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Figure 1. Higher-order navigation skills. Humans employ various skills involving higher-order reasoning in order to navigate to their

destinations efficiently. These skills take advantage of key knowledge resources in the environment through high-level language and visual

processing. We present a navigation method that imbues robots with these skills by integrating them in a VLM agent framework.

Abstract

When navigating in a man-made environment they haven’t

visited before—like an office building—humans employ be-

haviors such as reading signs and asking others for direc-

tions. These behaviors help humans reach their destinations

efficiently by reducing the need to search through large ar-

eas. Existing robot navigation systems lack the ability to

execute such behaviors and are thus highly inefficient at

navigating within large environments. We present Reason-

Nav, a modular navigation system which integrates these

human-like navigation skills by leveraging the reasoning

capabilites of a vision-language model (VLM). We design

compact input and output abstractions based on navigation

landmarks, allowing the VLM to focus on language under-

standing and reasoning. We evaluate ReasonNav on real

and simulated navigation tasks and show that the agent suc-

cessfully employs higher-order reasoning to navigate effi-

ciently in large, complex buildings. Our work is under sub-

mission at CoRL 2025.

1. Introduction

Imagine that you are an office worker and are asked to de-

liver a report to Jane Doe’s office. What steps would you

take to complete this task? First, you might search in a di-

rectory to find out the building and room number for Jane

Doe’s office. Then, you might look for signs that indicate

the direction of that room. You can integrate the informa-

tion you receive from each sign with the layout of the scene

you see around you to decide where to look next. Along the

way, you might ask people nearby for further clarifications.

Our civilization is built to be easy for humans to navi-

gate within. There is an abundance of knowledge-offering

resources around us that we leverage to navigate the world

efficiently. Directional signs are placed deliberately at junc-

tions to eliminate the risk of going the wrong way. Room

labels follow orderly patterns so that reading a few can al-

low one to infer the locations of other rooms. Such guidance

is necessary in order to deal with the inherent uncertainty of

navigation in unseen environments.

Existing robot navigation systems lack the skills needed



to leverage these resources and thus lose out in naviga-

tion efficiency by spending unnecessary time exploring. We

call these skills, which include sign reading and asking for

directions, higher-order navigation skills because they re-

quire higher-order reasoning abilities and language process-

ing. These skills become increasingly important in larger

environments, where exploring in the wrong direction can

cost a massive amount of time.

Our key insight is that such higher-order navigation skills

can be integrated in a unified manner by taking advantage of

recent advances in large vision-language models (VLMs).

In this paper, we present ReasonNav, a modular system for

human-like navigation that leverages the zero-shot reason-

ing capabilities of a VLM in an agentic manner. The system

is comprised of two streams: a low-level stream that handles

localization, mapping, and path planning, and a high-level

stream where the VLM performs high-level planning on ab-

stracted observation and action spaces. Specifically, we rep-

resent the environment using a memory bank of landmarks

(e.g. map frontiers, doors, people, signs) with attached tex-

tual information. This simplifies both the input and output

spaces for the VLM agent, allowing it to focus on higher-

order reasoning.

We evaluate ReasonNav in real and simulated environ-

ments. In both cases, the robot is tasked with finding a given

room in a large (unseen) building. This mimics a practical

indoor delivery scenario. We show that our abstraction de-

sign allows the VLM to interpret information from signs

and people and use it to guide its decision-making. We

compare our full system with ablated versions and demon-

strate that such higher-order navigation skills greatly im-

pact navigation performance. Overall, the results suggest

that our VLM agent framework is a promising path for-

ward for achieving human-like navigation efficiency using

higher-order reasoning skills.

2. Related Work

Agentic Foundation Models in Robotics. Task and mo-

tion planning (TAMP) approaches traditionally rely on pre-

defined symbolic reasoning or optimization to plan for

long-horizon tasks. Previous works [12, 26, 27, 29]

have leveraged large language models (LLMs) to decom-

pose high-level instructions into actionable subtasks, al-

lowing for more user-friendly robotics systems. More re-

cent approaches utilize Vision-Language Models (VLMs)

to ground reasoning for more general and capable robot sys-

tems. VLMs have been shown to generalize across diverse

objects and tasks in table-top manipulation [13, 15, 37], and

enable zero-shot navigation to semantic goals across differ-

ent environments [2, 18, 30]. Integrating these capabilities

for mobile manipulation has seen improved potential in re-

cent works [5, 31, 37], which are divided into two main

categories: 1. prompt-based querying and 2. fine-tuning for

direct perception to action pipeline. Our approach falls into

the first category, querying a VLM for high-level task plan-

ning and using modular out-of-the-box controllers to exe-

cute actions. However, in contrast to the aforementioned

methods that mainly rely on sensory inputs to perceive the

world, our methods can leverage other resources, such as

asking humans for help or actively seeking visual cues for

navigation.

