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Abstract

Meta-reinforcement learning (Meta-RL), though enabling a fast adaptation to learn
new skills by exploiting the common structure shared among different tasks, suffers
performance degradation in the sparse-reward setting. Current hindsight-based sam-
ple transfer approaches can alleviate this issue by transferring relabeled trajectories
from other tasks to a new task so as to provide informative experience for the target
reward function, but are unfortunately constrained with the unrealistic assumption
that tasks differ only in reward functions. In this paper, we propose a doubly robust
augmented transfer (DRaT) approach, aiming at addressing the more general sparse
reward meta-RL scenario with both dynamics mismatches and varying reward func-
tions across tasks. Specifically, we design a doubly robust augmented estimator
for efficient value-function evaluation, which tackles dynamics mismatches with
the optimal importance weight of transition distributions achieved by minimizing
the theoretically derived upper bound of mean squared error (MSE) between the
estimated values of transferred samples and their true values in the target task. Due
to its intractability, we then propose an interval-based approximation to this optimal
importance weight, which is guaranteed to cover the optimum with a constrained
and sample-independent upper bound on the MSE approximation error. Based
on our theoretical findings, we finally develop a DRaT algorithm for transferring
informative samples across tasks during the training of meta-RL. We implement
DRaT on an off-policy meta-RL baseline, and empirically show that it significantly
outperforms other hindsight-based approaches on various sparse-reward MuJoCo
locomotion tasks with varying dynamics and reward functions.

1 Introduction

Reinforcement learning (RL) has achieved a remarkable success in a variety of sequential decision
making tasks, such as intelligent gaming [1] and robotic control [2]. Agents trained by conventional
RL methods aim at learning a single task, thus fail to adapt quickly to a new task with prior experience.
In contrast, meta-reinforcement learning (meta-RL) focuses on learning to learn, i.e., learning how to
adapt [3, 4]. In essence, it learns the underlying common structure from experience collected across a
set of tasks, and then exploits this structure to fast adapt to similar new tasks with only a few trials.

Currently, one of the main challenges in meta-RL is the sparse-reward setting, which exists widely in
real-world environments. When rewards become sparse, the agent receives only scarce information
related to the task, bringing extreme difficulty to the meta-training and adaptation processes. To
collect more useful experience, sample transfer approaches have been proposed. The key idea behind
is to learn a new task by selectively leveraging samples generated from other tasks. Ideally, samples
transferred from an original task to the new target task are required to be informative trajectories.
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Namely, the informative trajectories should present a higher and denser reward in the target task,
though they might be unsuccessful attempts (i.e., with lower and sparser reward) in the original task.

Following the direction of sample transfer, hindsight experience replay (HER) and its variants [5, 6]
have been developed as the typical methods in literature. Hindsight-based methods relabel a trajectory
collected from the original task to a target task as informative trajectory, where rewards of this
trajectory are re-computed using the target reward function to teach it how to achieve a different goal
in the new task. However, HER algorithms are inherently designed for tasks that only differ in the
reward function, while dynamics of all the different tasks are assumed to be identical. It is worth
mentioning that in many real-world scenarios, tasks may differ not only in reward functions, but also
in dynamics. For example, a robot is often trained under various working conditions, such as different
load mass and joint damping, which may result in different distributions of dynamics. We are thus
motivated to consider a more general meta-RL scenario where both dynamics and reward function
can be different and varying across tasks, and study how to further cope with such a mismatch of
dynamics distributions. This brings new challenges to existing meta-RL baselines, since consideration
of only dynamics difference with the identical dense-reward setting fails to handle multi-goal tasks,
while considering only the reward difference may misjudge values of transferred trajectories.

In off-policy RL, doubly robust (DR) estimators [7, 8] have emerged as an effective method to correct
the distribution mismatch between a target policy and a behavior policy. They incorporate importance
sampling with a fitted model of value function to alleviate the high variance issue of the original
importance sampling-based estimator. In meta-RL, however, the discrepancy between the dynamics
of the original and target tasks (as represented by the importance weight of dynamics) is practically
inaccessible to the agent. This indicates that popular methods, such as directly clipping or removing
large importance weight values [9, 10], proposed for providing a more accurate evaluation to enable
efficient sample transfer and thus stable training, become infeasible in meta-RL.

In order to control the values of dynamics importance weights, we formulate the sample transfer as
a mean square error (MSE) minimization problem and solve for the optimal dynamics importance
weight. Since this optimal weight is intractable in practice, we propose an approximation strategy that
constrains the estimated weight within an interval containing this optimal weight, and theoretically
show that any estimate outside this interval would inevitably increase the MSE. Finally, we present a
policy learning algorithm for sample transfer-based meta-RL, in which the proposed weight estimate
is used for value-function evaluation. Our main contributions can be summarized as follows.

