Under review as a conference paper at ICLR 2026

FROM QKV TO K/KV: INVESTIGATING MINIMALIST
ATTENTION MECHANISMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have become the standard solution for various Al tasks. The widely
adopted query, key, and value (QKV) formulation has played a significant role in
this. Although the performance of transformer models has been widely studied,
the individual contribution of these three components and the precise impact on
performance when some are omitted are still not fully understood. Consequently,
we evaluated two transformer variants: one with two projections to construct K and
V vectors, and another with only a single projection. Both resulted in symmetric
self-attention maps. Additionally, we explored an asymmetric attention mechanism
by incorporating a 2D positional encoding into the attention matrix. In particular,
these modified transformers exhibited reduced parameter counts and computational
demands compared to the standard architecture. Through experiments encompass-
ing three task types: synthetics (such as reversing or sorting a list), vision (MNIST,
CIFAR, and Tiny ImageNet classification) and NLP (character generation and
translation)—we discovered that our transformers perform on par or occasionally
better than the QKV transformer on vision tasks but under-perform slightly on
NLP tasks. Our findings suggest that three distinct self-attention representations
are not universally required and depend on the specific task.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have gained significant attention in recent years due to their
effectiveness in various domains such as language, vision, and audio processing (Han et al., [2022).
The research community has witnessed a notable increase in the number of variants of the Transformer
model. These “X-former” models, such as Reformer, Linformer, Performer, and Longformer, as well
as Ring attention, Blockwise attention, and sparse attention mechanisms, aim to enhance the original
Transformer architecture with advances in computational and memory efficiency (Tay et al., [2022).

Although most Transformer architectures rely on query, key, and value, the necessity of all three
components remains unclear. There is an apparent redundancy of representations in Transformers
compared to the more singular representations in RNNs and CNNs. To explore this, we propose
and evaluate two simplified Transformers: KV (using key-value vectors) and K (using only key
vectors). Our results show that using fewer vectors reduces the complexity of the model, the number
of parameters, and the computational cost while largely maintaining the performance across various
tasks. The extent of any performance decrease is task-specific; for instance, image classification,
lacking a temporal dimension, benefits from symmetric attention (since K and Q are the same).
Notably, even in sequential and temporal tasks, our reduced-projection approach achieves strong
performance with fewer parameters and less computation.

Our research paves the way for more efficient Transformer designs, essential for resource-constrained
devices, and offers key insights into the mechanics and interpretability of self-attention.

2 RELATED WORK

To address the computational demands of transformer models, researchers have extensively explored
techniques like pruning, quantization, sparsification, and weight sharing. Pruning aims to reduce
the model size and inference cost by removing redundant connections or parameters. For instance,

Under review as a conference paper at ICLR 2026

SparseGPT (Frantar & Alistarhl [2023)) demonstrates one-shot pruning of large GPT models with
minimal accuracy loss. Movement pruning (Sanh et al., 2020) and block pruning (Lagunas et al.,
2021)) offer structured approaches to enhance hardware efficiency. Quantization lowers the preci-
sion of weights and activations, leading to smaller models and faster computations. Post-training
quantization (PTQ) and quantization-aware training (QAT) are common strategies (Zadeh et al.,
2020). Techniques like SmoothQuant (Xiao et al.,[2023)) and OmniQuant (Wu et al.| 2023) address
challenges related to outlier activations. Sparsification introduces sparsity into weight matrices, often
through magnitude-based pruning (Zhu & Gupta, 2017). SparseML (Magic}, |2023)) is a toolkit that
facilitates the application of sparsification recipes. The combination of these techniques, such as joint
pruning and quantization (Shen et al., [2020; Intel, 2023)), presents further opportunities for efficient
transformer deployment. Recent surveys (Yao et al., 2024; He & Liul [2024) provide comprehensive
overviews of these transformer compression methods.

Research has consistently demonstrated the value of weight sharing in optimizing Transformer mod-
els for improved efficiency and reduced complexity. Early investigations, such as “Sharing Attention
Weights for Fast Transformer” (Xiao et al., [2019), focused on accelerating inference by sharing
attention weights across layers. Subsequent research has explored more sophisticated weight sharing
strategies to minimize potential performance degradation. For instance, “Residualtransformer” (Wang
& Li, [2024) shares a full-rank component while retaining unique low-rank components in each
layer, and “MiniViT” (Zhang et al.l 2022) introduces weight multiplexing to enhance the diversity of
shared weights, particularly in Vision Transformers (Dosovitskiy et al.,|2021)). “Subformer” (Reid
et al.| 2021)) combines sandwich-style sharing with self-attentive factorized embeddings to improve
parameter efficiency in generative Transformers. Beyond these specific approaches, several studies
have broadly examined weight sharing in Transformer architectures. ALBERT achieved significant
model size reduction by sharing parameters across all Transformer layers and embedding matrices
while maintaining competitive performance (Lan et al.,[2019). The Universal Transformer recurrently
applies the same Transformer block, effectively sharing weights across time steps and enabling
adaptive computation (Dehghani et al.l 2018). In multilingual models, Blackwood et al. explored
sharing attention and feed-forward layers across language pairs to enhance translation quality with
fewer parameters (Blackwood et al., |2018). Reformer also incorporated weight sharing alongside
other memory-efficient techniques to scale Transformers to longer sequences (Kitaev et al.| [2020),
and TinyBERT combined weight sharing with knowledge distillation to compress BERT models
for resource-constrained environments (Kitaev et al., [2020). These efforts illustrate that while naive
weight sharing can be detrimental, carefully designed sharing schemes offer a promising avenue for
reducing the computational demands of Transformers.

