that the superior
performance of some modern GEBD models actually benefits not
only from the sophisticated architecture design but also from the
advanced Gaussian smoothing training techniques.

We then use the BasicGEBD as the start point to explore a more
efficient model for GEBD tasks.

2.2 Exploring for EfficientGEBD
Our exploration from BasicGEBD to EfficientGEBD is by gradually
“modernizing” the BasicGEBD from four aspects: 1) backbone net-
work; 2) encoder; 3) decoder; 4) fusion module, where the backbone
is for spatial modeling, and the rest are designed for temporal mod-
eling. In Figure 2, we show this procedure and the results we are
able to achieve with each step of the model modernization.
1AResNet10 has 4 residual layers, where each layer contains 1 residual block, consisting
of two convolution layers with residual connection.
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Table 1: The architectures of three representative GEBD methods and the propose models in this paper.

Mehtods Backbone (FLOPs) Encoder (FLOPs) Sim. Map Decoder (FLOPs) Fusion (FLOPs) F1@0.05 FLOPs

SboCo [24]† ResNet50 1d-Conv CosSim. or ResNet + - 73.2 163.5GL2-Sim. Transformer

DDM-Net [47] ResNet50 (4.10G) Differences (0.0G) L2-Sim. FCN (0.25G) Progressive Att. (1.02G) 76.4 46.52G

SC-Trans. [28] ResNet50 (4.10G) Transformer (60M) CosSim. FCN (5.92G) - 77.7 10.36G

BasicGEBD ResNet50-L4 (4.10G) 1d-Conv (0.04M) CosSim. FCN (0.25G) - 77.1 4.36G

EfficientGEBD ResNet50-L2* (1.82G) DiffMixer (17.9M) CosSim. FCN (0.25G) Cross Att. (0.8M) 78.3 2.12G
EfficientGEBD CSN-L2* (1.72G) DiffMixer (17.9M) CosSim. FCN (0.25G) Cross Att. (0.8M) 80.6 2.00G
EfficientGEBD CSN-L4* (6.09G) DiffMixer (26.8M) CosSim. FCN (0.25G) Cross Att. (0.8M) 82.9 6.40G
† The FLOPs of each component can not be calculated since the official code is not available. The overall FLOPs are referred from [13].

2.2.1 Backbone network. From Table 1, we see that the backbones
(ResNet50) generally have a large contribution to the whole com-
putational costs for both BasicGEBD and other existing GEBD
methods, which motivates us to investigate how the size of the
backbone model can affect the performance of a GEBD model.

Figure 4: TheGFLOPs v.s F1 score of BasicGEBDwith different
sizes of ResNets as the backbone.

Therefore, we implement the BasicGEBD with the ResNets with
different capacities, and the results are shown in Figure 4. From the
results, we see that using a larger backbone network seems to be
unnecessary for performance improvement: the BasicGEBD with
ResNet18 can already achieve the detection accuracy compared
to that with ResNet50, indicating the extra computational costs
of ResNet50 can be superfluous. This can be further confirmed by
the results of BasicGEBD with ResNet152. This finding contradicts
the general common sense in other vision tasks, such as object
detection [32, 33], where using a larger backbone model normally
brings obvious performance improvements. Considering that the
ResNets are used for spatial modeling in these GEBD models, we
hypothesize that there exist tons of redundant computational costs
for spatial modeling when we use ResNet50 or larger models as the
backbone in BasicGEBD. Such a hypothesis is further confirmed by
the high performance achieved by the BasicGEBD when we attach
the detection head at early layers of ResNet50 (E.g, ResNet50-L2),
where the model achieves valuable detection performance (76.8%),
which is already superior tomost of the existing GEBDmethods (see
the results in Table 2). The BasicGEBD with ResNet50-L2 also has
much smaller computational costs (2.08 GFLOPs), which is over 45%
smaller than the original BasicGEBD, approximately 5 times smaller
than SC-Transformer [28] (10.36 GFLOPs) and over 20 times smaller

than DDM-Net [47] (40 GFLOPs) (shown in Figure 2). The lower
complexity leads to the fast throughput of themodifiedGEBDmodel
(2,325 FPS). We also found that the performance of BasicGEBD can
drastically drop with too small a capacity of backbone, indicating
that the capacity of the backbone for GEBD should be large enough
for spatial modeling.

