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Abstract

Evaluating customer sentiment plays a critical role in business success. By analyzing cus-
tomer feedback, companies can swiftly identify expectations, areas for improvement, and
pain points related to their products and services. Sentiment analysis, fueled by advances in
natural language processing techniques, has become widely accepted for this purpose. In this
study, we leverage the well-known “Twitter US Airline Sentiment” dataset to develop a sen-
tence transformer architecture based on a pre-trained transformer model (mpnet-base). We
fine-tune the model using appropriate loss functions to generate semantically rich sentence
embeddings that are subsequently fed into gradient boosting-based machine learning algo-
rithms. The resulting hybrid model achieves impressive sentiment prediction performance.
Additionally, this study delves into the intricacies of various transformer loss functions that
can be applied to fine-tune the sentence transformer model for enhanced sentiment classifi-
cation performance. Our sentence transformer architecture, fine-tuned on CosineSimilarity
loss function and combined with Light Gradient Boosting Machine Classifier, achieves an ex-
cellent accuracy of 86.5%, while demonstrating high recall rates even for minority sentiment
classes (74.4% for neutral and 82.9% for positive sentiment) without any data augmentation.
Our study emphasizes that fine-tuned sentence transformer models can outperform exist-
ing techniques for sentiment classification, particularly in tri-class sentiment scenarios and
they come with the inherent advantages of lesser computational load and higher scalability
opportunity.

1 Introduction

Traditionally, customer feedback surveys have served as a reliable method for companies to gauge customer
sentiments. However, these surveys often suffer from low response rates, leading to the voices of the ma-
jority of customers going unheard. Additionally, the time-consuming nature of these surveys impedes swift
responses from companies. With the advent of Natural Language Processing (NLP) and Big Data, compa-
nies can now gain insights into customer sentiment and identify trends by analyzing social media posts and
review websites. In this context, sentiment analysis plays a crucial role. Companies can leverage artificial
intelligence to implement real-time analytics of electronic communications from customers, such as comments
on social media and online review sites, to understand the sentiments expressed from a consumer perspec-
tive. This approach is less intrusive and faster than traditional customer feedback surveys, and it tends
to capture unbiased customer opinions more subtly. Consequently, companies can derive quick, actionable
insights and make informed decisions based on the sentiment analysis of customer reviews and feedback. Nu-
merous studies have been conducted to implement sentiment analysis on the Twitter US Airline Sentiment
dataset, particularly utilizing transformer models such as BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019), yielding excellent results. However, there has been limited focus
on leveraging sentence transformer architectures to enhance prediction performance in sentiment analysis.
This research aims to investigate whether the combination of sentence transformer models, fine-tuned with
appropriate transformer loss functions and gradient boosting algorithms, can improve the model’s prediction
performance. This article explores the following research questions:
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• How good are sentence embeddings for sentiment classification?

• What are the working theories behind the different transformer loss functions applicable for sentiment
classification?

• What is the lift achieved in terms of different performance metrics when using fine-tuned sentence
transformer models instead of base sentence transformer models?

This article has been structured as follows: Section 2 depicts related works carried out in this domain;
Section3 underlines the data description and the comprehensive design approach followed to build the models;
In Section4, the model performance is analyzed; finally Section5 talks about the broader implications and
potential future direction of this research . Code is publicly available at
https://github.com/***/Sentiment_Classification.

2 Understanding the sentiment landscape: SotA Analysis

Numerous research efforts have explored sentiment classification, particularly using the “Twitter US Airline
Sentiment” dataset. Notable studies include:

• Topic-Based Categorization Approach: In their pioneering work, Pang et al. (2002) treated
sentiment classification as a special case of topic-based categorization. This work can be considered
as the stepping stone in the domain of sentiment classification. Here the authors explored the
possibility of treating sentiment classification as a special case of topic-based categorization with
the two “topics” being positive sentiment and negative sentiment. Though the accuracies achieved
here for sentiment classification using standard machine learning techniques (Naive Bayes, maximum
entropy classification, and support vector machines) outperformed human-produced baselines, they
were worse compared to topic-based categorization probably due to lack of use of sophisticated text
vectorization techniques capable of capturing the semantic relation among words.

• Ensemble Classifiers: Researchers in Sinha & Sharma (2020) used five different classifiers and
compared their performances and concluded that ensemble classifiers yield better accuracy when
compared to individual classifiers. The paper demonstrated that random forest classifier which is
an ensemble classifier achieved the maximum accuracy of 76% on the US airline dataset.

