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ABSTRACT

When trained on language data, do transformers learn some arbitrary computation
that utilizes the full capacity of the architecture or do they learn a simpler, tree-
like computation, hypothesized to underlie compositional meaning systems like
human languages? There is an apparent tension between compositional accounts
of human language understanding, which are based on a restricted bottom-up com-
putational process, and the enormous success of neural models like transformers,
which can route information arbitrarily between different parts of their input. One
possibility is that these models, while extremely flexible in principle, in practice
learn to interpret language hierarchically, ultimately building sentence representa-
tions close to those predictable by a bottom-up, tree-structured model. To evaluate
this possibility, we describe an unsupervised and parameter-free method to func-
tionally project the behavior of any transformer into the space of tree-structured
networks. Given an input sentence, we produce a binary tree that approximates the
transformer’s representation-building process and a score that captures how “tree-
like” the transformer’s behavior is on the input. While calculation of this score
does not require training any additional models, it provably upper-bounds the fit
between a transformer and any tree-structured approximation. Using this method,
we show that transformers for three different tasks become more tree-like over the
course of training, in some cases unsupervisedly recovering the same trees as su-
pervised parsers. These trees, in turn, are predictive of model behavior, with more
tree-like models generalizing better on tests of compositional generalization.

1 INTRODUCTION

Consider the sentence Jack has more apples than Saturn has rings, which you have almost cer-
tainly never encountered before. Such compositionally novel sentences consist of known words in
unknown contexts, and can be reliably interpreted by humans. One leading hypothesis suggests
that humans process language according to hierarchical tree-structured computation and that such
a restricted computation is, in part, responsible for compositional generalization. Meanwhile, pop-
ular neural network models of language processing such as the transformer can in principle, learn
an arbitrarily expressive computation over sentences, with the ability to route information between
any two pieces of the sentence. In practice, when trained on language data, do transformers instead
constrain their computation to look equivalent to a tree-structured bottom-up computation?

While generalization tests on benchmarks (Lake & Baroni, 2018; Bahdanau et al., 2019; Hupkes
et al., 2019; Kim & Linzen, 2020, among others) assess if a transformer’s behavior is aligned with
tree-like models, they do not measure if the transformer’s computation is tree-structured, largely
because model behavior on benchmarks could entirely be due to orthogonal properties of the dataset
(Patel et al., 2022). Thus, to understand if transformers implement tree-structured computations, the
approach we take is based on directly approximating them with a separate, tree-structured computa-
tion. Prior methods based on this approach (Andreas, 2019; McCoy et al., 2019) require putatively
gold syntax trees, which not only requires committing to a specific theory of syntax, but crucially,
may not exist in some domains due to syntactic indeterminacy. Consequently, these methods will
fail to recognize a model as tree-like if it is tree-structured according to a different notion of syntax.
Moreover, all of these approaches involve an expensive training procedure for explicitly fitting a
tree-structured model (Socher et al., 2013; Smolensky, 1990) to the neural network.
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Figure 1: (a) Given a transformer model f , our method finds the tree projection of f i.e., binary trees
corresponding to the tree-structured neural network gϕproj (in the space of all tree-structured models)
that best approximates the outputs of f on a given set of strings. (b) (i) Given a string, we compute
context-free representations (ṽij) for all spans of the string via attention masking (Section 3). (ii)
We use the distance between (average-pooled) context-free and contextual representations (vij) to
populate a chart data structure. (iii) We decode a tree structure from chart entries.

Instead, we present a method that is completely unsupervised (no gold syntax needed) and
parameter-free (no neural network fitting needed). At a high level, our proposed method function-
ally projects1 transformers into the space of all tree-structured models, via an implicit search over
the joint space of tree structures and parameters of corresponding tree-structured models (Figure 1).
The main intuition behind our approach is to appeal to the notion of representational invariance:
bottom-up tree-structured computations over sentences build intermediate representations that are
invariant to outside context, and so we can approximate transformers with a tree-structured compu-
tation by searching for a “bracketing” of the sentence where transformer representations of inter-
mediate brackets are maximally invariant to their context. Concretely, the main workhorse of our
approach is a subroutine that computes distances between contextual and context-free representa-
tions of all spans of a sentence. We use these distances to induce a tree projection of the transformer
using classical chart parsing (Section 3), along with a score that estimates tree-structuredness.

First, we prove that our approach can find the best tree-structured account of a transformer’s compu-
tation under mild assumptions (Theorem 1). Empirically, we find transformer encoders of varying
depths become more tree-like as they train on three sequence transduction datasets, with correspond-
ing tree projections gradually aligning with gold syntax on two of three datasets (Section 5). Then,
we use tree projections as a tool to predict behaviors associated with compositionality: induced trees
reliably reflect contextual dependence structure implemented by encoders (Section 6.1) and both tree
scores as well as parsing F1 of tree projections better correlate with compositional generalization to
configurations unseen in training than in-domain accuracy on two of three datasets (Section 6.2).