Open-world Navigation. In recent years, the rise in pop-

ularity of large-scale pre-trained foundation models has wit-

nessed the emergence of open-world navigation. Particu-

larly, early works of CLIP-on-Wheels (CoW) [9] and LM-

Nav utilize CLIP [25] to establish a top-down confidence

map for language-guided object-goal navigation or to pre-

compute a language-embedded topological graph. Further

works have expanded on this direction, using foundation

models to pre-build highly expressive language-embedded

semantic maps for long-horizon and fine-grained navigation

tasks [3, 10, 11, 14, 22, 24, 33]. However, these approaches

are computationally expensive, typically requiring multiple

traversals over the operational area and hours of computing,

and are unable to operate in unknown environments. Recent

works [1, 4, 18, 26, 35, 36, 39] address this shortcoming

by adopting LLMs and VLMs’ high-level planners, taking

advantage of their high-level reasoning capabilities to re-

lax the requirement of costly pre-built maps. Our method

falls into this category, enjoying the scalability and zero-

shot transferability to the unknown world. However, we fo-

cus on practical navigation in man-made environments and

the unique skills needed to succeed in such settings.

Interactive Navigation. Although these large foundation

models have been trained on the vast majority of internet

data and have shown promising results for robotic tasks,

solely relying on them has proven to be inefficient. In

recent years, the robotics community has been exploring

human-in-the-loop feedback for corrections during robot’s

execution, especially for manipulation tasks [6, 16, 17, 38]

and visual question answering tasks [7, 27, 28, 32]. De-

spite showing promising results, these methods typically

require immediate human feedback, which is often not pos-

sible in real-world navigation scenarios. In contrast, our

work mitigates this issue by leveraging more than just hu-

man feedback as an additional source of information, uti-

lizing wayfinding cues (room labels, navigation signs, web

searches) for more robust and efficient navigation.

3. Method

ReasonNav is a modular system for human-like navigation

that heavily leverages the zero-shot reasoning capabilities of

a Vision-Language Model (VLM) for efficient exploration



Figure 2. Overview of ReasonNav. The system is comprised of a low-level stream and a high-level stream. The low-level stream performs

SLAM and object detection for key object categories (doors, signs, and people), feeding into a global memory bank. The high-level stream

consists of a VLM planner that receives abstracted observations in the form of a JSON landmark dictionary and a map visualization. The

VLM outputs the next landmark to explore, upon which predefined behavior primitives are executed based on the landmark category.

in unseen buildings. The system can be separated into a

low-level stream and a high-level stream. The low-level

stream includes standard localization and mapping mod-

ules that run at high frequency and an analytical path plan-

ner (Sec. 3.2). The high-level stream consists of a VLM

agent that receives specially abstracted scene information

to mimic the conscious decision-making processes used by

humans during navigation (Sec. 3.3). The VLM chooses

map frontiers to explore and decides when to perform skills

such as sign reading, which are executed via predefined be-

havior primitives (Sec. 3.4).

3.1. Robot Hardware Setup

Our robot, shown in Fig. 3, is custom-built and consists of a

mobile base, an arm, a computer, and various sensors. Com-

ponents are attached to the base using aluminum t-slots and

3d-printed mounts.

We use the AgileX Ranger Mini 2.0, a mobile plat-

form with 4-wheel steering and an onboard power supply,

and an xArm 7 robot arm (currently unused). For obsta-

cle avoidance and mapping, there is a Slamtech 2D lidar

mounted near the base and a Hesai FT120 solid-state 3D

lidar mounted on top. Two Realsense D455’s are mounted

on top for perception, one on a pan-tilt mechanism and the

other angled downward toward the robot workspace. Only

the pan-tilt camera is used in this work, and it is only used

for object detection and text reading, not mapping. The
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xArm 7Laptop w/ 
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Ranger Mini 2.0 
Mobile Base

Microphone
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Figure 3. Hardware System Overview.

height of the camera is roughly aligned with most indoor

signs, and the pan-tilt capability allows for viewing the sur-

roundings quickly without turning the entire robot. For in-

teracting with humans, we use a Respeaker omnidirectional

microphone, mounted near the top for conversation with hu-

mans. An Ardusimple simpleRTK3B GPS is also mounted

but is unused in this work.

Our onboard compute comes from a Lenovo Legion 5i

laptop with an NVIDIA 4070 GPU. The entire system is



integrated using ROS2 Humble with all sensors/robot inter-

faces connected to the laptop. The laptop is connected to

the internet in order to query GPT 4.1 via its API.