• Bag-of-Words and TF-IDF Techniques: Tusar & Islam (2021) applied Bag-of-Words and TF-
IDF (term frequency-inverse document frequency) techniques for numerical representation in com-
bination with various ML classification algorithms (Support Vector Machine, Logistic Regression,
Multinomial Naive Bayes and Random Forest) for sentiment classification. Support Vector Machine
and Logistic Regression achieved the maximum accuracy of 77% on the US airline dataset with
Bag-of-Words being used for numerical representation.

• Capsule network: In Demotte et al. (2021), authors proposed a novel approach based on capsule
network architecture tailored for social media content analysis. Remarkably, the proposed approach
achieved state-of-the-art performance even without relying on any linguistic resources, demonstrat-
ing their effectiveness in sentiment analysis. The proposed architectures achieved an accuracy of
82.04% on the US Airline dataset. This result highlighted significant accuracy enhancements in text
processing for social media content analysis and at the same time offered a fresh perspective for
sentiment analysis in the dynamic landscape of social media.

• Affection Driven Neural Networks: In Xiang et al. (2020), the authors focused on one of the
key challenges being faced by the deep neural networks for sentiment analysis which is effectively
incorporating external sentiment knowledge. In this work, the authors proposed an innovative
approach called “affection-driven neural networks” that leverages affective knowledge. Affective
knowledge is obtained in the form of a lexicon based on the Affect Control Theory . This lexicon
represents affective attributes using three-dimensional vectors: Evaluation, Potency, and Activity
(EPA). The EPA vectors are mapped to an affective influence value and integrated into LSTM (Long
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Short-term Memory) models. This integration allows the neural network to highlight affective terms
during sentiment analysis. The proposed approach consistently outperformed conventional LSTM
models by 1.0% to 1.5% in terms of accuracy across three large benchmark datasets. For the
US airline dataset, the proposed neural network architecture comprising of LSTM-AT (LSTM with
attention mechanism to re-weight important words before the fully connected layer) with Evaluation
achieved the highest accuracy of 82.3%.

• Deep Neural Networks: Deep learning models have emerged as promising solutions for NLP
challenges. In Dang et al. (2020), the authors reviewed recent studies that employ deep learning
to tackle sentiment analysis problems, particularly sentiment polarity. They explored models using
TF-IDF and word embeddings, applying them to various datasets. In this paper, for the US airline
dataset, Word2vec in combination with RNN (Recurrent neural network) achieved the highest accu-
racy of 90% However, this study was limited to binary classification and is expected to yield lesser
accuracy when applied to tri-class sentiment classification.

• Hybrid BERT Models: In Talaat (2023), the author proposed a hybrid approach that combines
BERT with Bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent
Unit (BiGRU) algorithms. The author created hybrid deep learning models by stacking two versions
of BERT (RoBERTa & DistilBERT) with BiLSTM and BiGRU layers. RoBERTa (Robustly Opti-
mized BERT Approach) (Liu et al., 2019) is a variant of BERT optimized for sequence-to-sequence
modeling. Like BERT, RoBERTa is a transformer-based language model that uses self-attention
to process input sequences and generate contextualized representations of words in a sentence. It
generates word embeddings effectively. One crucial difference between RoBERTa and BERT is that
RoBERTa was trained on a much larger dataset. Moreover, RoBERTa uses a dynamic masking
technique during training that helps the model learn more robust and generalizable representations
of words. The proposed architecture of RoBERTa with BiGRU layers yielded the highest accuracy
of 86% for the US airlines dataset.

As evident from above, techniques behind sentiment analysis have evolved gradually starting from lexicon
based approach, traditional machine learning algorithms and simple text vectorization techniques like Bag-
of-Words and TF-IDF to complex neural networks and language models. Table 1 displays performances of
the existing techniques vis-à-vis our technique on the Twitter US Airline Sentiment data.

