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Abstract

The neural network memorization problem is to study the expressive power of
neural networks to interpolate a finite dataset. Although memorization is widely
believed to have a close relationship with the strong generalizability of deep
learning when using over-parameterized models, to the best of our knowledge, there
exists no theoretical study on the generalizability of memorization neural networks.
In this paper, we give the first theoretical analysis of this topic. Since using i.i.d.
training data is a necessary condition for a learning algorithm to be generalizable,
memorization and its generalization theory for i.i.d. datasets are developed under
mild conditions on the data distribution. First, algorithms are given to construct
memorization networks for an i.i.d. dataset, which have the smallest number of
parameters and even a constant number of parameters. Second, we show that, in
order for the memorization networks to be generalizable, the width of the network
must be at least equal to the dimension of the data, which implies that the existing
memorization networks with an optimal number of parameters are not generalizable.
Third, a lower bound for the sample complexity of general memorization algorithms
and the exact sample complexity for memorization algorithms with constant number
of parameters are given. It is also shown that there exist data distributions such that,
to be generalizable for them, the memorization network must have an exponential
number of parameters in the data dimension. Finally, an efficient and generalizable
memorization algorithm is given when the number of training samples is greater
than the efficient memorization sample complexity of the data distribution.

1 Introduction

Memorization is to study the expressive power of neural networks to interpolate a finite dataset [9].
The main focus of the existing work is to study how many parameters are needed to memorize. For
any dataset Dtr of size N and neural networks of the form F : Rn → R, memorization networks
with O(N) parameters have been given with various model structures and activation functions
[31, 50, 30, 29, 26, 47, 56, 11, 65]. On the other hand, it is shown that in order to memorize an
arbitrary dataset of size N [64, 56], the network must have at least Ω(N) parameters, so the above
algorithms are approximately optimal. Under certain assumptions, it is shown that sublinear O(N2/3)
parameters are sufficient to memorize Dtr [49]. Furthermore, Vardi et al. [55] give a memorization
network with optimal number of parameters: O(

√
N).

Recently, it is shown that memorization is closely related to one of the most surprising properties
of deep learning, that is, over-parameterized neural networks are trained to nearly memorize noisy
data and yet can still achieve a very nice generalization on the test data [45, 7, 4]. More precisely, the
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double descent phenomenon [45] indicates that when the networks reach the interpolation threshold,
larger networks tend to have more generalizability [41, 10]. It is also noted that memorizing helps
generalization in complex learning tasks, because data with the same label have quite diversified
features and need to be nearly memorized [19, 20]. A line of research to harvest the help of
memorization to generalization is interpolation learning. Most of recent work in interpolation
learning shows generalizability of memorization models in linear regimes [7, 12, 38, 53, 59, 66].

As far as we know, the generazability of memorization neural networks has not been studied the-
oretically, which is more challenging compared to the linear models, and this paper provides a
systematic study of this topic. In this paper, we consider datasets that are sampled i.i.d. from a data
distribution, because i.i.d. training dataset is a necessary condition for learning algorithms to have
generalizability [54, 44]. More precisely, we consider binary data distributions D over Rn × {−1, 1}
and use Dtr ∼ DN to mean that Dtr is sampled i.i.d. from D and |Dtr| = N . All neural networks
are of the form F : Rn → R. The main contributions of this paper include four aspects.

First, we give the smallest number of parameters required for a network to memorize an i.i.d. dataset.

Theorem 1.1 (Informal. Refer to Section 4). Under mild conditions on D, if Dtr ∼ DN , it holds

(1) There exists an algorithm to obtain a memorization network of Dtr with width 6 and depth
O(

√
N).

(2) There exists a constant ND ∈ Z+ depending on D only, such that a memorization network of Dtr

with at most ND parameters can be obtained algorithmically.

ND is named as the memorization parameter complexity of D, which measures the complexity of
D under which a memorization network with ≤ ND parameters exists for almost all Dtr ∼ DN .

Theorem 1.1 allows us to give the memorization network for i.i.d dataset with the optimal number of
parameters. When N is small so that

√
N ≪ ND, the memorization network needs at least Ω(

√
N)

parameters as proved in [6] and (1) of Theorem 1.1 gives the optimal construction. When N is large,
(2) of Theorem 1.1 shows that a constant number of parameters is enough to memorize.

Second, we give a necessary condition for the structure of the memorization networks to be generaliz-
able, and shows that even if there is enough data, memorization network may not have generalizability.

Theorem 1.2 (Informal. Refer to Section 5). Under mild conditions on D, if Dtr ∼ DN , it holds

(1) Let H be a set of neural networks with width w. Then, there exist an integer n > w and a
data distribution D over Rn × {−1, 1} such that, any memorization network of Dtr in H is not
generalizable.

(2) For almost any D, there exists a memorization network of Dtr, which has O(
√
N) parameters

and is not generalizable.

Theorem 1.2 indicates that memorization networks with the optimal number of parameters O(
√
N)

may have poor generalizability, and commonly used algorithms for constructing fixed-width memo-
rization networks have poor generalization for some distributions. These conclusions demonstrate
that the commonly used network structures for memorization is not generalizable and new network
structures are needed to achieve generalization.

Third, we give a lower bound for the sample complexity of general memorization networks and the
exact sample complexity for certain memorization networks.

Theorem 1.3 (Informal. Refer to Section 6). Let ND be the memorization parameter complexity
defined in Theorem 1.1. Under mild conditions on D, we have

(1) Lower bound. In order for a memorization network of any Dtr ∼ DN to be generalizable, N
must be ≥ Ω(

N2
D

ln2(ND)
)2.

(2) Upper bound. For any memorization network with at most ND parameters for Dtr ∼ DN , if
N = O(N2

D lnND), then the network is generalizable.

2Here, Ω and O mean that certain small quantities are omitted. Also, we keep the logarithm factor of ND for
comparison with the upper bound

2



Notice that the lower bound is for general memorization networks and the upper bound is for
memorization networks with ≤ ND parameters, which always exist by (2) of Theorem 1.1. In
the latter case, the lower and upper bounds are approximately the same, which gives the exact
sample complexity O(N2

D) in this case. In other words, a necessary and sufficient condition for the
memorization network in (2) of Theorem 1.1 to be generalizable is N = O(N2

D).

Remark 1.4. Unfortunately, these generalizable memorization networks cannot be computed effi-
ciently, as shown by the following results proved by us.

(1) If P ̸= NP , then all networks in (2) of Theorem 1.3 cannot be computed in polynomial time.

(2) For some data distributions, an exponential (in the data dimension) number of samples is required
for memorization networks to achieve generalization.

Finally, we want to know that does there exist a polynomial time memorization algorithm that can
ensure generalization, and what is the sample complexity of such memorization algorithm? An
answer is given in the following theorem.

Theorem 1.5 (Informal. Refer to Section 7). There exists an SD ∈ Z+ depending on D only such that,
under mild conditions on D, if N = O(SD), then we can construct a generalizable memorization
network with O(N2n) parameters for any Dtr ∼ DN in polynomial time.

SD is named as the efficient memorization sample complexity for D, which measures the complexity
of D so that the generalizable memorization network of any Dtr ∼ DN can be computed efficiently
if N = O(SD).

The memorization network in Theorem 1.5 has more parameters than the optimal number O(
√
N) of

parameters required for memorization. The main reason is that building memorization networks with
O(

√
N) parameters requires special technical skill that may break the generalization. On the other

hand, as mention in [7], over-parametrization is good for generalization, so it is reasonable for us to
use more parameters for memorization to achieve generalization.

Remark 1.6. We explain the relationship between our results and interpolation learning [7]. Inter-
polation learning uses optimization to achieve memorization, which is a more practical approach,
while our approach gives a theoretical foundation for memorization networks. Once an interpolation
is achieved, Theorem 1.2, (1) of Theorem 1.3, and Theorem 1.5 are valid for interpolation learning.
For example, according to (1) of Theorem 1.3, Ω(N2

D) is a lower bound for the sample complexity
of interpolation learning, and by Theorem 1.5, O(SD) is an upper bound for the sample complexity
of efficient interpolation learning.

Main Contributions. Under mild conditions for the data distribution D, we have

• We define the memorization parameter complexity ND ∈ Z+ of D such that, a memorization
network for any Dtr ∼ DN can be constructed, which has O(

√
N) or ≤ ND parameters.

Here, the memorization network has the optimal number of parameters.

• We give two necessary conditions for the construction of generalizable memorization
networks for any Dtr in terms of the width and number of parameters of the memorization
network.

• We give a lower bound Ω(N2
D) of the sample complexity for general memorization networks

as well as the exact sample complexity O(N2
D) for memorization networks with ≤ ND

parameters. We also show that for some data distribution, an exponential number of samples
in n is required to achieve generalization.

• We define the efficient memorization sample complexity SD ∈ Z+ for D, so that general-
izable memorization network of any Dtr ∼ DN can be computed in polynomial time, if
N = O(SD).

2 Related work

Memorization. The problem of memorization has a long history. In [9], it is shown that networks
with depth 2 and O(N) parameters can memorize a binary dataset of size N . In subsequent work,
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it is shown that networks with O(N) parameters can be a memorization for any dataset [31, 50, 11,
30, 65, 29, 64, 56, 26, 47] and such memorization networks are approximately optimal for generic
dataset [64, 56]. Since the VC dimension of neural networks with N parameters and depth D and
with ReLU as the activation function is at most O(ND) [24, 5, 6], memorizing some special datasets
of size N requires at least Ω(

√
N) parameters and there exists a gap between this lower bound

Ω(
√
N) and the upper bound O(N). Park et al. [49] show that a network with O(N2/3) parameters

is enough for memorization under certain assumptions. Vardi et al. [55] further give the memorization
network with optimal number of parameters O(

√
N). In [22], strengths of both generalization and

memorization are combined in a single neural network. Recently, robust memorization has been
studied [35, 62]. As far as we know, the generazability of memorization neural networks has not been
studied theoretically.

Interpolation Learning. Another line of related research is interpolation learning, that is, leaning
under the constraint of memorization, which can be traced back to [52]. Most recent works establish
various generalizability of interpolation learning in linear regimes [7, 12, 38, 53, 59, 66]. For instance,
Bartlett et al. [7] prove that over-parametrization allows gradient methods to find generalizable
interpolating solutions for the linear regime. In relation to this, how to achieve memorization via
gradient descent is studied in [13, 14]. Results of this paper can be considered to give sample
complexities for interpolation learning.

Generalization Guarantee. There exist several ways to ensure generalization of networks. The
common way is to estimate the generalization bound or sample complexity of leaning algorithms.
Generalization bounds for neural networks are given in terms of the VC dimension [24, 5, 6], under
the normal training setting [27, 44, 8], under the differential privacy training setting [1], and under the
adversarial training setting [60, 58]. In most cases, these generalization bounds imply that when the
training set is large enough, a well-trained network with fixed structure has good generalizability. On
the other hand, the relationship between memorization and generalization has also been extensively
studied [45, 41, 10, 19, 20]. In [25], sample complexity of neural networks is given when the norm
of the transition matrix is limited, in [36], sample complexity of shallow transformers is considered.
This paper gives the lower bound and upper bound (in certain cases) of the sample complexities for
interpolation learning.

3 Notation

In this paper, we use O(A) to mean a value not greater than cA for some constant c, and O to mean
that small quantities, such as logarithm, are omitted. We use Ω(A) to mean a value not less than cA
for some constant c, and Ω to mean that small quantities, such as logarithm, are omitted. We say for
all (x, y) ∼ D there is event A stand means that P(x,y)∼D(A) = 1.

3.1 Neural network

In this paper, we consider feedforward neural networks of the form F : Rn → R and the l-th hidden
layer of F(x) can be written as

Xl = σ(WlXl−1 + bl) ∈ Rnl ,

where σ = Relu is the activation function, X0 = x and N0 = n. The last layer of F is F(x) =
WL+1XL + bL+1 ∈ R, where L is the number of hidden layers in F . The depth of F is depth(F) =
L + 1, the width of F is width(F) = maxLi=1{ni}, the number of parameters of F is para(F) =∑L

i=0 ni(ni+1 + 1). Denote H(n) to be the set of all neural networks in the above form.

3.2 Data distribution

In this paper, we consider binary classification problems and use D to denote a joint distribution on
D(n) = [0, 1]n ×{−1, 1}. To avoid extreme cases, we focus mainly on a special kind of distribution
to be defined in the following.

Definition 3.1. For n ∈ Z+ and c ∈ R+, D(n, c) is the set of distributions D on D(n), which has a
positive separation bound: inf(x,1),(z,−1)∼D ||x− z||2 ≥ c.
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The accuracy of a network F on a distribution D is defined as

AD(F) = P(x,y)∼D(Sgn(F(x)) = y).

We use Dtr ∼ DN to mean that Dtr is a set of N data sampled i.i.d. according to D. For convenience,
dataset under distribution means that the dataset is i.i.d selected from a data distribution.
Remark 3.2. We define the distribution with positive separation bound in for the following reasons.
(1) If Dtr ∼ DN and D ∈ D(n, c), then xi ̸= xj when yi ̸= yj . Such property ensures that Dtr

can be memorized. (2) Proposition 3.3 shows that there exists a D such that any network is not
generalizable over D, and this should be avoided. Therefore, distribution D needs to meet certain
requirements for a dataset sampled from D to have generalizability. Proof of Proposition 3.3 is given
in Appendix A. (3) Most commonly used classification distributions should have positive separation
bound.
Proposition 3.3. There exists a distribution D such that AD(F) ≤ 0.5 for any neural network F .

3.3 Memorization neural network

Definition 3.4. A neural network F ∈ H(n) is a memorization of a dataset Dtr over D(n), if
Sgn(F(x)) = y for any (x, y) ∈ Dtr.
Remark 3.5. Memorization networks can also be defined more strictly as F(x) = y for any (x, y) ∈
Dtr. In Proposition 4.10 of [62], it is shown that these two types of memorization networks need
essentially the same number of parameters.

To be more precise, we treat memorization as a learning algorithm in this paper, as defined below.

Definition 3.6. L : ∪n∈Z+
2D(n) → ∪n∈Z+

H(n) is called a memorization algorithm if for any n
and Dtr ∈ D(n), L(Dtr) is a memorization network of Dtr.

Furthermore, a memorization algorithm L is called an efficient memorization algorithm if there exists
a polynomial poly : R → R such that L(Dtr) can be computed in time poly(size(Dtr)), where
size(Dtr) is the bit-size of Dtr.
Remark 3.7. It is clear that if L is an efficient memorization algorithm, then para(L(Dtr)) is also
polynomial in size(Dtr).

There exist many methods which can construct memorization networks in polynomial times, and all
these memorization methods are efficient memorization algorithms, which are summarized in the
following proposition.
Proposition 3.8. The methods given in [9, 62] are efficient memorization algorithms. The methods
given in [55, 49] are probabilistic efficient memorization algorithms, which can be proved similar to
that of Theorem 4.1. More precisely, they are Monte Carlo polynomial-time algorithms.

4 Optimal memorization network for dataset under distribution

By the term “dataset under distribution”, we mean datasets that are sampled i.i.d. from a data
distribution, and is denoted as Dtr ∼ DN . In this section, we show how to construct the memorization
network with the optimal number of parameters for dataset under distribution.

4.1 Memorization network with optimal number of parameters

To memorize N samples, Ω̃(
√
N) parameters are necessary [6]. In [55], a memorization network is

given which has O(
√
N) parameters under certain conditions, where O means that some logarithm

factors in N and polynomial factors of other values are omitted. Therefore, O(
√
N) is the optimal

number of parameters for a network to memorize certain dataset. In the following theorem, we show
that such a result can be extended to dataset under distribution.
Theorem 4.1. Let D ∈ D(n, c) and Dtr ∼ DN . Then there exists a memorization algorithm L
such that L(Dtr) has width 6 and depth (equivalently, the number of parameters) O(

√
N ln(Nn/c)).

Furthermore, for any ϵ ∈ (0, 1), L(Dtr) can be computed in time poly(size(Dtr), ln(1/ϵ)) with
probability ≥ 1− ϵ.

5



Proof Idea. This theorem can be proven using the idea from [55]. Let Dtr = {(xi, yi)}Ni=1. The
mainly different is that in [55], it requires ||xi − xj || ≥ c for all i ̸= j, which is no longer valid
when Dtr is sampled i.i.d. from distribution D. Since D has separation bound c > 0, we have
||xi − xj || ≥ c for all i, j satisfying yi ̸= yj , which is weaker. Despite this difference, the idea of
[55] can still be modified to prove the theorem. In constructing such a memorization network, we
need to randomly select a vector, and each selection has a probability of 0.5 to give the correct vector.
So, repeat the selection ln(1/ϵ) times, with probability 1− ϵ, we can get at least one correct vector.
Then we can construct the memorization network based on this vector. Detailed proof is given in
Appendix B.

Remark 4.2. The algorithm in Theorem 4.1 is a Monte Carlo polynomial-time algorithm, that is, it
gives a correct answer with arbitrarily high probability. The algorithm given in [55] is also a Monte
Carlo algorithm.

4.2 Memorization network with constant number of parameters

In this section, we prove an interesting fact of memorization for dataset under distribution. We
show that for a distribution D ∈ D(n, c), there exists a constant ND ∈ Z+ such that for all datasets
sampled i.i.d. from D, there exists a memorization network with ND parameters.

Theorem 4.3. There exists a memorization algorithm L such that for any D ∈ D(n, c), there is an
N ′

D ∈ Z+ satisfying that for any N > 0, with probability 1 of Dtr ∼ DN , we have para(L(Dtr)) ≤
N ′

D. The smallest N ′
D of the distribution D is called the memorization parameter complexity of D,

written as ND.

Proof Idea. It suffices to show that we can find a memorization network of Dtr with a constant
number of parameters, which depends on D only. The main idea is to take a subset D′

tr of Dtr such
that Dtr is contained in the neighborhood of D′

tr. It can be proven that the number of elements in
this subset is limited. Then construct a robust memorization network of D′

tr with certain budget [62],
we obtain a memorization network of Dtr, which has a constant number of parameters. The proof is
given in Appendix C.

Combining Theorems 4.1 and 4.3, we can give a memorization network with the optimal number of
parameters.
Remark 4.4. What we have proven in Theorem 4.3 is that a memorization algorithm with a constant
number of parameters can be found, but in most of times, we have N ′

D > ND. Furthermore, if N ′
D is

large for the memorization algorithm, the algorithm can be efficient. Otherwise, if N ′
D is closed to

ND, the algorithm is usually not efficient.

Remark 4.5. It is obvious that the memorization parameter compelxity ND is the minimum number
of parameters required to memorize any dataset sampled i.i.d. from D. ND is mainly determined by
the characteristic of D ∈ D(n, c), so ND may be related to n and c. It is an interesting problem to
estimate ND.