2 BACKGROUND

How can we compute the meaning of red apples are delicious? Substantial evidence (Crain &
Nakayama, 1987; Pallier et al., 2011; Hale et al., 2018) supports the hypothesis that semantic in-
terpretation of sentences by humans involves a tree-structured, hierarchical computation, where
smaller constituents (red, apples) recursively combine into larger constituents (red apples), until
we reach the full sentence. Concretely, suppose we have a sentence S ≜ {w1, w2, . . . , w|S|}.
Let T be a function that returns a binary tree for any sentence S, defined recursively as T (S) ≜
⟨T (S1,j), T (Sj+1,|S|)⟩ where T (Sa,b) refers to a subtree over the span Sa,b ≜ {wa, wa+1, . . . , wb}.
We say that a span Sa,b ∈ T (S) if the node T (Sa,b) exists as a subtree in T (S). For notational con-
venience, we sometimes use Sl and Sr as the left and right subtrees for T (S) i.e., T (S) = ⟨Sl, Sr⟩.

1We provide a functional account of the transformer’s computation and not a topological account, i.e., we are
agnostic to whether the attention patterns of the transformer themselves look tree structured—see Appendix C
for examples.
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Compositionality in Meaning Representations. While theories of compositional meaning for-
mation might differ on specifics of syntax, at a high-level, they propose that computing the meaning
of S must involve a bottom-up procedure along some syntax tree T (S) of the sentence S. Formally,
we say that a meaning representation system m is compositional if the meaning m(s) of some ex-
pression s is a homomorphic image of the syntax of s i.e., m(s) = ϕ(m(sl),m(sr)) for some
ϕ following Montague (1970). Crucially, we note that such a ϕ exists only if m(s) can be fully
determined by the contents of s, that is, if m(s) is contextually invariant. While there are several
phenomena that necessarily require a non-compositional context-sensitive interpretation (indexicals,
idioms, pronouns, lexical ambiguity among others), compositional interpretation remains a central
component in explanations of the human ability to systematically interpret novel sentences.

Compositionality in Neural Models. A class of neural networks that are obviously composi-
tional are tree-structured models such as Socher et al. (2013), that obtain vector representations of
sentences by performing a bottom-up computation over syntax. Specifically, given S and a corre-
sponding binary tree T (S), the output of the tree-structured network gϕ is defined recursively—for
any span p ∈ T (S), gϕ(p, T (p)) ≜ hθ(gϕ(pl, T (pl)), gϕ(pr, T (pr)) where hθ : Rd × Rd 7→ Rd

is some feedforward neural network. For leaf nodes wi, gϕ(wi, T (wi)) ≜ ηwi
, where ηw ∈ Rd

represents the word embedding for w. The parameters of the network are ϕ = {θ, ηw1
, ηw2

, . . .}.

3 OUR APPROACH

While tree-structured networks were built to reflect the compositional structure of natural language,
they have been superseded by relatively unstructured transformers (Vaswani et al., 2017). How
can we measure if the computation implemented by a transformer is compositional and tree-like?
We start by noting that in any bottom-up tree computation over a sentence, representation of an
intermediate constituent depends only on the span it corresponds to, while being fully invariant
to outside context. Thus, one way to assess tree-structuredness of a computation over some span
is to measure contextual invariance of the resulting representation. Consequently, we construct a
tree-structured approximation of a transformer’s computation over a sentence by searching for a
bracketing of the sentence where spans have maximal contextual invariance.

3.1 SPAN CONTEXTUAL INVARIANCE
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Figure 2: We use a T-shaped at-
tention mask with a threshold layer
to obtain approximate context-free
vectors for transformers.

Suppose f is a transformer model that produces contextual
vectors of words in S as f(S) ≜ {vS

w1
,vS

w2
, . . . ,vS

w|S|
} where

vS
w is a contextual vector representation of w. Given a span p,

let vS
p be the span representation of the contextual vectors of

words in p, vS
p =

∑
w∈p v

S
w. Similarly, let ṽp be a context-

free representation of the span p. For transformers, we obtain
context-free representations through a simple attention mask-
ing scheme. In particular, to obtain ṽp, we apply a “T-shaped”
attention mask and take the pooled representation of the words
in p at the final layer (Figure 2). The mask ensures that atten-
tion heads do not attend to tokens outside of p after an optional
threshold layer2

We define span contextual invariance (SCI) of a span p in the
sentence S as SCI(S, p) ≜ d(vS

p , ṽp) for some distance func-
tion d. Similarly, we define the cumulative SCI score for a tree
T to be:

SCI(S, T ) ≜
∑
s∈T

d(vS
p , ṽp). (1)

2This procedure outputs vectors that are entirely context-free only if the threshold is exactly 0, but we find
that tuning the threshold layer often leads to significantly better induced parses.
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3.2 COMPUTING TREE PROJECTIONS BY MINIMIZING SCI