In addition to the parameter-sharing approaches, alternative designs such as multi-query and grouped-
query attention (Shazeer| 2019;|Ainslie et al., 2023) reduce the number of key/value projections across
heads, leading to lower memory usage and faster decoding. More recently, “decoupled-head sharing
(DHA)” (Chen et al.| 2024) provides a flexible mechanism for parameter reduction and efficiency
without overly constraining representational capacity. These strategies are highly relevant alternatives
to weight sharing, as they also aim to reduce parameters while improving inference efficiency.

Finally, several works have focused on “positional-bias methods” that induce asymmetric attention
scores with negligible parameter overhead. Learned relative position bias (Shaw et al., 2018)), T5’s
relative bias (Raffel et al.| [2020), ALiBi (Press et al., 2021)), rotary position embeddings (RoPE)
(Su et al., 2021)), and two-dimensional relative biases in vision backbones (Liu et al., [2021)) are
widely used baselines for capturing relative positional structure. These methods provide important
context when evaluating novel score-augmentation mechanisms that aim to introduce asymmetry into
attention computations.

3 SELF ATTENTION WITH REDUCED PROJECTIONS

Transformer blocks are known for incorporating several key components, including a multi-head self-
attention mechanism, a position-wise feed-forward network, layer normalization modules, residual
connections, and positional encoding.

The self-attention mechanism, also known as intra-attention, is a crucial and distinguishing feature
of Transformer models. Its purpose is to establish relationships between different positions within a
sequence, enabling the computation of a representation for that very sequence. This mechanism has

Under review as a conference paper at ICLR 2026

KV Attention Multi-Head Attention K Attention Multi-Head Attention

MatMul
MatMul
Kvspos ——,T Krhos .
- h »
Positional ‘ Positional @
Encoding Encoding
Opt. Opt.
(©rt) Scaled Dot (©rt) Scaled Dot
Product Product
V Y
K \ K K

Figure 1: Left: KV Transformer using only K and V vector representations, Right: K Transformer
(using only one vector representation). Attention with 2D positional encoding is denoted as X+Pos.

proven to be highly valuable in various tasks such as machine translation, abstractive summarization,
and image description generation.

The fundamental concept underlying self attention mechanism is for each element within the sequence
to learn the ability to gather information from other tokens present in the same sequence. The operation
for a single head can be defined as follows:

Ay, = Softmax(aQ, K1)V, 60

where X is a matrix in R"*%, o is a scaling factor typically set to 1/\/@, Qn=XWq, Kp = XWy,
and V;, = XW,, are linear transformations applied on the temporal dimension of the input sequence.
Wy, Wi, Wy, € R¥*4/H are the weight matrices (parameters) responsible for the query, key, and
value projections, respectively. These matrices project the input X into an output tensor of d, = d/H
dimensions. H represents the number of heads, which is assumed to be equal to 1 for the rest of the
analysis. Softmax is applied row-wise.

The heads A; - - - Ay are computed in parallel, and their outputs are concatenated and passed through
a dense layer. The attention matrix QK ' is primarily responsible for learning the alignment scores
between the tokens in the sequence. Notably, this formulation involves taking the dot product between
each query (Q) vector and every key (K) vector.

3.1 PROPOSED TRANSFORMERS

We examine two variations of QKV self-attention. The first ties together the mechanisms for query
and key, while the second unifies the processing of query, key, and value. These two approaches lead
to the Transformer types we describe next.

* KV Transformer: In our formulation (Figure I} left), we simply replace Q with K (i.e. Q is
dropped), resulting in:
A = Softmax(aKKT)V. 2)

This attention mechanism features a symmetric 2D matrix. To address inherent limitations
of symmetry, we introduce a “KV+Pos” variant as a comparative baseline. To introduce
asymmetry, a 2D positional encoding of dimension m (i.e. a tensor of size n X n X m;
sinusoidal basis) is added to the n X n attention matrix. The resulting tensor, with dimensions
n X n X m, is then projected back into a n X n matrix using a linear layer consisting of m
parameters.

* K Transformer: Here (Figure right), only one projection is used: A =
Softmax(aK KT)K. In a similar vein to the KV Transformer, we also examine an asym-
metric attention variant known as the “K+Pos” Transformer.