• Doubly Robust augmented Estimator. We design a doubly robust augmented estimator (DRaE),
which for the first time accommodates to the more general and rational meta-RL setting and
simultaneously allows varying dynamics and reward functions across different tasks. DRaE tackles
the mismatch of dynamics distributions in meta-RL with a guaranteed optimum for the dynamics
importance weight by minimizing MSE between the estimated and true values of the value function.

• Theoretically Robust Interval Approximation. We propose a tractable interval-based approxima-
tion for the optimal dynamics importance weight derived by our DRaE. This interval is deterministic
to balance the variance and bias for a decreasing MSE and guaranteed to cover the optimum. We
further verify that the proposed approximation is robust in theory with a constrained and sample-
independent upper bound on the MSE approximation error from the optimum.

• Doubly Robust augmented Transfer Algorithm. We develop a doubly robust augmented transfer
(DRaT) algorithm for transferring informative samples across tasks, based on the proposed DRaE.
DRaT controls the importance weight under the guide of our interval-based approximation to
minimize the MSE. It is noted that DRaT can be integrated into any value-based meta-RL baselines
and implemented specifically on an off-policy meta-RL baseline, PEARL [4].

2 Preliminary

2.1 Meta-Reinforcement Learning (Meta-RL)

Meta-RL considers training on a task set {Ti} to learn a set of meta-parameters, which can quickly
adapt to solving a new (testing) task with only a limited number of samples. Each task Ti then implies
a Markov decision process (MDP) with both a distinct reward function ri and a different transition
probability distribution pi(·|s, a). Such a meta-RL objective can be written as: maxθ EPT

[
JT (πθTi )

]
,

where PT denotes the sampling distribution over the training task set T , JT (πθTi ) is the expected
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reward of policyπθTi on the task Ti, and the policy πθTi is generated from πθ following a certain
adaptation procedure given samples ci = {st, at, rt, st+1} from this task.

We use PEARL [4] specifically in this paper as the baseline meta-RL algorithm, which builds upon
the soft actor-critic (SAC) [11]. Nevertheless, our proposed DRaT approach is compatible with and
can be applied generally to any other meta-RL baselines. PEARL implements the adaptation by
constructing an inference network qϕ(z|c), which takes in recently collected samples c of a task (also
referred to as the context) and infers a latent context variable z that encodes salient information about
this task. Then, a policy πθ(a|s, z) conditioned on z can adapt its behavior to this task. Both the
inference network qϕ(z|c) and critic Qθ(s, a, z) are trained with the following critic loss:

Lcritic =
1

2
E(s,a,r,s′)∼B,z∼qϕ(z|c)

[
Qθ(s, a, z)− (r(s, a) + γV̄θ(s

′, z̄))
]2

, (1)

where V̄θ is the target value network and the overline notation specifies no gradient backpropagation
going through V̄θ and z̄. While the policy is trained using the same actor loss as in SAC [11].

2.2 Doubly Robust Estimator for Off-Policy Policy Evaluation

In off-policy policy evaluation, we expect to estimate the state value of a target policy π given data sam-
pled from a behavior policy µ, where distribution mismatch stems from varying polices. Importance
sampling (IS) estimators can correct this mismatch by multiplying the importance weights of policies,
thus providing an unbiased estimate: V IS(st = s) =

[∏T−1
k=t ρπ(k)

]
·
[∑T−t−1

k=0 γkr(st+k, at+k)
]
,

where ρπ(k) =
π(ak|sk)
µ(ak|sk) denotes the importance weight between the target policy π and behavior

policy µ at the step k. Unfortunately, the IS estimator suffers from high variance due to possible high
values of the policy importance weights, while the product of policy importance weights will also
grow exponentially with the horizon [7]. Through incorporating a fitted value function into the IS
estimator, this variance can be reduced by doubly robust (DR) estimators, which approximate the
value-function at st recursively as:

V DR(st = s) = V̂ (s) + ρπ(t)
[
r(st, at) + γV DR(st+1)− Q̂(s, at)

]
, (2)

where V̂ (s) = Ea∼π(·|s)
[
Q̂(s, a)

]
is computed by the fitted Q-function, i.e., Q̂. Here, “doubly robust”

refers to that the estimated value is unbiased when either one of the ρπ and Q̂ is an unbiased estimate.

3 Doubly Robust Augmented Estimator (DRaE) for Sample Transfer

In this section, we consider leveraging the sample transfer between tasks in a more general sparse-
reward meta-RL setting, where both the reward functions and dynamics are varying across different
tasks. Specifically, we formulate the sample transfer as a mean square error (MSE) minimization
problem between the estimate value of samples transferred from other tasks and their true values
in the target task. Other than the simple transfer of relabeled samples in hindsight-based methods
without accommodating to the dynamics mismatch, solution to the proposed sample transfer problem
can provide the true value estimate of transferred samples for the subsequent tasks in meta-training,
which implicitly incorporates the differences of both reward functions and dynamics models.