Consider the collection of strings, D = {(S)}, and some function T that produces binary trees for
any S ∈ D. The cumulative error from approximating outputs of the transformer f with outputs of
a tree-structured network gϕ structured according to T can be written as

L(f, gϕ, T ) ≜
∑
S∈D

∑
p∈T (S)

d(gϕ(p, T (p)),v
S
p ). (2)

Suppose we are interested in finding the best tree-structured approximation to f over all possible
trees i.e. a configuration of tree structures and corresponding model parameters that best approxi-
mate the transformer’s behavior. We define this as the exact tree projection of f ,

ϕproj, Tproj ≜ argmin
ϕ,T

L(f, gϕ, T ). (3)

Theorem 1. minϕ,T L(f, gϕ, T ) ≤
∑

S∈D minT (S) SCI(S, T (S)). In other words, the best tree
structured approximation to f has an error upper bounded by cumulative SCI scores.

In general, finding tree projections involves a joint search over all discrete tree structures T (S) as
well as over continuous parameters ϕ, which is intractable. However, we substantially simplify this
search using Theorem 1, since the upper bound depends only on parses T (S) and properties of the
transformer, and can be exactly minimized for a given f in polynomial time, with efficient parsing
algorithms. We minimize this upper bound itself to approximately recover the best tree-structured
approximation to f , over all choices of trees and parameters. The output of this minimization is an
approximate tree projection,

T̂proj(S) = argmin
T (S)

SCI(S, T (S)) (4)

for every S ∈ D. Under a mild assumption3, SCI minimization leads to tree projections exactly.
Assumption 1. Let Sp denote the collection of sentences that contain the span p. Then, for every
span p, we have minv

∑
S∈Sp

d(vS
p ,v) =

∑
S∈Sp

d(vS
p , ṽp). That is, context-free vectors minimize

the cumulative distance to their contextual counterparts.

Corollary 1.1. Under Assumption 1, minϕ,T L(f, gϕ, T ) =
∑

S∈D minT (S) SCI(S, T (S)). More-
over, Tproj(S) = argminT (S) SCI(S, T (S)) for any S ∈ D.

3.3 MEASURING INTRINSIC COMPOSITIONALITY

SCI minimization provides two natural ways to measure intrinsic compositionality of f on D. To
measure tree-structuredness, we use

tscore ≜

∑
S∈D ETSCI(S, T )− SCI(S, T̂proj(S))

|D|
, (5)

which computes the averaged SCI score of induced trees, normalized against the expected SCI score
under a uniform distribution over trees. We find normalization to be necessary to prevent our method
from spuriously assigning high tree-structuredness to entirely context-free encoders (that have high
SCI scores for all trees). When gold syntax Tg is available, we use

tparseval ≜ PARSEVAL(T̂proj, Tg,D), (6)

to measure bracketing F1 score (PARSEVAL; Black et al. (1991)) score of T̂proj against Tg on D.

4 EXPERIMENTAL SETUP

Our experiments4 are organized as follows. First, we show that on 3 sequence transduction tasks,
transformers of varying depths become more tree-like over the course of training, and sometimes
learn tree projections that progressively evolve towards ground truth syntax. Then, we show how
tree projections can be used to assess various model behaviors related to compositionality.

3Figure 9 in the Appendix shows that this assumption approximately holds in practice.
4Code and data will be available here
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Datasets. We consider three datasets (Table 1) commonly used for benchmarking compositional
generalization—COGS (Kim & Linzen, 2020), M-PCFGSET (Hupkes et al., 2019) and GeoQuery
(Zelle & Mooney, 1996). COGS consists of automatically generated sentences from a context-free
grammar paired with logical forms, split into in-domain examples (for training) and a composition-
ally challenging evaluation set. M-PCFGSET is a slightly modified version 5 of PCFGSET (Hupkes
et al., 2019), where inputs are a nested sequence of expresssions that specify a unary or binary
operation over lists. The objective is to execute the function specified by the input to obtain the
final list. We focus on the “systematicity split” for measuring compositional generalization. Finally,
GeoQuery consists of natural language queries about US geography paired with logical forms. To
measure compositional generalization, we use the “query” split from Finegan-Dollak et al. (2018).

Implementation Details. We use greedy top down chart parsing to approximately minimize SCI.
In particular, we use SCI scores for all O(|S|2) spans of a string S to populate a chart data structure,
which is used to induce a tree by minimizing SCI via a top down greedy procedure (see Algorithm 1
in Appendix), similar to Stern et al. (2017). Our procedure outputs a tree and simultaneously returns
normalized SCI score of the tree, computing a sampling estimate of expected SCI score (Equa-
tion 5).We train transformer encoder-decoder models with encoders of depths {2, 4, 6} and a fixed
decoder of depth 2. We omit 6-layer transformer results for GeoQuery as this model rapidly overfit
and failed to generalize, perhaps due to the small size of the dataset. We choose a shallow de-
coder to ensure that most of the sentence processing is performed on the encoder side. We train
for 100k iterations on COGS, 300k iterations on M-PCFGSET and 50k iterations on GeoQuery.
We collect checkpoints every 1000, 2000 and 500 gradient updates and use the encoder at these
checkpoints to obtain parses as well as tree scores. In all experiments, d is cosine distance i.e.,
d(x,y) = 1 − x⊤y

∥x∥∥y∥ . All transformer layers have 8 attention heads and a hidden dimensionality
of 512. We use a learning rate of 1e-4 (linearly warming up from 0 to 1e-4 over 5k steps) with the
AdamW optimizer. All accuracies refer to exact match accuracy against the gold target sequence.
For all seq2seq transformers, we tune the threshold layer based on tparseval.