5 Condition on the network structure for generalizable memorization

In the preceding section, we show that for the dataset under distribution, there exists a memorization
algorithm to generate memorization networks with the optimal number of parameters. In this section,
we give some conditions for the generalizable memorization networks in terms of width and number
of parameters of the network. As a consequence, we show that the commonly used memorization
networks with fixed width is not generalizable.

First, we show that networks with fixed width do not have generazability in some situations. Reducing
the width and increasing depth is a common way for parameter reduction, but it inevitably limits the
network’s power, making it unable to achieve good generalization for specific distributions, as shown
in the following theorem.

Theorem 5.1. Let w ∈ Z+ and L be a memorization algorithm such that L(Dtr) has width not more
than w for all Dtr. Then, there exist an integer n > w, c ∈ R+, and a distribution D ∈ D(n, c) such
that, for any Dtr ∼ DN , it holds AD(L(Dtr)) ≤ 0.51.
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Proof Idea. As shown in [40, 48], networks with small width are not dense in the space of measurable
functions, but this is not enough to estimate the upper bound of the generalization. In order to
further measure the upper bound of generalization, we define a special class of distributions. Then,
we calculate the upper bound of the generalization of networks with fixed width on this class of
distribution. Based on the calculation results, it is possible to find a specific distribution within
this class of distributions, such that the fixed-width network exhibits a poor generalization of this
distribution. The proof is given in Appendix D.

It is well known that width of the network is important for the network to be robust [2, 17, 18, 37, 67].
Theorem 5.1 further shows that large width is a necessary condition for generalizabity.

Note that Theorem 5.1 is for a specific data distribution. We will show that for most distributions,
providing enough data does not necessarily mean that the memorization algorithm has generalization
ability. This highlights the importance of constructing appropriate memorization algorithms to ensure
generalization. We need to introduce another parameter for data distribution.

Definition 5.2. The distribution D is said to have density r, if Px∼D(x ∈ A)/V (A) ≤ r for any
closed set A ⊂ [0, 1]n, where V (A) is the volume of A.

Loosely speaking, the density of a distribution is the upper bound of the density function.

Theorem 5.3. For any n ∈ Z+, r, c ∈ R+, if distribution D ∈ D(n, c) has density r, then for any
N ∈ Z+ and Dtr ∼ DN , there exists a memorization network F for Dtr such that para(F) =

O(n+
√
N ln(Nnr/c)) and AD(F) ≤ 0.51.

Proof Idea. We refer to the classical memorization construction idea [55]. The main body includes
three parts. Firstly, compress the data in Dtr into one dimension. Secondly, map the compressed data
to some specific values. Finally, use such a value to get the label of input. Moreover, we will pay more
attention to points outside the dataset. We use some skills to control the classification results of points
that do not appear in the dataset Dtr, so that the memorization network will give the wrong label to
the points that are not in Dtr as much as possible to reduce its accuracy. The general approach is the
following: (1) Find a set in which each point is not presented in Dtr and has the same label under
distribution D. Without loss of generality, let they have label 1. (2) In the second step mentioned in
the previous step, ensure that the mapped results of the points in the set mentioned in (1) are similar
to the samples with label −1. This will cause the third step to output the label −1, leading to an
erroneous classification result for the points in the set. The proof is given in Appendix E.

Remark 5.4. Theorem 5.1 shows that the width of the generazable memorization network needs to
increase with the increase of the data dimension. Theorem 5.3 shows that when para(F) = O(

√
N),

the memorization network may have poor generalizability for most distributions. The above two
theorems indicate that no matter how large the dataset is, there always exist memorization networks
with poor generalization. In terms of sample complexity, it means that for the hypotheses of neural
networks with fixed width or with optimal number of parameters, the sample complexity is infinite,
contrary to the uniform generalization bound for feedforward neural networks [63, Lemma D.16].

Remark 5.5. It is worth mentioning that the two theorems in this section cannot be obtained from the
lower bound of the generalization gap [44], and more details are shown in Appendix E.

6 Sample complexity for memorization algorithm

As said in the preceding section, generalization of memorization inevitably requires certain conditions.
In this section, we give the necessary and sufficient condition for generalization for the memorization
algorithm in Section 4 in terms of sample complexity.

We first give a lower bound for the sample complexity for general memorization algorithms and
then an upper bound for memorization algorithms which output networks with an optimal number of
parameters. The lower and upper bounds are approximately the same, thus giving the exact sample
complexity in this case.
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6.1 Lower bound for sample complexity of memorization algorithm

Roughly speaking, the sample complexity of a learning algorithm is the number of samples required to
achieve generalizability [44]. The following theorem gives a lower bound for the sample complexity
of memorization algorithms based on ND, which has been defined in Theorem 4.3.
Theorem 6.1. There exists no memorization algorithm L which satisfies that for any n ∈ Z+, c ∈
R+, ϵ, δ ∈ (0, 1), if D ∈ D(n, c) and N ≥ v

N2
D

ln2(ND)
(1− 2ϵ− δ), it holds

PDtr∼DN (A(L(Dtr)) ≥ 1− ϵ) ≥ 1− δ

where v is an absolute constant which does not depend on N,n, c, ϵ, δ.

Proof Idea. The mainly idea is that: for a dataset Dtr ⊂ [0, 1]n × {−1, 1} with |Dtr| = N , we can
find some distributions D1,D2, . . . , such that if Dtr,i ∼ (Di)

N , then with a positive probability, it
hold Dtr,i = Dtr. In addition, each distribution has a certain degree of difference from the others. It
is easy to see that L(Dtr) is a fixed network for a given L, so L(Dtr) cannot fit all Di well because
Di are different to some degree. So, if a memorization algorithm L satisfies the condition in the
theorem, we try to construct some distributions {Di}ni=1, and use the above idea to prove that L
cannot fit one of the distributions in {Di}ni=1, and obtain contradictions. The proof of the theorem is
given in Appendix F.
Remark 6.2. In general, the sample complexity depends on the data distribution, hypothesis space,
learning algorithms, and ϵ, δ. Since ND is related to n and c, the lower bound in Theorem 6.1 also
depends on n and c. Here, the hypothesis space is the memorization networks, which is implicitly
reflected in ND.

Remark 6.3. Roughly strictly, if we consider interpolation learning, that is, training network under the
constraint of memorizing the dataset, then Theorem 6.1 also provides a lower bound for the sample
complexity.

This theorem shows that if we want memorization algorithms to have guaranteed generalization, then
about O(N2

D) samples are required. As a consequence, we show that, for some data distribution, it
need an exponential number of samples to achieve generalization. The proof is also in Appendix F.
Corollary 6.4. For any memorization algorithm L and any ϵ, δ ∈ (0, 1), there exist n ∈ Z+, c > 0
and a distribution D ∈ D(n, c), such that in order for L to have generalizability on D, that is for all
N ≥ N0, there is

PDtr∼DN (A(L(Dtr)) ≥ 1− ϵ) ≥ 1− δ,

N0 must be more than v(2
2[ n

⌈c2⌉
]
c4(1− 2ϵ− δ)/n2), where v is an absolute constant not depending

on N,n, c, ϵ, δ.

6.2 Exact sample complexity of memorization algorithm with ND parameters

In Theorem 6.1, it is shown that Ω(N2
D) samples are necessary for generalizability of memorization.

The following theorem shows that there exists a memorization algorithm that can reach generalization
with O(N2

D) samples.
Theorem 6.5. For all memorization algorithms L satisfies that L(Dtr) has at most ND parameters,
with probability 1 for Dtr ∼ DN , we have

(1) For any c ∈ R, ϵ, δ ∈ (0, 1), n ∈ Z+, if D ∈ D(n, c) and N ≥ vN2
D ln(ND/(ϵ2δ))

ϵ2 , then

PDtr∼DN (A(L(Dtr)) ≥ 1− ϵ) ≥ 1− δ,

where v is an absolute constant which does not depend on N,n, c, ϵ, δ.

(2) If P ̸= NP, then all such algorithms are not efficient.

Proof Idea. For the proof of (1), we need to use the ND to calculate the VC-dimension [6], and
take such a dimension in the generalization bound theorem [44] to obtain the result. For the proof
of (2), we show that, if such algorithm is efficient, then we can solve the following reversible 6-SAT
[43] problem, which is defined below and is an NPC problem. The proof of the theorem is given in
Appendix G.
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Definition 6.6. Let φ be a Boolean formula and φ the formula obtained from φ by negating each
variable. The Boolean formula φ is called reversible if either both φ and φ are satisfiable or both
are not satisfiable. The reversible satisfiability problem is to recognize the satisfiability of reversible
formulae in conjunctive normal form (CNF). By the reversible 6-SAT, we mean the reversible
satisfiability problem for CNF formulae with six variables per clause. In [43], it is shown that the
reversible 6-SAT is NPC.

Combining Theorems 6.1 and 6.5, we see that N = O(N2
D) is the necessary and sufficient condition

for the memorization algorithm to generalize, and hence O(N2
D) is the exact sample complexity for

memorization algorithms with ND parameters over the distribution D(n, c).

Unfortunately, by (2) of Theorem 6.5, this memorization algorithm is not efficient when the memo-
rization has no more than ND parameters. Furthermore, we conjecture that there exist no efficient
memorization algorithms that can use O(N2

D) samples to reach generalization in the general case, as
shown in the following conjecture.

Conjecture 6.7. If P ̸= NP, there exist no efficient memorization algorithms that can reach generaliza-
tion with O(N2

D) samples for all D ∈ D(n, c).

Remark 6.8. This result also provides certain theoretical explanation for the over-parameterization
mystery [45, 7, 4]: for memorization algorithms with ND parameters, the exact sample complexity
O(N2

D) is greater than the number of parameters. Thus, the networks is under-parameterized and for
such a network, even if it is generalizable, it cannot be computed efficiently.

7 Efficient memorization algorithm with guaranteed generalization

In the preceding section, we show that there exist memorization algorithms that are generalizable
when N = O(N2

D), but such an algorithm is not efficient. In this section, we give an efficient
memorization algorithm with guaranteed generalization.

First, we define the efficient memorization sample complexity of D.

Definition 7.1. For (x, y) ∼ D, let L(x,y) = min(z,−y)∼D ||x − z||2 and B((x, y)) =
B2(x, L(x,y)/3.1) = {z ∈ Rn : ∥z−x∥2 ≤ L(x,y)/3.1}. The nearby set S of D is a subset of sample
(x, y) which is in distribution D and satisfies: (1) for any (x, y) ∼ D, x ∈ ∪(z,w)∈SB((z, w)); (2)
|S| is minimum.

Evidently, for any D ∈ D(n, c), its nearby set is finite, as shown by Proposition 7.7. SD = |S| is
called the efficient memorization sample complexity of D, the meaning of which is given in Theorem
7.3.
Remark 7.2. In the above definition, we use L(x,y)/3.1 to be the radius of B((x, y)). In fact, when
3.1 is replaced by any real number greater than 3, the following theorem is still valid.

Theorem 7.3. There exists an efficient memorization algorithm L such that for any c ∈ R, ϵ, δ ∈
(0, 1), n ∈ Z+, and D ∈ D(n, c), if N ≥ SD ln(SD/δ)

ϵ , then

PDtr∼DN (A(L(Dtr)) ≥ 1− ϵ) ≥ 1− δ.

Moreover, for any Dtr ∼ DN , L(Dtr) has at most O(N2n) parameters.

Proof Idea. For a given dataset Dtr ⊂ [0, 1]n ×{−1, 1}, we use the following two steps to construct
a memorization network.

Step 1. Find suitable convex sets {Ci} in [0, 1]n such that each sample in Dtr is in at least one of
these convex sets. Furthermore, if x, z ∈ Ci and (x, yx), (z, yz) ∈ Dtr, then yx = yz , and define
y(Ci) = yx.

Step 2. Construct a network F such that for any x ∈ Ci, Sgn(F(x)) = y(Ci). This network must be
a memorization of Dtr, because each sample in Dtr is in at least one of {Ci}. Hence, if x ∈ Ci and
(x, yx) ∈ Dtr, then Sgn(F(x)) = y(Ci) = yx. The proof of the theorem is given in Appendix H.
Remark 7.4. Theorem 7.3 shows that there exists an efficient and generalizable memorization
algorithm when N = O(SD). Thus, SD is an intrinsic complexity measure of D on whether it is
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easy to learn and generalize. By Theorem 6.1, SD ≥ N2
D for some D, but for some “nice” D, SD

could be small. It is an interesting problem to estimate SD.

Remark 7.5. Theorem 7.3 uses O(N2n) parameters, highlight the importance of over-
parameterization [45, 7, 4]. Interestingly, Remark 6.8 shows that if the network has O(

√
N) parame-

ters, even if it is generalizable, it cannot be computed efficiently.

The experimental results of the memorization algorithm mentioned in Theorem 7.3 are given in
Appendix I. Unfortunately, for commonly used datasets such as CIFAR-10, this algorithm cannot
surpass the network obtained by training with SGD, in terms of test accuracy. Thus, the main purpose
of the algorithm is theoretical, that is, it provides a polynomial-time memorization algorithm that
can achieve generalization when the training dataset contains O(SD) samples. In comparison of
theoretical works, training networks is NP-hard for small networks [32, 51, 39, 15, 3, 42, 16, 23, 21]
and the guarantee of generalization needs strong assumptions on the loss function [46, 27, 34, 61, 60,
58].

Finally, we give an estimate for SD. From Corollary 6.4 and Theorem 7.3, we obtain a lower bound
for SD.

Corollary 7.6. There exists a distribution D ∈ D(n, c) such that SD ln(SD/δ) ≥ Ω( c4

n2 2
2[ n

⌈c2⌉
]
).

We will give an upper bound for SD in the following proposition, and the proof is given in Appendix
H.1. From the proposition, it is clear that SD is finite.
Proposition 7.7. For any D ∈ D(n, c), we have SD ≤ ([6.2n/c] + 1)n.
Remark 7.8. The above proposition gives an upper bound of SD when D ∈ D(n, c), and this does
not mean that SD is exponential for all D ∈ D(n, c). Determining the conditions under which SD is
small for a given D is a compelling problem.

8 Conclusion

Memorization originally focuses on theoretical study of the expressive power of neural networks.
Recently, memorization is believed to be a key reason why over-parameterized deep learning models
have excellent generalizability and thus the more practical interpolation learning approach has been
extensively studied. But the generalizability theory of memorization algorithms is not yet given, and
this paper fills this theoretical gap in several aspects.

We first show how to construct memorization networks for dataset sampled i.i.d from a data distri-
bution, which have the optimal number of parameters, and then show that some commonly used
memorization networks do not have generalizability even if the dataset is drawn i.i.d. from a data
distribution and contains a sufficiently large number of samples. Furthermore, we establish the
sample complexity of memorization algorithm in several situations, including a lower bound for
the memorization sample complexity and an upper bound for the efficient memorization sample
complexity.

Limitation and future work Two numerical complexities ND and SD for a data distribution D are
introduced in this paper, which are used to describe the size of the memorization networks and the
efficient memorization sample complexity for any i.i.d. dataset of D. ND is also a lower bound for
the sample complexity of memorization algorithms. However, we do not know how to compute
ND and SD, which is an interesting future work. Conjecture 6.7 tries to give a lower bound for the
efficient memorization sample complexity. More generally, can we write ND and SD as functions of
the probability density function p(x, y) of D?

Corollary 6.4 indicates that even for the “nice” data distributions D(n, c), to achieve generalization for
some data distribution requires an exponential number of parameters. This indicates that there exists
“data curse of dimensionality”, that is, to achieve generalizability for certain data distribution, neural
networks with exponential number of parameters are needed. Considering the practical success of
deep learning and the double descent phenomenon [45], the data distributions used in practice should
have better properties than D(n, c), and finding data distributions with polynomial size efficient
memorization sample complexity ED is an important problem.

Finally, finding a memorization algorithm that can achieve SOTA results in solving practical image
classification problems is also a challenge problem.
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A Proof of Proposition 3.3

Using the following steps, we construct a distribution D in [0, 1]× {−1, 1}. We use (x, y) ∼ D to
mean that

(1) Randomly select a number in {−1, 1} as the label y.

(2) If we get 1 as the label, then randomly select an irrational number in [0, 1] as samples x; if we get
−1 as the label, then randomly select a rational number in [0, 1] as samples x.

Then Proposition 3.3 follows from the following lemma.

Lemma A.1. For any neural network F , we have AD(F) ≤ 0.5.

Proof. Let F be a network. Firstly, we show that F can be written as

F =

M∑
i=1

Li(x)I(x ∈ Ai), (1)

where Li are linear functions, I(x) = 1 if x is true or I(x) = 0. In addition, Ai is an interval and
Aj ∩ Ai = ∅ when j ̸= i, and Li(x)I(x ∈ Ai) is a non-negative or non-positive function for any
i ∈ [M ].

It is obvious that the network is a locally linear function with a finite number of linear regions, so we
can write

F =

M∑
i=1

L′
i(x)I(x ∈ A′

i), (2)

where L′
i are linear functions, A′

i is an interval and A′
j ∩A′

i = ∅ when j ̸= i.

Consider that L′
i(x)I(x ∈ A′

i) = L′
i(x)I(x ∈ A′

i, L
′
i(x) > 0) + L′

i(x)I(x ∈ A′
i, L

′
i(x) < 0),

and L′
i(x)I(x ∈ A′

i, L
′
i(x) > 0) is a non-negative function, {x ∈ A′

i, L
′
i(x) > 0} is an interval

which is disjoint with {x ∈ A′
i, L

′
i(x) < 0}. Similarly as L′

i(x)I(x ∈ A′
i, L

′
i(x) < 0), so we use

L′
i(x)I(x ∈ A′

i) in (2) instead of L′
i(x)I(x ∈ A′

i, L
′
i(x) > 0) + L′

i(x)I(x ∈ A′
i, L

′
i(x) < 0). Then

we get the equation (1).

By equation (2), we have that

P(x,y)∼D(Sgn(F(x)) = y)

= P(x,y)∼D(Sgn(
∑M

i=1 Li(x)I(x ∈ Ai)) = y)

=
∑M

i=1 P(x,y)∼D(Sgn(Li(x)I(x ∈ Ai)) = y, x ∈ Ai)

=
∑M

i=1 P(x,y)∼D(Sgn(Li(x)I(x ∈ Ai)) = y|x ∈ Ai)P(x,y)∼D(x ∈ Ai).

(3)

The second equation uses Ai ∩Aj = ∅.