3.2. Localization and Mapping

We first describe our system’s low-level processing stream,

which is responsible for producing a top-down map of the

environment, localizing the agent with respect to the map,

detecting certain objects, and path planning. We perform

2D simultaneous localization and mapping (SLAM) using

SLAM Toolbox [20] which merges the 3D lidar scan into

the 2D scan and performs optimization to produce a top-

down occupancy map of areas the agent has explored. Con-

currently, we perform object detection on images from the

RealSense camera using an open-vocabulary detector with-

out retraining. We use NanoOWL, an optimized imple-

mentation of OWL-ViT [23], and query with three text la-

bels: door, person, and directions sign. For path

planning, we use NavFn, a wavefront Dijkstra planner from

Nav2 [21], and execute the paths using an MPPI [34] con-

troller.

3.3. VLM Observation and Action Abstraction

The key idea of our approach is to leverage VLMs in an

agentic framework to integrate human-like behaviors that

greatly improve navigation efficiency. VLMs excel at un-

derstanding language and conducting many forms of com-

monsense reasoning. However, they struggle at understand-

ing complex spatial data and directly producing precise nu-

merical outputs [8, 19]. Thus, we need to carefully design

abstractions for both the input (observations) and output

(actions) of the VLM in order to effectively leverage its rea-

soning capabilities.

Landmarks. Our abstraction design is centered heavily

on the concept of landmarks, which refer to salient objects

that are especially important in navigation tasks. Specifi-

cally, the landmarks refer to objects of the three categories

mentioned above: doors, people, and directional signs,

along with frontiers of the top-down map. Our system pop-

ulates a memory bank of the objects from the output of the

detector and attaches additional navigation-relevant infor-

mation to each one as various skills are performed. For

doors, we attach the text of the associated room label. For

people, we attach a summary of the information received

from them. For directional signs, we attach a list of cardi-

nal directions and the sign text reading(s) associated with

each direction. All of the objects are attached to a label of

“Visited” or “Unvisited”.

VLM Input and Output. We prompt the VLM with text

instructions and two forms of abstracted scene information.

One is the memory bank of landmarks, including both ob-

jects and map frontiers, in JSON format. Each landmark is

assigned an index and may be attached to additional infor-

mation as described above. The second form of informa-

tion is an image visualization of the agent’s top-down map.

The map is colored based on occupancy and explored areas,

and for each landmark, we plot its location on the map with

a symbol of its category and its index number (see Fig.1).

This gives a compact, high-level summary of the scene lay-

out and the important objects the agent has seen thus far.

We prompt the VLM to use these two forms of information

to decide which landmark to visit next. This design ensures

that the VLM can flexibly choose any reasonable high-level

plan while not being tasked with predicting precise numer-

ical coordinates.

3.4. Behavior Primitives

Each landmark category has an associated behavior prim-

itive, which will be executed based on the VLM’s choice.

We describe each one below:

Frontier (Exploration). The agent moves to the desired

frontier and turns 360-degrees around to scan its surround-

ings with Nav2’s point goal planner and controller. Frontier

navigation enables us to explore the unvisited region and

identify more landmarks.

Door (Room Label Reading). The agent approaches the

door and pans its camera while querying the object detector

for room label. If a room label is detected, the agent

moves closer and reads it via another call to the VLM. The

text is attached to the door in the memory bank. If the goal

is found, the episode ends here.

Person (Asking for Directions). The agent approaches

the person and asks for directions using a text-to-speech

model. It then records the person’s response using speech-

to-text. Next, it calls the VLM to produce a short note about

the information it received, which is then attached to the

person’s landmark in the memory bank. Importantly, we re-

quest the VLM to use cardinal directions in the global map

frame instead of relative directions such as “left” or “right”

so that the note can be understood later without needing the

agent’s pose at the time of recording (Fig. 9).

Directional Sign (Sign Reading). The agent approaches

the sign and reads it via a call to the VLM. The sign text is

grouped based on arrow direction (binned into cardinal di-

rections), and the directions are transformed into the global

map frame for recording.
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Figure 4. Overview of the “Direction Asking” Skill: The agent identifies nearby humans and logs them in its spatial memory (#3 in the

map). When needed, it approaches and asks for goal directions via text-to-speech. The human’s verbal response is transcribed and updated

in memory, enabling a more informed search towards the target (#4) that avoids unvisited areas (#1 and #2 frontiers in the figure) unrelated

to the goal and improves efficiency.

