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ABSTRACT

When trained on language data, do transformers learn some arbitrary computation
that utilizes the full capacity of the architecture or do they learn a simpler, tree-
like computation, hypothesized to underlie compositional meaning systems like
human languages? There is an apparent tension between compositional accounts
of human language understanding, which are based on a restricted bottom-up com-
putational process, and the enormous success of neural models like transformers,
which can route information arbitrarily between different parts of their input. One
possibility is that these models, while extremely flexible in principle, in practice
learn to interpret language hierarchically, ultimately building sentence representa-
tions close to those predictable by a bottom-up, tree-structured model. To evaluate
this possibility, we describe an unsupervised and parameter-free method to func-
tionally project the behavior of any transformer into the space of tree-structured
networks. Given an input sentence, we produce a binary tree that approximates the
transformer’s representation-building process and a score that captures how “tree-
like” the transformer’s behavior is on the input. While calculation of this score
does not require training any additional models, it provably upper-bounds the fit
between a transformer and any tree-structured approximation. Using this method,
we show that transformers for three different tasks become more tree-like over the
course of training, in some cases unsupervisedly recovering the same trees as su-
pervised parsers. These trees, in turn, are predictive of model behavior, with more
tree-like models generalizing better on tests of compositional generalization.

1 INTRODUCTION

Consider the sentence Jack has more apples than Saturn has rings, which you have almost cer-
tainly never encountered before. Such compositionally novel sentences consist of known words in
unknown contexts, and can be reliably interpreted by humans. One leading hypothesis suggests
that humans process language according to hierarchical tree-structured computation and that such
a restricted computation is, in part, responsible for compositional generalization. Meanwhile, pop-
ular neural network models of language processing such as the transformer can in principle, learn
an arbitrarily expressive computation over sentences, with the ability to route information between
any two pieces of the sentence. In practice, when trained on language data, do transformers instead
constrain their computation to look equivalent to a tree-structured bottom-up computation?

While generalization tests on benchmarks (Lake & Baroni, 2018; Bahdanau et al., 2019; Hupkes
et al., 2019; Kim & Linzen, 2020, among others) assess if a transformer’s behavior is aligned with
tree-like models, they do not measure if the transformer’s computation is tree-structured, largely
because model behavior on benchmarks could entirely be due to orthogonal properties of the dataset
(Patel et al., 2022). Thus, to understand if transformers implement tree-structured computations, the
approach we take is based on directly approximating them with a separate, tree-structured computa-
tion. Prior methods based on this approach (Andreas, 2019; McCoy et al., 2019) require putatively
gold syntax trees, which not only requires committing to a specific theory of syntax, but crucially,
may not exist in some domains due to syntactic indeterminacy. Consequently, these methods will
fail to recognize a model as tree-like if it is tree-structured according to a different notion of syntax.
Moreover, all of these approaches involve an expensive training procedure for explicitly fitting a
tree-structured model (Socher et al., 2013; Smolensky, 1990) to the neural network.
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Figure 1: (a) Given a transformer modelf , our method �nds thetree projectionof f i.e., binary trees
corresponding to the tree-structured neural networkg� proj (in the space of all tree-structured models)
that best approximates the outputs off on a given set of strings. (b) (i) Given a string, we compute
context-free representations (~v ij ) for all spans of the string via attention masking (Section 3). (ii)
We use the distance between (average-pooled) context-free and contextual representations (v ij ) to
populate a chart data structure. (iii) We decode a tree structure from chart entries.

Instead, we present a method that is completely unsupervised (no gold syntax needed) and
parameter-free (no neural network �tting needed). At a high level, our proposed methodfunction-
ally projects1 transformers into the space of all tree-structured models, via an implicit search over
the joint space of tree structures and parameters of corresponding tree-structured models (Figure 1).
The main intuition behind our approach is to appeal to the notion ofrepresentational invariance:
bottom-up tree-structured computations over sentences build intermediate representations that are
invariant to outside context, and so we can approximate transformers with a tree-structured compu-
tation by searching for a “bracketing” of the sentence where transformer representations of inter-
mediate brackets are maximally invariant to their context. Concretely, the main workhorse of our
approach is a subroutine that computes distances between contextual and context-free representa-
tions of all spans of a sentence. We use these distances to induce atree projectionof the transformer
using classical chart parsing (Section 3), along with a score that estimates tree-structuredness.