For convenience, we use x ∈ Rr to mean that x is an irrational number and x /∈ Rr to mean
that x is a rational number. Then, if Li(x)I(x ∈ Ai) is a non-negative function, then we have
P(x,y)∼D(Sgn(Li(x)I(x ∈ Ai)) = y|x ∈ Ai) ≤ P(x,y)∼D(x ∈ Rr|x ∈ Ai). Moreover, we have
that

P(x,y)∼D(x ∈ Rr|x ∈ Ai)

=
P(x,y)∼D(x∈Rr,x∈Ai)

P(x,y)∼D(x∈Ai)

=
0.5P(x,y)∼D(x∈Ai|x∈Rr)

P(x,y)∼D(x∈Ai)

=
0.5P(x,y)∼D(x∈Ai|x∈Rr)

P(x,y)∼D(x∈Rr)P(x,y)∼D(x∈Ai|x∈Rr)+P(x,y)∼D(x/∈Rr)P(x,y)∼D(x∈Ai|x/∈Rr)

=
P(x,y)∼D(x∈Ai|x∈Rr)

P(x,y)∼D(x∈Ai|x∈Rr)+P(x,y)∼D(x∈Ai|x/∈Rr)
.

By (2) in the definition of D, we have P(x,y)∼D(x ∈ Ai|x ∈ Rr) = P(x,y)∼D(x ∈ Ai|x /∈ Rr).
Substituting this in equation (3), we have that P(x,y)∼D(Sgn(Li(x)I(x ∈ Ai)) = y|x ∈ Ai) ≤
P(x,y)∼D(x ∈ Rr|x ∈ Ai) =

P(x,y)∼D(x∈Ai|x∈Rr)

P(x,y)∼D(x∈Ai|x∈Rr)+P(x,y)∼D(x∈Ai|x/∈Rr)
= 0.5. Proof is similar

when Li(x)I(x ∈ Ai) is a non-positive function.
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Using this in equation (2), we have that

P(x,y)∼D(Sgn(F(x)) = y)

=
∑M

i=1 P(x,y)∼D(Sgn(Li(x)I(x ∈ Ai)) = y|x ∈ Ai)P(x,y)∼D(x ∈ Ai)

≤
∑M

i=1 0.5P(x,y)∼D(x ∈ Ai) ≤ 0.5.

The lemma is proved.

B Proof of Theorem 4.1

For the proof of this theorem, we mainly follow the constructive approach of the memorization
network in [55]. Our proof is divided into four parts.

B.1 Data Compression

The general method of constructing memorization networks will compress the data into a low
dimensional space at first, and we follow this approach. We are trying to compress the data into a
1-dimensional space, and we require the compressed data to meet some conditions, as shown in the
following lemma.
Lemma B.1. Let D be a distribution in [0, 1]n × {−1, 1} with separation bound c and Dtr ∼ DN .
Then, there exist w ∈ Rn and b ∈ R such that
(1): O(nN2/c) ≥ wx+ b ≥ 1 for all x ∈ [0, 1]n;
(2): |wx− wz| ≥ 4 for all (x, 1), (z,−1) ∈ Dtr.

To prove this lemma, we need the following lemma.
Lemma B.2. For any v ∈ Rn and T ≥ 1, let u ∈ Rn be uniformly randomly sampled from the

hypersphere Sn−1. Then we have P (|⟨u, v⟩| < ||v||2
T

√
8
nπ ) <

2
T .

This is Lemma 13 in [49]. Now, we prove the lemma B.1.

Proof. Let c0 = min(x,−1),(z,1)∈Dtr
||x− z||2. Then, we prove the following result:

Result R1: Let u ∈ Rn be uniformly randomly sampled from the hypersphere Sn−1, then there are

P (|⟨u, (x− z)⟩| ≥ c0
4N2

√
8
nπ ,∀(x,−1), (z, 1) ∈ Dtr) > 0.5.

By lemma B.2, and take T = 4N2, for any x, z which satisfies (x,−1), (z, 1) ∈ Dtr, we have
that: let u ∈ Rn be uniformly randomly sampled from the hypersphere Sn−1, then there are

P (|⟨u, (x− z)⟩| < c0
4N2

√
8
nπ ) <

2
4N2 , using ||x− z||2 ≥ c0 here. So, it holds

P (|⟨u, (x− z)⟩| ≥ c0
4N2

√
8
nπ ,∀(x,−1), (z, 1) ∈ Dtr)

≥ 1−
∑

(x,−1),(z,1)∈Dtr
P (|⟨u, (x− z)⟩| < c0

4N2

√
8
nπ )

> 1− 2N2

4N2 .
= 0.5

We proved Result R1.

In practice, to find such a vector, we can randomly select a vector u in hypersphere Sn−1, and verify

that if it satisfies |⟨u, (x − z)⟩| ≥ c0
4N2

√
8
nπ ,∀(x,−1), (z, 1) ∈ Dtr. Verifying such a fact needs

poly(B(Dtr)) times. If such a u is not what we want, randomly select a vector u and verify it again.

In each selection, with probability 0.5, we can get a vector we need, so with ln 1/ϵ times the selections,
we can get a vector we need with probability 1− ϵ.

Construct w, b and verify their rationality

By the above result, we have that: there exists a u ∈ Rn such that ||u||2 = 1 and |⟨u, (x − z)⟩| ≥
c0

4N2

√
8
nπ ,∀(x,−1), (z, 1) ∈ Dtr, and we can find such a u in poly(B(Dtr), ln(1/ϵ)) times.
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Now, let w = 16
√
nN2

c0
u and b = ||w||2

√
n+ 1, then we show that w and b are what we want:

(1): We have O(nN2/c) ≥ wx+ b ≥ 1 for all x ∈ [0, 1]n.

Firstly, because D is defined in [0, 1]n × {−1, 1}, so it holds ||x||2 ≤
√
n for any (x, y) ∈ Dtr, and

consequently wx+ b ≥ b− ||w||2
√
n ≥ 1.

On the other hand, |wx| ≤ ||w||2
√
n ≤ O(nN

2

c0
), so wx+b ≤ |wx|+b ≤ O(nN2/c0) ≤ O(nN2/c).

(2): We have |w(x− z)| ≥ 4 for all (x, 1), (z,−1) ∈ Dtr.

It is easy to see that |w(x− z)| ≥ | 16
√
nN2

c0
u(x− z)| = 16

√
nN2

c0
|u(x− z)|. Because |u(x− z)| ≥

c0
4
√
nN2 , so |w(x− z)| = 16

√
nN2

c0
|u(x− z)| ≥ 16

√
nN2

c0
c0

4
√
nN2 = 4.

By Definition 3.1, we know that c0 ≥ c. So, w and b are what we want. The lemma is proved.

B.2 Data Projection

The purpose of this part is to map the compressed data into appropriate values.

Let w ∈ Rn and b ∈ R be given and Dtr = {(xi, yi)}Ni=1. Without losing generality, we assume that
0 < wxi < wxi+1.

In this section, we show that, after compressing the data into 1-dimension, we can use a network

F to map wxi + b to v[ i
[
√

N]
], where {vj}

[ N
[
√

N]
]

j=0 ∈ R+ are given values. This network has O(
√
N)

parameters and width 4, as shown in the following lemma.

Lemma B.3. Let {xi}Ni=1 ⊂ R+, {vj}
[ N
[
√

N]
]

j=0 ⊂ R+. Assume that xi < xi+1. Then a network F with
width 4 and depth O(

√
N) (at most O(

√
N) parameters) can be obtained such that F(xi) = v[ i√

N
]

for all i ∈ [N ].

Proof. Let F i(x) be the i-th hidden layer of network F , (F i)j be the j-th nodes of i-th hidden layer
of network F .

Let qi = xi+1 − xi and t(i) = argmaxj∈[N ]{[j/
√
N ] = i}. Consider the following network F :

The 2i+ 1 hidden layer has width 4, and each node is:

(F2i+1)1(x) = Relu((F2i)2(x)− (xt(i)+1) + 2qt(i)/3);

(F2i+1)2(x) = Relu((F2i)2(x)− (xt(i)+1) + qt(i)/3);

(F2i+1)3(x) = Relu((F2i)1(x));

(F2i+1)4(x) = Relu((F2i)2(x)).

For the case i = 0, let (F0)2(x) = x and (F1)3(x) = v0.

The (2i+ 2)-th hidden layer is:

(F2i+2)1(x) = Relu((F2i+1)3(x) +
vi+1 − vi
qt(i)/3

((F2i+1)1(x)− (F2i+1)2(x)));

(F2i+2)2(x) = Relu((F2i+1)4(x)).

The output is F(x) = (F2[N/
√
N ])1(x).

This network has width 4 and O(
√
N) hidden layers. We can verify that such a network is what we

want as follows.

Firstly, it is easy to see that (F2i+2)2(x) = Relu((F2i+1)4(x)) = Relu((F2i)2(x)) =
Relu((F2i−1)4(x)) = · · · = Relu((F1)4(x)) = Relu(x) = x.
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Then, for vi+1−vi
qt(i)/3

((F2i+1)1(x)−(F2i+1)2(x)) =
vi−vi−1

qt(i)/3
(Relu(x−xt(i)+1+2qt(i)/3)−Relu(x−

xt(i)+1 + qt(i)/3), easy to verify that, when x ≤ xt(i), it is 0; when x ≥ xt(i+1), it is vi+1 − vi.

By the above two results, we have that (F2i+2)1(x) = Relu((F2i+1)3(x)+
vi−vi−1

qt(i)/3
((F2i+1)1(x)−

(F2i+1)2(x))) = Relu((F2i)1(x)) when x ≤ xt(i); and (F2i+2)1(x) = Relu((F2i+1)3(x) +
vi−vi−1

qt(i)/3
((F2i+1)1(x)− (F2i+1)2(x))) = Relu((F2i)1(x) + vi+1 − vi) when x ≥ xt(i)+1.

So, we have that, if t(i−1)+1 ≤ j ≤ t(i), there are (F2)1(xj) = v0, (F4)1(xj) = v1−v0+v0 = v1,
(F6)1(xj) = v2 − v1 + v1 = v2, . . . , (F2i)1(xj) = vi − vi−1 + vi−1 = vi; and F(xj) =

(F2[N/
√
N ])1(xj) = (F2[N/

√
N ]−2)1(xj) = · · · = (F2i)1(xj) = vi.

So, by the definition of t(i), we have that F(xj) = v[ j√
N

], such F is what we what and the lemma is
proved.

B.3 Label determination

The purpose of this part is to use the values to which the compressed data are mapped, mentioned in
the above section, to determine the labels of the data.

Assuming xi is compressed to ci where ci ≥ 1 is given in section B.1. Value vi in section B.2 is
designed as: vi = [ci[

√
N ]+1] . . . [c(i+1)[

√
N ]], where we treat [cj ] as a w digit number for all j (w is

a given number). If there exist not enough digits for some cj , we fill in 0 before it, and we use ab to
denote the integer by putting a and b together.

First, prove a lemma.
Lemma B.4. For a given N , there exists a network f : R → R2 with width 4 and at most O(w)
parameters such that, for any w digit number ai > 0, we have f(a1a2 . . . aN ) = (a1, a2 . . . aN ).

Proof. Firstly, we show that, for any a > b > 0, there exists a network Fa,b(x) : R+ → R+

with depth 2 and width 3, such that Fa,b(x) = x when x ∈ [0, a], and Fa,b(x) = x − a when
x ∈ [a+ b, 2a].

We just need to take Fa,b(x) = Relu(x)− a/bRelu(x− a) + a/bRelu(x− (a+ b)).l It is easy to
verify that this is what we want.

Now, let q ∈ N+ satisfy 2q ≤ 10w+1 − 1 an 2q+1 > 10w+1 and p < 1
10wN . We consider the

following network:
F = F20,p ◦ F21,p · · · ◦ F2q−1,p ◦ F2q,p,

and show that, F (a1a2 . . . aN/10w(N−1)) = a2 . . . aN/10w(N−1).

Firstly, we have F2q,p(a1a2 . . . aN/10w(N−1)) = a1(q)a2 . . . aN/10w(N−1), where a1(q) = a1 if
a1a2 . . . aN/10w(N−1) ≤ 2q and a1(q) = a1 − 2q if a1a2 . . . aN/10w(N−1) > 2q + p. Just by the
definition of q, we know that there must be a1a2 . . . aN/10w(N−1) ≤ 2q+1. Further by the definition
of p, one of the following two inequalities is true:

a1a2 . . . aN/10w(N−1) < 2q or a1a2 . . . aN/10w(N−1) > 2q + p.

So using the definition of F2q,p, we get the desired result.

Similarly as before, for k = q − 1, q − 2, . . . , 0, we have F2k,p(a1(k + 1)a2 . . . aN/10w(N−1)) =

a1(k)a2 . . . aN/10w(N−1), where a1(k) = a1(k + 1) if a1(k + 1)a2 . . . aN/10w(N−1) ≤ 2k and
a1(k) = a1(k + 1)− 2k if a1(k + 1)a2 . . . aN/10w(N−1) > 2k + p.

Then we have the following result: a1(k) < 2k for any k = 0, 1, . . . , q. By the definition, it is easy
to see that a1 < 2q+1. If a1 < 2q , then a1(q) ≤ a1 < 2q; if a1 ≥ 2q , then a1a2 . . . aN/10w(N−1) >
2q + p, so a1(q) = a1 − 2q < 2q+1 − 2q = 2q. Thus a1(q) < 2q. When a1(t) < 2t for a t ∈ [q],
similar as before, we have a1(t− 1) < 2t−1. And t = q is proved, so we get the desired result.

It is easy to see that, a1(k) are non negative integers, so there must be F (a1a2 . . . aN/10w(N−1)) =

a1(0)a2 . . . aN/10w(N−1) = a2 . . . aN/10w(N−1), by a1(0) < 20 = 1, which implies a1(0) = 0.
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Now we construct a network Fb as follows:

Fb(x) = Fb1 ◦ Fb1(x) such that:

Fb1(x) : R → R2 and Fb1(x) = (F (x/10w(N−1)), x) where x is defined as before.

Fb2(x) : R2 → R2 and Fb2((x1, x2)) = (x2/10
w(N−1) − x1, x1 ∗ 10w(N−1)).

Now we verify that Fb is what we want.

By the structure of F , Fb has width 4 and depth O(w), so there are at most O(w) parameters.

It is easy to see that Fb1(a1a2 . . . aN ) = (a2 . . . aN/10w(N−1), a1a2 . . . aN ). Then by the definition
of Fb2(x), we have Fb(x) = (a1, a2 . . . aN ), this is what we want. The lemma is proved.

By the preceding lemma, we have the following lemma.

Lemma B.5. There is a network R2 → R with at most O(Nw) parameters and width 6, and for
any {ai}Ni=1 where aj is a w digit number and aj ≥ 1, which satisfies f(x, a1a2 . . . aN ) > 0.1 if
|x− ak| < 1 for some k ∈ [N ], and f(x, a1a2 . . . aN ) = 0 if |x− ak| ≥ 1.1 for all k ∈ [N ].

Proof. The proof idea is as follows: First, we use x and a1a2 . . . aN to judge if |x − a1| < 1 as
follows: Using lemma B.4, we calculate a1 and a2 . . . aN and then calculate |x− a1|.
If |x − a1| < 1, then we let the network output a positive number; if |x − a1| ≥ 1, then calculate
a2 . . . aN , and use x and a2 . . . aN to repeat the above process until all |x− ai| have been calculated.

The specific structure of the network is as follows:

step 1: Firstly, for a given N , we introduce a sub-network fs : R2 → R2, which satisfies
(fs)1(x, a1a2 . . . aN ) > 0.1 if |x − a1| < 1, and fs(x, a1a2 . . . aN ) = 0 if |x − a1| ≥ 1.1, and
(fs)2(x, a1a2 . . . aN ) = a2 . . . aN . And fs has O(w) parameters and width 5.

The first part of fs is to calculate a1 and a2 . . . aN by lemma B.4. We also need to keep x, and the
network has width 5. The second part of fs is to calculate |x − a1| and keep a2 . . . aN by using
|x| = Relu(x) + Relu(−x), which has width 4. The output of fs is Relu(1.1− |x− a1|). Easy to
check that this is what we want.

step 2: Now we build the f mentioned in the lemma.

Let f = g ◦ fN ◦ fN−1 · · · ◦ f1.

For each i ∈ [N ], we will let the input of fi which is also the output of fi−1 when i > 1 be the form
(x, aiai+1 . . . aN , qi), where q1 = 0. The detail is as follows:

For i ∈ [N ], in fi, construct fs(x, aiai+1 . . . aN ) at first, and then let qi+1 = qi +
(fs)1(x, aiai+1 . . . aN ), to keep qi in each layer, where we need one more width than fs. Then,
output (x, ai+1ai+2 . . . aN , qi+1), which is also the input of (i+ 1)-th part.

The output of f is qN+1, that is, g(x, 0, qN+1) = qN+1. Now, we show that, f is what we want.

(1): f has at most O(Nw) parameters and width 6, which is obvious, because each part fi, fi has
O(w) parameters by lemma B.4, and f has at most N parts, so we get the result.

(2): f(x, a1a2 . . . aN ) > 0.1 if |x− ak| < 1 for some k.

This is because when |x−ak| < 1, the k-th part will make qk+1 = qk+fs(x, akak+1 . . . aN ) > 0.1,
because (fs)1(x, akak+1 . . . aN ) > 0.1 as said in step 1. Since qj+1 = qj + (fs)1 ≥ qj , we have
f(x, a1a2 . . . aN ) = qN+1 ≥ qk+1 > 0.1.

(3): f(x, a1a2 . . . aN ) = 0 if |x− ak| ≥ 1.1 for all k.

This is because when |x−ak| ≥ 1.1, the k-th part will make qk+1 = qk+fs(x, akak+1 . . . aN ) = qk,
because fs(x, akak+1 . . . aN ) = 0 as said in step 1. Since fs(x, akak+1 . . . aN ) = 0 for all k, we
have f(x, a1a2 . . . aN ) = qN+1 = qN + fs(x, aN ) = qN = · · · = q0 = 0.
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B.4 The proof of Theorem 4.1

Now, we will prove Theorem 4.1. As we mentioned before, three steps are required: data compression,
data projection, and label determination. The proof is as follows.

Proof. Assume that Dtr = {xi}Ni=1, without loss of generality, let xi ̸= xj . Now, we show that there
is a memorization network F of Dtr with O(

√
N) parameters.

Part One, data compression.

The part is to compress the data in Dtr into R. Let w, b satisfy (1) and (2) in lemma B.1. Then, the
first part of F is f1(x) = Relu(wx+ b).

Part two, data projection.

Let ci = f1(xi), without loss of generality, we assume ci ≤ ci+1 and y1 = 1. We define c′i as:
c′i = ci if xi has label 1; otherwise c′i = c1.

Let t(i) = argmaxj∈[N ]{[j/
√
N ] = i} and vk = [c′t(k−1)+1][c

′
t(k−1)+2] . . . [c

′
t(k)].

In this part, the second part of F(x), named as f2(x) : R → R2, need to satisfy f2(ci) = (v[ i√
N0

], ci)

for any i ∈ [N ].