We then show that a direct use of DR will bring additionally high variance incurred by environment
dynamics, since the importance weight of dynamics might be large due to various dynamics. Though
the unbiasedness of DR estimate is appealing, its high variance will cause a large MSE on the esti-
mated value, which significantly disturbs the meta-training process. Since MSE can be decomposed
into the sum of bias and variance-related terms, we thus propose to minimize a derived upper bound
of MSE and determine the optimal dynamics importance weight, aiming at balancing the bias and
variance. Finally, to overcome the intractability of solving this MSE minimization in practice, we
propose instead an interval-based approximation for the optimal importance weight, by showing that
any other values outside this interval will enlarge both the bias and variance, thus with a larger MSE.

3.1 Problem Formulation of Sample Transfer in Meta-RL

In meta-RL, a training task set T can be characterized by tuples {Ti = ⟨S,A, pi, ri⟩ , i = 1, · · · , N},
where S and A denote the common state and action spaces, respectively, while a task Ti is distinct
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in both the transition distribution pi and reward function ri. At each training iteration, informative
trajectories that are sampled from other tasks but expected to achieve a higher sum of rewards for a
certain task Tj will be transferred to and leveraged by Tj , which is the core idea behind hindsight-
based methods. Here, we argue that their intuitive sum of rewards, however, cannot accurately
indicate the true state value Vj of a trajectory that is sampled from other tasks and transferred to this
target task, especially when dynamics mismatches arise across tasks. For a more accurate estimation,
we therefore formulate the following sample transfer problem by minimizing the MSE between the
true state value Vj and its estimate V̂j :

min
V̂j

∑
τi∼Dj

∑
t

Eτi|t:T

[(
Vj(st)− V̂j(st)

)2 ∣∣st = s

]
, (3)

where Dj = {τi = {st, at, rt, st+1}
∣∣T
t=0

}i ̸=j is the dataset that contains informative trajectories
sampled from other tasks and selected using any relabeling strategy SI , st = s is the state at step t
from a trajectory τi, and the expectation is taken w.r.t. the randomness of trajectory τi from step t to
the final step T sampled in the task Ti. Further, the MSE objective in Eq. (3) can be decomposed as:

Eτi|t:T
[(
Vj(st)− V̂j(st)

)2∣∣st] = (Vj(st)− Eτi|t:T
[
V̂j(st)

∣∣st])2 + V ar
(
V̂j(st)

)
, (4)

where the first term on the RHS equals square of the bias of V̂j that is estimated from computation on
the informative trajectories, while the second term denotes the variance of estimate V̂j .

3.2 Direct Use of Doubly Robust (DR) Estimator

DR estimators can provide an unbiased estimator for off-policy policy evaluation with existence of
the distribution mismatch. For a trajectory that is sampled from task Ti and transferred to a target
task Tj , the unbiased estimate for the state value can be determined by directly using the idea of DR:

V DR
ij (st = s) = Vθ(s, zj) + ρijπ (t)

[
rj(s, at) + ρijd (t+ 1)γV DR

ij (st+1)−Qθ(s, at, zj)
]
, (5)

where ρijπ (t) =
πθ(at|st,zj)
πθ(at|st,zi) is the importance weight of adapted policy, ρijd (t) =

pj(st+1|st,at)
pi(st+1|st,at)

denotes the importance weight of transition distributions incurred by dynamics discrepancies, and
Qθ(s, at, zj) denotes the Q-value function for task Tj fitted by the critic network with parameter θ,
which is then used to compute the fitted state value function Vθ(s, zj). In meta-RL, the adapted policy
for each task can be explicitly known, thus allowing access to the true policy importance weight
ρijπ (t). Referring to Appendix A.2, it is then easy to verify that V DR

ij (st = s) still holds the doubly
robust property. Namely, V DR

ij (st = s) is unbiased when either the importance weight or value
function is correctly estimated. Plugging the unbiasedness of V DR

ij (st = s) to Eq. (4), the MSE of

this DR estimator can thus be simplified to Eτi|t:T
[(
Vj(st)− V DR

ij (st)
)2∣∣st] = V ar

(
V DR
ij (st)

)
,

which is dominated by its variance that can be further determined with the following theorem.

Theorem 3.1 The variance of estimator V DR
ij (st = s) can be recursively given by: ∀t = 1, · · · , T

V art
[
V DR
ij (st = s)

]
= Et

[
(ρijπ (t))

2V art
[
rj(st, at)|at

] ∣∣∣st]+ V art

[
ρijπ (t)∆(st, at)

∣∣∣st]
+ Et

[(
γρijπ (t)

(
ρijd (t)V

DR
ij (st+1)− Et+1[Vj(st+1)]

)
− ρijπ (t)∆(st, at) + Vθ(st, zj)

)2]
− Et

[(
− ρijπ (t)∆(st, at) + Vθ(st, zj)

)2]
, (6)

where V art
[
V DR
ij (sT )

]
= 0, ∆(st, at) = Qθ(st, at, zj)−Qj

π(st, at), and Qj
π is the true Q-value.