First, we prove that our approach can �nd thebesttree-structured account of a transformer's compu-
tation under mild assumptions (Theorem 1). Empirically, we �nd transformer encoders of varying
depths become more tree-like as they train on three sequence transduction datasets, with correspond-
ing tree projections gradually aligning with gold syntax on two of three datasets (Section 5). Then,
we use tree projections as a tool to predict behaviors associated with compositionality: induced trees
reliably re�ect contextual dependence structure implemented by encoders (Section 6.1) and both tree
scores as well as parsing F1 of tree projections better correlate with compositional generalization to
con�gurations unseen in training than in-domain accuracy on two of three datasets (Section 6.2).

2 BACKGROUND

How can we compute the meaning ofred apples are delicious? Substantial evidence (Crain &
Nakayama, 1987; Pallier et al., 2011; Hale et al., 2018) supports the hypothesis that semantic in-
terpretation of sentences by humans involves atree-structured, hierarchical computation, where
smaller constituents (red, apples) recursively combine into larger constituents (red apples), until
we reach the full sentence. Concretely, suppose we have a sentenceS , f w1; w2; : : : ; wjSj g.
Let T be a function that returns a binary tree for any sentenceS, de�ned recursively asT(S) ,
hT(S1;j ); T(Sj +1 ;jSj )i whereT(Sa;b ) refers to a subtree over the spanSa;b , f wa ; wa+1 ; : : : ; wbg.
We say that a spanSa;b 2 T(S) if the nodeT(Sa;b ) exists as a subtree inT(S). For notational con-
venience, we sometimes useSl andSr as the left and right subtrees forT(S) i.e.,T(S) = hSl ; Sr i .

1We provide afunctionalaccount of the transformer's computation and not atopologicalaccount, i.e., we are
agnostic to whether the attention patterns of the transformer themselves look tree structured—see Appendix C
for examples.
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Compositionality in Meaning Representations. While theories of compositional meaning for-
mation might differ on speci�cs of syntax, at a high-level, they propose that computing the meaning
of S must involve a bottom-up procedure along some syntax treeT(S) of the sentenceS. Formally,
we say that a meaning representation systemm is compositional if the meaningm(s) of some ex-
pressions is a homomorphic imageof the syntax ofs i.e., m(s) = � (m(sl ); m(sr )) for some
� following Montague (1970). Crucially, we note that such a� exists only ifm(s) can be fully
determined by the contents ofs, that is, if m(s) is contextually invariant. While there are several
phenomena that necessarily require a non-compositional context-sensitive interpretation (indexicals,
idioms, pronouns, lexical ambiguity among others), compositional interpretation remains a central
component in explanations of the human ability to systematically interpret novel sentences.

Compositionality in Neural Models. A class of neural networks that are obviously composi-
tional are tree-structured models such as Socher et al. (2013), that obtainvector representationsof
sentences by performing a bottom-up computation over syntax. Speci�cally, givenS and a corre-
sponding binary treeT(S), the output of the tree-structured networkg� is de�ned recursively—for
any spanp 2 T(S), g� (p; T(p)) , h� (g� (pl ; T(pl )) ; g� (pr ; T(pr )) whereh� : Rd � Rd 7! Rd

is some feedforward neural network. For leaf nodeswi , g� (wi ; T(wi )) , � w i , where� w 2 Rd

represents the word embedding forw. The parameters of the network are� = f �; � w1 ; � w2 ; : : :g.

3 OUR APPROACH

While tree-structured networks were built to re�ect the compositional structure of natural language,
they have been superseded by relatively unstructured transformers (Vaswani et al., 2017). How
can we measure if thecomputationimplemented by a transformer is compositional and tree-like?
We start by noting that in any bottom-up tree computation over a sentence, representation of an
intermediate constituent depends only on the span it corresponds to, while being fully invariant
to outside context. Thus, one way to assess tree-structuredness of a computation over some span
is to measurecontextual invarianceof the resulting representation. Consequently, we construct a
tree-structured approximation of a transformer's computation over a sentence by searching for a
bracketing of the sentence where spans have maximal contextual invariance.