By lemma B.3, a network with O(
√
N) parameters and width 4 is enough to map xi to v[ i√

N
] and

for keeping the input, and one node is needed at each layer. So f2 just need O(
√
N) parameters and

width 5.

Part Three, Label determination.

In this part, we will use the vk mentioned in part two to output the label of input. The third part,
nameed as f3(v, c), should satisfy that:

For f3(vk, c), where vk = [c′t(k−1)+1][c
′
t(k−1)+2] . . . [c

′
t(k)] is defined above, if |c − c′q| < 1 for

some q ∈ [t(k − 1) + 1, t(k)], then f3(vk, c) > 0.1; and f3(vk, c) = 0 if |c − c′q| ≥ 1.1 for all
q ∈ [t(k − 1) + 1, t(k)].

Because the number of digits for ci is O(ln(nN/c)) by (1) in lemma B.1 and lemma B.5, we know
that such a network need O(

√
N ln(Nn/c)) parameters.

Construction of F and verify it:

Let F(x) = f3(f2(f1(x)))− 0.05. We show that F is what we want.

(1): By parts one, two, three, it is easy to see that F has at most O(
√
N ln(Nn/c)) parameters and

width 6.

(2): F(x) is a memorization of Dtr. For any (xi, yi) ∈ Dtr, consider two sub-cases:

(1.1: if yi = 1): Using the symbols in Part Two, f2(f1(xi)) will output (v[ i√
N

], f1(xi)). Since

c′i = ci because yi = 1, by part three, we have f3(f2(f1(x)))− 0.05 ≥ 0.1− 0.05 > 0.

(1.2 if yi = −1): By (2) in lemma B.1, for ∀(z, 1) ∈ Dtr, we know that |f1(xi) − [f1(x1)]| ≥
|f1(xi)− f1(x1)| − |f1(x1)− [f1(x1)]| ≥ 4− 1 = 3. So, by part three, we have f3(f2(f1(xi))) =
0− 0.05 < 0.

The Running Time: In Part One, it takes poly(B(Dtr), ln ϵ) times to find such w and b with
probability 1− ϵ, as said in lemma B.1. In other parts, the parameters are calculated deterministically.
We proved the theorem.

C Proof of Theorem 4.3

Proof. It suffices to show that there exists a memorization algorithm L, such that if D ∈ D(n, c) and
Dtr ∼ DN , then the network L(Dtr) has a constant number of parameters (independent of N ). The
construction has four steps.
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Step One: Calculate the min(x,yx),(z,yz)∈Ds
||x− z||2, name it as c0.

Step Two: There is a Dtr ⊂ Dtr, such that:

(c1): For any (x, yx), (z, yz) ∈ Ds, it holds ||x− z||2 > c0/3;

(c2): For any (x, yx) ∈ Dtr, it holds ||x− z||2 ≤ c0/3 for some (z, yz) ∈ Ds.

It is obvious that such Ds exists.

Step Three: We prove that |Ds| ≤ (1+2c0/3)
n

Cn(c0/3)n
, where Cn is the volume of unit ball in Rn. Let

Q = (1+2c/3)n

Cn(c/3)n
, consider that c0 ≥ c, so there are |Ds| ≤ Q.

Let B2(x, r) = {z : ||z − x||2 ≤ r}, and V (A) the volume of A.

Due to Ds ⊂ Dtr ⊂ [0, 1]n × {−1, 1}, so ∪(x,y)∈Ds
B2(x, c0/3) ∈ [−c0/3, 1 + c0/3]

n. By
condition (c1), we have B2(x, c0/3) ∩ B2(z, c0/3) = ∅ for any (x, yx), (z, yz) ∈ Ds, so we have∑

(x,y)∈Ds
V (B2(x, c0/3)) ≤ (1 + 2c0/3)

n, which means |Ds| ≤ (1+2c0/3)
n

Cn(c0/3)n
< Q.

Step Four: There is a robust memorization network [62] with at most O(Qn) parameters for Ds

with robust radius c0/3, and this memorization network is a memorization of Dtr.

By condition (c1), there is a robust memorization network Frm with O(|Ds|n) parameters for Ds

with radius c0/3 [62]. By step three, we have |Ds| ≤ Q, so that such a network has at most O(Qn)
parameters.

By condition (c2), for any (x, yx) ∈ Dtr, there is a (z, yz) ∈ Ds satisfying ||x− z||2 ≤ c0/3. Firstly,
there must be yx = yz , because the distribution D has separation bound c0, and if yx ̸= yz then
||x − z||2 ≥ c0 > c0/3. Then, since robust memorization Frm has robust radius c0/3, we have
Sgn(Frm(x)) = Sgn(Frm(z)) = yz = yx, so Frm is a memorization network of Dtr. The theorem
is proved.

D Proof for Theorem 5.1

In this section, we will prove that networks with small width cannot have a good generalization for
some distributions. For a given width w, we will construct a distribution on which any network with
width w will have poor generalization. The proof consists of the following parts.

D.1 Disadvantages of network with small width

In this section, we demonstrate that a network with a small width may have some unfavorable
properties. We have the following simple fact.

Lemma D.1. Let the first transition weight matrix of network F be W . Then if Wx = Wz, we have
F(x) = F(z).

If W is not full-rank, then there exist x and z satisfying Wx = Wz. Moreover, if x and z have
different labels, according to lemma D.1, we have F(x) = F(z), so there must be an incorrect result
given between F(x) and F(z).

According to the theorem of matrices decomposition, we also have the following fact.

Lemma D.2. Let the first transition weight matrix of network F : Rn → R be W . If W has width
w < n, then exists a W1 ∈ Rw×n, whose rows are orthogonal and unit such that W1x = W1z
implies F(x) = F(z).

Proof. Using matrix decomposition theory, we can write W = NW1, where N ∈ Rw×w and
W1 ∈ Rw×n and the rows of W1 are orthogonal to each other and unit.

Next, we only need to consider W1 as the first transition matrix of the network F and use lemma
D.1.

At this point, we can try to construct a distribution where any network with small width will have
poor generalization.
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D.2 Some useful lemmas

In this section, we introduce some lemmas which are used in the proof in section D.3.
Lemma D.3. Let B(r) be the ball with radius r in Rn. For any given δ > 0, let ϵ = 2δ/n. Then we
have V (B(

√
1−ϵr))

V (B(r)) > 1− δ.

Proof. we have V (B(
√
1−ϵr))

V (B(r)) = (1− ϵ)n/2 ≥ 1− nϵ/2 = 1− δ.

For w ∈ Ra,b and q ∈ Ra, let q ◦ w =
∑a

i=1 qiwi, where qi is the i-th weight of q, wi is the i-th row
of wi. Then we have
Lemma D.4. Let W ∈ Rw×n, and its rows are unit and orthogonal.

(1): For any q1 ̸= q2 ∈ Rw, we have
{x ∈ Rn : Wx = W (q1 ◦W )} ∩ {x ∈ Rn : Wx = W (q2 ◦W )} = ∅.

(2): If S is the unit ball in Rn, then S = ∪q∈Rw,||q||2≤1{x ∈ Rn : Wx = W (q ◦W ), x ∈ S}.

(3): For any q ∈ Rw, {x ∈ Rn : Wx = W (q ◦ W ), x ∈ S} is a ball in Rn−w with volume
(1− ||q||22)(n−w)/2Cn−w, where Ci is the volume of the unit ball in Ri.

Proof. First, we define an orthogonal coordinate system {Wi}ni=1 in Rn. Let Wi be the i-th row of
W when i ≤ w. When i > w, let Wi be a unit vector orthogonal with all Wj where j < i.

Then for all x ∈ Rn, we say x̃i is the i-th weight of x under such coordinate system. Then,
Wx = Wz if and only x̃i = z̃i for i ∈ [w].

Now, we can prove the lemma.

(1): The first weight w of q1 ◦W under orthogonal coordinate system {Wi}ni=1 is q1, so if x ∈ {x ∈
Rn : Wx = W (q1 ◦W )}, we have x̃i = (q1)i for i ∈ [w].

The first w weight of q2 ◦W under orthogonal coordinate system {Wi}ni=1 is q2, so if x ∈ {x ∈ Rn :
Wx = W (q2 ◦W )}, we have x̃i = (q2)i for i ∈ [w]. Because q1 ̸= q2 ∈ Rw, we get the result.

(2): For any x ∈ Rn, let q(x) = (x̃1, x̃2, . . . , x̃w) ∈ Rw. It is easy to see that ||x||2 =
√∑n

i=1 x̃i
2,

so ||q(x)||2 ≤ 1 when ||x||2 ≤ 1.

Now we verify that: for any s ∈ S, we have s ∈ {x ∈ Rn : Wx = W (q(s) ◦W ), x ∈ S}.

Firstly, we have Ws =
∑w

i=1 < wi,
∑N

i=1 s̃iwi >=
∑w

i=1 s̃i.

Secondly, we have W (q(s) ◦W ) =
∑w

i=1 < wi,
∑w

i=1 s̃iwi >=
∑w

i=1 s̃i. So Ws = W (q(s) ◦W ),
resulting in s ∈ {x ∈ Rn : Wx = W (q(s)◦W ), x ∈ S}, which implies that S = ∪q∈Rw,||q||2≤1{x ∈
Rn : Wx = W (q ◦W ), x ∈ S}.

(3): By the proof of (2), we know that if x satisfies x̃i = qi for i ∈ [w], then x ∈ {x ∈ Rn : Wx =
W (q ◦ W )}. By (1), {x ∈ Rn : Wx = W (q ◦ W )} will not intersect for different q. Therefore,
x ∈ {x ∈ Rn : Wx = W (q ◦W )} equals x̃i = qi for i ∈ [w].

Since ||x||2 =
√∑n

i=1 x̃i
2, when x ∈ {x ∈ Rn : Wx = W (q ◦W )}, we have x̃i = qi for i ∈ [w],

so
∑n

i=w+1 x̃i
2 = ||x||22 − ||q||22, and such n− w weight is optional.

Therefore, {x ∈ Rn : Wx = W (q ◦W ), x ∈ S} is a ball in Rn−w with radius
√
1− ||q||22, so we

get the result.

Lemma D.5. Let r3 > r2 > r1, n ≥ 1 and x ≤ r1, then (r3−x)n−(r2−x)n

(r1−x)n ≥ rn3 −rn2
rn1

.

Proof. Let f(x) = (r3−x)n−(r2−x)n

(r1−x)n . We just need to prove f(x) ≥ f(0) when x ≤ r1. We calculate
the derivative f(x) at first:

f ′(x) = ((r3−x)n−(r2−x)n)′(r1−x)n−((r3−x)n−(r2−x)n)((r1−x)n)′

(r1−x)2n .
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It is easy to calculate that ((r3 − x)n − (r2 − x)n)′ = −n((r3 − x)n−1 − (r2 − x)n−1) and
((r1 − x)n)′ = −n(r1 − x)n−1. Putting this into the above equation, we have

f ′(x) = −P (x)(((r3 − x)n−1 − (r2 − x)n−1)(r1 − x)− ((r3 − x)n − (r2 − x)n))

Where P (x) is a positive value about x. Since

((r3 − x)n−1 − (r2 − x)n−1)(r1 − x)− ((r3 − x)n − (r2 − x)n)
= −(r3 − x)n−1(r3 − r1) + (r2 − x)n−1(r2 − r1)
≤ 0

we have f ′(x) ≥ 0, resulting in f(x) ≥ f(0). The lemma is proved.

Lemma D.6. Let a > b > 1, n > m ≥ 1. If an − bn = 1. Then am − bm ≤ 1.

Proof. We have 1 = an − bn ≥ bn−m(am − bm) > am − bm.

Lemma D.7. Let a > qb where q < 1 and a, b > 0. Then min{a, b} ≥ qb.

Proof. When min{a, b} = b, by q < 1, the result is obvious. When min{a, b} = a, by a > qb, the
result is obvious.

Lemma D.8. For any w > 0, there exist r1, r2, r3 and n such that

(1): rn3 − rn2 = rn1 ;

(2): rn−w
3 − rn−w

2 ≥ 0.99rn−w
1 .

Proof. Because the equations are all homogeneous, without loss of generality, we assume that r1 = 1.
We take α = 21/n − 1, β + α = 31/n − 1, and n to satisfy 3w/n < 1.001. Let r2 = 1 + α,
r3 = 1 + α+ β. We show that this is what we want.

At first, we have rn3 − rn2 = (1 + α + β)n − (1 + α)n = 3 − 2 = 1 = rn1 . We also have
(1 + α+ β)w < 1.001, named (k1). So we have

rn−w
3 − rn−w

2
= (1 + α+ β)n−w − (1 + α)n−w

= (1+α+β)n−w(1+α)w−(1+α)n

(1+α)w

≥ (1+α+β)n−w(1+α)w−(1+α)n

1.001 (by (k1))

= (1+α+β)n−(1+α+β)n−w((1+α+β)w−(1+α)w)−(1+α)n

1.001

≥ (1+α+β)n−(1+α)n−0.001(1+α+β)n

1.001 (by (k1))

= (1+α+β)n−(1+α)n−0.003
1.001

= 1−0.003
1.001

≥ 0.99.

The lemma is proved.

D.3 Construct the distribution

In this section, we construct the distribution in Theorem 5.1.

Definition D.9. Let q be a point in [0, 1]n, 0 < r1 < r2 < r3, and we define Bk
2 (z, t) = {x ∈ Rk :

||x− z||2 ≤ t}, where k ∈ N+, z ∈ Rk and t ≥ 0.

The distribution D(n, q, r1, r2, r3) is defined as:

(1): This is a distirbution on Rn × {−1, 1}.

(2): A point has label 1 if and only if it is in Bn
2 (q, r1). A point has label -1 if and only if it is in

Bn
2 (q, r3)/B

n
2 (q, r2).

(3): The points with label 1 or -1 satisfy the uniform distribution, and let the density function be
f(x) = λ = 1

V (Bn
2 (q,r3))−V (Bn

2 (q,r2))+V (Bn
2 (q,r1))

.

23



We now prove Theorem 5.1.

Proof. Use the notations in Definition D.9.

Now, we let ri, q, n, w satisfy:
(c1): Bn

2 (q, r3) ∈ [0, 1]n;
(c2): rn3 − rn2 = rn1 ;
(c3): rn−w

3 − rn−w
2 ≥ 0.99rn−w

1 .
Lemma D.8 ensures that such ri, q, n exist.

Let distribution D = D(n, q, r1, r2, r3), where D(n, q, r1, r2, r3) is given in Definition D.9. Now, we
show that D is what we want. We prove that for any given F with width w, we have AD(F) < 0.51.

Firstly, we define some symbols. Using lemma D.2, let W ∈ Rw×n whose rows are unit and
orthogonal and satisfy that Wx = Wz implying F(x) = F(z).

Then define S1,x = {z : Wz = Wx, z ∈ Bn
2 (q, r1)} and S2,x = {z : Wz = Wx, z ∈

Bn
2 (q, r3)/B

n
2 (q, r2)}.

By lemma D.2, we know that, for any given x, the points in S1,x ∪ S2,x have the same output after
inputting to F , but the points in S1,x have label 1 and the points in S2,x have label -1. So F must
give the wrong label to the point in S1,x or S2,x.

The proof is then divided into two parts.

Part One: Let h ∈ Bw
2 (0, r1), and x(h) = q + h ◦ W ∈ Rn, where ◦ is defined in section D.2.

Consider that for any given h, F must give the wrong label to the point in S1x(h) or S2x(h), we have
that F will give the wrong label with probability at least min{P(x,y)∼D(x ∈ S1x(h)),P(x,y)∼D(x ∈
S2x(h))}. So, now we only need to sum these values about h.

For any different h1, h2 ∈ Bw
2 (0, r1), we have S1x(h1) ∩ S1x(h2) = ∅, S2x(h1) ∩ S2x(h2) = ∅, and

∪h∈Bw
2 (0,r1)S1x(h) = Bn

2 (q, r1). By (1) and (2) in lemma D.4. Proof is similar for S2x(h). Then, by
the volume of S1x(h), S2x(h) calculated in lemma D.4, we know that, the probability of F producing
an error on distribution D is at least∫

h∈Bw
2 (0,r1)

min{P(x,y)∼D(x ∈ S1x(h)),P(x,y)∼D(x ∈ S2x(h))}
= λCn−w

∫
x∈Bw

2 (0,r1)
min{(r21 − ||x||22)(n−w)/2,

(r23 − ||x||22)(n−w)/2 − (r22 − ||x||2)(n−w)/2}dx

where Cn−w is the volume of the unit ball in Rn−w as mentioned in lemma D.4. Next, we will
estimate the lower bound of this value

Part Two: Firstly, by lemma D.5, we know that (r23−||x||22)
(n−w)/2−(r22−||x||22)

(n−w)/2

(r21−||x||2)(n−w)/2 ≥
(r23)

(n−w)/2−(r22)
(n−w)/2

(r21)
(n−w)/2 .

Then, by lemma D.6 and (c2) , we know that (r23)
(n−w)/2−(r22)

(n−w)/2

(r21)
(n−w)/2 ≤ 1. Thus by lemma D.7, we

have

λCn−w

∫
x∈Bw

2 (0,r1)
min{(r21 − ||x||22)(n−w)/2, (r23 − ||x||22)(n−w)/2 − (r22 − ||x||22)(n−w)/2}dx

= λCn−w

∫
x∈Bw

2 (0,r1)
min{(r21 − ||x||22)(n−w)/2,

(r23−||x||22)
(n−w)/2−(r22−||x||22)

(n−w)/2

(r21−||x||22)(n−w)/2 (r21 − ||x||22)(n−w)/2}dx
≥ λCn−w

∫
x∈Bw

2 (0,r1)
min{(r21 − ||x||22)(n−w)/2,

(r23)
(n−w)/2−(r22)

(n−w)/2

(r21)
(n−w)/2 (r21 − ||x||22)(n−w)/2}dx

≥ λCn−w
(r23)

(n−w)/2−(r22)
(n−w)/2

(r21)
(n−w)/2

∫
x∈Bw

2 (0,r1)
(r21 − ||x||22)(n−w)/2dx

=
(r23)

(n−w)/2−(r22)
(n−w)/2

(r21)
(n−w)/2 P(x,y)∼D(y = 1).
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From rn3 − rn2 = rn1 , we know that λV (Bn
2 (q, r1)) = λ(V (Bn

2 (q, r3))− V (Bn
2 (q, r2))) = 0.5, so

P(x,y)∼D(y = −1) = P(x,y)∼D(y = −1) = 0.5, and further consider the (c3), we have

(r23)
(n−w)/2−(r22)

(n−w)/2

(r21)
(n−w)/2 P(x,y)∼D(y = 1)

≥ 0.5
(r23)

(n−w)/2−(r22)
(n−w)/2

(r21)
(n−w)/2

≥ 0.49.