Table 1: Comparison of performances of existing SotA techniques with our technique
Model used Accuracy

Random Forest Classifier (Sinha & Sharma, 2020) 76%
Bag of Words + Support Vector Machine/ Logistic Regression (Tusar & Islam, 2021) 77%
Capsule Network (Demotte et al., 2021) 82.04%
LSTM-AT (Xiang et al., 2020) 82.3%
Word2vec+ RNN (two classes only) (Dang et al., 2020) 90%
RoBERTa with BiGRU layers (Talaat, 2023) 86%
Our Research - Fine-tuned Sentence Transformer + LGBMC 86.5%

3 Methodology

3.1 Data

In this study, the dataset used is a very popular one, taken from Kaggle’s Twitter US Airline Sentiment which
consists of scraped tweets from 2015 Twitter for 6 major airlines operating in US with ‘positive’, ‘negative’ and
‘neutral’ labels. This dataset was originally released by CrowdFlower in 2015 and comprises of 14,640 tweets
spread across three sentiment classes, positive, negative, and neutral and was labelled manually. However,
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Table 2: Data distribution for Twitter US airline dataset
#Records #Positive Tweets #Neutral Tweets #Negative Tweets

14,640 2363 (16%) 3099 (21%) 9178 (63%)

this dataset is imbalanced as evident from table 2 with maximum records having negative sentiment. The
tweets in the dataset belong to six American airlines which are American, Delta, Southwest, United, US
Airways, and Virgin America. There are 15 columns in the dataset, however, for this study, only the text
and airline sentiment columns have been used because the research focuses solely on textual data and its
corresponding sentiment label. This is to ensure that the model only ingests the relevant data, avoiding the
inclusion of any unrelated information.

3.2 Design Approach

• Transformer Architecture: A sentence transformer was created from a pretrained transformer model
(mpnet-base) by performing pooling on the token embeddings. This novel concept of generating
sentence embeddings using siamese and triplet network structures was introduced in Reimers &
Gurevych (2019).

• Fine Tuning: The Sentence Transformer was further finetuned on the training dataset using appli-
cable loss functions.

• Text Vectorization: Converted the field ‘text’ of the training data to numerical representation using
sentence transformer embeddings.

• Model Building and Prediction: Embeddings were used as attributes to create a hybrid machine
learning model based on gradient boosting based machine learning algorithms. The hybrid model
predicted the sentiment on unseen text.

Figure 1 describes the entire process flow briefly.

3.3 Proposed Model Architecture and Methodology

3.3.1 Underlying Sentence Transformer Model

To begin with, the underlying base transformer model that has been used is MPNet as it combines the
strength of masked language modeling adopted in BERT and permuted language modeling adopted in
XLNet (Yang et al., 2019). This MPNet model was proposed in Song et al. (2020) where the authors
identified drawbacks for both BERT and XLNet. Though BERT has been enormously successful for the
most common natural language processing tasks like sentiment classification and named entity recognition,
yet it overlooks the dependency among predicted tokens during pre-training. XLNet introduced permuted
language modeling to address this issue but suffers from position discrepancy between pre-training and fine-
tuning. MPNet not only leverages the dependency among predicted tokens like XLNet but it also takes
auxiliary position information as input, allowing the model to see the full sentence and reducing position
discrepancy. By combining these features, MPNet delivers superior performance when compared to its peers
like BERT, XLNet and RoBERTa.

As a text is passed through this transformer model, the model generates contextualized embeddings for each
of the tokens of the text. Next, the embeddings are passed through a mean pooling layer to get a fixed
length embedding for each of the input texts. Mean pooling averages the token embeddings generated by the
transformer model to create the sentence embeddings which are nothing but compressed information along
a sequence of token embeddings with lower level of granularity. This creates a sentence transformer model
which is now capable of converting each input text to an embedding of fixed dimension. Since each input text,
irrespective of its length now gets converted to an embedding of a fixed dimension, finding proximity among
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Figure 1: Process flow diagram

those embeddings is now computationally much less intensive and achieves similar results when compared
to transformer models like BERT or RoBERTa.

Figure 2 depicts the creation of sentence transformer architecture briefly.

