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ABSTRACT

Ambiguities in images or unsystematic annotation can lead to multiple valid so-
lutions in semantic segmentation. To learn a distribution over predictions, recent
work has explored the use of probabilistic networks. However, these do not neces-
sarily capture the empirical distribution accurately. In this work, we aim to learn a
multimodal predictive distribution, where the empirical frequency of the sampled
predictions closely reflects that of the corresponding labels in the training set. To
this end, we propose a novel two-stage, cascaded strategy for calibrated adversar-
ial refinement. In the first stage, we explicitly model the data with a categorical
likelihood. In the second, we train an adversarial network to sample from it an
arbitrary number of coherent predictions. The model can be used independently
or integrated into any black-box segmentation framework to facilitate learning of
calibrated stochastic mappings. We demonstrate the utility and versatility of the
approach by attaining state-of-the-art results on the multigrader LIDC dataset and
a modified Cityscapes dataset. In addition, we use a toy regression dataset to show
that our framework is not confined to semantic segmentation, and the core design
can be adapted to other tasks requiring learning a calibrated predictive distribution.

1 INTRODUCTION

Real-world datasets are often riddled with ambiguities, allowing for multiple valid solutions for
a given input. These can emanate from an array of sources, such as ambiguous label space (Lee
et al., 2016), sensor noise, occlusions, and inconsistencies or errors during manual data annotation.
Despite this problem, the majority of the research encompassing semantic segmentation focuses on
optimising models that assign a single prediction to each input image (Ronneberger et al., 2015;
Jégou et al., 2017; Takikawa et al., 2019; Chen et al., 2017a;b; 2016a;b; 2015). These are often
incapable of capturing the entire empirical distribution of outputs. Moreover, since they optimise for
a one-fits-all solution, noisy labels can lead to incoherent predictions and therefore compromise their
reliability (Lee et al., 2016).

Ideally, in such situations one would use a model that can sample multiple consistent hypotheses,
capturing the different modalities of the ground truth distribution, and leverage uncertainty information
to identify potential errors in each. Further, the sampled predictions should accurately reflect the
occurrence frequencies of the labels in the training set; that is, the predictive distribution should
be calibrated (Guo et al., 2017; Kull et al., 2019). Such a system would be particularly useful for
hypothesis-driven reasoning in human-in-the-loop semi-automatic settings. For instance, large scale
manual annotation of segmentation map is very labour-intensive—each label in the Cityscapes dataset
takes on average 1.5 hours to annotate (Cordts et al., 2016). Alternatively, having a human operator
manually selecting from a set of automatically generated label proposals could accelerate this process
dramatically. In addition, combining uncertainty estimates with sampling of self-consistent labels,
can be used to focus the annotator’s attention to ambiguous regions, where errors are likely to occur,
thereby improving safety.

Several approaches have been proposed to capture label multimodality in image-to-image translation
tasks (Huang et al., 2018; Lee et al., 2018; Zhu et al., 2017a; Bao et al., 2017; Zhang, 2018), with only
a few of them applied on stochastic semantic segmentation (Kohl et al., 2018; 2019; Baumgartner
et al., 2019; Hu et al., 2019; Kamnitsas et al., 2017; Rupprecht et al., 2017; Bhattacharyya et al.,
2018). These methods have the capacity to learn a diverse set of labels for each input, however, they
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are either limited to a fixed number of samples (Kamnitsas et al., 2017; Rupprecht et al., 2017), return
uncalibrated predictions, or do not account for uncertainty.

In this work, we tackle all three challenges by introducing a two-stage cascaded strategy. In the first
stage we estimate pixelwise class probabilities and in the second, we sample confident predictions,
calibrated relatively to the distribution predicted in the first stage. This allows us to obtain both
uncertainty estimates as well as self-consistent label proposals. The key contributions are ':

e We propose a novel cascaded architecture that constructively combines explicit likelihood
modelling with adversarial refinement to sample an arbitrary number of confident, and
self-consistent predictions given an input image.

e We introduce a novel loss term that facilitates learning of calibrated stochastic mappings
when using adversarial neural networks. To our knowledge this is the first work to do so.

e The proposed model can be trained independently or used to augment any pretrained black-
box semantic segmentation model, endowing it with a multimodal predictive distribution.

2 RELATED WORK

Straightforward strategies towards learning multiple predictions include ensembling (Lakshmi-
narayanan et al., 2017; Kamnitsas et al., 2017) or using multiple prediction heads (Rupprecht
et al., 2017). Even though these approaches can capture a diverse set of sampled predictions, they are
limited to only a fixed number of samples. Alternatively, a probability distribution over the outputs
can be induced by activating dropout during test time (Gal and Ghahramani, 2016a). This method
does offer useful uncertainty estimates over the pixel-space (Mukhoti and Gal, 2018), however, Isola
et al. (2017) and Kohl et al. (2018) have demonstrated that it introduces only minor stochasticity in
the output and returns incoherent samples.

Bhattacharyya et al. (2018) identify the maximum likelihood learning objective as the cause for this
phenomenon in dropout Bayesian neural networks (Gal and Ghahramani, 2016b). They postulate that
under cross entropy optimisation, all sampled models are forced to explain all the data, and thereby
converge to the mean solution. To counter that, they propose to replace the cross entropy with and
adversarial loss term parametrising a synthetic likelihood (Rosca et al., 2017), thereby making it
conducive to multimodality. In contrast to this method, our approach is simpler to implement as it is
not cast in the framework of variational Bayes, which requires the specification of weight priors and
variational distribution family.

Kohl et al. (2018) take an orthogonal approach in combining a U-Net (Ronneberger et al., 2015) with
a conditional variational autoencoder (cVAE) (Kingma and Welling, 2013) to learn a distribution over
semantic labels. In Kohl et al. (2019) and Baumgartner et al. (2019) the authors build on Kohl et al.
(2018) to improve the diversity of the samples by modelling the data on several scales of the image
resolution. Nonetheless, these methods do not explicitly calibrate the predictive distribution in the
pixel-space, and consequently do not provide reliable aleatoric uncertainty estimates (Kendall and
Gal, 2017; Choi et al., 2018; Gustafsson et al., 2019). Hu et al. (2019) address this shortcoming by
using the intergrader variability as additional supervision. A major limitation of this approach is the
requirement of a-priori knowledge of all the modalities of the data distribution. For many real-world
datasets, however, this information is not readily available.