The theorem is proved.

E Proof of Theorem 5.3

Firstly, note that Theorem 5.3 cannot be proved by the following classic result.

Theorem E.1 ([57]). Let D be any joint distribution over Rn × {−1, 1}, Dtr a dataset of size N
selected i.i.d. from D, and H = {h : Rn → R} the hypothesis space. Then with probability at least
1− δ,

sup
h∈H

|R(h,D)−R(h,Dtr)| ≥
RadN (H)

2
−O(

√
ln 1/δ

N
),

where R(h,D) is the population risk, R(h,Dtr) is the empirical risk, and RadN (H) is the Rader-
mecher complexity of H.

Theorem E.1 is the classical conclusion about the lower bound of generalization error, and theorem
5.3 and Theorem E.1 are different. Firstly, Theorem E.1 is established on the basis of probability,
whereas Theorem 5.3 is not. Secondly, Theorem E.1 highlights the existence of a gap between the
empirical error and the generalization error for certain functions within the hypothesis space, and
does not impose any constraints on the value of empirical error. However, memorization networks,
which perfectly fit the training set, will inherently have a zero empirical error, so Theorem E.1 cannot
directly address Theorem 5.3. Lastly, Theorem E.1 relies on Radermacher complexity, which can be
challenging to calculate, while Theorem 5.3 does not have such a requirement.

For the proof of Theorem 5.3, we mainly follow the constructive approach of memorization network
in [55], but during the construction process, we will also consider the accuracy of the memorization
network. Our proof is divided into four parts.

E.1 Data Compression

The general method of constructing memorization networks compresses the data into a low dimen-
sional space at first, and we adopt this approach. We are trying to compress the data into 1-dimension
space. However, we require the compressed data to meet some conditions, as stated in the following
lemma.

Lemma E.2. Let D be a distribution in [0, 1]n ×{−1, 1} with separation bound c and density r, and
Dtr ∼ DN . Then, there are w ∈ Rn and b ∈ R that satisfy:
(1): O(nN3r/c) ≥ wx+ b ≥ 1 for all x ∈ [0, 1]n;
(2): |wx− wz| ≥ 4 for all (x, 1), (z,−1) ∈ Dtr;
(3): P(x,y)∼D(∃(z, yz) ∈ Dtr, |wx− wz| ≤ 3) < 0.01.

Proof. Since distribution D is definition on [0, 1]n, we have c ≤ 1 and r ≥ 1.

Because the density function of D is r, we have P(x,y)∼D(x ∈ B2(z, r1)) ≤ rV (B2(z, r1)) <

r(2r1)
n = 1

400N2 for all z ∈ Rn, where r1 = 1
2(400rN2)1/n

. It is easy to see that r1 ≤ 1 because
r ≥ 1.

Then, we have the following two results:

Result one: Let u ∈ Rn be uniformly randomly sampled from the hypersphere Sn−1. Then we have

P (|⟨u, (x− z)⟩| ≥ c
4N2

√
8
nπ ,∀(x,−1), (z, 1) ∈ Dtr) > 0.5.The proof is similar to that of lemma

B.1.
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Result Two: Let u ∈ Rn be uniformly randomly sampled from the hypersphere Sn−1. Then

Pu(P(x,y)∼D(∃(xi, yi) ∈ Dtr, |⟨u, (x− xi)⟩| < r
800N2

√
8
nπ ) < 0.01) > 0.5.

Firstly, by lemma B.2, and take T = 800N2, we can get that: for any given v ∈ Rn, if u ∈ Rn be

uniformly randomly sampled from the hypersphere Sn−1, then P (|⟨u, v⟩| < ||v||2
800N2

√
8
nπ ) <

1
400N2 .

Thus, by such inequality, the density of D and the definition of r1, we have that:

Pu,(x,y)∼D(|⟨u, (x− v)⟩| < r1
800N2

√
8
nπ )

= Pu,(x,y)∼D(|⟨u, (x− v)⟩| < r1
800N2

√
8
nπ | ||x− v||2 ≥ r1)P(x,y)∼D(||x− v||2 ≥ r1)

+Pu,(x,y)∼D(|⟨u, (x− v)⟩| < r1
800N2

√
8
nπ | ||x− v||2 < r1)P(x,y)∼D(||x− v||2 < r1)

< Pu,(x,y)∼D(|⟨u, (x− v)⟩| < ||x−v||2
800N2

√
8
nπ | ||x− v||2 ≥ r1) + P(x,y)∼D(||x− v||2 < r1)

≤ Pu(|⟨u, (x− v)⟩| < ||x−v||2
800N2

√
8
nπ ) + P(x,y)∼D(||x− v||2 < r1)

< 1
400N2 + 1

400N2 = 1/(200N2).

On the other hand, we have

Pu,(x,y)∼D(|⟨u, (x− v)⟩| < r1
800N2

√
8
nπ )

≥ Pu(P(x,y)∼D(|⟨u, (x− v)⟩| < r1
800N2

√
8
nπ ) ≥ 0.01/N) ∗ 0.01/N.

So, we have Pu(P(x,y)∼D(|⟨u, (x−v)⟩| < r
800N2

√
8
nπ ) ≥ 0.01/N) < 1

200N2 /(0.01/N) = 1/(2N).
Name this inequality as (*).

On the other hand, we have

Pu(P(x,y)∼D(∃(xi, yi) ∈ Dtr, |⟨u, (x− xi)⟩| < r
800N2

√
8
nπ ) < 0.01)

= 1− Pu(P(x,y)∼D(∃(xi, yi) ∈ Dtr, |⟨u, (x− xi)⟩| < r
800N2

√
8
nπ ) ≥ 0.01)

Then, if a u ∈ Rn satisfies P(x,y)∼D(∃(xi, yi) ∈ Dtr, |⟨u, (x − xi)⟩| < r
800N2

√
8
nπ ) ≥ 0.01, then

we have P(x,y)∼D(|u(x− xi)| < r
800N2

√
8
nπ ) ≥ 0.01/N for some (xi, yi) ∈ Dtr.

So taking v as xi in inequality (*) and using the above result, we have

Pu(P(x,y)∼D(∃(xi, yi) ∈ Dtr, |⟨u, (x− xi)⟩| < r
800N2

√
8
nπ ) < 0.01)

= 1− Pu(P(x,y)∼D(∃(xi, yi) ∈ Dtr, |⟨u, (x− xi)⟩| < r
800N2

√
8
nπ ) ≥ 0.01)

≥ 1−
∑

(xi,yi)∈Dtr
Pu(P(x,y)∼D(|⟨u, (x− xi)⟩| < r

800N2

√
8
nπ ) ≥ 0.01/N)

> 1−N 1
2N = 0.5.

So we get the result. This is what we want.

Construct w, b and verify their property

Consider the fact: if A(u), B(u) are two events about random variable u, and Pu(A(u) = True) >
0.5,Pu(B(u) = True) > 0.5, then there is a u, which makes events A(u) and B(u) occurring
simultaneously. By the above fact and Results one and two, we have that there exist ||u||2 = 1

and u ∈ Rn such that |⟨u, (x− z)⟩| ≥ c
4N2

√
8
nπ ,∀(x,−1), (z, 1) ∈ Dtr and P(x,y)∼D(∃(xi, yi) ∈

Dtr, |⟨u, (x− xi)⟩)| < r
800N2

√
8
nπ ) < 0.01.

Now, let w = max{ 2400
√
nN2

r1
, 16

√
nN2

c }u and b = ||w||2
√
n + 1, then we show that w and b are

what we want:

(1): we have O(nN3) ≥ wx+ b ≥ 1 for all x ∈ [0, 1]n.

Firstly, because D is defined in [0, 1]n × {−1, 1}, we have ||x||2 ≤
√
n, resulting in and wx+ b ≥

b− ||w||2
√
n ≥ 1.
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On the other hand, using c ≤ 1 and r1 ≤ 1, we have |wx| ≤ ||w||2
√
n ≤ O(nN

2

r1c
), so wx + b ≤

|wx|+ b ≤ O(nN3r1/n/c).

(2): We have |w(x− z)| ≥ 4 for all (x, 1), (z,−1) ∈ Dtr.

It is easy to see that |w(x− z)| ≥ | 16
√
nN2

c u(x− z)| = 16
√
nN2

c |u(x− z)|. Because |u(x− z)| ≥
c

4
√
nN2 , so |w(x− z)| = 16

√
nN2

c |u(x− z)| ≥ 16
√
nN2

c
c

4
√
nN2 = 4.

(3): we have P(x,y)∼D(∃(z, yz) ∈ Dtr, |wx− wz| ≤ 3) < 0.01.

Because |w(x − z)| ≥ 2400
√
nN2

r1
|u(x − z)| ≥ |u(x − z)|, and consider that P(x,y)∼D(∃(z, yz) ∈

Dtr, |u(x − z)| < r1
800N2

√
8
nπ ) < 0.01, we get the result. So, w and b are what we want. and the

lemma is proved.

E.2 Data Projection

The purpose of this part is to map the compressed data to appropriate values. Let w ∈ Rn and b ∈ R
be given, and Dtr = {(xi, yi)}Ni=1. Without losing generality, we assume that wxi < wxi+1.

In this section, we show that, after compressing the data into 1-dimension, we can use a network F

to map wxi + b to v[ i
[
√

N]
], where {vj}

[ N
[
√

N]
]

j=0 are the given values. Furthermore, F should also satisfy

F(wx+ b) ∈ {vj}
[ N
[
√

N]
]+1

j=0 for all x ∈ [0, 1]n except for a small portion.

This network has O(
√
N) parameters, as shown below.

Lemma E.3. Let w ∈ Rn and b ∈ R be given, {vj}
[ N
[
√

N]
]

j=0 ⊂ R and 1 > ϵ > 0 be given.

Let Dtr = {(xi, yi)}Ni=1 and Dtr ∼ DN where D is a distribution, and assume that wxi + b <
wxi+1 + b.

Then a network F with width O(
√
N), depth 2, and at most O(

√
N) parameters, can satisfy that:

(1): F(wxi + b) = v[ i√
N

] for all i ∈ [N ];

(2): P(x,y)∼D(F(wx+ b) ∈ {vj}
[ N
[
√

N]
]

j=0 ) ≥ 1− ϵ.

Proof. Let qi = (wxi+1 + b) − (wxi + b) and q = mini{qi}. Then we consider the set of points
Si = {wxi + b+ qϵ

2N ∗ j}[N/ϵ]+1
j=1 , for any i. We have that:∑
s∈Si

P(x,y)∼D(wx+ b ∈ (s− qϵ
2N /2, s+ qϵ

2N /2))
= P(x,y)∼D(∃s ∈ Si, wx+ b ∈ (s− qϵ

2N /2, s+ qϵ
2N /2))

≤ 1

Consider that |Si| ≥ N/ϵ, so for any i, there is a si ∈ Si, makes that P(x,y)∼D(wx + b ∈ (si −
qϵ
2N /2, si +

qϵ
2N /2)) ≤ ϵ

N .

And it is easy to see that Si satisfies the following result: if z ∈ Si, then:

wxi + b < wxi + b+
qϵ

2N
≤ z ≤ wxi + b+

qϵ

2N
([N/ϵ] + 1) < wxi + b+ qi = wxi+1 + b.

So we have (si − qϵ
2N /2, si +

qϵ
2N /2) ∈ (wxi + b, wxi+1 + b), Name this inequality as (∗).

Let k = [ N
[
√
N ]

] and t(i) = argmaxj∈[N ]{[j/
√
N ] = i}. Now, we define such a network:

F(x) =
∑k

i=1
vi−vi−1

qϵ
2N

(Relu(x− st(i) +
qϵ
2N /2)− Relu(x− st(i) − qϵ

2N /2)) + v0.

This network has width 2k, depth 2 and O(
√
N) parameters. We can verify that such networks satisfy

(1) and (2).
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Verify (1): For a given i ∈ [N ], let c(i) = [ i√
N
]. Then, when j < c(i), we have t(j) < i, so st(j) +

qϵ
2N /2 ≤ wxt(j)+1 + b ≤ wxi + b (this has been shown in (∗)), resulting in: vj−vj−1

qϵ
2N

(Relu(wxi +

b− st(j) +
qϵ
2N /2)−Relu(wxi + b− st(j) − qϵ

2N /2) = vj − vj−1. When j ≥ c(i), similar to before,
we have st(j)− qϵ

2N /2 > wxi+b, resulting in vj−vj−1
qϵ
2N

(Relu(wxi+b−st(j)+
qϵ
2N /2)−Relu(wxi+

b− st(j) − qϵ
2N /2) = 0. So F(xi) = v0 + (v1 − v0) + · · ·+ (vc(i)− vc(i)−1) = vc(i), this is what

we want.

Verify (2): At first, we show that for any x ∈ [0, 1]n satisying wx+b /∈ ∪k
i=1(si−

qϵ
2N /2, si+

qϵ
2N /2),

we have F(x) ∈ {vi}.

This is because: for any x satisfies wx+ b /∈ ∪k
i=1(si −

qϵ
2N /2, si +

qϵ
2N /2), we have F(wx+ b) =

v0 + (v1 − v0) + · · ·+ (vk − vk−1) = vk, where k satisfies st(k) < wx+ b and k is the maximum.
The proof is similar as above.

Second, we show that the probability of such x is at least 1− ϵ.

By P(x,y)∼D(wx+ b ∈ (si − qϵ
2N /2, si +

qϵ
2N /2)) ≤ ϵ

N for any i, we have P(x,y)∼D(∃i, wx+ b ∈
(si − qϵ

2N /2, si +
qϵ
2N /2)) ≤

∑k
i=1 P(x,y)∼D(wx+ b ∈ (si − qϵ

2N /2, si +
qϵ
2N /2)) ≤ ϵ/N ∗N = ϵ,

this is what we want. So F is what we want. The lemma is proved.

E.3 Label determination

This is the same as in section B.3.

E.4 The proof of Theorem 5.3

Three steps are required: data compression, data projection, label determination. The specific proof
is as follows.

Proof. Assume that Dtr = {xi}Ni=1, without loss of generality, let xi ̸= xj . Now, we show that there
is a memorization network F of Dtr with O(

√
N) parameters but with poor generalization.

Part One, data compression. The first part is to compress the data in Dtr into R, let w, b satisfy
(1),(2),(3) in lemma E.2. Then, the first part of F is f1(x) = Relu(wx+ b).

On the other hand, not just samples in Dtr, all the data in Rn have been compressed into R by f1(x).
By (3) in lemma E.2, we have P(x,y)∼D(∃(z, yz) ∈ Dtr, |wx− wz| ≤ 3) < 0.01, resulting in, we
have P(x,y)∼D(|wx− wz| > 3 for ∀(z, yz) ∈ Dtr) > 0.99. By the probability theory, we have

P(x,y)∼D(|wx− wz| > 3 for ∀(z, yz) ∈ Dtr > 0.99)
= P(x,y)∼D(|wx− wz| > 3 for ∀(z, yz) ∈ Dtr > 0.99, y = −1)+

P(x,y)∼D(|wx− wz| > 3 for ∀(z, yz) ∈ Dtr > 0.99, y = 1)
> 0.99.

Without losing generality, we assume that P(x,y)∼D(∀(z, yz) ∈ Dtr, |wx − wz| > 3, y = 1) >
0.99/2, which represents the following fact. Define S = {x : x has label 1 and |wx − wz| >
3 for ∀(z, yz) ∈ Dtr}. Then the probability of points in S is at least 0.99/2. In the following proof,
in order to make the network having bad generalization, we will make the network giving these points
(the points in S) incorrect labels.

Part two, data projection.

Let ci = f1(xi)/ Without losing generality, we will assume ci ≤ ci+1.

Now, assume that we have N0 samples in Dtr with label 1, and {ij}N0
j=1 ⊂ [N ] such that xij has label

1, and ij < ij+1. Let t(i) = argmaxj∈[N ]{[j/
√
N0] = i} and vk = [cit(k−1)+1

][cit(k−1)+2
] . . . [cit(k)

].

In this part, the second part of F(x), named as f2(x), need to satisfy f2(cij ) = (v[ j√
N

], cij ).

Furthermore, we also hope that P(x,y)∼D(f2(f1(x))[1] ∈ {vi}) ≥ 0.999, where f2(f1(x))[i] is the
i-th weight of f2(f1(x)), and P(x,y)∼D(f2(f1(x))[2]) = f1(x).
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By lemma B.3, a network with O(
√
N) parameters and depth 2 is enough to calculate v[ j√

N
] by cij ,

and the output in {vi} has probability 0.999. Retaining ci just need one node. So f2 need O(
√
N)

parameters.

Part Three, Label determination. In this part, we will use the vk mentioned in part two to
output the label of inputs. The third part, named as f3(v, c), should satisfy that for f3(vk, c),
where vk = [cit(k−1)+1

][cit(k−1)+2
] . . . [cit(k)

] as mentioned above, if |c − ciq | < 1 for some q ∈
[t(k − 1) + 1, t(k)], then f3(vk, c) > 0.1, and f3(vk, c) = 0 when |c − ciq | ≥ 1.1 for all q ∈
[t(k − 1) + 1, t(k)].

This network need O(
√
N0 ln(N0nr/c)) parameters, by (1) in lemma E.2 and lemma B.5.

Construction of F and verify it:

Let F(x) = f3(f2(f1(x)))− 0.05. We show that F is what we want.

(1): By parts one, two, three, and the fact N0 ≤ N , it is easy to see that F has at most O(n +√
N ln(Nnr/c)) parameters.

(2): F(x) is a memorization of Dtr. For any (x, y) ∈ Dtr, two cases are consided.

(1.1, if y = 1): using the symbols in Part two, because y = 1, so x = xik for some k. As mentioned in
part two, f2(f1(x)) will output (vi

[ k√
N0

]
, f1(x)). Then, by part three, because |f1(x)− [f1(x)]| < 1,

so we have f3(f2(f1(x)))− 0.05 ≥ 0.1− 0.05 > 0.

(1.2 if y = −1): By (2) in lemma E.2, for ∀(z, 1) ∈ Dtr, we know that |f1(x)− [f1(z)]| ≥ |f1(x)−
f1(z)| − |f1(z)− [f1(z)]| ≥ 4− 1 = 3. So, by part three, we have f3(f2(f1(x))) = 0− 0.05 < 0.

(3): AD(F) < 0.51. We show that, almost all x ∈ S (S is mentioned in part one) will be given
wrong label.

For x ∈ S, we have |wx− wxi| ≥ 3, so |wx+ b− [wxi + b]| ≥ 2 for all (xi, yi) ∈ Dtr. Then for
any vi, by part three and the definition of vi, we have f3(vi, wx + b) = 0 when x ∈ S. So, when
f2(f1(x))[1] ∈ {vi} and x ∈ S, we have f3(f2(f1(x)))− 0.05 = 0− 0.05 < 0.