3.3.2 Transformer Loss Functions

Now the above sentence transformer model will be fine-tuned on the training dataset with the help of suitable
loss functions for an enhanced performance on the target task. Selection of appropriate loss function is
critical towards model’s performance. Unfortunately, there is no fixed recipe to determine the most fitting
loss function. However, it largely depends on the structure of the data and the target task. Since the dataset
used here is labelled, the loss functions relevant for supervised learning are discussed here. Details of all
the loss functions can be found in Reimers & Gurevych. Principally, the objective of the loss function is to
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Figure 2: Sentence transformer creation process

optimize such that texts with same labels are as close as possible in the vector space whereas the texts with
different labels lie farthest from each other. The loss functions that have been used in the architecture are
as follows:

1. CosineSimilarityLoss

2. Cosine Sentence Loss (CosentLoss)

3. SoftmaxLoss

4. BatchAllTripletLoss

5. BatchHardSoftMarginTripletLoss

6. BatchHardTripletLoss

7. BatchSemiHardTripletLoss

CosineSimilarityLoss: In order to finetune a sentence transformer model on CosineSimilarityLoss, the
model needs to be trained that a pair of texts from the training data has a predefined degree of cosine
similarity. Therefore, each training example should consist of a pair of texts from the data along with
a label indicating their similarity score that allows the model to understand how similar the two texts
are. So, the next step involves converting the dataset into a format that can be ingested by the sentence
transformer model. The model cannot accept raw text. Hence each example must be converted to a sen-
tence_transformers.InputExample class and then to a torch.utils.data.DataLoader class to train the model.

Below is a toy example for demonstration purpose showing how to fine tune the model on cosine similarity
loss.

train_examples = [
InputExample(texts=[ postext1, postext2], input_label=1),
InputExample(texts=[ postext1, negtext1], input_label =0),
InputExample(texts=[ postext1, neutext1], input_label =0.5),

]

Here the model is being taught that the similarity score between the texts in the first pair is 1 since they
belong to the same class of positive sentiments. Similarity score between the texts in the second pair is set to
0 so that the model understands that a positive sentiment text has no similarity with a negative sentiment
text. Finally, the third pair has the input label set to 0.5 to inform the model that a positive sentiment
text is somehow related to a neutral sentiment text but not closely enough. Then the model encodes each
pair of texts, using the underlying sentence transformer model into fixed length embeddings, say vect1 and
vect2. Then it computes the cosine similarity between the two, say sim(vect1, vect2). Subsequently, it uses
mean squared error (MSE) as the loss function to compare sim(vect1, vect2) with the input label and while
minimizing MSE, it aims to minimize the L2 norm of the error given as:

Loss = ∥input_label − sim(vect1, vect2)∥2 (1)
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Here input label is the target similarity score in the range [0,1] for each pair of sentences. So similar pair of
sentences belonging to the same class should be set for a similarity score closer to 1 whereas dissimilar pair
of sentences belonging to different classes should be set for a lower similarity score. One interesting aspect
here is although the cosine similarity ranges between [-1,1], the label or the target similarity score has been
deliberately set in the range [0,1] since for every normalized vector (p), there exists exactly one normalized
vector (q) such that the cosine similarity between (p) and (q) is -1. However, there are infinite vectors for
which the cosine similarity between (p) and each of those vectors is 0. Consequently, using a loss function
that only becomes 0 when the cosine similarity between two vectors is -1 is undesirable.

Cosine Sentence Loss (CoSENT): CoSENT loss function, introduced in Jianlin (2022) expects each of
the input examples consists of a pair of texts and a target label, representing the expected pairwise similarity
score between the texts in the pair. The generic loss function for CoSENT loss is defined as

Loss = log(1 +
∑

sim(i,j)>sim(k,l)

eλ(s(k,l)−s(i,j))) (2)

Where (i,j) and (k,l) are any random input pairs of texts from the training data set such that pairwise
cosine similarity between(i,j) , say s(i,j) is always greater than the pairwise cosine similarity between(k,l),
say s(k,l). The summation is over all possible pairs of input pairs in the batch that match this condition
and hence this loss function is also applicable for multi-class classification problems as long as there is
an ordinal relation among the different classes. As evident, in order to minimize the loss, the expression∑

sim(i,j)>sim(k,l) eλ(s(k,l)−s(i,j)) needs to be minimized which can be achieved only by pushing s(i,j) up and
pushing s(k,l) down. Here λ is a hyperparameter for scaling the pairwise cosine similarity scores.