On the RHS of Eq. (6), the first, second and fourth terms all take expectation over πθ(at|st, zi),
while the second variance term is also due to randomness of πθ(at|st, zi). The variance inside the
first term stems from randomness of the rewards (which will become zero if the reward function
is deterministic), while the expectation inside the third term considers randomness of the future.
Theorem 3.1 implies that when the other variables are kept unchanged, a possibly larger value for the
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estimate of dynamics importance weight ρijd will enlarge the third term in Eq. (6), which in turn results
in a higher variance and consequently a larger MSE. As an empirical validation, in Fig. 1, we show the
standard deviation (SD) of state value estimate in the Point-Robot environment by directly using the
DR estimator in Eq. (5). It can be seen that the estimated value by DR oscillates significantly during
the entire training process, which will eventually cause an unstable and unsuccessful meta-training.

3.3 DR Augmented Estimator (DRaE) with Optimal ρ̂ij∗d to Balance Bias and Variance
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Figure 1: SD of value esti-
mated by direct DR estimator.

To overcome the high variance and large MSE issue suffered by the
original unbiased DR estimator, we consider the MSE minimization
for sample transfer as in Eq. (3), which is equivalent to jointly
optimizing the bias and variance w.r.t. the dynamics importance
weight ρijd . Since the actual transition probability distributions of
different tasks are usually inaccessible, in practice, we will use the
estimated value of dynamics importance weight ρ̂ijd instead of its
true value ρijd . However, by approximating ρijd with ρ̂ijd , the original
unbiased DR estimator V DR

ij (st = s) in Eq. (5) becomes biased, which is denoted as the DR
augmented estimator Ṽ DR

ij (st = s), with the bias given by:

Bias
(
ρ̂ijd (t)

)
=
∣∣∣Eat∼πiEst+1∼pi

[
γρijπ (t)

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− ρijd (t)V

DR
ij (st+1)

)]∣∣∣. (7)

Referring to Appendix A.5 for the detailed derivation, through bounding this Bias(ρ̂ijd ) and by further
decomposing the MSE into the sum of bias and variance-related terms, we can obtain an upper bound
for the MSE of the biased DR augmented estimator Ṽ DR

ij (st = s):

MSE(Ṽ DR
ij (st = s)) ≤ Et

[
γρijπ (t)

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− ρijd (t)V

DR
ij (st+1)

)]2
+
(
EtVj(st)

)2
+ V(ρπ)

+ Et
[(

ρijπ (t)ρ̂
ij
d (t)γṼ

DR
ij (st+1)− ρijπ (t)∆(st, at) + V̄θ(st, zj)− ρijπ (t)γEt+1[Vj(st+1)]

)2]
,

(8)

where V(ρπ) denotes the terms on the RHS of Eq. (6) that contain ρijπ but without ρ̂ijd . We then
minimize this upper bound w.r.t. ρ̂ijd for the MSE reduction, which leads to a convex optimization
problem. By letting the first-order derivative of the upper bound in Eq. (8) w.r.t. ρ̂ijd equal to zero, we
can thus obtain the optimal estimated value of dynamics importance weight, as:

ρ̂ij∗d (t) = (γVj(st+1)− rj(st, at))
/(

2γṼ DR
ij (st+1)

)
. (9)

3.4 Interval-Based Approximation for Optimal ρ̂ij∗d of DRaE

Though the optimal ρ̂ij∗d of DRaE can effectively balance the bias and variance by minimizing the
MSE, its computation is nontrivial in practice, since the true state value Vj(st+1) at a certain state is
also infeasible to access. Here, we propose an interval-based approximation for the optimal ρ̂ij∗d , and
show that it falls with an interval between ρ̂vard that achieves the minimum variance in Eq. (6) and
the true importance weight ρijd . We further verify that any other values of ρ̂ijd outside this interval
[ρ̂vard , ρijd ] will simultaneously enlarge the bias and variance, and consequently result in a larger MSE.

1) Lower bound ρ̂vard . The variance of DRaE Ṽ DR
ij (st) can be determined by Eq. (6), with the true

ρijd (t) estimated with ρ̂ijd (t). Through minimizing this variance w.r.t. ρ̂ijd (t), we formulate a convex
optimization problem since the objective is a quadratic function of ρ̂ijd (t), with the optimal solution
ρ̂vard (t) obtained by letting the first-order derivative of this objective equal to zero:

ρ̂vard (t) =
(
ρijπ (t)γEt+1[Vj(st+1)]− Vj(st)

)/(
γρijπ (t)Ṽ

DR
ij (st+1)

)
. (10)

The distance from the optimal ρ̂ij∗d (t) to this lower bound ρ̂vard (t) can then be determined as:

ρ̂ij∗d (t)− ρ̂vard (t) =
(
2Vj(st)− ρijπ (t)γEt+1[Vj(st+1)]− ρijπ (t)r(st, at)