Consider that for any x ∈ S, the label of x is 1 in distribution D. So when x ∈ S satisfies
f2(f1(x))[1] ∈ {vi}, we find that f(x) gives the wrong label to x. Since P (x ∈ S) ≥ 0.99/2 and
P (f2(f1(x))[1] ∈ {vi}) > 0.999, we have P (x ∈ S, f2(f1(x))[1] ∈ {vi}) ≥ 0.99/2 − 0.001 >
0.49.

By the above result, we have that, with probability at least 0.49, Sgn(f(x)) ̸= y, so AD(f) < 0.51.
So, we prove the theorem.

F Proof of Theorem 6.1

We first give three simple lemmas.

Lemma F.1. We can find 2
[ n
⌈c2⌉

] points in [0, 1]n, and the distance between any two points shall not
be less than c.

Proof. Let t = [ n
⌈c2⌉ ]. We just need to consider following points in [0, 1]n:

For any given i1, i2, i3, . . . , it ∈ {0, 1}, let xi1,i2,i3,...,it be the vector in [0, 1]n satisfying: for any
j ∈ [t], the (j − 1)⌈c2⌉+ 1 to j⌈c2⌉ weights of xi1,i2,i3,...,it is ij ; other weights are 0.

We will show that, if {i1, i2, i3, . . . , it} ≠ {j1, j2, j3, . . . , jt}, then it holds ||xi1,i2,i3,...,it −
xj1,j2,j3,...,jt ||2 ≥ c. Without losing generality, let i1 ̸= j1. Then the first ⌈c2⌉ weights of
xi1,i2,i3,...,it and xj1,j2,j3,...,jt are different: one is all 1, and the other is all 0. So, the distance
between such two points is at least

√
⌈c2⌉ ≥ c.

Then {xi1,i2,i3,...,it}ij∈[0,1] is the 2t point we want, so we prove the lemma.

29



Lemma F.2. If ϵ, δ ∈ (0, 1) and k, x ∈ Z+ satisfy that: x ≤ k(1−2ϵ− δ), then 2x(
∑[kϵ]

j=0

(
k−x
j

)
) <

2k(1− δ).

Proof. We have

2x(
∑[kϵ]

j=0

(
k−x
j

)
) ≤ 2x2k−x [kϵ]

k−x ≤ 2k kϵ
k−x < 2k(1− δ).

The first inequality sign uses
∑m

j=0

(
n
m

)
≤ m2n/n where m ≤ n/2, and by x ≤ k(1− 2ϵ− δ), so

[kϵ] ≤ (k − x)/2. The third inequality sign uses the fact x ≤ k(1− 2ϵ− δ).

Lemma F.3. If k, v ∈ R+ such that kv > 3, and a = [kv] and 3 ≤ b ≤
√
k ln(

√
k), then

a ≥ (b/ ln(b))2v/2.

Proof. If
√
k ≤ b/ ln(b), then b ≤

√
k ln(

√
k) <

√
k ln(b) ≤ b, which is impossible. So b ≤√

k ln(
√
k), and then

√
k ≥ b/ ln(b). Resulting in a ≥ kv − 1 ≥ kv/2 ≥ (b/ ln(b))2v/2.

Now, we prove Theorem 6.1

Proof. By Theorem 4.1, we know that there is a v1 > 1, when
√
N ≥ n, for any distribution

D ∈ D(n, c) and Dtr ∼ DN , Dtr has a memorization with v1
√
N ln(Nn/c) parameters. We will

show that Theorem 6.1 is true for v = 1
32v2

1
.

Assume Theorem 6.1 is wrong, then there exists a memorization algorithm L such that for any
n ∈ Z+, c, ϵ, δ ∈ (0, 1), if D ∈ D(n, c) and N ≥ 1

32v2
1
∗ N2

D
ln2(ND)

(1− 2ϵ− δ), we have

PDtr∼DN (A(L(Dtr)) ≥ 1− ϵ) ≥ 1− δ.

We will derive contradictions based on this L.

Part 1: Find some points and values.

We can find k, n, c, δ, ϵ satisfying

(1): we have n, k ∈ Z+ and 12v1 ≤ n ≤
√
k. Let c = 1, and we can find k points in [0, 1]n and the

distance between any pair of these points is greater than c;

(2): δ, ϵ ∈ (0, 1) and q = [k(1− 2ϵ− δ)] ≥ 3.

By lemma F.1, to make (1) valid, we just need n2 < k ≤ 2n, and (2) is easy to satisfy.

Part 2: Construct some distribution

Let {ui}ki=1 satisfy ui ∈ [0, 1]n and ||ui−uj ||2 ≥ c. By (1) mentioned in (1) in Part 1, such {ui}ki=1
must exist. Now, we consider the following types of distribution D:

(c1): D is a distribution in D(n, c) and P(x,y)∼D(x ∈ {ui}ki=1) = 1.

(c2): P(x,y)∼D(x = ui) = P(x,y)∼D(x = uj) = 1/k for any i, j ∈ [k].

It is obvious that, by ||ui − uj ||2 ≥ c, such a distribution exists. Let S be the set that contains all
such distributions. We will show that for D ∈ S, it holds ND ≤ v1

√
k ln(kn/c).

By Theorem 4.1 and definition of v1, we know that for any distribution D ∈ S, let yi be the
label of ui in distribution D ∈ S. Then there is a memorization F of {(ui, yi)}ki=1 with at most
v1
√
k ln(kn/c) parameters. Then by (c1), the above result implies AD(F(x)) = 1, so we know that

ND ≤ v1
√
k ln(kn/c) for any D ∈ S. Moreover, by k ≥ n ≥ 3, c = 1 and it is easy to see that

ND ≥ n. We thus have 3 ≤ ND ≤ 4v1
√
k ln(

√
k).

Part 3: A definition.

Moreover, for D ∈ S, we define S(D) as the following set:

30



Z ∈ S(D) if and only if Z ∈ [k]q is a vector satisfying: Define D(Z) as D(Z) = {(uzi , yzi)}
q
i=1,

then AD(L(D(Z))) ≥ 1−ϵ, where zi is the i-th weight of Z and yzi is the label of uzi in distribution
D.

It is easy to see that, if we i.i.d select q samples in distribution D to form a dataset Dtr, then

(1): By c2, with probability 1, Dtr only contains the samples (uj , yj) where j ∈ [k];

(2): Let Dtr has the form shown in (1). Then every time a sample is selected, it is in {(ui, yi)}ki=1.
Now we construct a vector in [k]q as follows: the index of i-th selected samples as the i-th component
of the vector. Then each selection situation corresponds to a vector in [k]q which is constructed as
before. Then by the definition of S(D), we have AD(L(Dtr)) ≥ 1−ϵ if and only if the corresponding
vector of Dtr is in S(D).

Putting ND ≤ 4v1
√
k ln(

√
k) and q = [k(1−2ϵ−δ)] in lemma F.3, we have q ≥ ( ND/(4v1)

ln(ND/(4v1))
)2(1−

2ϵ− δ)/2 ≥ N2
D(1−2ϵ−δ)

32v2
1 ln2(ND)

.

By the above result and the by the assumption of L at the beginning of the proof, so that for any
D ∈ S we have t

PDtr∼Dq (A(L(Dtr)) ≥ 1− ϵ) =
|S(D)|
kq

≥ 1− δ. (4)

Part 4: Prove the Theorem.

Let Ss be a subset of S, and Ss = {Di1,i2,...,ik}ij∈{−1,1},j∈[k] ⊂ S, where distribution Di1,i2,...,ik

satisfies the label of uj is ij , where j ∈ [k].

We will show that there exists at least one D ⊂ Ss, such that |S(D)| < (1− δ)kq , which is contrary
to equation 4. To prove that, we just need to prove that

∑
D∈Ss

|S(D)| < (1− δ)2kkq , use |Ss| = 2k

here.

To prove that, for any vector Z ∈ [k]q , we estimate how many D ∈ Ss which makes Z to be included
in S(D).

Part 4.1, situation of a given vector Z and a given distribution D.

For a Z = (zi)
q
i=1 and D such that Z ∈ S(D), let len(Z) = {c ∈ [k] : ∃i, c = zi}. We consider the

distributions in Ss that satisfy the following condition: for i ∈ len(Z), the label of ui is equal to the
label of ui in D.

Obviously, we have 2k−|len(Z)| distributions that can satisfy the above condition in Ss. Let such
distributions make up a set Sss(D, Z). Now, we estimate how many distributions Ds in Sss(D, Z)
satisfy Z ∈ S(Ds).

For any distribution G ∈ Ss, let y(G)i be the label of ui in distribution G, and define the dataset
Dtr = {(uzi , y(D)zi)}

q
i=1. Then Z ∈ S(Ds) if and only if: for at least k − [kϵ] of i ∈ [k], L(Dtr)

gives the label y(Ds)i to ui.

Firstly, consider that when i ∈ len(Z). For any Ds ∈ Sss(D, Z), we have y(Ds)i = y(D)i and
L(Dtr) must give the label y(D)i to ui, so when i ∈ len(Z), L(Dtr) gives the label y(Ds)i to ui.

Then, consider i /∈ len(Z). Because Z is a given vector, so if Z ∈ S(Ds), the label y(Ds)i where
i /∈ len(Z) are at most [kϵ] different from the label of ui given by L(Dtr).

So, by the above two results, this kind of Ds is at most
∑[kϵ]

i=0

(
k−|len(Z)|

i

)
. So, we have∑[kϵ]

i=0

(
k−|len(Z)|

i

)
number of distributions Ds in Sss(D, Z) satisfy Z ∈ S(Ds).

Part 4.2, for any vector Z and distribution D.

Firstly, for a given Z, we have at most 2|len(Z)| different Sss(D, Z) for D ∈ DS .

Because when D1 and D2 satisfy y(D1)i = y(D2)i for any i ∈ len(Z), we have Dss(D1, Z) =
Dss(D2, Z), and 2|len(Z)| situations of label of ui where i ∈ len(Z), so there exist at most 2|len(Z)|

different Sss(D, Z).
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By part 4.1, for a Sss(D, Z), at most
∑[kϵ]

i=0

(
k−|len(Z)|

i

)
of Ds ∈ Sss(D, Z) satsify Z ∈ S(Ds). So

by the above result and consider that Ds = ∪D∈Ds
Sss(D, Z), at most 2|len(Z)| ∑[kϵ]

i=0

(
k−|len(Z)|

i

)
number of Ds ∈ Ss such that Z ∈ S(Ds).

And there exist kq different Z, so
∑

D∈Ss
|S(D)| ≤

∑
Z 2|len(Z)| ∑[kϵ]

i=0

(
k−|len(Z)|

i

)
≤

∑
Z 2k(1−

δ) = kq2k(1 − δ). For the last inequality, we use 2|len(Z)| ∑[kϵ]
i=0

(
k−|len(Z)|

i

)
< 2k(1 − δ), which

can be shown by |len(Z)| ≤ q and lemma F.2.

This is what we want. we proved the theorem.

We now prove Corollary 6.4.

Proof. Using lemma F.1, we can find 2
[ n
⌈c2⌉

] points in [0, 1]n and the distance between any two points
shall not be less than c. So we take a ϵ, δ such that 1− 2ϵ− δ > 0, n = 3[12v1/(1− 2ϵ− δ)] + 3,
c = 1 and k = 2

[ n
⌈c2⌉

] in the (1) in the part 1 of the proof of Theorem 6.1, then similar as the proof of
Theorem 6.1, and we get this corollary.

G Proof of Theorem 6.5

G.1 The Existence

Firstly, it is easy to show that there exists a memorization algorithm which satisfies L(Dtr) ≤ ND
when Dtr ∼ DN with probability 1. We just consider the following memorization algorithm:

For a given dataset D, let L(D) be the memorization of D with minimum parameters, as shown in
Theorem 4.1. Then para(L(D)) ≤ O(

√
|D|).

And if D is i.i.d selected from distribution D, where D ∈ D(n, c), then by the definition of L and
ND in Theorem 4.3, we have para(L(D)) ≤ ND with probability 1. So L is what we want.

G.2 The Sample Complexity of Generalization

To prove (1) in the theorem, we need three lemmas.
Lemma G.1 ([44]). Let H be a hypothesis space with VCdim h and D is distribution of data, if
N ≥ h, then with probability 1− δ of Dtr ∼ DN , we have

|ED(F)− EDtr (F)| ≤

√
8h ln 2eN

h + 8 ln 4
δ

N

for any F ∈ H . Here, ED(F) = E(x,y)∼D[I(F(x) = y)], EDtr (F) =
∑

(x,y∈Dtr)
[I(F(x) = y)]

and I(x) = 1 if x is true or I(x) = 0.

Moreover, when h ≥ 1, we have

|ED(F)− EDtr
(F)| ≤

√
8h ln 8eN

δh

N
.

Lemma G.2. If e ≤ ba/c, then we have a ln(bu) ≤ cu when u ≥ 2a ln(ba/c)/c.

Proof. Firstly, we have a ln(bu)
cu = ln(ba/c(cu/a))

cu/a , and we just need to show ln(ba/c(cu/a))
cu/a ≤ 1.

Then, we show that there are 2 ln(ba/c) ≤ ba/c. Just consider the function g(x) = x − 2 lnx, by
g′(x) = 1− 2/x, so g′(x) ≥ 0 when x ≥ 2, so g(ba/c) ≥ g(e) = e− 2 > 0, this is what we want.

Now we consider the function f(x) = ln((ba/c)x)/x, by the above result, we have that 1 ≤
2 ln(ba/c) ≤ ba/c, we have that

f(2 ln(ba/c))
= ln(2(ba/c) ln(ba/c))/(2 ln(ba/c))
≤ ln((ba/c) ∗ (ba/c))/(2 ln(ba/c))
= 1.
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And consider that f ′(x) = 1−ln((ba/c)x)
x2 ≤ 0 when x ≥ 1, so, when x ≥ 2 ln(ba/c), we have

f(x) ≤ f(2 ln(ba/c)) ≤ 1, which means that when cu/a ≥ 2 ln(ba/c), it holds ln(ba/c(cu/a))
cu/a ≤ 1.

The lemma is proved.

Lemma G.3 ([6]). Let Hm be the hypothesis space composed of the networks with at most m
parameters. Then the VCdim of Hm is not more than qm2 ln(m), where q is a constant not dependent
on m.

Then we can prove (1) in the theorem.

Proof. Let Dtr ∼ DN . Because the algorithm satisfies the condition in theorem, then L(Dtr) ∈
HND , where HND is defined in lemma G.3. By lemma G.3, the VCdim of HDtr

is not
more than qN2

D ln(ND) for some q ≥ 1. Using lemma G.1 to this fact, we have N ≥
16qN2

D ln(ND) ln(
64qeN2

D ln(ND)

δϵ2
)

ϵ2 . Take these values in lemma G.1, and considering that the memoriza-
tion algorithm L must satisfy that EDtr

(L(Dtr)) = 1, using lemma G.2 (just take a = 8qN2
D ln(ND),

b = 8e/δ and c = ϵ2 in lemma G.2), we have

1− ED(L(Dtr)) ≤

√
8qN2

D ln(ND) ln
8eN
δ

N
≤ ϵ

which implies 1− ϵ ≤ ED(L(Dtr)). The theorem is proved.

G.3 More Lemmas

We need three more lemmas to prove Theorem 6.5.

Lemma G.4. Let D ⊂ [0, 1]n × {−1, 1}. Then D has a memorization with width 1 if and only if D
is linearly separable.

Proof. If D is linearly separable, then it obviously has a memorization with width 1.

If D has a memorization with width 1, we show that D is linearly separable. Let F be the memoriza-
tion network of D with width 1, and F1 the first layer of F .

Part 1: We show that it is impossible to find any (x1, 1), (x2,−1), (x3, 1) ∈ D such that F1(x1) <
F1(x2) < F1(x3). If we can, then contradiction will be obtained.

Assume (x1, 1), (x2,−1), (x3, 1) ∈ D such that F1(x1) < F1(x2) < F1(x3).

It is easy to see that, for any linear function wx+b and u ≤ v ≤ k, we have wu+b ≤ wv+b ≤ wk+b
or wu+ b ≥ wv + b ≥ wk + b, which implies Relu(wu+ b) ≤ Relu(wv + b) ≤ Relu(wk + b) or
Relu(wu+ b) ≥ Relu(wv + b) ≥ Relu(wk + b).

Because (x1, 1), (x2,−1), (x3, 1) ∈ D satisfy that F1(x1) < F1(x2) < F1(x3), and each layer of
F is a linear function composite Relu, so after each layer, the order of F1(x1),F1(x2),F1(x3) is
not changed or contrary. So there must be F(x1) ≤ F(x2) ≤ F(x3) or F(x1) ≥ F(x2) ≥ F(x3).
Then F cannot classify x1, x2, x3 correctly, which contradicts to the fact that F is a memorization of
D.

Part 2: We show that, it is impossible to find any (x1,−1), (x2, 1), (x3,−1) ∈ D such that F1(x1) <
F1(x2) < F1(x3).

This is similar to Part 1.

By parts 1 and 2, without losing generalization, we know that for any (x1, 1), (x2,−1) ∈ D, it holds
F1(x1) > F1(x2). Since F1 is a linear function composite Relu, D is linear separable.

Lemma G.5. Let D = {(xi, yi)} ⊂ [0, 1]× {−1, 1}. Then D has a memorization with width 2 and
depth 2 if and only if at least one of the following conditions is valid.

(c1): There is a closed interval I such that: if (x, 1) ∈ D then x ∈ I and if (x,−1) ∈ D then x /∈ I .

(c2): There is a closed interval I such that: if (x, 1) ∈ D then x /∈ I and if (x,−1) ∈ D then x ∈ I .
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Proof. Part 1: We show that if condition (c1) is valid, then D has a memorization with width 2 and
depth 2. It is similar for (c2) to be valid.

Let I = [a, b]. If for all (x,−1) ∈ D, we have x < a, then D is linear separable, and the result is
valid. If for all (x,−1) ∈ D, we have x > b, then D is linear separable, and the result is valid. Now
we consider the situation where x > a for some (x,−1) ∈ D and x < b for some (x,−1) ∈ D.

Let x−1 = max(x,−1)∈D{x < a}. Then for F1(x) = x − (x−1 + a)/2, it is easy to verify that
F1(x) >

a−x−1

2 for all x ≥ a and F1(x) < 0 for all (x0,−1) ∈ D such that x0 < a.

Let x1 = min(x,−1)∈D{x > b}. Then for F2(x) = x−(x1+b)/2, it is easy to verify that F2(x) < 0
for all x ≤ b and F2(x) > (x1 − b)/2 for all (x0,−1) ∈ D such that x0 > b.