3.1 SPAN CONTEXTUAL INVARIANCE

Figure 2: We use a T-shaped at-
tention mask with a threshold layer
to obtain approximate context-free
vectors for transformers.

Supposef is a transformer model that produces contextual
vectors of words inS asf (S) , f vS

w1
; vS

w2
; : : : ; vS

w j S j
g where

vS
w is a contextual vector representation ofw. Given a spanp,

let vS
p be the span representation of the contextual vectors of

words inp, vS
p =

P
w2 p vS

w . Similarly, let ~vp be acontext-
freerepresentation of the spanp. For transformers, we obtain
context-free representations through a simple attention mask-
ing scheme. In particular, to obtain~vp, we apply a “T-shaped”
attention mask and take the pooled representation of the words
in p at the �nal layer (Figure 2). The mask ensures that atten-
tion heads do not attend to tokens outside ofp after an optional
threshold layer2

We de�ne span contextual invariance (SCI) of a spanp in the
sentenceS asSCI(S; p) , d(vS

p ; ~vp) for some distance func-
tion d. Similarly, we de�ne the cumulativeSCI score for a tree
T to be:

SCI(S; T) ,
X

s2 T

d(vS
p ; ~vp): (1)

2This procedure outputs vectors that are entirely context-free only if the threshold is exactly 0, but we �nd
that tuning the threshold layer often leads to signi�cantly better induced parses.
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3.2 COMPUTING TREE PROJECTIONS BY MINIMIZING SCI

Consider the collection of strings,D = f (S)g, and some functionT that produces binary trees for
anyS 2 D . The cumulative error from approximating outputs of the transformerf with outputs of
a tree-structured networkg� structured according toT can be written as

L (f; g � ; T) ,
X

S2D

X

p2 T (S)

d(g� (p; T(p)) ; vS
p ): (2)

Suppose we are interested in �nding the best tree-structured approximation tof over all possible
trees i.e. a con�guration of tree structures and corresponding model parameters that best approxi-
mate the transformer's behavior. We de�ne this as theexact tree projectionof f ,

� proj; Tproj , arg min
�;T

L (f; g � ; T): (3)

Theorem 1. min �;T L (f; g � ; T) �
P

S2D minT (S) SCI(S; T(S)) . In other words, the best tree
structured approximation tof has an error upper bounded by cumulativeSCI scores.

In general, �nding tree projections involves a joint search over all discrete tree structuresT(S) as
well as over continuous parameters� , which is intractable. However, we substantially simplify this
search using Theorem 1, since the upper bound depends only on parsesT(S) and properties of the
transformer, and can be exactly minimized for a givenf in polynomial time, with ef�cient parsing
algorithms. We minimize this upper bound itself to approximately recover the best tree-structured
approximation tof , over all choices of trees and parameters. The output of this minimization is an
approximate tree projection,

bTproj(S) = arg min
T (S)

SCI(S; T(S)) (4)

for everyS 2 D . Under a mild assumption3, SCI minimization leads to tree projectionsexactly.
Assumption 1. Let Sp denote the collection of sentences that contain the spanp. Then, for every
spanp, we haveminv

P
S2 Sp

d(vS
p ; v) =

P
S2 Sp

d(vS
p ; ~vp). That is, context-free vectors minimize

the cumulative distance to their contextual counterparts.

Corollary 1.1. Under Assumption 1,min �;T L (f; g � ; T) =
P

S2D minT (S) SCI(S; T(S)) . More-
over,Tproj(S) = arg min T (S) SCI(S; T(S)) for anyS 2 D .

3.3 MEASURING INTRINSIC COMPOSITIONALITY

SCI minimization provides two natural ways to measure intrinsic compositionality off on D. To
measure tree-structuredness, we use

tscore ,

P
S2D ET SCI(S; T) � SCI(S; bTproj(S))

jDj
; (5)

which computes the averagedSCI score of induced trees, normalized against the expectedSCI score
under a uniform distribution over trees. We �nd normalization to be necessary to prevent our method
from spuriously assigning high tree-structuredness to entirely context-free encoders (that have high
SCI scores forall trees). When gold syntaxTg is available, we use

tparseval, PARSEVAL( bTproj; Tg; D); (6)

to measure bracketing F1 score (PARSEVAL; Black et al. (1991)) score ofbTproj againstTg onD.