Table [I|demonstrates the computational complexity of the two attention mechanisms versus the QKV
attention. For the KV (symmetric) attention, computational complexity of linear projections of Q and
K vectors (excluding the quadratic computation in & K1) and the number of parameters (ignoring
biases) is two-thirds that of the QKV attention. The number of parameters in KV+Pos attention is
still lower than QKV attention (m << d?). However, the drawback of the KV+Pos attention is that
its computational complexity depends on n2. Its computational cost is lower than QKV attention

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the proposed Transformers and QKV Transformer in terms of computational
complexity and number of parameters. d is the embedding dimensionality, n is the sequence length,
and m is the dimensionality of the 2D positional encoding layer. Note that computational complexity
only includes the linear projections, and not the dot product computation in the self attention matrix.
2D positional embedding is not learned.

Computational Complexity | # Parameters
QKV 3nd? 3d?
KV 2nd? 2d>
KV+Pos || 2nd? 4+ n’m 2d? +m
K nd? d?
K+Pos nd? +n’*m d>+m

when nm < d?2. For instance, with m = 100 and d = 1000, KV+Pos attention is more efficient for
sequence lengths below 10, 000. The K Transformer requires only one-third of the parameters and
computation of projections in the standard QKV attention.

The choice of m, whether the addition of positional encoding is beneficial and whether symmetric KV
attention is sufficient, all depend on the specific problem being addressed. Notice that our formulation
provides a trade-off between model complexity and model performance, which becomes particularly
important during inference time.

3.2 REMARKS

Multiplying K by its transpose leads to large diagonal activations in the attention map, possibly
reducing the influence of off-diagonal relationships. We attempted to mitigate this using normalization
techniques, such as dividing diagonal elements by their sum, but this did not yield consistent or
substantial improvements. The appendix contains the corresponding results.

It is important to mention that certain tasks, such as translation, may necessitate the use of cross-
attention. In such cases, we retain the QKV attention mechanism when needed, but replace self-
attention with KV (or K) attention. Self-attention refers to the scenario in which the keys and values
are derived from the same source as the queries. On the other hand, in cross-attention, the queries are
still generated from the input sequence, but the keys and values are obtained from an external source,
such as an encoder module.

Although our Transformers are more parameter and computationally efficient, the improvements are
modest because self-attention projection parameters, the area of our focus, only represent about a
third of a typical Transformer’s total parameter count. However, their simplified designs contribute
to a better understanding of self-attention mechanisms and further optimizations. For example,
the inherent symmetry within the attention matrix lends itself to hardware optimizations or batch
processing to enhance efficiency. In addition, previous research has shown that the softmax function
might be dispensable in self-attention (Lu et al.,|2021; Koohpayegani & Pirsiavash,2024). Eliminating
it could further simplify our attention mechanism, potentially yielding even greater efficiency. We
defer the investigation of these possibilities to future works. Our approach is orthogonal to existing
methods and can therefore be used in tandem with them.

4 EXPERIMENTS AND RESULTS

We conducted empirical experiments on three types of tasks including a) Synthetic (5 tasks), b)
Vision (6 tasks), and c) NLP (3 tasks). All models are trained from scratch, except for the set anomaly
detection. Our objective is not to achieve state-of-the-art performance, but rather to compare the
attention mechanisms employed. The experiments were conducted on a workstation featuring an
NVIDIA GeForce GTX 1080 Ti, a GPU with 11 GB of memory.

Some of the tasks are sequence-to-sequence, where the input and the output is a sequence, not
necessarily of the same length. An example of tasks in this domain is translation. Here, a Transformer
encoder is used for interpreting the input sequence and a decoder is used for generating the output in
an autoregressive manner. Some other tasks include image classification and anomaly detection. In
these tasks, only an encoder is used to map the input to a set of labels.

Under review as a conference paper at ICLR 2026

Reverse Sort Sub Swap Copy | Avg.
QKV 0.698 0971 1.0 0.588 1.0 | 0.851
KV 0.705 0967 1.0 0.597 1.0 | 0.854
KV+Pos 0.718 0963 1.0 0.671 1.0 | 0.870
K 0.514 0939 1.0 0446 1.0 | 0.780
K+Pos 0.581 0957 1.0 0.576 1.0 | 0.823

Table 2: The performance of transformers on synthetic tasks. Multiple runs, over different configura-
tions (such as number of attention heads, embedding dimension, learning rate, sequence length, etc.),
are conducted, and the results are averaged.

4.1 SYNTHETIC TASKS

We focus on five specific tasks outlined below. The input list, which has a predetermined length,
consists of numbers ranging from 0 to 9, inclusive of both 0 and 9.

Reverse. In this task, a list of numbers is subjected to a reversal operation. For instance, the input list
[4, 3,9, 8, 1] would be transformed into [1, 8, 9, 3, 4].

Sort. The objective of this task is to arrange the input list in ascending order. For example, [4, 3, 9, 8,
1] would be transformed into [1, 3, 4, 8, 9].