As the surplus costs for spatial modeling exist when we use
ResNet50 as the backbone, we can make use of such redundancy to
improve the efficiency of our model with barely any performance
loss, motivating us to reduce the size of the backbone. For a fair
comparison with previous research such as [28, 47] that all use
ResNet50 as the backbone, we use ResNet50-L2 to conduct the
following examinations. However, our findings and designs also
hold for other small-size backbone, such as ResNet18 and ResNet34,
which will be shown in the experiments.

Then, we will use the first two layers of the backbone network
(ResNet50-L2) to build the efficient GEBD model.
2.2.2 Temporal modeling ability in encoder. As we have achieved
the upper limit of spatial modeling, we then need to increase the
temporal ability for accurate boundary detection, motivating the
previous researchers to use a sophisticated self-attention-based
encoder [28]. However, we show that the concise design in [47]
introducing difference maps for temporal modeling can achieve
better performance. Such a difference design also meets our intu-
ition in boundary detection tasks: To detect these motion-related
boundaries, motion information plays a principal role in perceiving
temporal variations and can be effectively modeled by using feature
differences at different timestamps.

Figure 5 (a) shows the architecture of the proposed encoder,
named difference mixer (Diff Mixer). Different from [47], we pro-
pose to use both difference features, X𝐷 , and the original features,
X𝐼 , for temporal modeling. Given the extracted features X ∈ R𝑇×𝐶 ,
where𝑇 is the temporal length and the𝐶 is the number of channels,
the difference can be calculated by X𝐷

𝑡 = X𝑡 − X𝑡+1, 𝑡 = 1, 2, ...,𝑇 .
And we further padX1 at the beginning ofX𝐷 to guarantee thatX𝐷

and X have the same dimension. Then X𝐷 and X𝐼 will be processed
by a conv layer (BN-Conv-ReLU) with the kernel size of 1.

Such a design enables the encoder to effectively model the lo-
cal relationship among different video frames: shot changes and
motion-related boundaries can be effectively identified by the orig-
inal X𝐼 and difference X𝐷 features, respectively, which can be
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Figure 5: The illustrations of the encoder (a) and the fusion module (d,e). In (b,c), we calculate the L2-norm and the cosine
similarity map of the features at different timestamps to see whether the discriminative boundary features can be captured.

illustrated by Figure 5 (b,c). We plot the variants of the features
norm and similarity maps for X𝐼 and X𝐷 . The shot changes can
be obviously identified with the extracted features without using
differences. However, for the action changes, temporal difference
seems a more important cue for boundary identifying.

As depicted in Figure 2, the implementation of Diff Mixer can
boost the performance of our model to 77.0% while approximately
maintaining the throughput of BasicGEBD. We also further test
using the Marco design of Transformers [28] as the encoder, and
observe that there are no obvious improvements in the performance.
Increasing the number of DiffMixers also does not benefit the GEBD
performance (the F1 score drops to 76.9% when we use two Diff
Mixers). More additional encoder architecture studies can be found
in our supplementary materials.

We then use one Diff Mixer as the encoder.

2.2.3 Feature fusion module. Feature fusion mechanisms which
introduces the features before the decoder for final predictions, is
proposed in [47] (Progressive Att.) to improve the GEBD perfor-
mance. However, the computational costs of Progressive Att. can
be up to 1.02G. In this section, we investigate how to conduct such
a feature fusion mechanism with a lightweight design to improve
the performance of GEBD.

Two fusion modules shown in Figure 5 (d,e) are tested, where the
fusion can be achieved by either directly concatenating two features
or using cross attention for fusion. For concatenation fusion, the
features from the encoder will be firstly processed by a Conv layer
(BN-Conv-ReLU) with a kernel size of 3, and then concatenated
to the features from the decoder. For the cross attention (Cross
Att.) fusion in Figure 5 (e), two squeeze-and-excitation (SE) [19] are
used to generate the weights, which are then used to re-weight the
resultant features from each branch.

The results in Figure 2 show that two fusion mechanisms can
boost the performance of the modified BasicGEBD to 77.6% and
77.7%, respectively. Note that the proposed fusion model is signifi-
cantly smaller than that in [47] (shown in Table 1), and therefore
barely affects the efficiency. So far, the model has achieved the per-
formance that is comparable to the previous SOTA results achieved
by SC-Transformer [28] with ResNet50 backbone. However, for
inference speed, the modified BasicGEBD with Cross Att. Fusion
can run over 100% faster than SC-Transformer in terms of FPS.