4 EXPERIMENTAL SETUP

Our experiments4 are organized as follows. First, we show that on 3 sequence transduction tasks,
transformers of varying depths become more tree-like over the course of training, and sometimes
learn tree projections that progressively evolve towards ground truth syntax. Then, we show how
tree projections can be used to assess various model behaviors related to compositionality.

3Figure 9 in the Appendix shows that this assumption approximately holds in practice.
4Code and data will be available here
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Datasets. We consider three datasets (Table 1) commonly used for benchmarking compositional
generalization—COGS (Kim & Linzen, 2020), M-PCFGSET (Hupkes et al., 2019) and GeoQuery
(Zelle & Mooney, 1996). COGS consists of automatically generated sentences from a context-free
grammar paired with logical forms, split into in-domain examples (for training) and a composition-
ally challenging evaluation set. M-PCFGSET is a slightly modi�ed version5 of PCFGSET (Hupkes
et al., 2019), where inputs are a nested sequence of expresssions that specify a unary or binary
operation over lists. The objective is to execute the function speci�ed by the input to obtain the
�nal list. We focus on the “systematicity split” for measuring compositional generalization. Finally,
GeoQuery consists of natural language queries about US geography paired with logical forms. To
measure compositional generalization, we use the “query” split from Finegan-Dollak et al. (2018).

Implementation Details. We use greedy top down chart parsing to approximately minimizeSCI.
In particular, we useSCI scores for allO(jSj2) spans of a stringS to populate a chart data structure,
which is used to induce a tree by minimizingSCI via a top down greedy procedure (see Algorithm 1
in Appendix), similar to Stern et al. (2017). Our procedure outputs a tree and simultaneously returns
normalizedSCI score of the tree, computing a sampling estimate of expectedSCI score (Equa-
tion 5).We train transformer encoder-decoder models with encoders of depthsf 2, 4, 6g and a �xed
decoder of depth 2. We omit 6-layer transformer results for GeoQuery as this model rapidly over�t
and failed to generalize, perhaps due to the small size of the dataset. We choose a shallow de-
coder to ensure that most of the sentence processing is performed on the encoder side. We train
for 100k iterations on COGS, 300k iterations on M-PCFGSET and 50k iterations on GeoQuery.
We collect checkpoints every 1000, 2000 and 500 gradient updates and use the encoder at these
checkpoints to obtain parses as well as tree scores. In all experiments,d is cosine distance i.e.,
d(x ; y ) = 1 � x > y

kx kk y k . All transformer layers have 8 attention heads and a hidden dimensionality
of 512. We use a learning rate of 1e-4 (linearly warming up from 0 to 1e-4 over 5k steps) with the
AdamW optimizer. All accuracies refer to exact match accuracy against the gold target sequence.
For all seq2seq transformers, we tune the threshold layer based ontparseval.

Inputs Outputs

i.
The ball was found ball( x 1 ) AND find.theme( x 3 ; x 1 )
A cookie was blessed cookie( x 1 ) AND bless.theme( x 3 ; x 1 )

ii.
copy interleavesecond reverse shift H13 C19 H9 O20 H9 H13 O20 C19
repeat interleavesecond interleave�rst S1 E3 W3 N11 H4 Y3 L8 E1 R13 T12 E1 T12 L8 E1 R13 T12 E1 T12

iii.
Which state has the lowest population density? (A, smallest(B, ( state(A), density(A, B))))
What is the population density of Wyoming? (A, ( density(B, A), const(B, stateid(wyoming))))

Table 1: Example(x; y) pairs from COGS (i), M-PCFGSET (ii) and GeoQuery (iii). See Ap-
pendix B for more details on pre-processing as well as dataset statistics.

5 TRAINED TRANSFORMERS IMPLEMENT A TREE-LIKE COMPUTATION

How does intrinsic compositionality of a transformer encoder evolve during the course of training
on sequence transduction tasks? To study this, we plottscore(how tree-like is a model?) andtparseval
(how accurate is the tree projection of a model?) of encoder checkpoints throughout training. As
a comparison, we track how well a supervised probe recovers syntax from encoders—that is, we
train a1 layer transformer decoder to autoregressively predict linearizedgold parse trees ofS from
transformer outputsf (S) at various points of training, and measure the PARSEVAL score of probe
outputs (pparseval) on a test set.