Below is a toy example for demonstration purpose showing how to fine tune the model on cosent loss.

train_examples = [
InputExample(texts=[ postext1, postext2], input_label=1),
InputExample(texts=[ postext1, negtext1], input_label =-1),
InputExample(texts=[ postext1, neutext1], input_label =0),

]

Here the model is being taught that the expected pairwise similarity score between the texts in the first pair
is 1 since they belong to the same class of positive sentiments. Expected pairwise similarity score between
the texts in the second pair is set to -1 so that the model understands that a positive sentiment text has
opposite meaning with respect to a negative sentiment text. Finally, the third pair has the input label set
to 0 to inform the model that a positive sentiment text is not related to a neutral sentiment text and their
embeddings are orthogonal to each other. Unlike CosineSimilarityLoss, here the target similarity score is
in the range [-1,1] for each pair of sentences since pushing the similarity score towards 1 for the pair with
similar texts (positive and positive) and towards -1 for the pair with dissimilar texts (positive and negative)
will ensure minimum loss.

SoftmaxLoss:This loss was introduced by the authors in Reimers & Gurevych (2019). For each pair of
texts under consideration, it concatenates the corresponding sentence embeddings, say vecta and vectb with
the element-wise difference |vecta − vectb| and multiplies it with the trainable weight Wt ∈ R3n∗k. Then it
adds a softmax classifier to it. So, the final output is given by:

Output = softmax(Wt(vecta, vectb, |vecta − vectb|)) (3)

Here n denotes the dimension of the sentence embeddings, k denotes the number of labels or classes and the
loss optimized is the cross-entropy loss.

Triplet Loss: This concept was introduced in Schroff et al. (2015). Here triplet refers to three entities – one
anchor text, one positive text belonging to the same class of anchor text and one negative text belonging to
a different class than that of the anchor text. Let’s say the corresponding sentence embeddings are a, p and
n respectively. The objective of the loss function is to push down the distance between a and p, say d(a,p)
towards 0 and simultaneously push up the distance between a and n, say d(a,n) such that d(a, n) > d(a, p)+α

7



Under review as submission to TMLR

where α is a hyperparameter. Hence the loss function can be defined as:

Loss = max(d(a, p) − d(a, n) + α, 0) (4)

As evident, d(a, p) − d(a, n) + α must always be negative to ensure we get 0 loss. The goal of the triplet loss
is to make sure that:

• Two texts from the same class have their embeddings close together in the embedding space

• Two texts from different class have their embeddings far apart by some margin.

There are three types of triplets as follows:

• Easy Triplets: triplets with 0 loss, because d(a, p) + α < d(a, n)

• Hard Triplets: triplets where the negative entity is closer to the anchor than the positive entity,
i.e. d(a, n) < d(a, p)

• Semi Hard Triplets: triplets where the negative entity is not closer to the anchor than the positive
entity, but have positive loss, i.e. d(a, p) < d(a, n) < d(a, p) + α

α is more commonly referred as the margin. The distance function used here is the euclidean distance.

BatchAllTripletLoss tries to minimize the loss for all valid triplets from the training data.

BatchHardTripletLoss uses only the hardest positive and negative samples, rather than all possible, valid
triplets from the training data. So, for each anchor, it gets the hardest positive and hardest negative to form
a triplet.

BatchHardSoftMarginTripletLoss also uses only the hardest positive and negative samples from the
training data. However, it does not require a margin.

BatchSemiHardTripletLoss uses only semi-hard triplets out of all valid triplets from the training data.

Figure 3 graphically demonstrates the differences among hard, semi-hard and easy triplets along the embed-
ding space.

A triplet (a, p, n) is valid if a, p, n are distinct and label[a] = label[p] and label[a] ̸= label[n]. Here labels are
represented as integers, where the same label corresponds to sentences from the same class. Additionally,
the training dataset should include a minimum of two examples per label class.

3.3.3 ML Algorithms

For design experiment modeling, each of the fine-tuned models was used in combination with following
popular ML algorithms for classification:

• LightBGM (LBGM): Authors in Ke et al. (2017) efficiently addresses the challenges posed by high
feature dimension and large data size in Gradient Boosting Decision Tree by proposing LightGBM
which can significantly improve efficiency and scalability. LightGBM stands for Light Gradient-
Boosting Machine which is a fast, distributed, gradient boosting framework based on decision tree
algorithm and is used for classification and other machine learning problems. It leverages gradient
boosting to construct a strong learner by sequentially adding weak learners in a gradient descent
manner. Unlike other boosting algorithms, LightGBM splits the tree leaf wise with the best fit i.e. it
chooses the leaf that yields the largest decrease in loss, resulting in efficient tree construction. It also
uses histogram-based decision tree learning algorithm which buckets continuous attribute values into
discrete bins resulting in faster training and lower memory usage. Hence the word “Light” comes
into play.
LightGBM utilizes two novel techniques:
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Figure 3: Triplets along embedding space.