We further indicate that such improvements can be due to the
fusion of global-local temporal information. On one hand, the de-
coder can gather global information by using the FCN to process
the similarity matrix of the whole video clip. Therefore, the features

from the decoder can be viewed as the global representations of the
event boundary. On the other hand, the difference features from
Diff Mixer measure the relationship for the adjacent frames (local
information), which potentially captures motion cues in the tempo-
ral dimension (as it is shown in Figure 5 (b,c)), introducing them in
the final predictions might immediately improve the identification
of some event boundaries, and therefore benefit whole GEBD tasks.

We then use Cross Att. fusion in our model.

2.2.4 The FCN in decoder. The implementation of the similarity
maps as well as the 2-d FCN decoder can be seen as a sign of re-
cent outperforming supervised GEBD methods. The FCN normally
consists of a mini ResNet (such as ResNet10 in [47], or ResNet18
in [29, 52]) or its variants (a 4-layer fully convolutional network
in [28]). Such a design is important to achieve accurate detection
performance for GEBD models. For example, if we apply the “old
fashion” design in [41] which does not apply the similarity map and
the FCN decoder (the features from encoder will be directly used for
final predictions), the performance of BasicGEBD will drastically
drop to 64.6% even with the DiffMixer.

From Figure 2 we see that the model with ResNet18 as the de-
coder is only 0.1% higher than that using ResNet10 (77.7% v.s 77.8%),
indicating that increasing the size of the FCN does not necessarily
lead to better performance. The applied decoder only has 0.25G
FLOPs, which is much smaller than the decoder in [28] (5.92G).
Therefore, we indicate that the large decoder in the SC-Transformer
might contain too much redundancy, which can limit its efficiency.
Therefore, we use the ResNet10 as the decoder for the higher effi-
ciency of the model.

We then use a ResNet10 as the decoder for the final model.

2.2.5 EfficientGEBD. We have finished our first “playthrough” and
have the general architecture of the proposed GEBD model. More-
over, following [47], we introduce both the features from layer-1
and layer-2 (L1 and L2) and concatenate them as the inputs for the
encoder, which further boost the performance of the model from
77.7% to 78.3%, while hardly affects the inference speed. Here, we use
ResNet50-L2* to denote that both the features from layers 1 and 2
are used. To this end, we have discovered the efficient GEBD model,
named EfficientGEBD, that achieves SOTA performance compared
to the existing GEBD methods using ResNet50 as the backbone on
the Kinetics-GEBD dataset. Remarkably, our EfficientGEBD achieve
0.6% higher performance while having 2.2× speedup compared to
the previous SOTA GEBD method, SC-Transformer [28].
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Although we have explored ways to reduce the surplus com-
putational costs for spatial modeling to build EfficientGEBD, the
inefficiency issue of the backbone network is still like a dark cloud
on the horizon of building high-performance GEBD models. In-
deed, the results in Figure 4 show that scaling up the backbone
to ResNet152 does not obviously help in performance improve-
ment of EfficientGEBD. To achieve higher detection performance,
recent studies [46, 52] and the winner solutions of GEBD competi-
tion [17, 18, 45] have proposed to implement deep models for video
domain to build GEBD methods, such as Two-streams networks
(TSN) [9] and channel-separated video network (CSN) [49]. The
applications of CSNs built based on ResNet152 significantly boost
the performance of the GEBD models in [29, 52]. As the used CSN
is also built based on ResNet152, we are interested in the reason
why using video backbone brings obvious improvements, which is
further investigated in the following.

2.3 Distraction issue in GEBD
So far, all previously examined GEBD models conduct the spatial
and temporal modeling in a greedy learning manner, where an
image-domain backbone, such as a ResNet, is firstly used to extract
the spatial features, and then the subsequent modules are applied
to explore the temporal information for event boundary detection.

However, we hypothesize that conducting the spatiotemporal
representation learning in such a greedy way can lead to several in-
efficiency issues in GEBD tasks. As the image domain backbones are
usually designed to identify the main objects in an image, learning
the spatial features without the guide from temporal information
can result in the attention of the backbone distracting from the
objects most related to the boundaries, and getting stuck in some
areas containing the other objects in each frame. We refer to such
an issue as distraction issue. Figure 6 further illustrates the distrac-
tion issue when we use the image-domain backbone to build GEBD
models. For instance, the event boundary in Figure 6 (a) is defined
by the changes of action during arm wrestling. The high activations
of the ResNet backbone get stuck in the spatial areas that contain
the head of the person in the center of the frame. With the arm
wrestling-related spatial areas missing features extracted from the
backbone, the subsequent modules will have difficulties conducting
the following temporal modeling, resulting in the failure detec-
tion of this boundary. More experimental visualization results are
provided in supplementary materials. Therefore, we indicate the
distraction issue may be the real villain for the inefficiency when
we use image domain backbones to build GEBD models.