)/(
2γρijπ (t)Ṽ

DR
ij (st+1)

)
.
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which will be reduced by increasing the value of policy importance weight ρijπ (t). In meta-RL,
informative trajectories for the target task Tj are actually sampled from an original task Ti using
πi, so the actions in these trajectories have a relatively larger sampling probability by πi than πj ,
resulting in a small ρijπ (t) especially at the early stage of training. Then, as the training proceeds
and with the increase of reward that policy πj can achieve for task Tj , these selected trajectories
from task Ti will be less informative as it is more likely for policy πj to generate them also in the
target task Tj . This may lead to an increase of ρijπ (t) along the training process, which in turn can
consistently reduce the distance between ρ̂ij∗d (t) and ρ̂vard (t). In Section 5.3, we will empirically
verify that ρijπ (t) will generally increase from the initial small values that are much less than one to a
stable value around one, which can lead to a tighter lower bound ρ̂vard (t). In addition, decreasing
the estimated value of ρ̂ijd (t) from the optimal ρ̂ij∗d (t) to the lower bound ρ̂vard (t) will monotonically
reduce the variance but increase the bias of DRaE, while a smaller estimate ρ̂ijd (t) < ρ̂vard (t) will
cause a consistently larger MSE. Therefore, the optimal ρ̂ij∗d (t) is lower bounded by ρ̂vard (t).

2) Upper bound ρijd . Note that when ρ̂ijd (t) = ρijd (t), our DRaE Ṽ DR
ij (st) becomes the unbiased DR

estimator V DR
ij (st), while any deviation from the true dynamics importance weight ρijd (t) will result

in a biased estimator. On the other hand, increasing the value of ρ̂ijd (t) from ρ̂vard (t) to ρijd (t) will
consistently enlarge the variance. Therefore, a larger estimated value ρ̂ijd (t) > ρijd (t) will enlarge
both the bias and variance, which then indicates that the optimal ρ̂ij∗d (t) is upper bounded by ρijd (t).

In conclusion, we show that the optimal dynamics importance weight ρ̂ij∗d (t) falls within the interval
[ρ̂vard (t), ρijd (t)], while an estimated value of ρ̂ijd (t) inside this interval can generally achieve a bias-
variance tradeoff. In the following, we further derive a sample-independent upper bound to constrain
the MSE difference between taking ρ̂ij∗d (t) and ρ̂ijd (t) as the estimated value in DRaE, respectively.

Proposition 3.2 For an estimated dynamics importance weight ρ̂ijd (t) ∈
[
ρ̂vard (t), ρijd (t)

]
, the MSE

difference between DRaE taking ρ̂ij∗d (t) and ρ̂ijd (t) as estimated importance weight is bounded by:∣∣∣MSE(Ṽ DR
ij , ρ̂ij∗d (t))−MSE(Ṽ DR

ij , ρ̂ijd (t))
∣∣∣ ≤ 3

4

∣∣∣Eat∼πjEst+1∼pj

[( 1

ρijd (t)
− 2

)
γVj(st+1)

]
− Eat∼πj

[
rj(st, at)

]∣∣∣2 +max
(
Et
[(
Aρ̂ij∗d (t)−B

)2]
,
∣∣∣V art(Ṽ

DR, ρ̂ij∗d (t))− V art(V
DR, ρijd (t))

∣∣∣),
where A = γρijπ (t)Ṽ

DR
ij (st+1) and B = −γρijπ (t)Et+1[Vj(st+1)]− ρijπ (t)∆(st, at) + Vθ(st, zj).

It thus indicates that by setting an upper bound for ρ̂ijd (t) smaller than the true ρijd (t), we can further
reduce the MSE difference between using ρ̂ijd (t) and ρ̂ij∗d (t). See Appendix A.8 for detailed proof.

4 Doubly Robust Augmented Transfer (DRaT) for Meta-RL
Based on our theoretical findings of the MSE reduction for sample transfer by DRaE, we formally
present the doubly robust augmented transfer (DRaT) algorithm for meta-RL, and summarize its
detailed implementation on PEARL [4] in Algorithm 1. At the data collection phase, for a task Ti,
we additionally store the distribution parameters of adapted policy πi that collects data into buffer Bi.
Later at the training phase, we sample an informative trajectory set Dj from all the replay buffers
using strategy SI , which selects trajectories with higher relabeled sum of rewards for task Tj . Hence,
any of the hindsight-based methods can be used to determine SI here. While for environment where
tasks share the same reward, we can simply choose the higher reward trajectories without relabeling.