Sub. In this case, each element of the list is subtracted from 9. For example, the array [4, 3,9, 8, 1]
would be transformed into [5, 6, 0, 1, 8].

Swap. In this scenario, the first half of an even-length list is exchanged with the second half. For
instance, the list [4, 3,9, 8, 1, 7] would be transformed into [8, 1, 7, 4, 3, 9].

Copy. In this task, the objective is to retain the input list as is. For example, [4, 3, 9, 8, 1] remains
unchanged as [4, 3, 9, 8, 1].

Here, only one transformer encoder is used. In training, we feed the input sequence into the encoder
to generate predictions for each token in the input. We utilize the standard cross entropy loss for this
purpose. Each number is encoded as a one-hot vector. We apply a gradient clip value of 5 and set
the 2D positional embedding dimension to 10 (i.e. m). Additionally, we employ the Adam optimizer
along with the CosineWarmupScheduler, using a warm-up period of 5.

We perform experiments with different configurations of transformer models by varying the embed-
ding dimension (32, 64, 256), the number of layers (2, 4), the number of heads (2, 4), a learning rate
of 1e-3 and the input sequence length (16, 64, 128). Each configuration is run three times for two
epochs, and the results are then averaged across the configurations.

The QKV transformer exhibits faster convergence compared to the K and KV transformers (see loss
curves in the Appendix). However, all transformers demonstrate good performance on synthetic
tasks, as indicated by the accuracies presented in Table[2| The KV transformer achieves performance
comparable to that of the QKV transformer, whereas the K transformer performs considerably
worse. Incorporating positional information (X + Pos) substantially boosts the performance of our X
transformer types.

Sample self attention maps over synthetics tasks are shown in the Appendix.

4.2 VISION TASKS

We evaluated performance on various vision tasks, including image classification in MNIST (LeCun
et al., |1998), FashionMNIST (Xiao et al. [2017), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al.,|2009)), and Tiny ImageNet (200 classe, as well as anomaly detection.

Classification. We explore various settings for patch size (4, 7), learning rate (1e-3, 1e-4), embedding
dimension (64, 256, 512), number of layers (2, 4), and number of heads (2, 4). For each configuration,
we performed two experiments, each experiment lasting k epochs. The value of k differs depending
on the dataset: 20 epochs for MNIST and FashionMNIST, 40 epochs for CIFAR-10, and 50 epochs

'https://paperswithcode.com/dataset/tiny-imagenet

https://paperswithcode.com/dataset/tiny-imagenet

Under review as a conference paper at ICLR 2026

MNIST F-MNIST CIFAR-10 CIFAR-100 TinyImageNet Anomaly | Avg.
QKV 0.981 0.887 0.663 0.363 0.229 0.942 10.767
KV 0.981 0.885 0.666 0.369 0.236 0.954 10.771
KV+Pos || 0.982 0.884 0.662 0.366 - 0.966 |0.772
K 0.978 0.877 0.672 0.376 0.266 0.933 10.767
K+Pos 0.977 0.875 0.669 0.364 - 0.961 |0.769

Table 3: The performance of transformers on vision tasks. The average column does not include
TinyImageNet.

SN Rkl |

Figure 3: Two sets of samples from the anomaly detection dataset, with the first image in each set
representing the anomaly.

for CIFAR-100. We employ the cross-entropy loss function and utilize the Adam optimizer with the
MultiStepLR scheduler for optimization. In the case of 2D positional encoding, we set pos dim to 50.

As indicated in Table 3] the KV + Pos transformer 5 T

exhibits performance comparable to that of the QKV A 2 R P

transformer in the MNIST, FashionMNIST and CI- i _m_’,\,_,_,\,-r*""

FAR datasets. The K transformer, while slightly be- | o it

hind these two variants on MNIST and FashionM- R 20

NIST, still performs at a reasonably competitive level ; _ ';;"’I:; z

on CIFAR datasets. " !, — gk loss >
. é‘ 3 ,‘l I -=-- k accuracy 15 2

To assess the scalability and robustness of our ap- i ——- ky_accuracy 3

proach on a large-scale real-world vision task, we [y --- gkv_accuracy | <

perform classification on the Tiny ImageNet dataset. 21 1 o

This dataset contains 100K images of 200 classes i

(500 for each class). Each class has 500 training im- i

ages, 50 validation images, and 50 test images. We 1] f S

use a Vision Transformer (ViT) model that is con- ' | | | . |

figured with the following parameters: image size 0 20 40 60 80 100

of 224, patch size of 16, 200 classes, embedding di- Epoch

mpnsiop of 768, 12 layers, 12 attention heads, MLP Figure 2: Training loss and validation accu-
dimension of 3072, and a dropout rate of 0.1. The 1,cy for TinyImageNet image classification.
optimization process and loss function are as above.