However, from Figure 6, we see that high activations of CSN sur-
round the arm wrestling-related spatial areas. Actually, spatial and
temporal learning can complement each other during feature learn-
ing. On one hand, temporal information can be important to guide
the backbone to focus on boundary-related spatial representations.
On the other hand, the learned spatial features can be used to ex-
plore the temporal variants, which are important cues for boundary
detection. Therefore, instead of learning spatiotemporal features
in a step-by-step manner, a more reasonable way is to jointly ex-
tract the spatiotemporal features in the GEBD backbone by using
video-domain backbone networks, which effectively avoids the
aforementioned static trap and improves the GEBD performance.

Figure 6: The activations captured by GradCAM++ [3] using
ResNet [15] and CSN [49] as the backbones for GEBDmodels.
The median frame is the boundary frame. The yellow circles
show that the CSN focuses more on the spatial areas that
related to the actions rather than the static object.

To this end, channel-separated video network (CSN) [49], pre-
trained on video action recognition datasets, IG65M [11], is im-
plemented as the backbone to improve BasicGEBD and Efficient-
GEBD. By using CSN-L4 as the backbone model, the BasicGEBD
surprisingly achieves the performance of 82.5% (see Table 2), which
outperforms all previous published researches [29, 46, 52]. More-
over, the EfficientGEBD with CSN-L2 and CSN-L4 can achieve
the performance of 80.4% and 82.0%, respectively (these results
are reported in supplementary materials). Compared to the sce-
nario that introducing additional model capacity does not bring
obvious GEBD performance when we use an image-domain back-
bone, the superiority of CSN-L4 compared to CSN-L2 indicates that
scaling behavior does exist when we use video-domain backbone
network for GEBD models, which demonstrates the importance
of conducting spatiotemporal modeling in the backbone model to
build high-performance GEBD models.

As depicted in Figure 2, EfficientGEBD with CSN-L2* and CSN-
L4* achieve the performance of 80.6% and 82.9%. However, our
simple yet effective models are still highly efficient, EfficientGEBD
with CSN-L2* achieving a throughput of over 2,000, which is over
4× faster than previous SOTA result in [52]. When using CSN-L4*,
we can achieve a new SOTA result of 82.9% on Kinetics-GEBD with
over 1,000 FPS, which is 180% faster than [52]. These encouraging
findings prompt us to rethink the correctness of using an image
domain backbone when building GEBD models.

3 EXPERIMENT
3.1 Experimental Settings
3.1.1 Datasets. The empirical evaluations are based on the fre-
quently used Kinetics-GEBD [41] and TAPOS [38] datasets follow-
ing most previous works [24, 29, 41, 47]. The Kinetics-GEBD dataset
contains 54,691 videos randomly selected from Kinetics-400 [2],
and these videos are labeled with 1,290,000 generic event temporal
boundaries. The distribution of videos across training, validation,
and testing sets in Kinetics-GEBD is nearly uniform, maintaining
a ratio close to 1:1:1. Each video is annotated by five annotators,
resulting in an average of approximately 4.77 boundaries per video.
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Table 2: Comparisons in terms o F1 score (%) on Kinetics-
GEBD with Rel.Dis. threshold from 0.05 to 0.5.

Method Backbone F1 @ Rel. Dis.
0.05 0.1 0.3 0.5 avg

BMN [31] Res50 18.6 20.4 23.0 24.1 22.3
BMN-StartEnd [31] Res50 49.1 58.9 66.8 68.3 64.0
TCN-TAPOS [26] Res50 46.4 56.0 65.9 68.7 62.7
TCN [26] Res50 58.8 65.7 70.3 71.2 68.5
PC [41] Res50 62.5 75.8 85.3 87.0 81.7
PC+OF [41] Res50 64.6 77.6 86.4 87.9 83.0
SBoCo [24] Res50 73.2 - - - 86.6
Temporal Per. [46] Res50 74.8 82.8 87.9 89.2 86.0
CVRL [29] Res50 74.3 83.0 88.6 89.8 86.5
CVRL+ [52] Res50 76.8 84.8 89.6 90.6 87.7
DDM-Net [47] Res50 76.4 84.3 89.2 90.2 87.3
SC-Transformer [28] Res50 77.7 84.9 90.0 91.1 88.1
BasicGEBD Res50 76.8 83.4 88.5 89.6 86.6
EfficientGEBD Res50-L2* 78.3 85.1 90.1 91.3 88.3