In the more general domain of image-to-image translation, alternative methods employ hybrid models
that use adversarially trained cVAEs (Zhu et al., 2017a; Bao et al., 2017) to learn a distribution over a
latent code, capturing multimodality, in order to sample diverse and coherent predictions. A common
hurdle in conditional generative adversarial network (cGAN) approaches is that simply incorporating
a noise vector as an additional input often results in mode collapse. This occurs due to the lack
of regularisation between the noise input and generator output, allowing the generator to learn to
ignore the noise vector (Isola et al., 2017). This issue is commonly resolved by using supplementary
cycle-consistency losses (Huang et al., 2018; Lee et al., 2018; Zhu et al., 2017a; Bao et al., 2017), as
proposed by Zhu et al. (2017b) or with alternative regularisation losses on the generator (Yang et al.,
2018). However, none of these methods explicitly address the challenge of calibrating the predictive
distribution.

!Code is publicly available at <URL OMITTED FOR ANONYMITY>
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3 PRELIMINARIES

Given an input image 2 € RF*W*C semantic segmentation refers to the task of predicting a pixel-

wise class label y € {1,..., K}#*W_ For a dataset of N image and label pairs, D = {z;, v},

the conditional distribution pp(y | ) can be explicitly modelled through a likelihood ¢s(y | x),

parametrised by a convolutional neural network F' with weights 6, and activated by a softmax func-

tion (Ronneberger et al., 2015; Jégou et al., 2017). One simple, yet effective way to learn the class

probabilities is to express y € {0, 1} WK a5 a one-hot encoded label, and set gg as a pixelwise
factorised categorical distribution, given by:
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The parameters 6 are then optimised by minimising the cross entropy between pp and gy, defined as:

Ece(’D 6) ;DD(z y) ilOg qe(y | x)i (2)

When trained with Eq. (2), Fy learns an approximation of E,,, [y | ] (Bishop, 2006) that captures
the pixelwise class probabilities over the label corresponding to a given input. This accommodates
the quantification of the amount of noise inherent to the data, also referred to as aleatoric uncertainty,
which can be obtained by computing the entropy of the output of Fy, H(Fy(z)) (Kendall and Gal,
2017). Further, the final segmentation map is typically obtained by applying the argmax function
along the class dimension of the predicted probabilities. However, due to its deterministic nature, this
approach is unable to produce multiple alternative predictions for the same input image. On the other
hand, direct sampling from gy yields incoherent semantic maps, as for noisy datasets, maximising the
factorised likelihood results in unconfident predictions in regions of inter-label inconsistencies, €. g.
fuzzy object boundaries, exemplified later in the model overview diagram in Fig. 1.

The aforementioned limitations can be partially addressed by adapting the framework of generative
adversarial networks (GANs) (Goodfellow et al., 2014) to the context of conditional semantic
segmentation, as proposed by Luc et al. (2016). Formally, this involves training a binary discriminator
network D to optimally distinguish between ground truth and predictions, while concurrently training
a generative network G to maximise the probability that prediction samples G(z) are perceived as
real by D. Importantly, in contrast to explicit pixelwise likelihood maximisation, the adversarial
setup learns an implicit sampler through G, capable of modelling the joint pixel configuration of the
synthesised labels, and capturing both local and global consistencies present in the ground truth.

In practice, the generator loss is often complemented with the pixelwise loss from Eq. (2) to improve
training stability and prediction quality (Luc et al., 2016; Ghafoorian et al., 2018; Samson et al., 2019).
However, we argue that the two objective functions are not well aligned in the presence of noisy data.
While the categorical cross entropy optimises for a single solution for each input x, thus encouraging
high entropy in gy (y | ) within noisy regions of the data and calibrating the predictive distribution,
the adversarial term allows multiple solutions while optimising for low entropy, label-like output.
Therefore combining these losses in an additive manner, and enforcing them on the same set of param-
eters can be suboptimal. This issue can be mitigated to some extent by a scheduled downscaling of
L., however, the residual conflict between the two losses adversely affects the optimisation process.

4 METHOD

4.1 CALIBRATED ADVERSARIAL REFINEMENT

In this work, we propose to avert potential conflict between the cross entropy and adversarial losses
by decoupling them in a two-stage cascaded architecture consisting of a calibration network Fy
optimised with L. from Eq. (2), the output of which is fed to a refinement network Gg4. G is
then optimised with an adversarial loss term, parametrised by an auxiliary discriminator D, trained
with a binary cross entropy loss. To account for the multimodality in the labels, we additionally
condition the refinement network on an extraneous noise variable e ~ N(0,1). In practice, we
also condition the refinement network and the discriminator on input x, however, we do not show
this explicitly for notational convenience. More formally, using the non-saturated version of the
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Figure 1: Model overview with an illustrative example where red and blue pixels are vertically
segmented. A fuzzy boundary in the input image  allows for multiple valid ground truth labels y°.
First, the calibration network maps the input to a calibrated pixelwise distribution over the labels.
This is then fed into the refinement network which samples an arbitrary number of diverse, crisp label
proposals y, ..., y*. To ensure calibration, the average of the final predictions is matched with the
calibration target from the first stage through the £, loss. Additionally, the aleatoric uncertainty can
be readily extracted from the calibration target, e. g. by computing the entropy H(Fp(x)).

.

adversarial loss (Goodfellow et al., 2014), the objectives for the refinement and discriminator networks
respectively are given by:

EadV(Dv 9, ¢) = 7Ep1>(7;,y),p(6) [log Dw (G¢ (F9 (‘T)v 6))}7 3)

['D (Dv 9, ¢7 w) = _EPD(x,y),p(e) [log (1 - Dd) (G¢(F9 (l‘), 6))) + 10g Dw (y)] (4)

To calibrate the predictive distribution, we impose diversity regularisation on G4 by introducing a
novel loss term that encourages the sample average Gy (Fp(x)) = Ep(e)[G(Fp(x), €)] to match the

class probabilities predicted by Fy(z). Here, G 4(Fp(x)) serves as an approximation of the implicit
predictive distribution of the refinement network. To this end, we define an auxiliary fully-factorised
categorical likelihood ¢ as:

W K
a5y | Fo@)) = [T TT Go(Fol@ni5i (5)
i j ok

where ¢ is optimised by minimising the Kullback-Leibler divergence KL(qy || go).> Since both g,
and ¢y are categorical distributions, the divergence can be computed exactly. We coin this loss term
as the calibration loss, defined as:

Lea(D,0,¢) = Epp [Eq, log qs(y | Fo(a)) —logge(y | 2)]]- (6)

Since L., optimises through §¢(Fg(x)) rather than a single sampled prediction, the model is not
restricted to learning a single mode-averaging solution for each input x, and is therefore more
compatible with £,4,. The total loss for the refinement network then becomes:

ﬁG (Dv 97 ¢) = ‘Cadv (D7 97 ¢) + )‘EcaI(Dv 07 ¢)7 (7)

where A > 0 is an adjustable hyperparameter. Fig. 1 shows the interplay of Fy, G4 and D, and the
corresponding loss terms.