All models were trained from scratch (i.e. no use of pretrained backbones). We evaluate three self-
attention variants—QKYV, KV, and K—each run twice. Figure 2] shows the training loss and validation
accuracy over epochs. Numerical results are provided in Table[3] The corresponding training times
per epoch are 40, 35, and 32 minutes on GPU, demonstrating improved efficiency with small impact
on accuracy. Notably, the K Transformer, despite employing only one projection, achieves strong
results in this instance. Continued training over more epochs could potentially close the performance
gap between the Transformer architectures.

Set Anomaly Detection. Here, we aim to apply transformers to sets (i.e. unordered inputs). A model
is tested for its ability to find the odd one out in a set of ten images, using CIFAR-100. Nine images
are from one class, and one is different. Two sample sets are shown in Figure[3] CIFAR-100 comprises
60K 32x32 images over 100 classes (600 per class).

To extract high-level, low-dimensional features from the images, we employ a pre-trained ResNet34

model (He et al.| 2016) pretrained on the ImageNet dataset (Deng et al.,2009). To monitor the training

progress and determine when to stop, a validation set is created. In this scenario, we divide the training
set into 90% for training purposes and 10% for validation, ensuring a balanced distribution across
classes.

Under review as a conference paper at ICLR 2026

0.6

2.75 kv 2.6
== kv+pos

2.50 —_— kv 2.4 A 0.5 1
—— k+pos

2.25 234

0.4 7
2.00
2.09

train loss
val loss
acc

175 |
181 0.3

1.50 +

161 0.2

125

141

T T T T T T T T T T T T T T r T T r

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
epoch epoch epoch

Figure 4: Epoch-wise loss and accuracy in the number generation task.

We define an epoch as a sequence in which each image within the dataset is considered as an “anomaly”
exactly once. Therefore, the length of the dataset is determined by the total number of images it
contains. When constructing the training set, we follow a two-step process. First, we randomly sample
a class that is different from the class of the image at the corresponding index (i.e. __getitem__(self,
idx)). Then, in the second step, we sample 9 images from the newly selected class.

We perform a set-level classification, outputting a single logit per image to ensure permutation
equivariance in our predictions. A softmax function is applied across these image-specific logits,
and the model is trained to assign the highest probability to the anomalous image. This differs from
standard classification where softmax operates over class outputs. Consequently, if the order of input
images is changed, their corresponding probabilities in the softmax output are also reordered, thus
achieving permutation equivariance.

In our experiments, we vary the embedding dimension, selecting from the options of 256 and
512. Additionally, we explore different depths and numbers of heads, choosing values of 2 and
4. We set the learning rate to 5e-4 for all configurations. We incorporate a dropout rate of 0.1
throughout the model to facilitate regularization. To control the model’s learning rate, we utilize the
CosineWarmupScheduler. We configure the warm-up parameter (set to 100) to gradually initiate the
model training process. Each setting is executed twice for a total of 20 epochs, and the results are
subsequently averaged to obtain reliable performance measurements (see Table [3).

The last column of Table [3| presents the results of this experiment. It shows comparable performance
across models, with KV+Pos exhibiting a slight advantage.

4.3 NLP TASKS

In this section, we explore three NLP tasks: number generation and character generation, which both
use only an encoder, and language translation, which uses an encoder-decoder architecture.

Number generation. In this task, our objective is to generate the next token in a dataset that comprises
written numbers. The dataset includes consecutive numbers from 1 to 9999, spelled out as words.
The task involves predicting the subsequent token given the preceding [tokens. For instance, if the
sequence length is [= 3, we would have examples like these:

([’thirteen’, ’.’, *fourteen’], ’.”), ([’.’, ’fifteen’, ’.’], ’sixteen’),
The vocabulary size for this dataset is 30, and there are a total of 63,095 tokens.

For transformer training, we explored sequence lengths (I) of 16, 32, and 64, and varied the number
of heads between 2 and 4. We fixed the learning rate at le-2, the positional dimension at 10, and
the embedding dimension at 64. Each parameter combination was trained twice for 30 epochs, with
cross-entropy loss.

The results are depicted in Figure[d] We observe a performance decline using KV and K Transformers.
Nevertheless, including positional information in the attention matrix does help retain some perfor-
mance. Because the K and K+pos models yielded poor results here, we will discard them in the next
set of experiments.

Under review as a conference paper at ICLR 2026

Character generation. The objective in this task is to generate text by predicting the next character.
We used the tiny Shakespeare dataset, which consists of 1,115,394 characters. For the training process,
we allocate 90% of the data for training purposes, while the remaining portion is used for validation.
During each training step, we track the loss across the entire validation set.

train val

Several hyperparameters are considered, includ-
ing context size (8, 32, 64), maximum iteration
set to 1000, learning rate of Se-4, embedding
dimension chosen from 64 and 192, number of
heads selected from 1 and 4, number of layers
chosen from 1, 2, 3, and 6, dropout rate set to
0.2, and positional dimension set to 20. The opti-
mization process involves using the Adam opti-
mizer along with cross entropy loss. In total, four
models are trained. The average results are illus-
trated in Figure[5] KV+Pos and KV transformers
show similar learning speeds, while QKV con-

2.3 akv
- = kv+pos
— kv

2.2

2.0

16

14

0 200 400 600 800 0 200 400 600 800

verges faster. However, all three ultimately reach Training time (sec) Training time (sec)
a comparable level of val loss, suggesting a sim- . . .
ilar final performance. Qualitative assessment Figure 5: Loss in character generation task.

indicates that all models can generate coherent sentences.