We then compute the importance weights ρijπ and ρ̂ijd for each trajectory in Dj between the target
task Tj and originally sampled task Ti as in Line 10. We can obtain πj for task Tj following the same
adaptation procedure as in PEARL, hence ρijπ of actions in trajectories can be computed as the ratio
of sampled probabilities πj and πi. While for the dynamics importance weight, a straightforward
way to estimate ρ̂ijd is to predict the distribution of transition (s, a, s′) ∈ τi ∼ Dj by pψ and compute
it by ρ̂ijd = pjψ(·|s, a)/piψ(·|s, a). However, the incorrect estimate of transition distribution in the
original task Ti may cause a small value of piψ(·|s, a) and thus a large value of ρ̂ijd , possibly frustrating
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Algorithm 1 Doubly Robust augmented Transfer (DRaT) for Meta-RL
1: Require: Training tasks set T = {Ti}i=1···N from PT , informative data selection strategy SI
2: Initialize replay buffers Bi and context ci for each training task Ti , actor πθ, critic Qθ, and

dynamics prediction network piψ(·|s, a).
3: while meta-training iteration do
4: for each training task Ti do
5: Collect trajectories using policy πi = πθ(a|s, zi), zi ∼ qϕ(z|ci)
6: Add trajectories and action selection probability of πi to corresponding buffer Bi
7: for each task Tj do
8: Sample informative trajectory set Dj and corresponding policy πi using strategy SI
9: Sample context cj ∼ Bj and its latent variable zj ∼ qϕ(·|cj), then πj = πθ(·|s, zj)

10: Compute importance weights ρijπ =
πθ(a|s,zj)
πθ(a|s,zi) and ρ̂ijd = max(

pjψ(·|s,a)
N (·,σ) , ρ̂ld)

11: Compute Ṽ DR using Eq. (5) with ρijπ and ρ̂ijd (t)

12: Compute critic loss in Eq. (1) using Ṽ DR as target value and update prediction network
13: Update the lower bound ρ̂ld for clipping ρ̂d(t)

the entire training process. Instead, we estimate ρ̂ijd as guided by the interval-based approximation
for optimal ρ̂ij∗d of DRaE in Section 3.4, which is constrained within an interval [ρ̂vard , ρijd ]. We
predict the distribution of transition (s, a, s′) in task Tj by prediction network pjψ(·|s, a) and in the
original task Ti by Gaussian distribution N (s′, σ), which indicates a high probability of transition
(s, a, s′) ∈ τ i occurring in task Ti. Hence, the maximum value of ρ̂ijd computed by pjψ(·|s, a)/N (·, σ)
will automatically fall into interval [0, ρijd ) with a high probability, due to the large denominator
resulted from the high belief we hold about the transition’s occurrence in task Ti. In addition, we also
clip the small value of ρ̂d using ρ̂ld, which is updated as the average value of ρ̂vard at this epoch.

The importance weights ρijπ and ρ̂ijd are used to estimate the state value in Dj by DRaE Ṽ DR as in
Eq. (5), which is used as the target value to compute critic loss in Eq. (1). Finally, the prediction
network pψ is updated by optimizing the prediction error, and other networks are updated following
the same procedure as in PEARL. It is noted that DRaT can also be implemented on other meta-RL
baselines, such as MAML [12] and its variants, where the DRaE Ṽ DR can be used to compute policy
gradients for the meta-policy parameter optimization.

5 Experiments

In this section, we assess performance of our DRaT approach following the same evaluation procedure
as in [4]. For each benchmark environment, we construct a test task set that is disjoint with the training
task set. At the end of each training epoch, we run the evaluation procedure, where trajectories of
a fixed length are sampled by the adapted meta-policy from the updated context with continuously
sampled transitions. Specifically, we conduct experiments to answer the following questions.

• Can DRaT achieve a better adaptation performance on meta-test tasks in the extreme challenging
sparse-reward environment with varying reward functions and dynamics, as compared to hindsight
relabeling methods that inherently considers only the difference of reward functions?

• Can DRaT effectively improve the adaptation performance on the standard meta-RL benchmarks
where tasks share the identical dense reward function but only differ in distinct dynamics?

• Will the policy importance weight ρijπ increase along the training process in consistency to the
performance improvement of DRaT, which thus provides a tighter lower bound for ρ̂ijd ? Will DRaE
provide a better value estimate for meta-RL?

Environment setup. We compare our DRaT with other baseline algorithms on six robotic control
tasks, which can be divided into two families according to their reward and dynamics setup. For
the implementation detail of DRaT, please refer to Appendix B.1. These tasks are all simulated via
MuJoCo [13], where we further generate various dynamics by randomly sampling the environment
parameters, including body mass, body inertia, joint damping, and body component’s friction. One
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(c) Humanoid-Params-Sparse
Figure 2: Evaluation curves of average return: test-task performance vs. time steps.
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Figure 3: Evaluation curves of average return: test-task performance vs. time steps.

family contains the sparse-reward environments with varying reward functions and dynamics: 1)
Point-Robot-Goal-Params: control the arm of a 3D robot to reach random goals in the 3D space;
2) Ant-Goal-Params-Sparse: navigate a quadruped robot to reach randomly generated goals along
the perimeter of a semi-circle; 3) Humanoid-Goal-Params-Sparse: navigate a humanoid robot to
reach randomly generated goals on a semi-circle. These environments are with the sparse-reward
setting in the sense that the RL agent can receive a meaningful reward signal that indicates its distance
from the goal only when it reaches areas near the goals. The other family includes environments
that have varying dynamics and the identical dense reward function: 1) Hopper-Params: control a
planar monopod robot to hop as fast as possible and avoid falling; 2) Walker-2D-Params: control a
2D bipedal robot to walk and perform the same task as in Hopper; 3) Point-Robot-Params: the same
as Point-Robot-Goal-Params but with dense reward function. Please refer to Appendices B.2 and B.3
for the detail of varying dynamics and reward function settings, respectively.