Intuitively, the calibration network Fjy serves three main purposes. It accommodates the extraction of
sample-free aleatoric uncertainty maps. It provides G 4 with an augmented representation of = enclos-
ing probabilistic information about y. Finally, it sets a calibration target used by L, to regularise the

2The choice of divergence is heuristically motivated and can be changed to fit different use-case requirements.
We delegate theoretical and experimental analysis of other divergences to future work.
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predictive distribution of G4, in a cycle-consistent manner (Zhu et al., 2017b). The refinement net-
work can then be interpreted as a stochastic sampler, modelling the inter-pixel dependencies to draw
self-consistent samples from the explicit likelihood provided by the calibration network. Thus both
the pixelwise class probability and object coherency are preserved. This approach leads to improved
mode coverage and training stability, and increased convergence speed, as demonstrated in Section 5.

4.2 PRACTICAL CONSIDERATIONS

An important consequence of the loss decomposition is that the weights of F}y can be kept fixed,
while the adversarial pair G and D, are being trained. This allows Fy to be pretrained in isola-
tion, consequently lowering the overall peak computational burden and improving training stability
(see Algorithms 1 and 2 in Appendix A.1 for an outline of the training and inference procedures).
Further, computing £, requires a Monte Carlo estimation of G (Fy(z)), where the quality of the
loss feedback increases with the sample count. However, modern deep learning frameworks allow
for the samples to be subsumed in the batch dimension, and can therefore be efficiently computed
on GPUs. We also note that on noisy data points, the trained model does not require to be provided
with all solutions for a given input. Instead, during training a random input-label pair is sampled,
and the model automatically learns to identify cases where the input is ambiguous. Finally, our
method can augment any existing black-box model B for semantic segmentation, furnishing it with a
multimodal predictive distribution. This can be done by conditioning Fj on the output of B, which
we demonstrate in Section 5.2.2.

5 EXPERIMENTS

5.1 1D BIMODAL REGRESSION

We give intuitive insight into the mechanics of the proposed calibration loss by designing and
experimenting on a simple one-dimensional regression task. To create the dataset, an input z € [0, 1]
is mapped to y € R as follows:

0.5—b+e, z €[0,0.4)
y=1< (-1)’(-1.25z+1)+¢€, x€[0.4,0.8) (®)
€, z €1[0.8,1]

where b ~ Bernoulli(r) and € ~ A (0, o). We generate 9 different scenarios by varying the degree
of mode selection probability 7 € {0.5,0.6,0.9} and the mode noise o € {0.01,0.02,0.03}.
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Figure 2: (a) Median and interquartile range (iqr) over the data log-likelihood, averaged over all
9x5x2 experiments. (b) High bias and noise configuration (7 = 0.9, ¢ = 0.03) with calibration
loss. The ground truth target is shown as black dots and the predicted samples as light blue dots.
The predictions average in dark blue matches the calibration target in red. The discriminator output
is shown in the background in shades of red (real) and blue (fake). (c¢) The same experiment
configuration but without the proposed calibration loss, resulting in a mode collapse.
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For every data configuration, we use a 4-layer MLP for each of Fy, G4 and D, and train with and
without calibration loss by setting the coefficient A in Eq. (7) to 1 or 0, respectively. All runs are
trained with a learning rate of le—4, and each experiment is repeated five times. Note that unlike the
categorical likelihood used in semantic segmentation tasks, we employ a Gaussian likelihood with
fixed scale of 1. This changes the formulation of both Eqgs. (2) and (6) to mean squared error losses
between ground truth labels y and predictions § for L., and between the output of the calibration
network Fy(x) and the average of multiple predictions G (Fy(z)) for Lca (see Appendix A.2).

The results, depicted in Fig. 2, illustrate that when using calibration loss, the optimisation process
shows improved stability, converges faster and results in better calibrated predictions, in comparison
to the non-regularised baseline. The effect is more pronounced in data configurations with higher
bias. Further plots of the individual experiments are presented in Appendix B.1.

5.2 STOCHASTIC SEMANTIC SEGMENTATION

In this section we examine the capacity of our model to learn shape and class multimodality in
real-world segmentation datasets. We begin by sharing essential implementation details below.

Network architectures For the calibration network Fjy, we use the encoder-decoder architecture
from SegNet (Badrinarayanan et al., 2017). For G4, we designed a U-Net-style (Ronneberger et al.,
2015) architecture with 4 down- and upsampling blocks, each consisting of a convolutional layer,
followed by a batch normalisation layer (Ioffe and Szegedy, 2015), a leaky ReLU activation, and
a dropout layer (Srivastava et al., 2014) with 0.1 dropout probability. We use a base number of 32
channels, doubled or halved at every down- and upsampling transition. To propagate the sampled
noise vector to the output, we inject it into every upsampling block of the network in an affine manner.
To do so, we project the noise vector using two fully connected layers into scale and residual matrices,
with the same number of channels as the feature maps at the points of injection, and use these matrices
to adjust the channel-wise mean and variance of the activations. This is similar to the mechanism
used for adaptive instance normalisation (Huang and Belongie, 2017). We base the architecture for
D, on that used in DC-GAN (Radford et al., 2015) except that we remove batch normalisation. Any
deviations from this setup are described in the corresponding sections.

Training details We utilise the Adam optimiser (Kingma and Ba, 2014) with an initial learning rate
of 2e—4 for Fy and G, and le—5 for Dy,. The learning rates are linearly decayed over time and we
perform scheduled updates to train the networks. Additionally, the discriminator loss is regularised
by using the R; zero-centered gradient penalty term (Mescheder et al., 2018). For a detailed list of
hyperparameter values, see Appendix A.1.

Metrics Following Kohl et al. (2018; 2019), Huang et al. (2018) and Baumgartner et al. (2019), we
use the Generalised Energy Distance (GED) (Székely and Rizzo, 2013) metric:

D(Z}ED(pD) q¢) = QESN%,Z/NPD [d(57 y)} - Esas/N% [d(sa 3/)] - E%y/NPD [d(y, y/)]v 9

where d(s,y) = 1 —IoU(s,y). As an additional metric, we follow Kohl et al. (2019) in using the
Hungarian-matched IoU (HM-IoU) (Kuhn, 2005). In contrast to GED, which naively computes
diversity as 1-IoU between all possible pairs of ground truth or sampled predictions, HM-IoU finds
the optimal 1:1 matching between all labels and predictions, and therefore is more representative of
how well the learnt predictive distribution fits the ground truth.

All experiments are performed in triplicate and we report results as mean and standard deviation.
Further details regarding the exact implementation of the GED and HM-IoU metrics for each
experiment can be found in Appendix A.3.