Inputs Outputs

i. The ball was found ball(x1) AND find.theme(x3, x1)
A cookie was blessed cookie(x1) AND bless.theme(x3, x1)

ii. copy interleave second reverse shift H13 C19 H9 O20 H9 H13 O20 C19
repeat interleave second interleave first S1 E3 W3 N11 H4 Y3 L8 E1 R13 T12 E1 T12 L8 E1 R13 T12 E1 T12

iii. Which state has the lowest population density? (A, smallest(B, ( state(A), density(A, B))))
What is the population density of Wyoming? (A, ( density(B, A), const(B, stateid(wyoming))))

Table 1: Example (x, y) pairs from COGS (i), M-PCFGSET (ii) and GeoQuery (iii). See Ap-
pendix B for more details on pre-processing as well as dataset statistics.

5 TRAINED TRANSFORMERS IMPLEMENT A TREE-LIKE COMPUTATION

How does intrinsic compositionality of a transformer encoder evolve during the course of training
on sequence transduction tasks? To study this, we plot tscore (how tree-like is a model?) and tparseval
(how accurate is the tree projection of a model?) of encoder checkpoints throughout training. As
a comparison, we track how well a supervised probe recovers syntax from encoders—that is, we
train a 1 layer transformer decoder to autoregressively predict linearized gold parse trees of S from
transformer outputs f(S) at various points of training, and measure the PARSEVAL score of probe
outputs (pparseval) on a test set.

Results. We plot tparseval and tscore over the course of training in Figure 3. We observe that 7/8
encoders gradually become more tree-like i.e., increase tscore over the course of training, with the 4
layer transformer on GeoQuery being the exception. Interestingly, we note that tparseval also increases
over time for all encoders on COGS and M-PCFGSET suggesting that the tree projection of trained
transformers progressively becomes more like ground-truth syntax. In other words, all encoders
trained on COGS and M-PCFGSET learn a computation that is gradually more “syntax aware”. Can
supervised probing also reveal this gradual syntactic enrichment? We plot PARSEVAL score of

5see Appendix B for details.
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(a) Normalized Tree Scores for COGS, M-PCFGSET and GeoQuery (↑ is better).

(b) Parsing Accuracies for COGS, M-PCFGSET and GeoQuery (↑ is better).

Figure 3: We plot tscore and tparseval by computing approximate tree projections at various check-
points. 7/8 models become more tree-structured (increased tscore) and all models on COGS and M-
PCFGSET learn tree projections that gradually align with ground truth syntax (increased tparseval).

parse trees predicted by the probe on held out sentences (pparseval) in Figure 4—while pparseval does
improve over time on both COGS and M-PCFGSET, we observe that all checkpoints after some
threshold have similar probing accuracies. We quantitatively compare gradual syntactic enrichment
by computing the spearman correlation between tparseval (pparseval) and training step and find that
ρpparseval is significantly smaller than ρtparseval for both datasets. Interestingly, we also find that our
unsupervised procedure is able to produce better trees than the supervised probe on M-PCFGSET as
observed by comparing pparseval and tparseval. Overall, we conclude that supervised probing is unable
to discover latent tree structures as effectively as our method.

How does supervisory signal affect compositionality? Could a purely self-supervised objective
(i.e., no output logical form supervision) also lead to similar emergent tree-like behavior? To test
this, we experiment with training the transformer encoder with a masked language modeling objec-
tive, similar to Devlin et al. (2019) for COGS and GeoQuery. Concretely, for every S, we mask
out 15% of input tokens and jointly train a transformer encoder and a 1 layer feedforward network,
to produce contextual embeddings from which the feedforward network can decode word identities
for masked out words. As before, we collect checkpoints during training and plot both tparseval and
tscore over time in Figure 5. We find that tparseval does not improve over time for any of the mod-
els. Additionally, we find that tscore increases for all models on GeoQuery, but only for the 2 layer
model on COGS. Taken together, these results suggest that under the low data regime studied here,
transformers trained with a self-supervised objective do not learn tree-structured computations.

6 TREE PROJECTIONS AND MODEL BEHAVIOR

Given S, and corresponding contextual vectors f(S), the contextual dependence structure captures
the dependence between contextual vectors and words in S i.e., how much does vS

wi
change when

wj is perturbed to a different word. Contextual dependence structure is important for assessing
compositional behavior. For instance, consider the span p = red apples appearing in some sentences.
If the contextual vectors for p has large dependence on outside context, we expect the model to have
poor generalization to the span appearing in novel contexts i.e., poor compositional generalization.