5.1 Evaluation on Sparse-Reward Environments with Varying Rewards and Dynamics

To answer the first question, we conduct experiments on the first family of sparse-reward environments
with varying reward functions and dynamics. We compare DRaT with four baselines: PEARL [4],
Hindsight Task Relabeling (HTR) [14], Hindsight Foresight Relabeling (HFR) [15], and Approximate
Inverse RL Relabeling (AIR) [6]. Specifically, PEARL is utilized as the baseline meta-RL algorithm
for all the other algorithms. For a fair comparison, we keep all the hyper-parameters about meta-RL
the same as those in PEARL’s source code. In HTR, we implement the single episode relabeling
strategy, where hindsight task goal is selected as a state that is reached in a sampled episode and
networks in HTR are trained by transitions from that episode which is relabeled by the hindsight
goal. HFR utilizes a utility function (foresight) to judge the informativeness of trajectories to a task,
and trajectories with higher utilities in certain tasks are more likely to be transferred through the
relabelling with reward function (hindsight) to this task. In AIR, a trajectory is relabeled to a new
task, for which this trajectory beats the most previously sampled trajectories in terms of the total
reward among a sampled candidate task set. We use the same relabeling strategy in both the AIR and
our DRaT for selecting informative trajectories for each training task.

Evaluation results. We report the averaged return of trajectories sampled in the evaluation phase.
From the evaluation return curves of the three tasks as shown in Figs. 2(a)-2(c), our DRaT significantly
outperforms the other baseline algorithms, especially in the Ant and Humanoid environments that
have higher dimensions of states. In comparison, PEARL struggles to train the Ant and Humanoid
under such a challenging environment setting. PEARL-based HTR cannot even learn to move to
goals for Ant in such a short period of time steps, while it achieves a similar performance to PEARL
for Humanoid. PAERL-based HFR tends to outperform PEARL and other relabeling methods for
both Ant and Humanoid, which is possibly because HFR considers relabeling w.r.t. performance
of the adapted policy using trajectory instead of just considering the sum of relabeled rewards. We
also observe that simply applying AIR into PEARL will even degrade the performance of PEARL.
Providing a more accurate estimate of state value functions for transferred informative trajectories,
our DRaT generally achieves a better asymptotic performance and can learn faster compared to the
other baselines. Note also that in Fig. 2, the solid curve illustrates the mean return on all runs of each
algorithm with different random seeds, while the shaded area shows the standard deviation.
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Figure 4: Curves of ρijπ : policy importance weight vs. training epochs.
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Figure 5: Curves of errors of value estimation: absolute difference vs. training epochs.

5.2 Evaluation on Dense-Reward Environments with Varying Dynamics Only
Then, to answer the second question, we conduct experiments on the second family of environments
with varying dynamics and the identical dense reward function. We compare DRaT with four
baselines: PEARL [4], Importance Sampling augmented Transfer (IST), Meta-Q-Learning (MQL)
[16], and Hindsight Foresight Relabeling (HFR) [14]. Specifically, PEARL is utilized as the baseline
meta-RL algorithm for DRaT, IST and HFR. In MQL, for a given transition and task, a fitted logistic
classifier outputs probability of the transition being sampled from the task, from which the importance
weight can be estimated. Transitions from other tasks are used to compute the meta-RL objective
multiplied by this importance weight on a new task, hence the contribution of each transition to the
update of meta-parameters is judged by similarity between the new task and its source task. In IST,
we use the IS estimator instead of our DRaE, while keeping all the other settings the same as in DRaT.

Evaluation results. We report the averaged return of trajectories sampled in the evaluation phase
at each epoch, and show the evaluation return curves of the three tasks, respectively, in Figs. 3(a)-
3(c). For MQL, we focus specifically on its performance with transfer by the estimated importance
weights. Hence, we report its evaluation returns of adapted meta-policy with the aid of transferred
samples. It can be seen that with informative samples transferred by DRaT, we can improve the
evaluation average return over the other baselines in all the benchmark environments. In addition,
DRaT consistently accelerates the training process of Walker-2D-Params and Hopper-Params at the
early stage, and also reaches the highest return in Point-Robot-Params. In addition, DRaT presents in
general a smaller standard deviation.