Results. We plot tparsevalandtscore over the course of training in Figure 3.We observe that 7/8
encoders gradually become more tree-likei.e., increasetscoreover the course of training, with the 4
layer transformer on GeoQuery being the exception. Interestingly, we note thattparsevalalso increases
over time for all encoders on COGS and M-PCFGSET suggesting that thetree projection of trained
transformers progressively becomes more like ground-truth syntax. In other words, all encoders
trained on COGS and M-PCFGSET learn a computation that is gradually more “syntax aware”. Can
supervised probing also reveal this gradual syntactic enrichment? We plot PARSEVAL score of

5see Appendix B for details.

5



Published as a conference paper at ICLR 2023

(a) Normalized Tree Scores for COGS, M-PCFGSET and GeoQuery (" is better).

(b) Parsing Accuracies for COGS, M-PCFGSET and GeoQuery (" is better).

Figure 3: We plottscore andtparsevalby computing approximate tree projections at various check-
points. 7/8 models become more tree-structured (increasedtscore) and all models on COGS and M-
PCFGSET learn tree projections that gradually align with ground truth syntax (increasedtparseval).

parse trees predicted by the probe on held out sentences (pparseval) in Figure 4—whilepparsevaldoes
improve over time on both COGS and M-PCFGSET, we observe that all checkpoints after some
threshold have similar probing accuracies. We quantitatively compare gradual syntactic enrichment
by computing the spearman correlation betweentparseval (pparseval) and training step and �nd that
� pparseval is signi�cantly smaller than� t parseval for both datasets. Interestingly, we also �nd that our
unsupervised procedure is able to produce better trees than thesupervisedprobe on M-PCFGSET as
observed by comparingpparsevalandtparseval. Overall, we conclude that supervised probing is unable
to discover latent tree structures as effectively as our method.

How does supervisory signal affect compositionality? Could a purely self-supervised objective
(i.e., no output logical form supervision) also lead to similar emergent tree-like behavior? To test
this, we experiment with training the transformer encoder with a masked language modeling objec-
tive, similar to Devlin et al. (2019) for COGS and GeoQuery. Concretely, for everyS, we mask
out 15% of input tokens and jointly train a transformer encoder and a 1 layer feedforward network,
to produce contextual embeddings from which the feedforward network can decode word identities
for masked out words. As before, we collect checkpoints during training and plot bothtparsevaland
tscore over time in Figure 5. We �nd thattparsevaldoes not improve over time for any of the mod-
els. Additionally, we �nd thattscore increases for all models on GeoQuery, but only for the 2 layer
model on COGS. Taken together, these results suggest that under the low data regime studied here,
transformers trained with a self-supervised objective do not learn tree-structured computations.

6 TREE PROJECTIONS ANDMODEL BEHAVIOR

GivenS, and corresponding contextual vectorsf (S), thecontextual dependence structurecaptures
the dependence between contextual vectors and words inS i.e., how much doesvS

w i
change when

wj is perturbed to a different word. Contextual dependence structure is important for assessing
compositional behavior. For instance, consider the spanp = red applesappearing in some sentences.
If the contextual vectors forp has large dependence on outside context, we expect the model to have
poor generalization to the span appearing innovel contextsi.e., poor compositional generalization.
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(a) COGS (b) M-PCFGSET

Figure 4: We plotpparsevalandtparsevalover time for the 4 layer transformer encoder on COGS and
M-PCFGSET. We �nd thattparsevalimproves gradually over time suggesting that the model becomes
more “syntax aware”. Such gradual syntax enrichment is not uncovered well by the probe since all
checkpoints after 4000 (for COGS) and 50000 (for M-PCFGSET) iterations have similarpparseval.

(a) Parsing Accuracies (b) Normalized Tree Scores

Figure 5: We plottparsevalandtscore at various checkpoints for models trained with a masked lan-
guage modeling objective on COGS (�rst) and GeoQuery (second). Only 2/5 models become tree-
structured and none learn tree projections aligned with gold syntax, suggesting that self-supervision
may fail to produce tree-like computation in a relatively low data regime.