Gradient-based One-Side Sampling (GOSS): This technique enables LightGBM to put em-
phasis on data instances with larger gradients, which are more significant for computing information
gain, leading to accurate gain estimation with reduced data size.

Exclusive Feature Bundling (EFB): EFB bundles mutually exclusive features to reduce the
number of features without significantly affecting the accuracy of split point determination, thus
enhancing efficiency.

• XGBoost: XGBoost which stands for eXtreme Gradient Boosting, is a powerful machine learning
tool known for its efficiency, speed, and accuracy. This technique was introduced in Chen & Guestrin
(2016). Like LGBM, XGBoost is based on based on decision tree algorithms and leverages gradient
boosting to construct a strong learner by sequentially adding weak learners in a gradient descent
manner. The paper proposes a novel sparsity-aware algorithm for sparse data. It also introduces a
weighted quantile sketch for approximate tree learning. Unlike LGBM, XGBoost builds trees level-
wise (depth-wise), expanding the tree layer by layer, adding new models to correct errors made by
previous ones, which leads to higher memory usage compared to LGBM.

4 Results

4.1 Model Evaluation Parameters

The training data for the model comprises of 80% of the original data and the model predicts on the test
data comprising of the remaining 20%.
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Performance evaluation parameters used in this study are Precision, Recall, F1 and Accuracy. Precision,
Recall and F1 have been calculated for each class. Hence True Positive, True Negative, False Positive
and False Negative also need to be understood with context to each individual class. For example, when
calculating the metrics for positive sentiment class, any review having label other than positive sentiment
will be considered as a negative instance. Similarly, when calculating the metrics for negative sentiment
class, any review having label other than negative sentiment will be considered as a negative instance and
so on.

True Positive(TP): The number of instances where the classification system correctly predicts a positive
sentiment as a positive one or a negative sentiment as a negative one or a neutral sentiment as a neutral one.

True Negative(TN): The number of instances correctly predicted as negative instances.

False Positive(FP): The number of instances incorrectly predicted as positive instances.

False Negative(FN): The number of instances incorrectly predicted as negative instances.

Precision : Precision is defined as the ratio of correctly classified positive instances to the total number of
samples predicted as positive.

Precision = TP

TP + FP
(5)

Recall: Recall, also known as sensitivity measures how many of the actual positive instances were correctly
predicted. This metric is particularly important in determining how well the model is predicting the minority
class in an imbalanced dataset

Recall = TP

TP + FN
(6)

F1 score: F1 score is the harmonic mean of Recall and Precision, combining both metrics into a single value.
It is the most used metric after accuracy. It balances precision and recall. F1 score manages the trade-off
between recall and precision.

F1 = 2 ∗ (Precision ∗ Recall)
Precision + Recall

(7)

Accuracy: It is the ratio of correct classifications to total predictions given by the model. Accuracy is a good
metric to use for sentiment classification when the sentiment classes are balanced.

Accuracy = CorrectPredictions

TotalPredictions
(8)

Table 3 provides a detailed breakdown of the results. As evident from Table 3, the base sentence transformer
model in conjunction with XGBoost does a pretty decent job with an overall accuracy of 83.5% and high
precison, recall and F1 scores for the negative sentiment class. This indicates that the sentence embeddings
generated by the base sentence transformer model are semantically rich. However for the minority classes
of positive and neutral sentiments, the performance metrics, specially recall and F1 scores are not that
promising. Subsequently, sentence transformer model fine-tuned on CosineSimilarityLoss in conjunction
with LGBM classifier achieves the highest accuracy of 86.5%. It is also observed that finetuning the sentence
transformer model on CosineSimilarityLoss provides a lift of 3 percentage points in terms of accuracy, a
lift of > 10 percentage points in terms of recall and a lift of > 6 percentage points in terms of F1 score
for the minority classes (positive and neutral sentiment classes) when compared to the performance of
base sentence transformer model. This demonstrates the contribution of the fine-tuning process for sentence
transformer models in enhancing the models’ classification performance, particularly for the minority classes.
The performance metrics for the negative sentiment class are always better compared to the other two classes
as it is the majority class in the dataset. However, the minority classes also consistently achieve acceptable
precision, recall and F1 scores with the fined-tuned sentence transformer models without the need of any
data augmentation.