6
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(a) COGS (b) M-PCFGSET

Figure 4: We plot pparseval and tparseval over time for the 4 layer transformer encoder on COGS and
M-PCFGSET. We find that tparseval improves gradually over time suggesting that the model becomes
more “syntax aware”. Such gradual syntax enrichment is not uncovered well by the probe since all
checkpoints after 4000 (for COGS) and 50000 (for M-PCFGSET) iterations have similar pparseval.

(a) Parsing Accuracies (b) Normalized Tree Scores

Figure 5: We plot tparseval and tscore at various checkpoints for models trained with a masked lan-
guage modeling objective on COGS (first) and GeoQuery (second). Only 2/5 models become tree-
structured and none learn tree projections aligned with gold syntax, suggesting that self-supervision
may fail to produce tree-like computation in a relatively low data regime.

We first show that tree projections reflect the contextual dependence structure implemented by a
transformer. Next, we show that both tscore and tparseval are better predictors of compositional gener-
alization than in-domain accuracy.

6.1 INDUCED TREES CORRESPOND TO CONTEXTUAL DEPENDENCE STRUCTURE

In-constituent 
perturbation

: ware + ϵ

apples deliciousarered

: wred + ϵ
Out-of-constituent 
perturbation

Figure 6: For word w (apples) in con-
stituent c, an in-constituent perturba-
tion adds noise ϵ ∼ N (0, 0.01) to an-
other word’s vector within c (red) while
an out-of-constituent perturbation adds
noise to a word vector at same relative
distance outside c (are).

Intuitively, greedily decoding with a SCI populated chart
makes split point decisions where resulting spans are
maximally invariant with one other. Thus, for a given
constituent c and a word w ∈ c, we expect vS

w to de-
pend more on words within the same constituent than
words outside the constituent. Thus, we compare the
change in vS

w when another word inside c is perturbed
(in-constituent perturbations) to the change when a word
outside c is perturbed (out-of-constituent perturbations),
where word perturbations are performed by adding gaus-
sian noise to corresponding word vectors in layer 0 (see
Figure 6). We ensure that both perturbations are made to
words at the same relative distance from w. As a control,
we also compute changes to vS

w when perturbations are
made with respect to constituents from random trees.

Setup and Results. We sample 500 random inputs from each of COGS, M-PCFGSET and Geo-
Query and consider encoders from all transformer models. We obtain the mean L2 distance between
the contextual vector of w in the original and perturbed sentence for in-constituent perturbations
(∆ic) and out-of-constituent perturbations (∆oc) and plot the relative difference between the two
in Figure 7. For 6/8 models, in-constituent perturbations result in larger L2 changes than out-
of-constituent perturbations (statistically significant according to a two-sided t-test, p < 10−4).
Meanwhile, when constituents are chosen according to random trees, changes resulting from both
perturbations are similar. Overall, this suggests that induced trees reflect the contextual dependence
structure learnt by a transformer.

7
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Figure 7: We measure the mean L2 distance in the contextual vector of words when in-constituent
and out-of-constituent words are perturbed. We plot the relative difference between ∆ic and ∆oc

when constituents are obtained from tree projections (in blue). As a control, we also compute ∆ic

and ∆oc when constituents are chosen from random trees (in orange). For all models except those
marked with ‡, in-constituent perturbations lead to significantly (as measured by a t-test, p < 10−5)
larger change to contextual vectors compared to out-of-constituent perturbations.

6.2 TREE-STRUCTUREDNESS CORRELATES BETTER WITH GENERALIZATION THAN
IN-DOMAIN ACCURACY

We study the connection between compositionality and generalization for the 4 layer transformer
encoder on COGS and GeoQuery 6. On each dataset, we train the model with 5 different random
seeds and collect checkpoints every 1000/500 iterations. For each checkpoint, we measure accuracy
on the in-domain validation set (IID acc) and accuracy on the out-of-domain compositional gen-
eralization set (CG acc). Additionally, we also compute tparseval and tscore for the encoders at each
of these checkpoints. To measure the relationship between compositionality and generalization, we
compute the spearman correlation between tparseval (tscore) and CG acc and denote that as ρCG

tparseval

(ρCG
tscore

). As a comparison, we also compute the correlation between IID acc and CG acc (ρCG
IID).

Results. We plot the relationship between various properties and generalization along with cor-
responding correlations in Figure 8. In general, we expect both IID acc and CG acc to improve
together over time, and so it is unsurprising to see that ρCG

IID > 0. Moreover, for COGS, both tparseval

and tscore increase over time, and so it is expected that both ρCG
tparseval

and ρCG
tscore

are positive. Crucially,
however, we find that both ρCG

tparseval
and ρCG

tscore
are greater than ρCG

IID on both COGS and GeoQuery.
Thus, tree-like behavior (tscore) as well as the right tree-like behavior (tparseval) are better predictors
of compositional generalization than in-domain accuracy. This result gives simple model selection
criteria to maximize CG accuracy in the absence of a compostional generalization test set (true
for most practical scenarios)—given a collection of checkpoints with similar in-domain accuracies,
choose the checkpoint with highest tscore or tparseval (if syntactic annotations are available) to get the
model with best generalization behavior, in expectation.