5.2.1 LEARNING SHAPE DIVERSITY ON THE LIDC DATASET

The Lung Image Database Consortium (LIDC) (Armato III et al., 2011) dataset consists of 1018
thoracic CT scans from 1010 lung cancer patients, graded independently by four expert annotators.
We use the 180x180 crops from the preprocessed version of the LIDC dataset used and described
in Kohl et al. (2018). The dataset is split in 8882, 1996 and 1992 images in the training, validation
and test sets respectively. All models are trained on lesion-centered 128x128 crops where at least one
of the four annotations indicates a lesion. The final evaluation is performed on the provided test set.
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Table 1: Mean GED and HM-IoU scores on LIDC. Top section: approaches using the original data splits
defined by Kohl et al. (2018), which we also adhere to; middle: approaches using random data splits;
bottom: the L .-regularised baseline and our L, -regularised cGAN. The three central columns show
the GED score computed with 16, 50 and 100 samples, respectively. The rightmost column shows the
HM-IoU score, computed with 16 samples. The arrows 1 and | indicate if higher or lower score is better.

Method GED | (16) GED | (50) GED | (100) HM-IoU 1 (16)
Kohl et al. (2018) 0.320 + 0.030 — 0.252 = N/A!  0.500 % 0.030
Kohl et al. (2019) 0.270 £ 0.010 — — 0.530 +0.010
Hu et al. (2019) — 0.267 +0.012 — —

Baumgartner et al. (2019) — — 0.224+N/A2 —

cGAN+L 0.639 + 0.002 — — 0.477 + 0.004
cGAN+La 0.264 +0.002 0.248 +0.004 0.243 4 0.004> 0.592 4+ 0.005

! This score is taken from Baumgartner et al. (2019).
% Note that when following the data split methodology used in Baumgartner et al. (2019) and computing the
GED (100) metric, we achieve a score of 0.228 instead of 0.243 (see Appendix A.3).
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Figure 3: LIDC validation samples. From left to right: an input image x, followed by the four ground
truth annotations y;[ e ygl, the mean of the labels 7, the output of the calibration network Fp (x),

the mean of the six refinement network samples %,.¢, shown in columns yL;. .. y5;.

To assess the accuracy and diversity of samples generated by our model we examine how well the
learnt conditional distribution captures the shape diversity of lesion segmentations in the dataset. We
pretrain Fy(x) with L. in isolation, fix its weights, and then train G4 with L, where we estimate
L1 with 20 samples from G4. Further experiments with varying sample size are disclosed in Table 3
in Appendix B.2. As a control experiment, we train using the same architecture but replace L) in
the refinement network loss function with a cross entropy loss L., as used in Luc et al. (2016).

The L4 -regularised model performs on par with other state-of-the-art methods w. r. t. the GED score,
and outperforms them on the HM-IoU score (only available for Kohl et al. (2018; 2019)). Numerical
results are summarised in Table 1. The diversity and fidelity of sampled predictions are illustrated
in Fig. 3. In contrast, the L..-regularised baseline collapses the predictive distribution, showing no
perceptible diversity in the samples (see Fig. 10b in Appendix B.2.3), which results in a stark increase
in the mean GED score, and decrease in the HM-IoU score, as shown in the bottom section of Table 1.

5.2.2 LEARNING A CALIBRATED DISTRIBUTION ON A MULTIMODAL CITYSCAPES DATASET

The Cityscapes dataset contains 1024x2048 RGB images of urban scenes, and their corresponding
segmentation maps. It consists of 2975 training, 500 validation and 1525 test images. Following Kohl
et al. (2018), we use the version of the Cityscapes dataset with 19 semantic classes and downsampled
images and segmentation maps at a spatial resolution of 256x512. They establish controlled multi-
modality by augmenting the dataset with 5 new classes: sidewalk2, person2, car2, vegetation2 and
road?, introduced by flipping their original counterparts with probabilities 8/17, 7/17, 6/17, 5/17 and
4/17, respectively (see Fig. 4a). Following Kohl et al. (2018), we report results on the validation set.
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Figure 4: (a) Input images overlaid with the corresponding labels. (b) Samples obtained from the
refinement network. (c¢) Aleatoric uncertainty computed as the entropy of the calibration output.

To demonstrate that our approach can be easily integrated on top of any existing black-box segmenta-
tion model B, we employ the network from TensorFlow DeepLab Model Zoo (2020), trained on the
official Cityscapes dataset, which achieves a mloU of 0.79 on the test set. We utilise its predictions as
input to our calibration network, Fy, which consists of 5 convolutional blocks, each composed of
a 3x3 convolutional layer, followed by a batch normalisation layer, a leaky ReLU activation, and a
dropout layer with 0.1 dropout rate. We pretrain the calibration network in isolation, and subsequently
apply it in inference mode while adversarially training the refinement network. We use a batch size
of 16, and train with L, estimating L., with 7 samples from G,. The same baseline as in the
LIDC experiment is employed, where we replace L., with L. As a second control experiment we
completely omit the calibration network and instead condition the refinement network on the known
ground truth pixelwise categorical distribution over the label. This allows us to directly evaluate the
quality of sampling administered from the refinement network.

When training the refinement network with an additional cross entropy loss instead of the calibration
loss L., the predictive distribution collapses, making the output deterministic. Conversely, when
we train our refinement network with L., the learnt predictive distribution is well adjusted, with
high diversity and reconstruction quality, significantly outperforming the current state-of-the-art,
as shown in Table 2. Fig. 4b displays representative sampled predictions from our model for three
input images, and Fig. 4c illustrates the corresponding aleatoric uncertainty maps extracted from
Fy(x). The learnt multimodality and noise in the dataset is reflected by regions of high uncertainty,
where objects belonging to the different stochastic classes consistently display distinct shades of red,
corresponding to their respective flip probabilities. Finally, we show that when using the ground truth
pixelwise distribution as the input to the refinement network, we attain an almost perfect GED score
(0.038 £ 0.00).

o ; o netork Table 2: Mean GED scores on the modi-
2 =1 refinement network fied Cityscapes. Top section: competing
Y B (with ground truth) model; middle: L.,j-regularised cGAN and
g Z Lo-regularised baseline; bottom: ground
gy truth calibrated cGAN. The GED scores are
% v computed using 16 samples.
£

Method GED

0 sidewalk2 person2 car2 vegetation2 road2 Kohl et al. (2018) 0.206 £ N/A

Figure 5: Calibration of the pixelwise probabil- cGAN+Lcal 0.164 £0.01
g pxelwise p cGAN+Le. 0.632 + 0.07

ities of the five stochastic classes. Note that the
calibration network (in orange) is conditioned on cGAN+L (gt) 0.038 +0.00
black-box predictions.
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Since we manually set the flip probabilities for each stochastic class in this dataset, we can directly
assess the calibration of our model by comparing the ground truth probabilities to the predicted
probabilities from the calibration or refinement network. For Iy we use the mean confidence values
for each class, and for G, we obtain the empirical class probabilities via G4 (Fp(z)), computed from
16 samples (see Appendix A.4 for more details). The ensuing results are shown qualitatively in Fig. 5,
which illustrates the calibration of our models on the stochastic classes, evaluated over the entire
dataset. This demonstrates that our models are well calibrated, with the calibration offset, computed
as the absolute difference between the ground truth and predicted probabilities, being approximately
6% in the worst case (class "car2" for the calibration network). Note that the average calibration
offset for Fp(x) across the stochastic classes is 1.6%. Further, the ground truth conditioned baseline
is almost perfectly calibrated, reflecting the near-optimal GED score reported in Table 2. Thus, we
demonstrate that G 4 learns calibrated refinement of the predictions from Fy, where the quality of the
final predictive distribution depends on the quality of Fy(z).