Translation. The objective here is to train a transformer model from scratch to translate sentences
between two languages. Specifically, we used the Multi30k dataset (Elliott et al., [2016) to train a
German to English translation model as well as an English to German translation model.

In contrast to using a one-hot target distribution, we adopt a different approach. We set the probability
of the target word to a predetermined “confidence value” (typically 0.9) and allocate the remaining
“smoothing value” mass (usually 0.1) evenly across the rest of the vocabulary. This technique, known
as label smoothing, aims to provide a more robust training signal.

To optimize the model, we employ the KL divergence loss and the Adam optimizer. The learning
rate follows a linear ramp-up for a specified number of warm-up steps (usually 4000) and then
decays according to the inverse square root law based on the current training step number. During the
translation process, we utilize a greedy decoding strategy, starting with a designated start token.

For the model configuration, we set the positional dimension to 10 and apply a dropout rate of 0.1.
We explore different variations by varying the number of layers (1 or 2), the number of heads (1 or 4),
and the embedding dimension (64, 128, or 256). Each variant is trained twice for 15 epochs. Loss
values and BLEU scores (Papineni et al., 2002)) are recorded.

The results for both German-to-English and English-to-German translations are depicted in Figure 6}
Interestingly, incorporating 2D positional encoding negatively affects the model’s performance. How-
ever, the KV transformer demonstrates competitive performance compared to the QKV transformer in
this task. The performance gap could stem from our Transformers’ use of cross-attention, disrupting
the uniform self-attention used across the network.

5 DISCUSSION AND CONCLUSION

We conducted an evaluation comparing the performance of self attention with reduced projections,
both with and without 2D positional encoding, to the commonly used QKV attention across 14
different tasks. Our overall results imply that the necessity of three separate representations in
self-attention for an input sequence is task-dependent; it appears not to be essential for at least
some tasks we examined. In certain cases, such as the synthetic and vision datasets, KV attention
outperforms QKYV attention. It is worth noting that there is a trade-off involved: KV and K attentions
(without positional encoding) achieves lower accuracy but require fewer parameters compared to
QKYV attention.

Our primary objective was not to achieve state-of-the-art performance by fine-tuning or optimizing
the models, but rather to investigate whether there is a notable difference in performance between
the proposed transformer architectures and the original QKV (Query-Key-Value) Transformer. In

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Under review as a conference paper at ICLR 2026

0.40 -

train loss
val loss

train loss
val loss
-
S

0 5 10 15 0 5 10 15 0 5 10 15
epoch epoch epoch

Figure 6: Loss and BLEU score per epoch in the translation task. BLEU is computed over the test set.
Top: German to English, Bottom: English to German.

addition to this, our further analysis demonstrates that the insights gained from our study have
broader applicability. Specifically, we found that our results are not limited to a single task but can
extend to other vision-related challenges, such as semantic segmentation, showing that the proposed
transformers may hold promise for improving performance in a variety of computer vision tasks.

Models show similar performance on synthetic tasks, possibly because these tasks are simpler and
involve fewer tokens. Large-scale vision tasks also exhibit comparable model performance. However,
in NLP tasks, dropping projections seems to lead to a performance decrease. The use of separate
linear layers to generate Query, Key, and Value vectors enables the model to capture various aspects
of each token and how they contextually relate. This is highly advantageous for sequential tasks
where token order influences meaning and for temporal data. However, our results show that for tasks
such as image classification, this level of attention complexity might not be required, implying that
simpler and more resource-friendly Transformer designs are feasible depending on the application.

Future work could explore novel techniques for making Transformers more efficient and generalizable.
Furthermore, evaluating the current model’s performance across diverse tasks and data would be
beneficial. An area of interest is how well the performance of the proposed Transformers scales with
significantly longer input sequences. Drawing inspiration from successful weight-sharing methods in
NLP, as seen in prior work (e.g. Kitaev et al.|(2020)), might also enhance the accuracy of our models
on NLP tasks. We anticipate that our approach will prove particularly valuable for Cache Augmented
Generation (CAG) architectures, including recent advances such as that proposed by |Chan et al.
(2025). A key benefit lies in its ability to substantially decrease the memory footprint associated with
the KV cache.

Discussion of Limitations. While the improvements in parameter and computational efficiency
are modest, we observed significant reductions in training and inference time on tasks like image
classification with Tiny ImageNet. We believe that the slight accuracy decrease could potentially be
mitigated by extending the training duration.