7 RELATED WORK

Measuring Linguistic Structure. A common analysis tool for assessing a model’s competence in
a specific linguistic phenomenon is behavioral testing (Linzen et al., 2016; Marvin & Linzen, 2018;
Ribeiro et al., 2020), where the model’s performance on a curated test set is used as the measure
of competence. Widely used in prior work to assess compositionality of neural models (Lake &
Baroni, 2018; Bahdanau et al., 2019; Yu & Ettinger, 2020), behavioral tests are inherently extrinsic,
since they are agnostic to whether the model implements an appropriately constrained, tree-like
computation. While most prior approaches for assessing intrinsic compositionality (Andreas, 2019;
McCoy et al., 2019) require putatively gold syntax trees, our proposed approach does not require
any pre-determined ground truth syntax, since we search over the space of all possible trees to find
the best tree structure that approximates a transformer’s computation.

Tree-structured Neural Networks. Inspired by the widely accepted belief that natural language
is mostly tree-structured (Chomsky, 1957), there have been several attempts to construct tree shaped

6IID acc perfectly predicts generalization for M-PCFGSET so we omit it in these experiments
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(a) IID acc vs CG acc (b) tscore vs CG acc (c) tparseval vs CG acc

Figure 8: We plot the spearman correlation between (a) IID acc and CG acc, (b) tscore and CG acc,
(c) tparseval and CG acc. We find that both tparseval and tscore correlate better with generalization than
in-domain accuracy. All correlations are statistically significant (p-values < 10−3)

.
neural networks for various NLP tasks, such as Recursive Neural Networks (Socher et al., 2013),
Tree RNNs (Tai et al., 2015), Recurrent Neural Network Grammars (Dyer et al., 2016), Neural
Module Networks (Andreas et al., 2016), Ordered Neuron (Shen et al., 2019) among others. These
approaches have largely been superseded by transformers (Vaswani et al., 2017), often pre-trained
on a large corpus of text (Devlin et al. (2019), inter alia). We show that transformers, though not
explicitly tree-structured, may still learn to become tree-like when trained on language data.

Invariances and Generalization. The general problem of studying model performance under do-
main shifts has been widely studied under domain generalization (Blanchard et al., 2011). When
domain shift is a result of changing feature covariates only, an effective strategy for domain gener-
alization is to learn domain invariant representations (Muandet et al., 2013; Ganin et al., 2016). We
apply the notion of domain invariance in the context of compositional generalization, and posit that
models that produce span representations that are more contextually invariant can generalize better
to inputs where the span appears in a novel context, which is precisely the motivation behind SCI.

8 CONCLUSION

When trained on language data, how can we know whether a transformer learns a compositional,
tree structured computation hypothesized to underlie human language processing? While extrin-
sic behavioral tests only assess if the model is capable of the same generalization capabilities as
those expected from tree-structured models, this work proposes an intrinsic approach that directly
estimates how well a parametric tree-structured computation approximates the model’s computa-
tion. Our method is unsupervised and parameter-free and provably upper bounds the representation
building process of a transformer with any tree-structured neural network, effectively providing a
functional projection of the transformer into the space of all tree structured models. The central
conceptual notion in our method is span contextual invariance (SCI) that measures how much the
contextual representation of a span depends on the context of the span vs. the content of the span.
SCI scores of all spans are plugged into a standard top-down greedy parsing algorithm to induce
a binary tree along with a corresponding tree score. From experiments, we show that tree projec-
tions uncover interesting training dynamics that a supervised probe is unable to discover—we find
that on 3 sequence transduction tasks, transformer encoders tend to become more tree-like over the
course of training, with tree projections that become progressively closer to true syntactic deriva-
tions on 2/3 datasets. We also find that tree-structuredness as well as parsing F1 of tree projections
is a better predictor of generalization to a compositionally challenging test set than in-domain ac-
curacy i.e., given a collection of models with similar in-domain accuracies, select the model that is
most tree-like for best compositional generalization. Overall, our results suggest that making further
progress on human-like compositional generalization might require inductive biases that encourage
the emergence of latent tree-like structure.
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A PROOFS

Lemma 1. L(f, gϕ∗ , T ) ≤
∑

S∈D SCI(S, T (S))

Proof. Let l(f, gϕ, S, T ) ≜
∑

s∈T (S) d(gϕ(s, T (s)),v
S
s ) for any S ∈ D, where g is a tree-structured

network indexed by ϕ ∈ Rp. The overall error of gϕ on D is

L(f, gϕ, T ) =
∑
S∈D

l(f, gϕ, S, T ). (7)

Let ϕ∗ ≜ argminϕ L(f, gϕ, T ). Next, consider ϕ̂ ∈ Rp such that gϕ̂(s, T (s)) = ṽs for all s ∈ D.