SBoCo [24] TSN 78.7 - - - 89.2
CLA [23] TSN 79.1 - - - -
CASTANet [17] CSN 78.1 - - - -
CVRL [29] CSN 78.6 - - - -
CVRL+ [52] CSN 81.2 - - - -
BasicGEBD CSN 82.5 87.7 91.9 92.8 90.4
EfficientGEBD CSN 82.9 88.2 92.2 93.2 90.8

Since the annotations for the test set are not publicly accessible,
we conducted training on the training set and subsequently evalu-
ated model performance using the validation set. In line with the
methodology outlined in [41], we adapt TAPOS by concealing each
action instance’s label and conducting experiments based on this
modified dataset.

3.1.2 Implementation Details. For Kinetics-GEBD, we use the same
implementation details as we described in Section 2.2. As the videos
in TAPOS have a large variety of duration over instances, we split
the instances without overlapping and sample 100 frames by keep-
ing a similar FPS to Kinetics-GEBD following [46]. The scores of
sub-instances are merged together to generate the final prediction.
The whole model is trained end-to-end for 30 epochs with Adam
[25] and a base learning rate of 2e-2, which will be divided by 10 at
the 6th, 8th and 15th epochs, respectively. Other settings are the
same as these for Kinetics-GEBD.

3.2 Empirical Evaluations on Kinetics-GEBD
Table 2 and Figure 7 show the results of our models on the Kinetics-
GEBD validation set, with Rel.Dis. threshold from 0.05 to 0.5. The
complete results are provided in supplementary materials. Overall,
we see that our methods achieve promising performance compared
to previous methods in different Rel. Dis.. Moreover, we find that
EfficientGEBD is superior to previous GEBD methods, especially
under the most stringent Rel. Dis. constraint (0.05), indicating the
stronger boundary detection ability of our method. Specifically in
terms of F1@0.05. Specifically, when using the ResNet50 as the
backbone, EfficientGEBD competes SC-Transformer [28] with 0.6%
higher performance (78.3% v.s 77.7%) and 2.2× speedup (2208 FPS
v.s 971 FPS). EfficientGEBD achieves new SOTA performance of

82.9% when using CSN as backbone model, which is over 1.7%
higher and 2.8× speedup than the CVRL+ in [52]. We also find that
although the BasicGEBD achieves fair detection performance with
image-domain backbone, the BasicGEBD with CSN can achieve the
detection performance of 82.5% without any sophisticated archi-
tecture designs, which is also superior to CVRL+, indicating the
importance of conducting spatiotemporal modeling in the backbone
models as we stated in Section 2.3. The higher performance of using
CSN(R50)-L4* (81.1%) also confirms our findings. In Figure 7, we
show that the family of evaluated EfficientGEBDs all achieve high
efficiency in the experiments which demonstrate the effectiveness
and efficiency of our design.

Figure 7: The FPS v.s F1 score with evaluated GEBD methods
on Kinetics-GEBD. FPS is measured using NVIDIA RTX 4090.

3.3 Results on TAPOS
We also conduct experiments on the TAPOS [38] dataset in Table 3.
The proposed EfficientGEBD also achieves the SOTA performance
in terms of F1@0.05 (63.1%) and average (74.8%), respectively, which
further proves the strong generalizability of our methods. More
results and analyses on TAPOS are provided in supplementary
materials. This verified the effectiveness of our method and our
method can learn more robust feature presentation in different
scenes.

3.4 Visualization
Based on the properties of the generic event boundaries, they can
be specifically categorized into shot- (19%) and event-level (81%)
boundaries. In this experiment, we further evaluate the performance
of our methods in detecting different kinds of boundaries, where
the pseudo recall2 for each category is calculated and shown in
Figure 8 (a). From the results, we see that shot-level boundaries

2Since the GEBD models only generate the boundary predictions regardless of their
specific categories, the True Positive might not be true.
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Table 3: Comparison with others in terms of F1 score (%) on
TAPOS with Rel.Dis. threshold from 0.05 to 0.5.