We �rst show that tree projections re�ect the contextual dependence structure implemented by a
transformer. Next, we show that bothtscoreandtparsevalare better predictors of compositional gener-
alization than in-domain accuracy.

6.1 INDUCED TREES CORRESPOND TOCONTEXTUAL DEPENDENCE STRUCTURE

Figure 6: For wordw (apples) in con-
stituent c, an in-constituent perturba-
tion adds noise� � N (0; 0:01) to an-
other word's vector withinc (red) while
an out-of-constituent perturbation adds
noise to a word vector at same relative
distance outsidec (are).

Intuitively, greedily decoding with aSCI populated chart
makes split point decisions where resulting spans are
maximally invariant with one other. Thus, for a given
constituentc and a wordw 2 c, we expectvS

w to de-
pend more on words within the same constituent than
words outside the constituent. Thus, we compare the
change invS

w when another word insidec is perturbed
(in-constituentperturbations) to the change when a word
outsidec is perturbed (out-of-constituentperturbations),
where word perturbations are performed by adding gaus-
sian noise to corresponding word vectors in layer 0 (see
Figure 6). We ensure that both perturbations are made to
words at the samerelative distancefrom w. As a control,
we also compute changes tovS

w when perturbations are
made with respect to constituents from random trees.

Setup and Results. We sample 500 random inputs from each of COGS, M-PCFGSET and Geo-
Query and consider encoders from all transformer models. We obtain themeanL 2 distance between
the contextual vector ofw in the original and perturbed sentence for in-constituent perturbations
(� ic ) and out-of-constituent perturbations (� oc) and plot the relative difference between the two
in Figure 7. For 6/8 models, in-constituent perturbations result in largerL 2 changes than out-
of-constituent perturbations (statistically signi�cant according to a two-sidedt-test, p < 10� 4).
Meanwhile, when constituents are chosen according to random trees, changes resulting from both
perturbations are similar. Overall, this suggests thatinduced trees re�ect the contextual dependence
structure learnt by a transformer.
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Figure 7: We measure the meanL 2 distance in the contextual vector of words whenin-constituent
andout-of-constituentwords are perturbed. We plot the relative difference between� ic and� oc
when constituents are obtained from tree projections (in blue). As a control, we also compute� ic
and� oc when constituents are chosen from random trees (in orange). For all models except those
marked withz, in-constituentperturbations lead to signi�cantly (as measured by at-test,p < 10� 5)
larger change to contextual vectors compared toout-of-constituentperturbations.

6.2 TREE-STRUCTUREDNESS CORRELATES BETTER WITH GENERALIZATION THAN
IN-DOMAIN ACCURACY

We study the connection between compositionality and generalization for the 4 layer transformer
encoder on COGS and GeoQuery6. On each dataset, we train the model with 5 different random
seeds and collect checkpoints every 1000/500 iterations. For each checkpoint, we measure accuracy
on the in-domain validation set (IID acc) and accuracy on the out-of-domain compositional gen-
eralization set (CG acc). Additionally, we also computetparsevalandtscore for the encoders at each
of these checkpoints. To measure the relationship between compositionality and generalization, we
compute the spearman correlation betweentparseval (tscore) and CG accand denote that as� CG

t parseval

(� CG
t score

). As a comparison, we also compute the correlation betweenIID acc andCG acc(� CG
IID ).

Results. We plot the relationship between various properties and generalization along with cor-
responding correlations in Figure 8. In general, we expect bothIID acc andCG accto improve
together over time, and so it is unsurprising to see that� CG

IID > 0. Moreover, for COGS, bothtparseval

andtscore increase over time, and so it is expected that both� CG
t parseval

and� CG
t score

are positive. Crucially,
however, we �nd that both� CG

t parseval
and � CG

t score
are greater than� CG

IID on both COGS and GeoQuery.
Thus, tree-like behavior (tscore) as well as theright tree-like behavior (tparseval) are better predictors
of compositional generalization than in-domain accuracy. This result gives simplemodel selection
criteria to maximize CG accuracy in the absence of a compostional generalization test set (true
for most practical scenarios)—given a collection of checkpoints with similar in-domain accuracies,
choose the checkpoint with highesttscoreor tparseval(if syntactic annotations are available) to get the
model with best generalization behavior, in expectation.