Broader Impacts. The development of more efficient Transformer models, as explored in this
research, offers positive societal benefits like broadening Al accessibility by enabling use on less
powerful hardware and potentially reducing the energy footprint of AI computations. The growing
ease of deploying more powerful Al is a welcome development. However, it’s crucial to carefully
examine how these advancements are put into practice. Our findings align with existing research in
this area and do not introduce any new negative implications beyond what is already documented
about these types of models.

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4895-4901. Association for Computational Linguistics, 2023.

Graeme Blackwood, Miguel Ballesteros, and Todd Ward. Multilingual neural machine translation
with task-specific attention. arXiv preprint arXiv:1806.03280, 2018.

Brian J Chan, Chao-Ting Chen, Jui-Hung Cheng, and Hen-Hsen Huang. Don’t do rag: When cache-
augmented generation is all you need for knowledge tasks. In Companion Proceedings of the ACM
on Web Conference 2025, pp. 893-897, 2025.

Yilong Chen, Linhao Zhang, Junyuan Shang, Zhenyu Zhang, Tingwen Liu, Shuohuan Wang, and
Yu Sun. Dha: Learning decoupled-head attention from transformer checkpoints via adaptive heads
fusion. arXiv preprint arXiv:2406.06567, 2024. URL https://arxiv.org/abs/2406.06567.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Teee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations, 2021. doi: 10.48550/ARXIV.2010.11929.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30k: Multilingual english-
german image descriptions. arXiv preprint arXiv:1605.00459, 2016.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. /EEFE transactions on
pattern analysis and machine intelligence, 45(1):87-110, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Shen He and Yankai Liu. Model compression techniques for transformer models: A survey. http!
/Iwww.surveyx.cn/assets/img/pdfs/Computation%20and%20Language/model.pdf, 2024.

Intel. Joint pruning, quantization and distillation for efficient
inference of transformers. https://blog.openvino.ai/blog-posts/
joint-pruning-quantization-and-distillation- for-efficient- inference-of- transformers, 2023.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Soroush Abbasi Koohpayegani and Hamed Pirsiavash. Sima: Simple softmax-free attention for vision
transformers. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 2607-2617, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ander Lagunas, Aitor Martinez, Joan Gimenez, and Ruben Campos. Block pruning for faster
transformers. arXiv preprint arXiv:2109.14642, 2021.

10

https://arxiv.org/abs/2406.06567
http://www.surveyx.cn/assets/img/pdfs/Computation%20and%20Language/model.pdf
http://www.surveyx.cn/assets/img/pdfs/Computation%20and%20Language/model.pdf
https://blog.openvino.ai/blog-posts/joint-pruning-quantization-and-distillation-for-efficient-inference-of-transformers
https://blog.openvino.ai/blog-posts/joint-pruning-quantization-and-distillation-for-efficient-inference-of-transformers

Under review as a conference paper at ICLR 2026

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 10012-10022, 2021. doi: 10.1109/ICCV48922.2021.00986.
URL https://openaccess.thecvf.com/content/ICCV202 1/html/Liu_Swin_Transformer_Hierarchical
Vision_Transformer_Using_Shifted_Windows_ICCV _2021 _paper.html.

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao
Xiang, and Li Zhang. Soft: Softmax-free transformer with linear complexity. Advances in Neural
Information Processing Systems, 34:21297-21309, 2021.

Neural Magic. Sparseml: Libraries for applying sparsification recipes to neural networks with a few
lines of code, enabling faster and smaller models. https://github.com/neuralmagic/sparseml, 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021. URL https://arxiv.org/
abs/2108.124009.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-
to-text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020. URL http!
/fjmlr.org/papers/v21/20-074.html.

Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo. Subformer: Exploring weight sharing for
parameter efficiency in generative transformers. arXiv preprint arXiv:2101.00234, 2021.

Victor Sanh, Julien Chaumond, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive
sparsity by fine-tuning. arXiv preprint arXiv:2005.07683, 2020.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018. URL https://arxiv.org/abs/1803.02155.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. 2019.

Shih-Chii Shen, Bo Wang, Guoliang Ye, Kaiyuan Xiao, Rui Shen, and Bin Zhou. Haq: Hardware-
aware automated quantization with mixed precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8632-8641, 2020.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021. URL
https://arxiv.org/abs/2104.09864,

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1-28, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Yiming Wang and Jinyu Li. Residualtransformer: Residual low-rank learning with weight-sharing for
transformer layers. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 11161-11165. IEEE, 2024.

11

https://openaccess.thecvf.com/content/ICCV2021/html/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.html
https://github.com/neuralmagic/sparseml
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2104.09864

Under review as a conference paper at ICLR 2026

Rui Wu, Shang-Hua Shen, Guoliang Zhang, Zhen Li, Xiao Dong, and Hao Zhang. Omniquant: Weight
and activation post-training quantization for transformers. arXiv preprint arXiv:2305.13253, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Tong Xiao, Yingiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention weights for
fast transformer. arXiv preprint arXiv:1906.11024, 2019.