Method F1 @ Rel. Dis.
0.05 0.1 0.3 0.5 avg

ISBA [7] 10.6 17.0 32.6 39.6 30.2
TCN [26] 23.7 31.2 34.4 34.8 64.0
CTM [20] 24.4 31.2 36.9 38.5 35.0
TransParser [38] 28.9 38.1 51.4 54.5 47.4
PC [41] 52.2 59.5 66.5 68.3 64.2
Temporal Perceiver [46] 55.2 66.3 76.5 78.8 73.2
DDM-Net [47] 60.4 68.1 75.3 76.7 72.8
SC-Transformer [28] 61.8 69.4 76.7 78.0 74.2

EfficientGEBD (Res50-L3*) 62.6 70.1 77.2 78.4 74.7
EfficientGEBD (Res50-L4*) 63.1 70.5 77.4 78.6 74.8

can be mostly effectively detected by the GEBD models. These
event-level boundaries that have the largest number of samples
(81%) are the samples that indeed make up the bulk of the miss-
detection in GEBD tasks. The results also meet our hypothesis
stated in Section 2.3, that the image backbone is more likely to suffer
from the distraction issue when detecting event-level boundaries,
resulting in a low detection recall (75.9%). While as using a video
backbone effectively addresses the distraction issue, the detection
recall can achieve an obvious improvement (80.1%) for these event-
level boundaries.

We further provide qualitative results of shot- and event-level
boundary detection on Kinetics-GEBD in Figure 8, from which
we see that most predictions of our method are accurate. We also
find that our method struggles with the detection when there are
multiple small objects in the videos(shown in Figure 8 (d)). This
meets our intuition since the changes of each object can be viewed
as the boundary, whichmight distract the GEBDmodel and increase
the complexity of detecting the event boundaries.

4 RELATEDWORK
In video understanding fields, temporal detection tasks normally
involve identifying clip-level instances from within untrimmed
videos, such as shot boundary detection [14, 44, 48], temporal ac-
tion segmentation [1, 8, 27], and temporal action localization [4, 35,
39, 51]. Initially introduced in [41], GEBD targets the localization
of taxonomy-free moments, mirroring human perception of event
boundaries according to recent cognitive science. These bound-
aries serve as crucial cues for a deeper understanding of long-form
videos. Most existing research models the GEBD tasks as a binary
classification problem for the input video clips. A line of research
for GEBD tasks adopts a similar approach as described in [41] to
partition lengthy videos into adjacent overlapping snippets, treat-
ing them as independent samples [13, 17, 23]. DDM-Net [47] further
proposes to characterize the motion pattern with dense difference
maps. There is also a series of works that conduct the entire video
as a single input stream with continuous predictions [21, 28] and
achieve higher efficiency. Moreover, Temporal Perceiver [46] builds
the offline framework and achieves GEBD using a detection-based
method.

Figure 8: Detection results on Kinetics-GEBD for (a) category-
specific detection recalls. (b) shot-level changes, (c) event-
level changes and (d) a failure case.

Recent researchers have proposed to build the GEBD models in
self-supervised or unsupervised manners. [24] proposes a recursive
parsing algorithm based on the temporal self-similarity matrix to
enhance local modeling. [37] builds a motion-aware GEBD method
that uses a differentiable motion feature learning module to tackle
spatial and temporal diversities. Furthermore, a parameter-free un-
supervised GEBD detector is also proposed in [12], which conducts
GEBD using optical flow without deep architectures.

It is more recent studies have also proposed to focus more on im-
proving the efficiency of the GEBDmodels. In [13], a light-weighted
GEBD detector is built based on transformer decoders. Moreover, an
end-to-end compressed video representation learning (CVRL) for
GEBD is proposed in [30, 52]. As recent studies [50, 54] have shown
that using compressed video streams can speedup the inference, we
believe that our method can also achieve higher efficiency when
modified to allow the compressed video stream as input.

5 CONCLUSION
As an important pre-processing technique for long-form video un-
derstanding, the inefficiency of GEBD methods can largely affect
the efficiency of long-form video processing, which prompts us to
rethink the architecture design for efficient GEBD. In some ways,
the performance and efficiency of the proposed BasicGEBD and
EfficientGEBD are surprising while the model itself is not new,
where most of the designs have been introduced in previous GEBD
studies [28, 41, 47]. We also believe that combining other paral-
lel techniques, such as self-supervised training [24, 45] or using
compressed videos as inputs [29, 52], can further improve the per-
formance of our method. We hope that the new results of this study
will bring new intuitions for GEBD architecture design and new
evaluation metrics that consider the model efficiency for GEBD
tasks in video understanding fields.
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