In order to further scrutinise the calibration qual- 10 '

ity of Fy(x), we construct a reliability diagram and | W accuracy per bin
compute the corresponding expected calibration error 091/ 54 calibration gap
(ECE), as proposed by Guo et al. (2017). To create 08

the diagram each pixel is considered independently %0-7

and the associated class confidences are binned into 806

10 equal intervals of size 0.1. We then compute the ac- 505

curacy for all predictions in each bin. Fig. 6 shows the < o4

reliability diagram for the calibration network, where 03

the orange bars depict the calibration gap, defined as '

the difference between the mean confidence for each 02

interval and the corresponding accuracy. The corre- 01

sponding ECE score amounts to 2.15%. Note that 00— 02 03 04 05 06 07 08 09 10
this also considers the average calibration error com- Confidence

puted for the stochastic classes, where we randomly
sample the labels according to the defined probabili- Figure 6: Reliability diagram for the calibra-
ties. Hence, we confirm that Fy(x) is well calibrated. tion network. ECE = 2.15%.

An important outstanding issue in our approach is that the calibration network may not perfectly
capture the class-probabilities, e. g. for the car2 category in Fig. 5. The limitations of modern neural
networks with respect to calibration, as well as possible solutions, are well studied (Guo et al., 2017,
Kull et al., 2019; Zhang et al., 2020). Miscalibration has been attributed to several factors, such as
long-tailed data distributions, out-of-distribution inputs, specific network architectural elements or
optimising procedures. However, since our approach seeks to calibrate relative to the calibration
target, and none of the aforementioned issues directly interfere with this process, we consider the
problem of absolute calibration to be beyond the scope of this work. Nevertheless we emphasise on
its importance for further improving the sample quality.

6 CONCLUSION

In this work, we developed a novel framework for semantic segmentation capable of learning a
calibrated multimodal predictive distribution, closely matching an estimation of the ground truth
distribution of labels. We attained improved results on a modified Cityscapes dataset and competitive
scores on the LIDC dataset, indicating the utility of our approach on real-world datasets. We also
showed that our approach can be easily integrated into an off-the-shelf, deterministic, black-box
semantic segmentation model, enabling sampling an arbitrary number of plausible segmentation maps.
By providing multiple valid label proposals and highlighting regions of high data uncertainty, our
approach can be used to identify and resolve ambiguities, diminishing risk in safety-critical systems.
Therefore, we expect our approach to be particularly beneficial for applications such as map making
for autonomous driving or computer-assisted medical diagnostics. Finally, even though the primary
focus of this work is semantic segmentation, we demonstrated its versatility through an illustrative
toy regression problem, alluding to a broader applicability beyond semantic image segmentation.
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Appendices

A IMPLEMENTATION DETAILS

In this section we describe the overall training procedure and delve into the training and evaluation details for
the stochastic segmentation experiments on the LIDC dataset and the modified Cityscapes dataset.

A.1 TRAINING PROCEDURE

Algorithm 1 outlines the practical procedure used to pretrain the calibration network, and the subsequent training
of the refinement network. Even though the two networks can be trained end-to-end at once, in our experiments
we use the two-step training procedure to stabilise the training and reduce the memory consumption on the GPU.
This way we are able to fit larger batches and/or more samples for the estimate of Lc. Algorithm 2 shows the
inference procedure for obtaining M output samples.

Algorithm 1 Model training with calibration network pretraining

require: training data D, number of samples M, learning rate 7, calibration loss scale );
1: procedure TRAINING(D, M, n, \)
2 while not converged do > Pretraining of Fj
3 Sample batch {x,y}; € D
4: Update 6;41 with —nVg, Leo({z,y}+, 04)
5: end while
6 while not converged do > Adversarial training of G'g and D,
7 Sample batch {z,y}: € D
8 fori=1,2,...,M do

9: Sample y'2f = Gy, (Fp-(1),¢;)  where ¢; ~ N'(0,1)

10: end for

11: Compute Gy (Fy(z))! = & Zl Ly

12: Compute Lear (1, 0%, ¢¢) =32, 1 1 (Gy(Fy(2))" (log Gg(Fy(z))" — log Fg*(iﬂt))) ik
13: Update ¢y41 with —nV 4, (La (0%, é1, {x, y}t) + ALcal (x4, 0%, &)

14: Update ¥;41 with —nVy, Lp (0%, ¢r, ¥, {z,y}4)

15: end while
16: end procedure

Algorithm 2 Inference procedure

require: test data point z, number of samples M ;

1: procedure INFERENCE(x, M) > Using 6* and ¢* from Algorithm 1
2 fori=1,2,...,M do

3: Sample y'y = Gy« (Fp«(x),¢;) where ¢; ~ N(0,1)

4 end for

5. end procedure

Notice that any off-the-shelf optimisation algorithm can be used to update the parameters 6, ¢ and 1. For the
segmentation experiments, we utilise the Adam optimiser (Kingma and Ba, 2014) with 8; = 0.5, 52 = 0.99
and weight decay of be—4. Fy is trained with a learning rate of 2e—4 which is then lowered to 1le—4 after
30 epochs. G and Dy, are updated according to a schedule, where G4 is updated at every iteration, and D,
is trained in cycles of 50 iterations of weight updating, followed by 200 iterations with fixed weights. The
refinement network is trained with an initial learning rate of 2e—4, lowered to 1e—4 after 30 epochs, whereas
the discriminator has an initial learning rate of 1e—5, lowered to 5e—6 after 30 epochs. Additionally, we utilise
the R zero-centered gradient penalty term (Mescheder et al., 2018), to regularise the discriminator gradient
on real data with a weight of 10. Other hyperparameter specifics such as the batch-size and whether we inject
stochasticity via random noise samples or latent code samples, depend on the experiment and are disclosed in
the respective sections below or in the main text.
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A.2 1D BIMODAL REGRESSION

In the following we derive the mean squared error form of the cross entropy and calibration losses used in
experiment Section 5.1 under the assumption that the likelihood model for g¢ and g4 is a univariate Gaussian
distribution with a fixed unit variance. Using the setup from Eq. (2) it then follows that:

ﬁCe(D70) = _EPD(Z»Q)[IOgN(y | Fg(x), 1)] (10)
1
= 5Epp @) [(y — Fo(x))?] + const. (11
Based on the definition of the calibration loss in Eq. (6) we show that:
Leal(D,0,¢) = Epp [KL(N (y | Go(Fo(2)), 1) || N(y | Fo(z), 1))] (12)
—E,, [EN(Z]@(FM) ) [log/\/ y | Go(Fo(x)), 1) — log N'(y | Fo(x), 1)}} (13)
[ 1 1
= B (B )| -5 (0~ ColFo@) + 3 (0= o] |+ const )
I 1
= Sy [y, 2o, 1) [ 1O (Fo(0)) = JColFofa))* = yFo(e) + 3 Fo()?| | +cons
(15)
= By | Go(Fo(2))* — 5C(Fol))? — G (Fo ) Fo () + %Fg(x)ﬂ +const  (16)
_ %Epv [(@o(Fo()) = Fo(w))®] + const. 17

A.3 LIDC

Architectures For the calibration network, Fp, we use the encoder-decoder architecture from SegNet (Badri-
narayanan et al., 2017), with a softmax activation on the output layer.

Training During training, we draw random 180x180 image-annotation pairs, and we apply random horizontal
flips and crop the data to produce 128x128 lesion-centered image tiles. All of our models were implemented in
PyTorch and trained for 80k iterations on a single 32GB Tesla V100 GPU.

We train all our models for the LIDC experiments using 8-dimensional noise vectors in the cGAN experiments,
or latent codes in the cVAE-GAN experiments. This value was empirically found to perform well, sufficiently
capturing the shape diversity in the dataset. Additionally, in the refinement networks loss, we set the weighting
parameter A in the total generator loss, defined in Eq. (7) in the main text, so as to establish a ratio of
Lo : Lea = 1 : 0.5, where L¢ is the adversarial component of the loss, and L, is the calibration loss
component. In practice, the actual weights used are 10 for L, and 5 for Lca;.

Evaluation Following Kohl et al. (2018), Kohl et al. (2019), Huang et al. (2018), and Baumgartner et al.
(2019) we use the Generalised Energy Distance (GED) (Székely and Rizzo, 2013) metric, given as:

Déen(pp,q0) = 2Es~qy,y~pp [d(s,y)] — Es,srngy [d(s, SI)} =By ynpp [d(y, y/)], (18)

where d(s,y) = 1 — IoU(s, y). Intuitively, the first term of Eq. (18) quantifies the disparity between sampled
predictions and the ground truth labels, the second term—the diversity between the predictions, and the third
term—the diversity between the ground truth labels. It is important to note that the GED is a sample-based metric,
and therefore the quality of the score scales with the number of samples. We approximate the expectations with
all 4 ground truth labels (y ~ pp) and 16, 50 or 100 samples from the model (s ~ ¢,) for each input image .

As Kohl et al. (2019) have pointed out, even though the GED metric is a good indicator for how well the
learnt predictive distribution fits a multimodal ground truth distribution, it can reward high diversity in sampled
predictions even if the individual samples do not show high fidelity to the ground truth distribution. As an
alternative metric that is less sensitive to such degenerate cases, Kohl et al. (2019) propose to use the Hungarian-
matched IoU (HM-IoU), which finds the optimal 1:1 IoU matching between ground truth samples and sampled
predictions. Following Kohl et al. (2019), we duplicate the set of ground truth labels so that the number of both
ground truth and predicted samples are 16, and we report the HM-IoU as the average of the best matched pairs
for each input image.

In the main text we show the evaluated performance with both GED and HM-IoU metrics over the entire test
set and compute the IoU on only the foreground of the sampled labels and predictions. In the case where both
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the matched up label and prediction do not show a lesion, the IoU is set to 1, so that a correct prediction of the
absence of a lesion is rewarded.

Note that the methods of Baumgartner et al. (2019) and Hu et al. (2019), whose GED scores we report in Table 1,
use test sets that differ from the original splits defined in Kohl et al. (2018), which are used in Kohl et al.
(2018; 2019) and our work. Baumgartner et al. (2019) uses a random 60:20:20 split for the training, testing
and validation sets, and 100 samples to compute the GED score, whereas Hu et al. (2019) use a random
70:15:15 split and 50 samples to compute the GED score. Due to the lack of reproducibility, we do not consider
this the conventional way of benchmarking. Therefore, in Table 1 we only report the scores for our models
evaluated on the original splits. Nevertheless, we also trained and tested our cGAN+L.y model on the split
methodology defined by Baumgartner et al. (2019) to enable a fairer comparison. This improved our GED score
from 0.243 £ 0.004 to 0.228 % 0.009, while the HM-IoU, evaluated using 16 samples, remained similar at
0.590 4= 0.007 (in the original splits we achieved an HM-IoU score of 0.592 + 0.005). This shows that different
random splits can significantly affect the final performance w.r.t. GED score, while HM-IoU appears to be a
more robust metric.

A.4 CITYSCAPES

Architectures For the calibration network Fp, we design a small neural network with 5 convolutional blocks,
each comprised of a 3x3 convolutional layer, followed by a batchnorm layer and a leaky ReLU activation. The
network is activated with a softmax function.

Training During training, we apply random horizontal flips, scaling and crops of size 128x128 on the
image-label pairs. All of our models were implemented in PyTorch and trained for 120k training iterations on a
single 16GB Tesla V100 GPU.

We train all our models for the modified Cityscapes experiments using 32-dimensional noise vectors. Similarly
to the LIDC experiments, this value was empirically found to perform well, however, it can be further tuned. As
commonly practiced, we use the ignore-masks provided by the Cityscapes dataset to filter out the cross entropy,
calibration and adversarial losses during training on the unlabelled pixels. Similarly to our LIDC experiment, we
use a weight of 10 for L, and 5 for L., in the refinement networks loss.

Evaluation The GED metric for Cityscapes is implemented as described in the appendix of Kohl et al. (2018)
and evaluated across the entire validation set. In this dataset we have full knowledge of the ground truth class
distribution and therefore we compute the GED metric by using the probabilities of each mode directly, as
follows:

DCQ}ED(ppv %) = 2E5~q¢7y~pp [d(s,y)w(y)] - ES,S/N% [d(s, 5/)] - Ey,y’~po [d(y7 y')w(y)w(y/)}, (19)

where w(+) is a function mapping the mode of a given label y to its corresponding probability mass. The distance
d(s,y) is computed using the average IoU of the 10 switchable classes only, as done in Kohl et al. (2018). In the
cases where none of the switchable classes are present in both the ground truth label and the prediction paired up
in d(s, y), the distance score is not considered in the expectation. We use 16 samples to compute the GED score.