Figure 4 displays the normalized confusion matrix for the finetuned model with the highest accuracy, thus
indicating the recall rates diagonally in blue boxes for each of the classes.
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Table 3: Results summary
Model Accuracy Negative Neutral Positive

Precision Recall F1 Precision Recall F1 Precision Recall F1

Base Model + LBGM 82.9% 86.8% 93.0% 89.8% 68.3% 61.9% 65.0% 84.4% 70.8% 77.0%

Base Model + XGB 83.5% 86.8% 94.0% 90.2% 70.7% 61.6% 65.9% 84.2% 71.0% 77.0%

FT Model on CosineSimilarityLoss +
LBGM

86.5% 92.0% 91.5% 91.7% 72.0% 74.4% 73.2% 84.9% 82.9% 83.9%

FT Model on CosineSimilarityLoss + XGB 86.2% 91.4% 91.8% 91.6% 72.0% 72.1% 72.0% 84.5% 83.0% 83.8%

FT Model on CoSentLoss + LBGM 85.4% 91.7% 90.7% 91.2% 68.7% 72.9% 70.7% 84.2% 81.2% 82.7%

FT Model on CoSentLoss + XGB 85.6% 91.4% 91.0% 91.2% 69.7% 72.3% 70.9% 84.5% 81.8% 83.1%

FT Model on SoftmaxLoss + LBGM 86.1% 90.3% 92.6% 91.4% 73.2% 71.7% 72.4% 86.1% 79.9% 82.9%

FT Model on SoftmaxLoss + XGB 86.3% 90.5% 92.6% 91.6% 73.9% 72.1% 73.0% 85.6% 80.3% 82.9%

FT Model on BatchAllTripletLoss + LBGM 85.4% 90.4% 92.2% 91.3% 69.9% 71.1% 70.5% 86.4% 77.8% 81.9%

FT Model on BatchAllTripletLoss + XGB 85.1% 90.2% 92.1% 91.2% 69.6% 71.0% 70.3% 86.0% 76.7% 81.1%

FT Model on BatchHardSoftMarginTriplet-
Loss + LBGM

85.7% 90.3% 92.9% 91.6% 70.7% 71.0% 70.9% 87.5% 77.2% 82.0%

FT Model on BatchHardSoftMarginTriplet-
Loss + XGB

85.7% 90.0% 93.0% 91.5% 71.2% 71.5% 71.3% 87.8% 76.1% 81.5%

FT Model on BatchHardTripletLoss + LBGM 85.3% 88.8% 92.9% 90.8% 72.3% 68.2% 70.2% 87.7% 78.4% 82.80%

FT Model on BatchHardTripletLoss + XGB 85.4% 88.9% 93.1% 91.0% 72.4% 68.2% 70.3% 87.2% 77.8% 82.2%

FT Model on BatchSemiHardTripletLoss +
LBGM

85.6% 90.0% 92.6% 91.3% 70.7% 70.8% 70.8% 87.4% 77.8% 82.3%

FT Model on BatchSemiHardTripletLoss +
XGB

85.8% 90.0% 92.8% 91.4% 71.5% 70.8% 71.2% 87.4% 78.0% 82.5%

5 Broader Impact Statement

Sentiment analysis is a powerful technique in artificial intelligence that has important business applications.
For example, organizations can use sentiment analysis to gauge public opinion about their products and
services. E-commerce companies can monitor the overall sentiment of reviews of their different products
to identify any suspicious vendors that use false advertising or scamming tactics. This research can help
businesses develop inexpensive, easy to implement models for sentiment analysis with state-of-the-art per-
formance. Below are some perceived advantages of our approach over existing techniques for sentiment
classification.

• No text cleaning
One of the key challenges faced by existing methods using the conventional text vectorization meth-
ods like Bag-of-Words and TF-IDF is the need for extensive text preprocessing (such as removing
stopwords, special characters, and emojis). This not only makes the entire process computation-
ally more expensive but also leads to loss of valuable information. On the other hand, sentence
transformers are designed to handle raw text effectively. They learn contextual embeddings directly
from the input text. Unlike the traditional text vectorization methods, Sentence Transformers cap-
ture semantic meaning, making them robust to minor noise (e.g., typos, punctuation, and special
characters).