7 RELATED WORK

Measuring Linguistic Structure. A common analysis tool for assessing a model's competence in
a speci�c linguistic phenomenon isbehavioral testing(Linzen et al., 2016; Marvin & Linzen, 2018;
Ribeiro et al., 2020), where the model's performance on a curated test set is used as the measure
of competence. Widely used in prior work to assess compositionality of neural models (Lake &
Baroni, 2018; Bahdanau et al., 2019; Yu & Ettinger, 2020), behavioral tests are inherentlyextrinsic,
since they are agnostic to whether the model implements an appropriately constrained, tree-like
computation. While most prior approaches for assessing intrinsic compositionality (Andreas, 2019;
McCoy et al., 2019) require putatively gold syntax trees, our proposed approach does not require
any pre-determined ground truth syntax, since we search over the space ofall possible trees to �nd
the best tree structure that approximates a transformer's computation.

Tree-structured Neural Networks. Inspired by the widely accepted belief that natural language
is mostly tree-structured (Chomsky, 1957), there have been several attempts to construct tree shaped

6IID acc perfectly predicts generalization for M-PCFGSET so we omit it in these experiments
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(a) IID acc vs CG acc (b) tscorevs CG acc (c) tparsevalvs CG acc

Figure 8: We plot the spearman correlation between (a)IID acc andCG acc, (b) tscoreandCG acc,
(c) tparsevalandCG acc. We �nd that bothtparsevalandtscorecorrelate better with generalization than
in-domain accuracy. All correlations are statistically signi�cant (p-values< 10� 3)

.

neural networks for various NLP tasks, such as Recursive Neural Networks (Socher et al., 2013),
Tree RNNs (Tai et al., 2015), Recurrent Neural Network Grammars (Dyer et al., 2016), Neural
Module Networks (Andreas et al., 2016), Ordered Neuron (Shen et al., 2019) among others. These
approaches have largely been superseded by transformers (Vaswani et al., 2017), often pre-trained
on a large corpus of text (Devlin et al. (2019),inter alia). We show that transformers, though not
explicitly tree-structured, may still learn to become tree-like when trained on language data.

Invariances and Generalization. The general problem of studying model performance under do-
main shifts has been widely studied under domain generalization (Blanchard et al., 2011). When
domain shift is a result of changing feature covariates only, an effective strategy for domain gener-
alization is to learndomain invariant representations(Muandet et al., 2013; Ganin et al., 2016). We
apply the notion of domain invariance in the context of compositional generalization, and posit that
models that produce span representations that are more contextually invariant can generalize better
to inputs where the span appears in a novel context, which is precisely the motivation behindSCI.

8 CONCLUSION

When trained on language data, how can we know whether a transformer learns a compositional,
tree structured computation hypothesized to underlie human language processing? While extrin-
sic behavioral tests only assess if the model is capable of the same generalization capabilities as
those expected from tree-structured models, this work proposes anintrinsic approach that directly
estimates how well a parametric tree-structured computation approximates the model's computa-
tion. Our method is unsupervised and parameter-free and provably upper bounds the representation
building process of a transformer with any tree-structured neural network, effectively providing a
functional projectionof the transformer into the space of all tree structured models. The central
conceptual notion in our method isspan contextual invariance(SCI) that measures how much the
contextual representation of a span depends on the context of the span vs. the content of the span.
SCI scores of all spans are plugged into a standard top-down greedy parsing algorithm to induce
a binary tree along with a corresponding tree score. From experiments, we show that tree projec-
tions uncover interesting training dynamics that a supervised probe is unable to discover—we �nd
that on 3 sequence transduction tasks, transformer encoders tend to becomemore tree-likeover the
course of training, with tree projections that becomeprogressively closer to true syntactic deriva-
tionson 2/3 datasets. We also �nd that tree-structuredness as well as parsing F1 of tree projections
is a better predictor of generalization to a compositionally challenging test set than in-domain ac-
curacy i.e., given a collection of models with similar in-domain accuracies, select the model that is
most tree-like for best compositional generalization. Overall, our results suggest that making further
progress on human-like compositional generalization might require inductive biases that encourage
the emergence of latent tree-like structure.
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