Such a ϕ̂ always exists for large enough p, since there exists a unique ṽs for any p given D and f .
Clearly, l(f, gϕ̂, S, T ) =

∑
s∈T (S) d(v

S
s , ṽs). By definition, we have

L(f, gϕ∗ , T ) ≤ L(f, gϕ̂, T ) (8)

=
∑
S∈D

∑
s∈T (S)

d(vS
s , ṽs) =

∑
S∈D

SCI(S, T (S)). (9)

Theorem 1. minϕ,T L(f, gϕ, T ) ≤
∑

S∈D minT (S) SCI(S, T (S)). In other words, the best tree
structured approximation to f has an error upper bounded by cumulative SCI scores.

Proof. We have

min
ϕ,T
L(f, gϕ, T ) = min

T
min
ϕ
L(f, gϕ, T ) (10)

For any given T , we have minϕ L(f, gϕ, T ) ≤
∑

S∈D SCI(S, T (S)). Thus minimizing both sides
with respect to T , we have

min
T

min
ϕ
L(f, gϕ, T ) ≤ min

T

∑
S∈D

SCI(S, T (S)) (11)

=
∑
S∈D

min
T (S)

SCI(S, T (S)) (12)
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Under Assumption 1 and Theorem 1, we have the proof for Corollary 1.1 which we present next.

Corollary 1.1. Under Assumption 1, minϕ,T L(f, gϕ, T ) =
∑

S∈D minT (S) SCI(S, T (S)). More-
over, Tproj(S) = argminT (S) SCI(S, T (S)) for any S ∈ D.

Proof. Let sT be the collection of all spans that occur as a constituent for some T (S) where S ∈ D.
We have

L(f, gϕ, T ) =
∑
S∈D

∑
s∈T (S)

d(gϕ(s, T (s)),v
S
s ) (13)

=
∑
s∈sT

∑
S∈Ss

d(gϕ(s, T (s)),v
S
s ). (14)

Now, using Assumption 1, we note that

∑
S∈Ss

d(gϕ(s, T (s)),v
S
s ) ≥ min

v

∑
S∈Ss

d(v,vS
s ) =

∑
S∈Ss

d(ṽs,v
S
s ). (15)

Combining Equation 15 and Lemma 1, we have

min
ϕ
L(f, gϕ, T ) =

∑
S∈D

SCI(S, T (S)) (16)

Now, we have

Tproj = argmin
T

[
min
ϕ
L(f, gϕ, T )

]
= argmin

T

∑
S∈D

SCI(S, T (S)) (17)

Thus, Tproj(S) = argminT (S) SCI(S, T (S))

Next, we consider specific examples of distance metric d, and what Assumption 1 implies for
context-free vectors ṽs.

Example A.1. Suppose d is the euclidean L2 distance i.e., d(x,y) = ∥x−y∥. Then, Assumption 1
requires that ṽs =

1
|Ss|

∑
S∈Ss

vS
s

Proof Sketch. We have v∗
s = argminv

∑
S∈Ss

d(vS
s ,v) = argminv

∑
S∈Ss

∥v − vS
s ∥. Setting

derivatives with respect to v to 0, we have v∗
s = 1

|Ss|
∑

S∈Ss
vS
s

Example A.2. Let d be the cosine distance of x and y i.e., d(x,y) = 1 − x⊤y
∥x∥∥y∥ . Then, Assump-

tion 1 requires that ṽs =
1

|Ss|
∑

S∈Ss

vS
s

∥vS
s ∥

Proof Sketch. We have v∗
s = argminv

∑
S∈Ss

d(vS
s ,v) = argmaxv

∑
S∈Ss

v⊤vS
s

∥v∥∥vS
s ∥ =

argmaxv
v⊤

∥v∥
(∑

S∈Ss

vS
s

∥vS
s ∥

)
. Thus, v∗

s = k
∑

S∈Ss

vS
s

∥vS
s ∥ for any k > 0

B DATASET PREPROCESSING

Dataset statistics are in Table 2.

COGS. We use the standard train, validation and test splits provided by Kim & Linzen (2020),
where we use the “gen” split as our test set. The validation set is drawn from the same distribution
as the training data, while the test set consists of compositionally challenging input sentences.
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Figure 9: We plot d(v∗
s , ṽs) for randomly sampled spans at various points during training. As a

control, we also plot d(vS
sc , ṽs) for a random span sc. We observe that for COGS and GeoQuery,

the distance between the optimal v∗
s and ṽs eventually becomes less than 0.05. We conclude that

the conditions of Assumption 1 approximately hold true for 2/3 datasets.