Let the network F be defined by F = Relu(F1(x)) − TRelu(F2(x)) − t, where T = 8
x1−b is a

positive real number, and t = a−x−1

4 > 0.

Now we prove F is what we want. It is easy to see that, F is a depth 2 width 2 network. When
x ∈ [a, b], then F1(x) >

a−x−1

2 and F2(x) ≤ 0, so F (x) > 0. For (x,−1) ∈ D such that x < a, we
have F1(x) < 0 and F2(x) < 0, so F (x) < 0; for (x,−1) ∈ D such that x > b, we have F1(x) < 1

and F2(x) >
x1−b

4 , so F (x) ≤ 1− 2− a−x−1

4 < 0, this is what we want.

Part 2: If D has a memorization with width 2 and depth 2, then we show that D satisfies conditions
(c1) or (c2).

If D is linear separable, (c1) and (c2) are valid. If not, without losing generality, as-
sume that (x1, 1), (x2,−1), (x3, 1) ∈ D such that x1 < x2 < x3 (for the situation that
(x1,−1), (x2, 1), (x3,−1) ∈ D such that x1 < x2 < x3, the proof is similar). Then we show
that if (x,−1) ∈ D, we have x1 < x < x3. Assume (x0,−1) ∈ D such that x0 < x1, then we have
that x0 < x1 < x2 < x3, then we can deduce the contradiction.

Let F = aRelu(F1(x)) + bRelu(F2(x)) + c be the memorization network of D, where Fi(x) is a
linear function. Let u, v ∈ R such that F1(u) = F2(v) = 0, without loss generality, let u ≤ v.

Then we know that F is linear in such three regions: (−∞, u], [u, v] and [v,∞). We call the three
regions as linear regions of F . We prove the following three results at first.

(1): The slope of F on (−∞, u] is positive.

Firstly, we show that x0 ∈ (−∞, u]. If not, since (x0,−1), (x1, 1), (x2,−1) are not linear separa-
ble, and (x1, 1), (x2,−1), (x3, 1) are not linear separable, we have (x0,−1), (x1, 1) ∈ [u, v] and
(x2,−1), (x3, 1) ∈ [v,∞). Then, because x1 > x0 and F (x1) > F (x0), and F is linear in [u, v], we
have that F (v) ≥ F (x1) > 0. Now we consider the points (v, 1), (x2,−1), (x3, 1). It is easy to see
that F memorizes such three points and they are in the linear region of F , so (v, 1), (x2,−1), (x3, 1)
is linear separable, which is impossible because v ≤ x2 ≤ x3 and resulting in contradiction, so
x0 ∈ (−∞, u].

If the slope of F on (−∞, u] is not positive, since u ≥ x0, we have F (u) < 0. Now we consider the
points (u,−1), (x1, 1), (x2,−1), (x3, 1). Just similar to above to get the contradiction. So the slope
of F on (−∞, u] is positive.

(2): The slope of F on [v,∞) is positive. Similar to (1).

(3): The slope of F on (−∞, u] is negative. If not, F must be a non-decreasing function, which is
impossible.

Using (1),(2),(3), we can get a contradiction, which means that there is a (x0,−1) ∈ D such that
x0 < x1 is not possible.

Consider that, in a linear region of F , if the activation states of F1 and F2 are both not activated, then
on such linear regions, the slope of F is 0. But due to (1),(2),(3), all linear regions have non-zeros
slope of F , so on each linear regions, at least one of F1 and F2 is activated. So, the activation states
of F1 and F2 at (−∞, u], [u, v] and [v,∞) is (−,+), (+,+), (+,−) (+ means activated, - means
not activated).
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Then the slope of F on [u, v] is equal to the sum of the slopes of F on (−∞, u] and the slope of F on
[v,∞). But by (1),(2),(3), that means a negative number is equal to the sum of two positive numbers,
which is impossible. So we get a contradiction.

So if (x0,−1) ∈ D, we have x0 > x1. Similar to before, we have x0 < x3. So we get the result.

By the above result, all the samples (x0,−1) ∈ D satisfies x ∈ (x1, x3), so there is a close interval
in (x1, x3) such that: if (x0,−1) ∈ D, then x0 is in such interval, then (c2) is vald, and we prove the
lemma.

G.4 The algorithm is no-efficient.

Now we prove (2) of theorem 6.5, that is, all such algorithm is not efficient if P ̸= NP . We need the
reversible 6-SAT problem defined in definition 6.6.

Proof. We will show that, if there is an efficient memorization algorithm which satisfies the conditions
of the theorem (has at most ND parameters with probability 1), then we can solve the reversible
6-SAT in polynomial time, which implies P = NP .

Firstly, for the 6-SAT problem, we write it as the following form.

Let φ = ∧m
i=1φi(n,m) be a 6-SAT for n variables, where φi(n,m) = ∨6

j=1x̃i,j and x̃i,j is either xs

or ¬xs for some s ∈ [n] (see Definition 6.6). Then, we define some vectors in Rn based on φi(n,m).

For i ∈ [m], define Qφ
i ∈ Rn as follows: Qφ

i [j] = 1 if xj occurs in φi(n,m); Qφ
i [j] = −1 if ¬xj

occurs in φi(n,m); Qφ
i [j] = 0 otherwise. Qφ

i [j] is the j-th entry in Qφ
i , then six entries in Qφ

i are 1
or −1 and all other entries are zero.

Now, we define a binary classification dataset D(φ) = {(xi, yi)}m+4n
i=1 ⊂ [0, 1]n × [2] as follows.

(1) For i ∈ [n], xi = 1i/3 + 1.11/3, yi = 1.

(2) For i ∈ {n+ 1, n+ 2, . . . , 2n}, xi = 1.11i−n/3 + 1.11/3, yi = −1.

(3) For i ∈ {2n+ 1, 2n+ 2, . . . , 3n}, xi = −1i−2n/3 + 1.11/3, yi = 1.

(4) For i ∈ {3n+ 1, 3n+ 2, . . . , 4n}, xi = −1.11i−3n/3 + 1.11/3, yi = −1.

(5) For i ∈ {4n+ 1, 4n+ 2, . . . , 4n+m}, xi = 1/12Qφ
i−4n + 1.11/3, yi = 1.

Here, 1i is the vector whose i-th weight is 1 and other weights are 0, 1 is the vector whose weights
are all 1.

Let L be an efficient memorization algorithm which satisfies the condition in the theorem. Then we
prove the following result: If n ≥ 4 and φ is a reversible 6-SAT problem, then para(L(D(φ))) = n+8
if and only if φ has a solution, which means P = NP and leads to that L does not exist when
P ̸= NP . The proof is divided into two parts.

Part 1: If φ is a reversible 6-SAT problem that has a solution, then para(L(D(φ))) = n+ 8.

To prove this part, we only need to prove that para(L(D(φ))) ≥ n+ 8 and para(L(D(φ))) ≤ n+ 8.

Part 1.1: we have para(L(D(φ))) ≥ n+ 8.

Firstly, we show that {(x1, 1), (xn+1,−1), (x2n+1, 1), (x3n+1,−1)} ⊂ D(φ) are not lin-
early separable. This is because {x1, xn+1, x2n+1, x3n+1} is a linear transformation of
{11, 1.111,−11,−1.111}, so {(x1, 1), (xn+1,−1), (x2n+1, 1), (x3n+1,−1)} ⊂ D(φ) are not lin-
early separable if and only if {(11, 1), (1.111,−1), (−11, 1), (−1.111,−1)} are not linearly separa-
ble, by the definition of 11, easy to see that {(11, 1), (1.111,−1), (−11, 1), (−1.111,−1)} are not
linearly separable, so we get the result.

By the above result, a subset of D(φ) is not linearly separable, so we have that D(φ) is not linearly
separable. So, by lemma G.4, L(D(φ)) must have width more than 1. For a network with width at
least 2, when it has depth 2, it has at least 2n+5 parameters; when it has depth 3, it has at least n+8
parameters; when it has depth more than 3, it has at least n + 10 parameters. So when n ≥ 4, we
have para(L(D(φ))) ≥ n+ 8.

Part 1.2: If φ is a reversible 6-SAT problem that has a solution, then para(L(D(φ))) ≤ n+ 8.
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We define a distribution D at first. D is defined on D(φ), and each point has the same probability. It
is easy to see that, D ∈ D(n, 1/30).

Since when N ≥ m+ 4n, we have PDtr∼DN (Dtr = D(φ)) > 0, so by the definition of ND and the
fact L satisfies the conditions in the theorem, we have para(L(D(φ))) ≤ ND. Moreover, because D
is defined on D(φ), we will construct a network with n+ 8 parameters to memorize D(φ) to show
that ND ≤ n+ 8, which implies para(L(D(φ))) ≤ ND ≤ n+ 8 because L satisfies the condition in
the theorem.

This network has three layers, the first layer has width 1; the second layer has width 2; the third
output layer has width 1.

Let s = (s1, s2, . . . , sn) ∈ {−1, 1}n be a solution of φ. Then the first layer is F1(x) = Relu(3s(x−
1.11/3) + 3). Then we have the following results:

(1): F1(x) = 4.1 or F1(x) = 1.9 for all (x,−1) ∈ D(φ);

(2): 2 ≤ |F1(x)| ≤ 4 for all (x, 1) ∈ D(φ).

(1) is very easy to validate. We just prove (2).

For i ∈ [n] and i ∈ {2n + 1, . . . , 3n}, because s ∈ {−1, 1}n, so 3s(x − 1.11/3) = 1 or 3s(x −
1.11/3) = −1, which implies 2 ≤ |F1(xi)| ≤ 4.

For i ∈ {4n+ 1, . . . , 4n+m}, xi − 1.11/3 has only six components that are not 0. Because s is
the solution of φ, which indicates that at least one of the six non-zero components of xi − 1.11/3
has the same positive or negative shape as the corresponding component of s. Consider that such six
non-zero components of xi− 1.11/3 are in {−1/12, 1/12}, so 3s(xi− 1.11/3) ≥ 1/4− 5/4 = −1.

Moreover, because φ is a reversible problem, so φi(n,m) and φi(n,m) are both in the φ, which
indicates that the positive and negative forms of the six non-zero components of xi − 1.11/3
cannot be exactly the same as the positive and negative forms of the corresponding components
in s, or there must be φi(n,m) = 0, which contradicts to s is the solution of φ. So, we have
3s(xi − 1.11/3) ≤ 5/4− 1/4 = 1.

Then we have that, for i ∈ {4n+ 1, . . . , 4n+m}, it holds 3s(xi − 1.11/3) ∈ [−1, 1], resulting in
2 ≤ |F1(xi)| ≤ 4. We proved (2).

By (1) and (2), and using lemma G.5, there is a network F2 : R → R with width 2, depth 2 and 7
parameters that can classify the {(F1(xi), yi)}4n+m

i=1 , so F2 ◦ F1 is the network we want.

By such a network, we have that ND ≤ n+ 8, and then, we have para(L(D(φ))) ≤ ND ≤ n+ 8.
We proved the result.

Part Two: If φ is a reversible 6-SAT problem and para(L(D(φ))) = n+ 8, then φ has a solution.

If L(D(φ)) has width 2 of the first layer, then para(L(D(φ))) ≥ 2n + 5 > n + 8, so when
para(L(D(φ))) = n+ 8, the first layer has width 1.

Write L(D(φ)) = F2(F1(x)), and write F1 as F1(x) = Relu(3s(x − 1.11/3) + b), and let
s = (s1, s2, . . . , sn).

We will prove that Sgn(s) = (Sgn(s1),Sgn(s2),Sgn(s3), . . . ,Sgn(sn)) is a solution of φ. The proof
is given in two parts.

Part 2.1 we have 1.1|si| ≥ |sj | for any i, j ∈ [n]. Firstly, we have si ̸= 0 for any i ∈ [n]. Because
if si = 0, it holds F1(xi) = F1(xn+i), which implies that L(D(φ)) gives the same label to xi and
xn+i, but xi and xn+i have the different labels in dataset D(φ), so it contradicts L(D(φ)) is the
memorization of D(φ).

Without losing generality, let |s1| ≥ |s2| ≥ · · · ≥ |sn|. Then we just need to prove that 1.1|sn| ≥ |s1|.
Because D(φ) is not linear separable, so by lemma G.4, L(D(φ)) has width more than 1. Because
F1 has width 1, so F2 has width 2 and 7 parameters, resulting in that F2 is a network with width 2
and depth 2. And F2 can classify such six points: {(F1(xi), yi)}i∈{1,n+1,2n+1,3n+1,2n,4n}.

If s1 > 0, taking the values of x1, xn+1, x2n+1, x3n+1 in F1, we have 1.1s1 + b = F1(xn+1) ≥
s1+b = F1(x1) ≥ −s1+b = F1(x2n+1) ≥ −1.1s1+b = F1(x3n+1), which implies F1(xn+1) ≥
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F1(x1) ≥ F1(x2n+1) ≥ F1(x3n+1); if s1 < 0. Similarly as before, we have F1(xn+1) ≤ F1(x1) ≤
F1(x2n+1) ≤ F1(x3n+1). So, F1(x1) and F1(x2n+1) are always in the interval from F1(xn+1) to
F1(x3n+1).

Consider that xn+1 and x3n+1 have label −1, x1 and x2n+1 have label 1, so by Lemma G.5, if
{(F1(xi), yi)}i∈{1,n+1,2n+1,3n+1,2n,4n} can be memorized by a depth 2 width 2 network, then
F1(x2n) and F1(x4n) must be not in the interval from F1(x1) to F1(x2n+1), or we cannot find a
interval satisfies the conditions of lemma G.5.

Since max{F1(x2n),F1(x4n)} = 1.1|sn| + b, to ensure that F1(x2n) and F1(x4n) are not
in the interval from F1(x1) to F1(x2n+1), we have max{F1(x2n),F1(x4n)} = 1.1|sn| +
b ≥ max{F1(x1),F1(x2n+1)} = |s1| + b or max{F1(x2n),F1(x4n)} = 1.1|sn| + b ≤
min{F1(x1),F1(x2n+1)} = −|s1|+ b. The second case is impossible, so we have 1.1|sn| ≥ |s1|.
This is what we want in this part.

Part 2.2 We show that Sgn(s) is the solution of φ. Assume that Sgn(s) is not the solution of
φ. There is a i ∈ {4n + 1, . . . , 4n + m}, such that the positive and negative forms of the six
non-zero components of xi are exactly the same as the positive and negative forms of the corre-
sponding components in s. Then sxi + b ≥ 6/4|sn| + b ≥ 6/4.4|s1| + b ≥ 1.1|s1| + b. So, by
max{F1(x1+n),F1(x3n+1)} = 1.1|s1| + b and min{F1(x1+n),F1(x3n+1)} = −1.1|s1| + b, we
know that F1(xi) is not in the interval from F1(x1+n) to F1(x3n+1).

Then similar to part 2.1, consider the point {(F1(xi), yi)}i∈{1,n+1,2n+1,3n+1,i}, we have that F1(x1)
and F1(x2n+1) are always in the interval from F1(xn+1) to F1(x3n+1), but F1(xi) is not in the
interval from F1(x1+n) to F1(x3n+1). By lemma G.5 and the fact that the label of F1(xn+1) and
F1(x3n+1) is different from that of other three samples, we cannot find an interval satisfying the con-
dition in lemma G.5, so F2(x) cannot classify such five points: {(F1(xi), yi)}i=1,n+1,2n+1,3n+1,i.
This is contradictory, as L(D(φ)) is the memorization of D(φ). So, the assumption is wrong, we
prove the theorem.

H Proof of Theorem 7.3

H.1 Proof of Proposition 7.7

Proof. It suffices to prove that we can find an Sc(D) ⊂ {(x, y)∥(x, y) ∼ D} such that for any
(x, y) ∼ D, we have x ∈ ∪(z,w)∈Sc(D)B((z, w)).

Let Sc = {(i1c/(6.2n), i2c/(6.2n), . . . , inc/(6.2n))∥ij ∈ {0, 1, . . . , [6.2n/c] + 1}}, and define
Sc(D) as: for any (i1c/(6.2n), i2c/(6.2n), . . . , inc/(6.2n)) ∈ Sc, randomly take a (x, y) ∼ D
satisfying ||x− (i1c/(6.2n), i2c/(6.2n), . . . , inc/(6.2n))||∞ ≤ c/(6.2n) (if we have such a x), and
put (x, y) into Sc(D).

Then, we have that, for any (x, y) ∼ D, there is a point z ∈ Sc such that ||z − x||∞ ≤ c/(6.2n), and
there is a (xz, yz) ∈ Sc(D) such that ||z − xz||∞ ≤ c/(6.2n), so ||xz − x||∞ ≤ c/(3.1n), which
implies ||x− xz||∞ ≤ c/3.1.

Since the radius of B((z, w)) is more than c/3.1, for any (x, y) ∼ D, we have x ∈
∪(z,w)∈Sc(D)B((z, w)), we prove the lemma.

H.2 Main idea

For a given dataset Dtr ⊂ [0, 1]n ×{−1, 1}, we use the following two steps to construct a memoriza-
tion network:

(c1): Find suitable convex sets {Ci} in [0, 1]n, ensuring that: each sample in Dtr is in at least one
of these convex sets. Furthermore, if x, z ∈ Ci and (x, yx), (z, yz) ∈ Dtr, then yx = yz , and define
y(Ci) = yx.

(c2): Construct a network F satisfying that for any x ∈ Ci, Sgn(F(x)) = y(Ci). Such a network
must be a memorization of Dtr, because each sample in Dtr is in at least one of {Ci}, so if x ∈ Ci

and (x, yx) ∈ Dtr, then Sgn(F(x)) = y(Ci) = yx, which is the network we want.
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H.3 Finding convex sets

For a given dataset Dtr ⊂ [0, 1]n × {−1, 1}, let Dtr = {(xi, yi)}Ni=1, and for i ∈ [n], the convex
sets Ci are constructed as follows:

(1): For any i, j ∈ [N ], define Si,j(x) = (xi − xj)(x− (0.51 ∗ xi +0.49 ∗ xj)), it is easy to see that
Si,j is a vertical between xi and xj ;

(2): The convex sets Ci are defined as Ci = ∩j∈[N ],yi ̸=yj
{x ∈ [0, 1]n∥Si,j(x) ≥ 0}.

Now, we have the following lemma, which implies that Ci satisfies conditions (c1) mentioned in
above.
Lemma H.1. If Ci are constructed as above, then

(1): xi ∈ Ci;

(2): If z ∈ Ci and (z, yz) ∈ Dtr, then yz = yi;

(3): Ci is a convex set.

Proof. Firstly, we show that xi ∈ Ci. For any i, j ∈ [N ], taking xi into Si,j(x), we have
Si,j(xi) = 0.49||xi − xj ||22 > 0, so xi ∈ {x ∈ [0, 1]n∥Si,j(x) ≥ 0}. Thus xi ∈ ∩j∈[N ],yi ̸=yj

{x ∈
[0, 1]n∥Si,j(x) ≥ 0} = Ci.