• Lesser computational cost
Techniques leveraging transformer architectures like BERT may provide comparable performances
for sentiment classification but they usually come with a high computational price tag. Sentence
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Figure 4: Normalized confusion matrix

transformers directly produce embeddings for entire sentences, enabling them to handle variable-
length input (sentences) without increasing computational complexity which is why their processing
is more efficient than BERT’s token-by-token processing. As a result while using pre-trained models,
sentence transformers are generally less computationally expensive than BERT.

• Scalability

Sentence transformers are designed to handle large datasets efficiently and can generate embeddings
without compromising performance. This scalability is crucial for businesses experiencing rapid
growth or dealing with ever-expanding text corpora. Scalability also extends to fine-tuning sentence
transformers as pre-trained models can be fine-tuned on domain-specific data without significant
computational overhead. This adaptability will allow the users to tailor sentence embeddings to
specific tasks while maintaining scalability.

The future plan is to extend this study further to incorporate text summarization and topic modeling
for the review texts whose sentiments will be predicted by the model so as to identify the major keywords
responsible for such predicted sentiments, especially for the negatively predicted sentiments. This will enable
organizations to recognize their own shortcomings on a real time basis just by ingesting the customer reviews.

References
Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. Advances in Neural Information

Processing Systems, 30:3146–3154, 2016. URL https://arxiv.org/abs/1603.02754.

12

https://arxiv.org/abs/1603.02754


Under review as submission to TMLR

Nhan Cach Dang, María N. Moreno-García, and Fernando De la Prieta. Sentiment analysis based on deep
learning: A comparative study. Electronics, 9(3):483, 2020.

P. Demotte, K. Wijegunarathna, D. Meedeniya, and I. Perera. Enhanced sentiment extraction architecture
for social media content analysis using capsule networks. Multimedia Tools and Applications, 82:8665–8690,
2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Su Jianlin. Cosent (1): A more effective sentence vector scheme than sentence-bert, Jan 2022. URL https:
//kexue.fm/archives/8847.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neu-
ral Information Processing Systems, 30:3146–3154, 2017. URL http://papers.nips.cc/paper/
6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine
learning techniques. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2002), pp. 79–86, Philadelphia, USA, July 2002. Association for Computational
Linguistics. doi: 10.3115/1118693.1118704. URL https://aclanthology.org/W02-1011.

Nils Reimers and Iryna Gurevych. Sentence transformer losses. https://sbert.net/docs/package_
reference/sentence_transformer/losses.html [Accessed: (17th September 2024)].

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/
D19-1410.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition
and clustering. arXiv preprint arXiv:1503.03832, 2015.

Avishek Sinha and Pooja Sharma. Comparative analysis of machine learning classifiers on us airline twitter
dataset. International Research Journal of Engineering and Technology (IRJET), 7(8):798–803, 2020.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-training
for language understanding. arXiv preprint arXiv:2004.09297, 2020.

Amira Samy Talaat. Sentiment analysis classification system using hybrid bert models. Journal of Big Data,
10(1):110, 2023.

Md. Taufiqul Haque Khan Tusar and Md. Touhidul Islam. A comparative study of sentiment analysis using
nlp and different machine learning techniques on us airline twitter data. arXiv preprint arXiv:2110.00859,
2021.

Rong Xiang, Yunfei Long, Mingyu Wan, Jinghang Gu, Qin Lu, and Chu-Ren Huang. Affection driven
neural networks for sentiment analysis. In Proceedings of the Twelfth Language Resources and Evaluation
Conference, pp. 112–119, Marseille, France, May 2020. European Language Resources Association. URL
https://aclanthology.org/2020.lrec-1.14.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. Xlnet:
Generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237, 2019.

13

https://aclanthology.org/N19-1423
https://kexue.fm/archives/8847
https://kexue.fm/archives/8847
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://aclanthology.org/W02-1011
https://sbert.net/docs/package_reference/sentence_transformer/losses.html
https://sbert.net/docs/package_reference/sentence_transformer/losses.html
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://aclanthology.org/2020.lrec-1.14

	Introduction
	Understanding the sentiment landscape: SotA Analysis
	Methodology
	Data
	Design Approach
	Proposed Model Architecture and Methodology
	Underlying Sentence Transformer Model
	Transformer Loss Functions
	ML Algorithms


	Results
	Model Evaluation Parameters

	Broader Impact Statement