Dataset Train Validation Test

COGS 24115 3000 21000
M-PCFGSET 65734 16434 10175
GeoQuery 434 109 334

Table 2: Dataset Statistics

M-PCFGSET. We make two modifications to the PCFGSET dataset. First, we remove commas
from expressions so that the model is forced to implictly learn to correctly partition the input ex-
pression for a correct intrepretation. To ensure that a unique parse exists even without commas, we
additionally ensure that all lists have exactly 2 elements. For instance, the expression append A B
C, D E F is modified into append A B E F that has the unique interpretation append([A,
B], [E, F]) since all lists have exactly 2 elements. Second, we replace the remove first
and remove second operations with interleave first and interleave second, where
the interleave operation takes two lists (say A B and C D) and interleaves them to either pro-
duce A C B D or C A D B. This modification ensures that intermediate constituents in the expression
are not discarded, similar to how intermediate constituents are almost never discarded in natural
language utterances.

GeoQuery. We use the pre-processed JSON files corresponding to the query split from (Finegan-
Dollak et al., 2018). We create an 80/20 split of the original training data, to create an IID validation
set.

C FUNCTIONAL VS. TOPOLOGICAL TREE-STRUCTUREDNESS

We emphasize that our approach finds a functional tree approximation to a transformer, and not a
topological one. That is, we fit a separate, tree structured neural network to vector representations
from a transformer, instead of decoding a tree-structure from the attention patterns. As a result, our
definition of tree-structuredness does not restrict the transformer’s attention pattern to be necessarily
tree structured (see Figure 10 for examples).

D ANALYZING INDUCED TREE STRUCTURES

We choose the checkpoint with best bracketing F1 score on the training split for all our datasets,
and compute corresponding bracketing F1 scores on the IID validation set in Table 3. As a baseline,
we compare with standard constituency parsing baselines: LBranch (choosing a completely left
branching tree), RBranch (choosing a completely right branching tree) and Random (choosing a
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SCI score: How well can a tree shaped computation be used to approximate a graph?

ϕ

(a) sci doesnt test for tree-likeness in the 
topological space but in the 
functional space. A model that is not 
a perfect binary branching tree, for 
example (i) could still be functionally 
approximated by a tree with nodes of 
varying expressivity, therefore while 
not a tree topology the graph is tree-
like functionally. However graphs in 
(ii) cannot be approximated by a tree 
type functional computation and 
would have a poor sci score as well 
as a normalized sci score, (iii) graphs 
where the linear order is all that 
matters and the simplest tree like 
computation (straight-through) would 
have a low-normalized sci score but 
a high SCI score! Further models 
could be sparse and yet not tree like 
as in the graph on the left in (ii)

(i) (((red apples) (are)) 
(delicious))

((red apples) 
(are delicious))

Functionally Tree-like

To
po

lo
gi

ca
ll

y 
Tr

ee
-l

ik
e

(ii)

(iii) (iv)

Figure 10: We show 3 instances of computations implemented by a transformer on the input red
apples are delicious along with tree projections our method outputs for each instance. We divide the
space of possibilities into 4 quadrants. In quadrant-(i), we show an instance that is both topologically
as well as functionally tree-like. quadrant-(ii) is empty, since no transformer can be topologically
tree-like but not a good functional approximation to a tree. In quadrant-(iii) we show a transformer
that is either topologically nor functionally tree-like. Finally, in quadrant-(iv), we show a transformer
that is functionally tree-like but does not resemble a tree structure topologically.

Method COGS M-PCFGSET GeoQuery

TreeProjections 75.6 46.5 48.0
Random 44.9 26.8 41.0
LBranch 30.2 17.9 26.0
RBranch 75.2 58.1 69.7

Table 3: Parsing accuracies

random binary tree). Interestingly, we find that the trees discovered by our approach on COGS beats
RBranch, which is a competitive constituency parsing baseline for English.

Algorithm 1 Tree Projections via greedy SCI minimization

1: function TREEPROJECTION(S, f )
2: return TREEPROJECTIONRECURSE(S, f, 1, |S|)
3: end function

4: function TREEPROJECTIONRECURSE(S, f, i, j)
5: if i = j then
6: ▷ leaf node
7: return wi, 0;
8: else
9: ▷ greedily select split point to minimize SCI of resulting constituents

10: k∗ ← argmink∈[i,j)[SCI(Si,k) + SCI(Sk+1,j)];
11: sk∗ ← SCI(Si,k∗) + SCI(Sk∗+1,j);
12: ▷ select a random split point for normalization
13: sb ← SCI(Si,kb

) + SCI(Skb+1,j), kb ∼ U [i, j − 1];
14: ▷ Recursively call the function to get a tree structure and score for left span
15: Sl, tsl ← TREEPROJECTIONRECURSE(S, f, i, k∗);
16: ▷ Recursively call the function to get a tree structure and score for the right span
17: Sr, tsr ← TREEPROJECTIONRECURSE(S, f, k∗ + 1, j);
18: return ⟨Sl, Sr⟩, sb − sk∗ + tsl + tsr
19: end if
20: end function
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