For the calibration results presented in Fig. 5, Section 5.2.2 in the main text, we compute the calibration network
class-probabilities using the raw predictions of Fp(x). We obtain class masks by computing the overlap between
the ground truth labels and the black-box predictions for each class. Using these masks we then compute the
average class-wise probabilities. The probabilities for the refinement network G, were computed as the average
over 16 samples. Here the class masks are obtained by finding the pixels that are specified as the class of interest
in the ground truth labels.
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B ADDITIONAL EXPERIMENT RESULTS

To reinforce the results reported in Section 5 we present supplementary results for the bimodal regression
experiment and the LIDC and Cityscapes segmentation experiments.

B.1 1D BIMODAL REGRESSION

Fig. 7 shows the data log-likelihoods for the 9 data configurations for varying mode bias = € {0.5,0.6,0.9}
and mode noise o € {0.01,0.02,0.03} trained with and without the calibration loss L. Each experiment is
repeated 5 times and the individual likelihood curves are plotted in Fig. 7b and Fig. 7d respectively. The results
show that high bias is harder to learn, reflected by a slowed down convergence, however, the L.q-regularised
model shows greater robustness to weight initialisation. In contrast the non-regularised GAN exhibits mode
oscillation expressed as a fluctuation of higher likelihood (one mode is covered) and lower one (between modes).
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Figure 7: Log-likelihood curves for 5 runs on each of the 9 data configurations. (a) No calibration
loss (A = 0), averaged. (b) No calibration loss, individual runs. (¢) With calibration loss (A = 1),
averaged. (d) With calibration loss, individual runs.
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B.2 LIDC

B.2.1 QUALITATIVE ANALYSIS

To further examine our L.,1-regularised cGAN model trained on the LIDC dataset, we illustrate representative
qualitative results in Fig. 8 and Fig. 9. For every input image x, we show the ground truth labels yglt, ey yg‘t
provided by the different expert annotators, overlaying the input image, in the first four columns, and 6 randomly
sampled predictions ., . .., yS; in the last six columns. From left to right, the three columns with the dark
blue background in the center of the figures show the average ground truth predictions ¥, the output of the
calibration network Fy(z) and the average of 16 sampled predictions from the refinement network . Our
results show that even though there is a significant variability between the refinement network samples for a
given input image, grr is almost identical to the calibration target Fy(x), due to the diversity regularisation
enforced by the calibration loss Lcai.

(g (oyd) (vl (oyg) T Fy(x) e Yret Vit Vi Yoot Yoot Yoes

- -

|

v
v
w v
»
b ]

L B B NN

a a a a
L L - L
] ] +

. . . »

0.75 1.00

Figure 8: Qualitative results on LIDC samples for the L, -regularised cGAN model.

17



Under review as a conference paper at ICLR 2021

(yg) (k) (v (nyg) Vgt Fy(x) Yref Yret Vit Vi Vit Yoot Yoes
%- P. P. P. [ J [ [ J [ J [ |
Pi\ri\ro\r e ° ® ® ® °
e e e e . . L) ¢

| AR 2R AR - vy Vv Vv Y
o S " ® e -« W e
“e LR L
Y ) sy sy

LA A AR » % B B B @
QR B S '

TSR SR S A
B B B ) - .
L J L ] - - - - - - - -
] } i

0.00 025 050 075 1.00

Figure 9: Qualitative results on LIDC samples for the L,;-regularised cGAN model.
From the qualitative results in Fig. 8 and Fig. 9, it can be seen that the calibration target Fy(x) does not always
capture well the average of the ground truth distribution g, affecting the fidelity of the predictive distribution of

the refinement network G . This further highlights the importance of future work on improving the calibration
of Fy, e. g. implementing the approaches of Guo et al. (2017); Kull et al. (2019).

18



Under review as a conference paper at ICLR 2021

B.2.2 TUNING THE NUMBER OF REFINEMENT NETWORK SAMPLES

Table 3: Mean GED and HM-IoU scores on LIDC for the L., -regularised cGAN with 1, 5, 10, 15
and 20 samples. The number of samples used to compute the GED score is denoted in the parentheses
in the header of each column. The arrows 1 and | denote if higher or lower score is better.

Method GED | (16) GED | (50) GED | (100)  HM-IoU 1 (16)

CGAN+Ley (1) 0.644+0.033  0.643+£0.033  0.643+£0.033  0.494 + 0.013
CGAN+Ley (5)  0.278£0.000  0.257+£0.002  0.252+0.001  0.585 & 0.003
cGAN+L, (10)  0.277 £+ 0.003 0.257 £ 0.003 0.250 £ 0.003 0.589 + 0.007
(15
(20

cGAN+L., (15)  0.271 £ 0.002 0.250 £ 0.001 0.245+0.003 0.593 + 0.002
cGAN+L., (20) 0.264+0.002 0.248 +0.004 0.243+0.004 0.592 +0.005

To investigate the effect of the number of samples used to compute L..; on the learnt predictive distribution,
we experimented on the Lca1-regularised cGAN model using 5, 10, 15 or 20 samples from the refinement
network GGy during training. As a control experiment, we also train the same model using one sample. Our
results, reported in Table 3, show that increasing the number of samples improves the quality of the predictive
distribution, whereas using only one sample collapses it. This is expected because increasing the number of
samples reduces the variance of the sample mean G4 and refines the approximation g, of the implicit predictive
distribution realised by G (z, €). Since in our implementation we reuse the samples from G in the adversarial
component L¢ of the total refinement network loss Lg, the discriminator D, interacts with a larger set of
diverse fake samples during each training iteration, thus also improving the quality of L.

It is important to note that the benefit of increasing the sample size on the quality of L4 highly depends on the
intrinsic multimodality in the data. In theory, if the number of samples used matches or exceeds the number
of ground truth modes for a given input, it is sufficient to induce a calibrated predictive distribution. However,
we usually do not have a priori access to this information. Conversely, if the sample size is too small, the Lca)
loss may introduce bias in the predictive distribution. This could lead to mode coupling or mode collapse, as
exemplified in our control experiment with one sample.

In the LIDC dataset, even though we have access to four labels per input image, we argue that the dataset exhibits
distributed multimodality, where a given pattern in the input space, e. g. in a patch of pixels, can be associated to
many different local labels throughout the dataset. As a result, an input image may correspond to more solutions
than the four annotations provided. Therefore increasing the number of samples to more than four shows further
improvement in performance. This however can come at the cost of decreased training speed which can be
regulated by tuning the sample count parameter while considering the system requirements.