5.3 Performance Evaluation of Proposed DRaE
We then experimentally estimate the value of ρijπ to evaluate its trend during the training process
of DRaT. We compute the averaged value of ρijπ estimated for informative trajectories at each
training epoch, and show curves of the mean value of Point-Robot-Params, Ant-Params-Sparse, and
Humanoid-Params-Sparse in Figs. 4(a)-4(c), respectively, where the shaded area shows the standard
deviation on several runs. The results show that value of ρijπ increases with the improvement of
performance on all the training tasks, since selected informative trajectories are more likely to be
sampled on target task Tj , which can generate a tighter lower bound as we state in Section 3.4.

At last, we evaluate the estimation error of our proposed DRaT compared to the value network Vθ as
used in PEARL. For a better illustration, we do not plot results of directly using DR estimator, since it
may result in a huge variance and estimation error as we analyze in Section 3.2. We analyze the error
by computing the absolute difference between the averaged estimated value and averaged true return
at each training epoch, and show the error curves of Point-Robot-Params, Ant-Params-Sparse, and
Humanoid-Params-Sparse in Figs. 5(a)-5(c), respectively. The results show that our DRaE provides a
better value estimation during the training process. It is also observed that curves of DRaT and Vθ
present a similar trend, which is because the computation of DRaE depends on the value of Vθ.

6 Computational Complexity Analysis

Additional computational complexity is brought by DRaT for training of dynamics prediction network
for each task, computation of DR estimate, and computation of relabelling for informative trajectories.
Here, we analytically show that this additional computational complexity is comparable to its baseline
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PEARL with a linear scaling factor. Typically in an off-policy meta-RL algorithm, each epoch
(i.e., meta-training iteration) is divided into sampling and training phases. In the sampling phase,
computational cost stems mainly from the actions chosen by feed-forward computation of the policy
network and inference networks. Since all the algorithms (i.e., HTR, HFR, AIR, DRaT) follow the
same sampling process as PEARL, we only analyze the computational cost in the training phase.

PEARL: In the training phase, the computational cost contains the feed-forward and back-propagation
computation of policy network, value network and inference network. Given K training iterations
at each epoch, batch size NB of transitions from N training tasks, state space cardinality |S| and
action space cardinality |A|, and assuming a constant computational cost of feed-forward and back-
propagation computation c1, the total computational cost of training phase is O(K ·NB ·N ·|S|·|A|·c1).
DRaT: Besides the same training cost O(K ·NB ·N ·|S|·|A|·c1) as PEARL, additional computational
cost brought by DRaT includes training of dynamics prediction networks, computation of DR
estimator, and computation of relabelling, as follows. 1) Considering building separate prediction
networks for N training tasks and the cost of feed-forward and back-propagation computation c1,
using the same batch of transitions for training, the additional cost of training dynamics prediction
networks is also O(K ·NB ·N · |S| · |A| · c1). 2) Considering sampling informative trajectories with
a maximum length of L for N training tasks and the cost c2 of DR estimation computation at each
time step, the computational cost of DR estimation is O(K · N · L · |S| · |A| · c2). 3) We use the
approximate inverse RL relabeling (AIR), where we sample one trajectory from each training task for
relabeling, leading to N candidate trajectories in total. Assuming that the cost of computing relabeled
reward at each time step is c3, the cost of relabeling is then O(K ·N · L · |S| · |A| · c3). Thus, the
additional computational complexity of DRaT is dominated by O

(
K ·N ·max{NB, L} · |S| · |A| ·

max{c1, c2, c3}
)

, comparable to PEARL with a linear scaling factor max{NB,L}
NB

· max{c1,c2,c3}
c1

.

Insights for complexity reduction. 1) To reduce the cost of training dynamics prediction network,
we may consider training a meta-dynamics prediction network, which makes prediction for all the
tasks with a single network, and thus eliminates the need of training a separate network for each task.
2) To reduce the cost of DR estimation, we may consider a similar solution in TD(n), which makes a
trade-off between TD(0) and Monte-Carlo estimation by using the n-step rollout and fitted network.

7 Conclusion and Limitations

In this paper, we have proposed a doubly robust augmented estimator (DRaE) to tackle the mismatch
of dynamics distributions in sample transfer under a more general sparse-reward meta-RL setting,
where dynamics and reward functions can both vary across different tasks. While DRaE was
established with an optimal dynamics importance weight by minimizing the MSE between estimated
and true values of the value function, we proposed a tractable interval-based approximation that
guaranteed to cover the optimum. We further developed a doubly robust augmented transfer (DRaT)
algorithm for transferring informative samples across tasks in meta-RL. Experimental evaluation on
several MuJoCo locomotion tasks demonstrated the effectiveness of our proposed DRaT algorithm.

The major limitation of our method is that it requires computation of the DR estimate and training of
the dynamics prediction network for tasks, which may incur additional computational complexity.
Besides, like other hindsight-based methods, the reward function is required for relabeling and
selection of informative trajectories, which might be inaccessible in some extreme scenarios.
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