Then, we show that: if yj ̸= yi, then xj /∈ Ci, which implies (2) of lemma is valid.

For any i, j ∈ [N ], taking xj into Si,j(x), we have Si,j(xj) = −0.51||xi − xj ||22 < 0, so xj /∈ {x ∈
[0, 1]n∥Si,j(x) ≥ 0}. Thus xj /∈ ∩k∈[N ],yi ̸=yk

{x ∈ [0, 1]n∥Si,k(x) ≥ 0} = Ci.

Finally, we show Ci is a convex set. Because for any i, j ∈ [N ], {x ∈ [0, 1]n∥Si,j(x) ≥ 0} is a
convex set, and the combination of convex sets is also convex set, so Ci is a convex set.

H.4 Construct the Network

We show how to construct a network F , such that Sgn(F(x)) = y(Ci) for any x ∈ Ci, where Ci is
defined in section H.3.

For a given dataset Dtr = {(xi, yi)}Ni=1, we construct a network Fmem which has three layers as
following.

(1): Let r = 0.01 ∗mini,j∈[N ],yi ̸=yj
||xi − xj ||22. For any i, j ∈ [N ], Si,j defined in section H.3, let

ui(x) =
∑

j∈[N ],yj ̸=yi
Relu(−Si,j(x))− r. It is easy to see that ui is a depth 2 network.

(2): The first two layers are F1 : Rn → RN . Let F1(x)[i] be the i-th output of F1(x), then let
F1(x)[i] equal to Relu(−ui(x)). It is easy to see that, F1(x) requires O(N2n) parameters.

(3): The third layer is F2 : RN → R, and F2(v) =
∑N

i=1 yivi, where vi is the i-th weight of vi.

Now, we prove that Sgn(Fmem(x)) = y(Ci) for any x ∈ Ci. We need the following lemma.
Lemma H.2. For any x ∈ Ci, we have ui(x) < 0 and uj(x) > 0 when yi ̸= yj .

Proof. Assume that x ∈ Ci. We prove the following two properties, and hence the lemma.

P1. ui(x) < 0.

By the definition of Ci, we have Si,j(x) ≥ 0 for all j ∈ [N ] staisfying yi ̸= yj , so ui(x) =∑
j∈[N ],yj ̸=yi

Relu(−Si,j(x))− r =
∑

j∈[N ],yj ̸=yi
0− r = −r < 0.

P2. uj(x) > 0 when yi ̸= yj .

For any j such that yi ̸= yj , we show Sj,i(x) ≤ −0.02||xi − xj ||22 at first. Because x ∈ Ci, so
Si,j(x) ≥ 0, that is (xi − xj)(x− (0.51 ∗ xi + 0.49 ∗ xj)) ≥ 0, so

(xi − xj)(x− (0.51 ∗ xi + 0.49 ∗ xj))
= (xi − xj)(x− (0.49 ∗ xi + 0.51 ∗ xj))− 0.02||xi − xj ||22
= −Sj,i(x)− 0.02||xi − xj ||22
≥ 0.
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Thus Sj,i(x) ≤ −0.02||xi − xj ||22. Then, by the above result, taking the value of r in it, we have
uj(x) ≥ Relu(−Si,j(x))− r ≥ 0.02||xi − xj ||22 − r > 0.

By the above lemma, we can prove the result.

Lemma H.3. we have Sgn(Fmem(x)) = yi for any x ∈ Ci.

Proof. Let x ∈ Ci. By lemma H.2, we have F1(x)[i] > 0, and F1(x)[j] = 0 when j satisfies
yj ̸= yi, so F(x) =

∑
j∈[N ] yjF1(x)[j] = yi

∑
j∈[N ],yj=yi

F1(x)[j], by F1(x)[i] > 0, and we thus
have Sgn(F(x)) = yi.

H.5 Effective and Generalization Guarantee

In this section, we prove that the above algorithm is an effective memorization algorithm with
guaranteed generalization. We give a lemma.

Lemma H.4. For any a, b, c ∈ Rn such that ||b−a||2 ≥ 3.1||a− c||2, let V be the plane (b− c)(x−
(0.51c+ 0.49b)). Then the distance of a to the plane V is greater than ||b− a||/3.1.

Proof. Let ||a− b||2 = Lab, ||a− c||2 = Lac, ||c− b||2 = Lbc. Let the angle ∠abc = θ. Then the
distance between a and the plane V is Lab cos θ − 0.51Lbc.

Using cosine theorem, we have cos θ =
L2

bc+L2
ab−L2

ac

2LbcLab
, so we just need to prove that L2

bc+L2
ab−L2

ac

2Lbc
−

0.51Lbc ≥ Lab/3.1, that is 0.5L2
ab−0.5L2

ac−LabLbc/3.1

L2
bc

≥ 0.01. It is easy to see that such value is
inversely proportional to Lac and Lbc. By Lac ≤ Lab/3.1 and Lbc ≤ Lac + Lab ≤ 4.1Lab/3.1, we
have 0.5L2

ab−0.5L2
ac−LabLbc/3.1

L2
bc

≥ 0.5−0.5/(3.1)2−4.1/(3.1)2

(4.1/3.1)2 > 0.01. The lemma is proved.

We now show that the algorithm is effective and has generalization guarantee.

Proof. Let Fmem be the memorization network of Dtr constructed by the above algorithm.

Effective. We show that Fmem is a memorization of Dtr can be constructed in polynomial time.

It is easy to see that, ui has width at most N , and each value of parameters can be calculated by Dtr

in polynomial time. So F1 defined in (1) in section H.4 can be calculated in polynomial time. It is
easy to see that the F2 defined in (1) in section H.4 can be calculated in polynomial time. This, F
can be calculated in polynomial time.

Generalization Guarantee. Let S = {(vi, yvi)}
SD
i=1 be the nearby set defined in Definition 7.1.

Then, we show the result in two parts.

Part One, we show that: for a (xi, yi) ∈ Dtr, if xi ∈ B((vj , yvj )) for a j ∈ [SD], then Sgn(F(x)) =
yi for any x ∈ B((vj , yvj )).

Firstly, we show that it holds B((vj , yvj )) ∈ Ci. For any k ∈ [N ] such that yk ̸= yi, we have
||vj − xk||2 ≥ 3.1r ≥ 3.1||vj − xi||, where r is the radius of B((vj , yvj )) so by lemma H.4, the
distance from vj to Sik(x) is greater than r, which means that the points in B((vj , yvj )) are on the
same side of the plane Sik(x), by xi ∈ B((vj , yvj )) and Sik(xi) > 0 as said in lemma H.1. Thus,
for any x ∈ B((vj , yvj )), we have Sik(x) ≥ 0. By Ci = ∩j∈[N ],yi ̸=yj

{x ∈ [0, 1]n∥Si,j(x) ≥ 0},
we know that B((vj , yvj )) ∈ Ci.

By the above result, if x ∈ B((vj , yvj )), then x ∈ Ci; so by lemma H.3, we have Sgn(F(x)) = yi
for all x ∈ B((vj , yvj )).

Part Two, we show that if Dtr ∼ DN and N ≥ SD/ϵ ln(SD/δ), then PDtr∼DN (AD(Fmem) ≥
1− ϵ) ≥ 1− δ.

Let Qi = P(x,y)∼D(x ∈ B((vi, yvi))), then without losing generality, we assume that Q1 ≤ Q2 ≤
· · · ≤ QSD . Then, for the dataset Dtr = {(xi, yi)}Ni=1, let Z(Dtr) = {j ∈ [SD]∥∃i ∈ [N ], xi ∈
B((vj , yvj ))}. The proof is given in three parts.
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part 2.1. Firstly, we show that AD(Fmem) ≥ 1−
∑

i/∈Z(Dtr)
Qi.

If i ∈ Z(Dtr), then by the definition of Z(Dtr), we know that there is a j ∈ [N ] such that
xj ∈ B((vi, yvi)), so by part one, we have Sgn(Fmem(x)) = yj for any x ∈ B((vi, yvi)).

Moreover, for any (x, y) ∼ D and x ∈ B((vi, yvi)), by lemma H.1 and B((vi, yvi)) ∈ Cj which has
been shown in part one, we know that y = yj .

So Sgn(Fmem(x)) = yj = y for any (x, y) ∼ D and x ∈ B((vi, yvi)), which means that
Fmem gives the correct label to all x ∈ B((vi, yvi)) when i ∈ Z(Dtr, S). So AD(Fmem) ≥∑

i∈Z(Dtr,S) Qi ≥ 1−
∑

i/∈Z(Dtr,S) Qi.

part 2.2. Now, we show that PDtr∼DN (
∑

i/∈Z(Dtr)
Qi ≤ ϵ) ≥ 1− δ.

Let Cci = {Dtr∥Dtr ∼ DN , i /∈ Z(Dtr) and j ∈ Z(Dtr) for ∀j > i}, easy to see that Ccj∩Cci =

∅ when i ̸= j and
∑N

i=0 PDtr∼DN (Dtr ∈ Cci) = 1. It is easy to see that, PDtr∼DN (Dtr ∈ Cci) ≤
(1−Qi)

N when i ≥ 1.

Firstly we have that, if some i ∈ [SD] makes that Qi < ϵ/i, then for any Dtr ∈ Ccj where j ≤ i, we
have

∑
k/∈Z(Dtr)

Qk ≤
∑j

k=1 Qk ≤ jQj ≤ iQi < ϵ.

So that, we consider two situations.

Situation 1: There is a i ∈ [SD] such that Qi < ϵ/i.

Let N0 be the biggest number in [SD] such that QN0 < ϵ/N0. Then we have that:

PDtr∼DN (
∑

i/∈Z(Dtr)
Qi ≤ ϵ)

= PDtr∼DN (
∑

i/∈Z(Dtr)
Qi ≤ ϵ∥Dtr ∈ ∪N0

k=0Cck)PDtr∼DN (Dtr ∈ ∪N0

k=0Cck)

+PDtr∼DN (
∑

i/∈Z(Dtr)
Qi ≤ ϵ∥Dtr ∈ ∪[SD]

k=N0+1Cck)PDtr∼DN (Dtr ∈ ∪[SD]
k=N0+1Cck)

= PDtr∼DN (Dtr ∈ ∪N0

k=0Cck) + PDtr∼DN (
∑

i/∈Z(Dtr)
Qi ≤ ϵ∥Dtr ∈ ∪[SD]

k=N0+1Cck)

PDtr∼DN (Dtr ∈ ∪[SD]
k=N0+1Cck).

(5)

Hence, we have

PDtr∼DN (Dtr ∈ ∪[SD]
k=N0+1Cck)

≤
∑SD

i=N0+1 PDtr∼DN (Dtr ∈ Cci)

≤
∑SD

i=N0+1(1−Qi)
N

≤
∑SD

i=N0+1 e
−NQi

≤
∑SD

i=N0+1 e
−Nϵ/i

≤
∑SD

i=1 e
−Nϵ/i

≤ SDe
−Nϵ/SD

≤ δ.

The last step is to take N ≥ SD/ϵ ln(SD/δ) in. So, taking the above result in equation 5, we have

PDtr∼DN (
∑

i/∈Z(Dtr)
Qi ≤ ϵ)

≥ 1− δ + PDtr∼DN (
∑

i/∈Z(Dtr)
Qi ≤ ϵ∥Dtr ∈ ∪[SD]

k=N0+1Cck)δ
≥ 1− δ

which is what we want.

Situation 2: There is no i ∈ [SD] such that Qi < ϵ/i.
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Then, we have
PDtr∼DN (Dtr ∈ ∪[SD]

k=1Cck)

≤
∑SD

i=1 PDtr∼DN (Dtr ∈ Cci)

≤
∑SD

i=1(1−Qi)
N

≤
∑SD

i=1 e
−NQi

≤
∑SD

i=1 e
−Nϵ/i

≤ SDe
−Nϵ/SD

≤ δ.

So with probability 1− δ, we have Dtr ∈ Cc0. When Dtr ∈ Cc0, we have Z(Dtr) = [SD], so that∑
i/∈Z(Dtr)

Qi = 0. Hence, PDtr∼DN (
∑

i/∈Z(Dtr)
Qi ≤ ϵ) ≥ 1− δ.

part 2.3 Now we can prove the part 2, by part 2.1 and part 2.2, we have that PDtr∼DN (AD(Fmem) ≥
1− ϵ) ≥ PDtr∼DN (1−

∑
i/∈Z(Dtr,S) Qi ≥ 1− ϵ) ≥ 1− δ. The theorem is proved.

I Experiments

We try to verify Theorem 7.3 on MNIST and CIFAR10 [33].

I.1 Experiment on MNIST

For MNIST, we tested all binary classification problems with different label compositions. For each
pair of labels, we use 500 corresponding samples with each label in the original dataset to form a
new dataset Dtr, and then construct memorization network for Dtr by Theorem 7.3. For each binary
classification problem, Table 1 shows the accuracy on the samples with such two labels in testset.

Table 1: On MNIST, accuracy for all binary classification problems with different label compositions,
use memorization algorithm by theorem 7.3. The result in row i and column j is the result for
classifying classes i and j.

category 0 1 2 3 4 5 6 7 8 9
0 - 0.99 0.96 0.99 0.99 0.97 0.96 0.98 0.98 0.97
1 0.99 - 0.97 0.99 0.98 0.99 0.98 0.98 0.98 0.99
2 0.96 0.97 - 0.96 0.97 0.96 0.96 0.97 0.93 0.97
3 0.99 0.99 0.96 - 0.98 0.95 0.98 0.95 0.92 0.96
4 0.99 0.98 0.97 0.98 - 0.98 0.97 0.96 0.95 0.91
5 0.97 0.99 0.96 0.95 0.95 - 0.96 0.97 0.91 0.96
6 0.96 0.98 0.96 0.98 0.97 0.96 - 0.99 0.95 0.98
7 0.98 0.98 0.97 0.95 0.96 0.97 0.99 - 0.95 0.91
8 0.98 0.98 0.93 0.92 0.95 0.91 0.95 0.95 - 0.96
9 0.97 0.99 0.97 0.96 0.91 0.96 0.98 0.91 0.96 -

From Table 1, we can see that the algorithm shown in the theorem 7.3 has good generalization ability
for mnist, almost all result is higher than 90%.

I.2 Experiment on CIFAR10

For CIFAR10, we test all binary classification problems with different label combinations. For each
pair of labels, we use 3000 corresponding samples with each label in the original dataset to form a
new dataset Dtr, and then construct memorization network for Dtr by Theorem 7.3. For each binary
classification problem, Table 2 shows the accuracy on the samples with such two labels in testset.

From Table 2, we can see that, most of the accuracies are above 70%, but for certain pairs, the results
may be poor, such as cat and dog (category 3 and category 5).

Our memorization algorithm cannot exceed the training methods empirically. Training, as a method
that has been developed for a long time, is undoubtedly effective. For each pair of labels, we use 3000
corresponding samples with each label in the original dataset to form a training set Dtr, and train
Resnet18 [28] on Dtr (with 20 epochs, learning rate 0.1, use crossentropy as loss function, device is
GPU NVIDIA GeForce RTX 3090), the accuracy of the obtained network is shown in Table 3.
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Table 2: On CIFAR10, accuracy for all binary classification problems with different label composi-
tions, use memorization algorithm by theorem 7.3. The result in row i and column j is the result for
classifying classes i and j.

category 0 1 2 3 4 5 6 7 8 9
0 - 0.77 0.74 0.78 0.81 0.81 0.85 0.85 0.68 0.73
1 0.77 - 0.78 0.75 0.82 0.78 0.82 0.87 0.79 0.63
2 0.74 0.78 - 0.61 0.61 0.65 0.67 0.67 0.82 0.77
3 0.78 0.75 0.61 - 0.71 0.54 0.67 0.69 0.83 0.76
4 0.81 0.82 0.61 0.71 - 0.66 0.62 0.65 0.82 0.79
5 0.81 0.78 0.65 0.54 0.66 - 0.73 0.67 0.81 0.78
6 0.85 0.82 0.67 0.67 0.62 0.73 - 0.71 0.86 0.81
7 0.85 0.87 0.67 0.69 0.65 0.67 0.71 - 0.82 0.73
8 0.68 0.79 0.82 0.83 0.82 0.81 0.86 0.82 - 0.69
9 0.73 0.63 0.77 0.76 0.79 0.78 0.81 0.73 0.69 -

Table 3: On CIFAR10, accuracy for all binary classification problems with different label composi-
tions, use normal training algorithm. The result in row i and column j is the result for classifying
classes i and j.

category 0 1 2 3 4 5 6 7 8 9
0 - 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99
1 0.99 - 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
2 0.98 0.99 - 0.99 0.99 0.99 0.99 0.99 0.99 0.99
3 0.99 0.98 0.99 - 0.98 0.96 0.97 0.99 0.98 0.99
4 0.99 0.99 0.99 0.98 - 0.99 0.99 0.99 0.99 0.99
5 0.99 0.99 0.99 0.96 0.99 - 0.99 0.99 0.99 0.99
6 0.99 0.99 0.99 0.97 0.99 0.99 - 0.98 0.99 0.99
7 0.99 0.99 0.99 0.99 0.99 0.99 0.98 - 0.99 0.99
8 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 - 0.99
9 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 -

Comparing Tables 2 and 3, it can be seen that the training results are significantly better.

I.3 Compare with other memorization algorithm

Three memorization network construction methods are considered in this section: (M1): Our algo-
rithm in theorem 7.3; (M2): Method in [49]; (M3): Method in [55].

In particular, we do experiments on the classification of such five pairs of numbers in MNIST: 1 and
7, 2 and 3, 4 and 9, 5 and 6, 8 and 9, to compare methods M1, M2, M3. The main basis for selecting
such pairs of labels is the similarity of the numbers. For any pair of numbers, we label the smaller
number as -1 and the larger number as 1. Other settings follow section I.1, and the result is given in
Table 4. We can see that our method performs much better in all cases.

From table 4, our method gets the best accuracy. When constructing a memorization network, the
methods (M2), (M3) compress data into one dimension, such action will break the feature of the
image, so they cannot get a good generalization.
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Table 4: On MNIST, accuracy about different memorization algorithm.

pair (1,7) Accuracy
M1 0.98
M2 0.51
M3 0.46

pair (2,3) Accuracy
M1 0.96
M2 0.50
M3 0.51

pair (4,9) Accuracy
M1 0.91
M2 0.45
M3 0.46

pair (5,6) Accuracy
M1 0.96
M2 0.59
M3 0.47

pair (8,9) Accuracy
M1 0.96
M2 0.41
M3 0.48
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If we have negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open-source dataset and models in our paper, and have cited the
original paper of these dataset and models as presented in Appendix I.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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