B.2.3 INDUCING MULTIMODALITY IN LATENT VARIABLE MODELS ON THE LIDC DATASET

To examine whether conditioning the source of stochasticity in our model on the input is beneficial, we adapt
our framework in order to learn a distribution over a latent code z using variational inference (Graves, 2011).
Following most of the existing work on stochastic semantic segmentation (Kohl et al., 2018; 2019; Hu et al.,
2019; Baumgartner et al., 2019), we maximise a modified lower bound on the conditional marginal log-likelihood,
through a variational distribution ¢(z | z,y). This is realised by minimising the loss function in Higgins et al.
(2017), given by:

Leipo(2,y) = —Eqzje) logp(y | 2, 2)] + BKL(q(z | 2,9) || p(2)) > —logp(y [ ), (20)

where (3 controls the amount of regularisation from a prior distribution p(z) on the approximate posterior
q(z | ,y). Both q(z | z,y) and p(z) are commonly taken as factorised Gaussian distributions.

To this end, we compare our cGAN model to two baselines where the refinement network G4 is given as a
cVAE-GAN (Larsen et al., 2015). In the first one, we train G4 by complementing the adversarial loss Lg
with Eq. (20), using 8 € {0.1, 1,10} and a fixed standard normal prior. In the second, we introduce a calibration
network and train G using Eq. (7). This does not necessitate specifying a prior.

For a fair comparison, we use the same core models for all of our experiments, introducing only minor
modifications to the refinement network to convert the deterministic encoder into a probabilistic one with
Gaussian output. This is achieved by splitting the output head of the encoder so as to predict the mean and
standard deviation of the encoded distribution (Kingma and Welling, 2013; Kendall and Gal, 2017). Instead
of using random noise sampled from a standard Gaussian as our source of stochasticity, the decoder of the
refinement network is now injected with latent codes sampled from the Gaussian distribution encoded for each
input image. To train the model, we pretrain the Fy in isolation, and subsequently apply it in inference mode
while training G. We use a batch size of 32, an 8-dimensional latent code, and use 20 samples to compute Lcaj.
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Table 4: GED and H-IoU scores on LIDC. The top section shows the L .-regularised baseline and
the Ly -regularised cGAN; the bottom section shows baseline and L, -regularised cVAE-GANSs. All
La-regularised models are trained using 20 samples. The three central columns show the GED score
computed with 16, 50 and 100 samples, respectively. The last column shows the HM-IoU score,
computed with 16 samples. The arrows 1 and | indicate whether higher or lower score is better.

Method GED | (16) GED | (50)  GED | (100) HM-IoU 1 (16)
cGAN+Lce 0.639 + 0.002 — — 0.477 £ 0.004
cGAN+L ) 0.264 +£0.002 0.248 +0.004 0.243 +£0.004 0.592 + 0.005
cVAE-GAN (53=0.1) 0.577 £ 0.095 — — 0.484 & 0.006
cVAE-GAN (3=1) 0.596 + 0.078 — — 0.474 + 0.005
cVAE-GAN (3=10) 0.609 £ 0.061 — 0.482 + 0.010

cVAE-GAN+L., (8=0) 0.272+£0.006 0.252+0.006 0.246 £0.006 0.593 +0.003

We show that the cVAE-GAN model trained with L, instead of the traditional complexity loss term,
KL(q(z | z,y) || p(2)) from Eq. (20) is able to learn a distribution over segmentation maps, and performs
similarly to our cGAN+L.,1 model. This is important because it abrogates the need for specifying a latent-space
prior, which is often selected for computational convenience, rather than task relevance (Hafner et al., 2018;
Louizos et al., 2019). On the other hand, our cVAE-GAN models trained using the KL-divergence complexity
term showed limited diversity, even for large 8 values. The results, shown quantitatively in the bottom part
of Table 4, and qualitatively in Fig. 10a, demonstrate that the interaction between La and Lca; can sufficiently
induce a multimodal predictive distribution in latent variable models, and indicate that for the purpose of
stochastic semantic segmentation the use of a probabilistic encoder is not strictly required.
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Figure 10: LIDC validation samples for the (a) cVAE-GAN and (b) cGAN+L,. baseline model.
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B.3 CITYSCAPES

Entropy (bits)

Figure 11: 10 input images, the corresponding aleatoric maps from the calibration network and 16
samples from the refinement network. For visualisation purposes, the samples are split into 8 per row.

B.3.1 QUALITATIVE ANALYSIS

In this section we provide additional qualitative results for the L.,i-regularised cGAN model trained on the
modified Cityscapes dataset (Kohl et al., 2018). In Fig. 11, we show 16 randomly sampled predictions for
representative input images x, and their corresponding aleatoric uncertainty maps, obtained by computing the
entropy of the output of the calibration network, H(Fy(z)), as done in Kendall and Gal (2017). The predicted
samples are of high quality, evident by object coherence and crisp outlines, and high diversity, where all classes
are well represented. Our model effectively learns the entropy of the ground truth distribution in the stochastic
classes (sidewalk, person, car, vegetation and road), as their distinct entropy levels are captured as different
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shades of red in the entropy maps, corresponding to the different flip probabilities (8/17, 7/17, 6/17, 5/17 and 4/17
respectively). Additionally, it can be seen that edges or object boundaries are also highlighted in the aleatoric
uncertainty maps, which reflects inconsistency during manual annotation, which often occurs on input pixels
that are difficult to segment.

Fig. 12d shows the entropy of the predictive distribution of the refinement network G, H(Gy (F(x))), where

Gy (Fy(x)) is computed as the average of 16 samples from G. Our results demonstrate that H(Gg (Fy(2)))
is similar to H(Fy(x)), depicted in Fig. 12c, as encouraged by the Lca1 regularisation. Notice that object
boundaries are also highlighted in H(G 4 (Fs(x))), indicating that our model captures shape ambiguity as well
as class ambiguity. However, some uncertainty information from H(Fy(z)) is not present in H (G (Fy(z))),
e. g. the entropy of the different stochastic classes are not always consistent across images, as evident from the
different shades of red seen for the road class in Fig. 12d. We expect that increasing the number of samples
from the refinement network will improve the aleatoric uncertainty estimates. Nevertheless, the sample-free
estimate extracted from Fjy(x) is cheaper to obtain and more reliable than the sample-based average from G,
highlighting an important benefit of our cascaded approach.

Finally, we illustrate in Fig. 12¢ the high confidence of the predictions from the refinement network G (Fp(x)),
reflected by their low entropy, H(G(Fs(x))). This is attributed to the adversarial component in the refinement
loss function, which encourages the predictions to assume a one-hot representation, matching the ground truth
annotations. Even though each prediction of the refinement network is highly confident, the average of the
predictions G (Fy(z)) is calibrated, as shown in Fig. 12d. This is a clear illustration of the advantage of
complementing the adversarial loss term Lc with the calibration loss term L. in the training objective for the
refinement network.
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Figure 12: (a) Three input images overlaid with the corresponding labels; (b) Incoherent samples
from the predictive distribution of the calibration network; (c¢) The aleatoric maps from the calibration
network; (d) Aleatoric maps computed as the entropy of the average of 16 predictions of the refinement
network; (e) The entropy of one sample of the refinement network output for each input image.
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