Wenhan Xiao, Kexin Zhang, Xiaojie Lin, and Qing Wang. Smoothquant: Accurate and efficient
post-training quantization for large language models. In International Conference on Machine
Learning, pp. 22165-22179, 2023.

Ziyang Yao, Ruihao Zhang, and Zhiruo Jia. A survey on transformer compression. arXiv preprint
arXiv:2402.05964, 2024.

Mohammad H Zadeh, Neil Houlsby, Johannes Gehring, and Stephane Gelly. Gobo: Quantizing
attention-based nlp models for reduced size and latency. arXiv preprint arXiv:2011.00623, 2020.

Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Minivit:
Compressing vision transformers with weight multiplexing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12145-12154, 2022.

Mingyuan Zhu and Song Han Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. ICLR Workshop Track, 2017.

A APPENDIX

Figure[/|shows the loss over time for the synthetics tasks. Figure [8|displays sample attention maps.
It should be noted that the attention maps of the KV transformer exhibit symmetry around the line
y = x. Notable patterns can be observed within the attention maps. For instance, in the reversing task,
the QKV model has learned to take care of the token located at the flipped index of itself. However, it
also allocates some attention to values near the flipped index. This behavior arises because the model
does not require precise, strict attention to solve this problem, but rather benefits from an approximate,
noisy attention map. Figure [9]shows the code to compute and normalize the self attention map, plus
visualization of maps.

12

Under review as a conference paper at ICLR 2026

train val train val
0.40 1
224
everse|
0351
2.01
1.8 14+ 0.30
y 161 0.25 4
3 1.2
144
0.20
124
104
0.15 7
104
0.8 =—— %81 0.10
o 20 40 60 10 20 30 40 50 60 20 40 60 10 20 30 40 50 60
Training time (sec) Training time (sec) Training time (sec) Training time (sec)
train val train val
akv 0.007 4
2.07 kv+pos 124
— kv
i 0.006 -
18+ 1o S U b
0.8 0.005 -
164
@
S 06 0.004 +
14+
0.4 0.003 A
124
021 0.002
1 e
10 i
——- 0.0 4 —_—
T T T y T T T T T T T rl 0001 - T T T
0 20 40 60 80 20 40 60 20 40 60 80 20 40 60
Training time (sec) Training time (sec) Training time (sec) Training time (sec)
train val
0.007 Gl
== kv+pos
— kv
Copy | "
0.005
0.004
0.003 A
0.002
[
—— .
T T T T 0.001 < u T T
0 20 40 60 20 40 60

Training time (sec)

13

Training time (sec)

Figure 7: Loss over time for the synthetics tasks.

Under review as a conference paper at ICLR 2026

Layerrl,Headrl Layerrl,Headrl Layerrl,iHeadrl

WSO NOMENWDWOOS &
WSO OO NOMENWOS &
WSO NOMENWOS &

3576006201123604 3576006201123604 3576006201123604

Layerrl,Headrl Layerrl,Headrl Layerrl,iHeadrl

B0~ D WO MD OO RN R
B0~ D WO M0 OO RN R
0~ D0 WO M0 OO RN R

87918386800422417 8791838680042417 8791838680042417

Layerrl,/Headrl Layerrl,Headrl Layerrl,iHeadrl

WO Do &M@ WSLWMSN

WO Do &0 @WSLWmSN
WO Do &M WM N

| I

3018900481831512 3018900481831512 3018900481831512

Layerrl,Headrl Layerrl,Headrl Layerrl,iHeadrl

DO WRYOMEWNWAERDODOUN
D oOWaRYOMEWNWRERDODOU0
D oOWREYOMEWNWARERDOD-OWN N

9834913449087651 9834913449087 651 9834913449087651

Layerrl,Headrl Layerrl,Headrl Layerrl,iHeadrl

HOMYNMNMOOoOUWOUNNWNON
HOMYNMNMOOoOUWOUNNWNON
HOMYNMNMOOoOUWOUNNWNON

1927290505723202

1927290505723202 1927290505723202

Figure 8: Attention maps over synthetic tasks. Rows from top to bottom: Reverse, Sort, Swap, Sub,
and Copy. Columns from left to right: QKV, KV, and KV+Pos.

14

Under review as a conference paper at ICLR 2026

diagonal =
scaling fact
normalized s

e(normalized_S.shape[®@]):
d s[i, i] = diagonal[i] / scaling_factor

return normalized 5, S

.randn(n, h)
5_normalized, 5 = normalize kkt_diagonal (K)
print("Normali S:\n", S_normalized)

Figure 9: Top) Code to compute and normalize the self attention map. Bottom) un-normalized and
normalized (bottom) attention maps.

15

	Introduction
	Related Work
	Self Attention with Reduced Projections
	Proposed Transformers
	Remarks

	Experiments and Results
	Synthetic tasks
	Vision tasks
	NLP tasks

	Discussion and Conclusion
	Appendix