4. Experiments

We evaluate ReasonNav across a suite of real and simulated

navigation tasks. We seek to answer the following ques-

tions: 1) Can our VLM leverage higher-order skills to avoid

wrong searches? 2) How does ReasonNav perform in un-

seen real-world navigation tasks? 3) How do sign-reading

and human interactions impact navigation efficiency? 4)

How does map visualization input influence the VLM’s spa-

tial understanding? We answer these questions through a

variety of qualitative and quantitative analyses of the sys-

tem’s performance in comparison to relevant baselines.

Task description. Our evaluation tasks are designed to

mimic a realistic indoor delivery scenario. The agent is

placed in a large unknown building and is tasked with find-

ing a target room specified by a room number. The episode

is considered successful if the target room label has been

read by a VLM call, within a 15-minute time limit.

Real-world environment. In the real-world, we consider

two complex university campus multi-purpose buildings,

each over 80m in length. For most of the rooms, includ-

ing the target room, there is a room label next to each door

to the room. Each building contains signs and people scat-

tered throughout, which all provide helpful information. We

evaluate navigation performance over 12 trials, each with

different start and goal locations.

Simulation environment. We construct an environment

in simulation (IsaacSim) to enable reproducible evaluation.

To the best of our knowledge, there is no existing simulation

environment suitable for evaluating higher-order navigation

skills in realistic man-made scenes. We use existing assets

for an empty hospital and add room labels for each door, di-

rectional signs, and virtual humans who can provide direc-

tions via hard-coded conversational responses. We evaluate

navigation performance over 14 trials, each with different

start and goal locations. We plan to release all the code and

assets needed for evaluation in this environment to acceler-

ate future research on practical indoor navigation. Please

refer to Fig. 6 for visualization of our simulation environ-

ment.

Baselines. To the best of our knowledge, there is no exist-

ing method available for navigating to specific rooms within

buildings, as the task inherently requires integrating text

reading capabilities into the navigation pipeline. Thus, we

design baselines which can be thought of as ablations of our

method. To determine the impact of higher-order naviga-

tion skills on navigation efficiency, we create one baseline

in which signs and people are not processed into the land-

mark memory bank (No Signs/Humans Feedback, Fig. 7).

Thus, the VLM has no option to read signs or ask people for

more information – it only sees map frontiers and doors and

decides which to visit. We also experiment with removing

the map image input to the VLM (No Landmark Map Input,

Fig. 7). In this case, the VLM only receives scene informa-

tion via JSON text format.

Metrics. We measure success rate, average episode dura-

tion, and average distance traveled. A success is counted

when the robot reaches the goal and recognizes that it has

completed the task after reading the room number. For

failed episodes (due to collisions or timeout after 15 min-

utes), we assign a maximum duration of 900s and maximum

distance traveled of 100m as a penalty.



Figure 5. Qualitative Results: We present full step-by-step episode visualizations of our framework in two different real-world buildings.

Thanks to its ability to reason over many sources of information, ReasonNav can accurately and efficiently navigate to the specified room

number. Blue lines indicate the estimated traveled trajectories.

Figure 6. Hospital Environment Visualization. Existing open-world navigation benchmarks do not support large-scale building naviga-

tion tasks with human interaction. To fill this gap, we introduce an IsaacSim-based interactive navigation benchmark in a photorealistic

hospital with over 30 rooms (offices, operation, examination, and patient rooms). The environment features realistic objects and layouts,

informative signs, traversable rooms, and NPCs for human–robot interaction. We also provide a queryable website with an online staff

directory.



Figure 7. Qualitative comparison with baselines. We compare our method with ablative baselines to validate our visual prompting design

and the importance of sign reading and communicating with humans. The visual map prompting enhances the spatial reasoning capabilities

of the VLM, while the sign reading and communication gathers important directional information.

Table 1. Quantitative Results for Navigation in Real-World Environments (Academic Complexes)

Success Rate (%) Avg Duration (s) Distance Traveled (m)

Environment Build A Build B Build A Build B Build A Build B Avg. (%)

No Signs/People 10 0 817.00 900 90.48 100 8.3

No Map Image 20 0 679.72 900 73.52 100 16.6

Ours 50 100 572.35 232.63 60.28 12.61 58.3

Table 2. Quantitative Results for Navigation in Simulation Envi-

ronments (Large Hospital)

Environment
Success

Rate (%)

Duration

Traveled (s)

Distance

Traveled (m)

No Signs/People 46.15 710.76 75.56

No Map Image 14.29 860.72 123.95

Ours 57.14 746.78 72.53

4.1. Qualitative Results

Real-world Results We provide step-by-step episode vi-

sualizations of ReasonNav’s behavior in the real world in

Fig. 5. Note that in each example, there are landmarks in

many different directions that the agent can choose from.

Choosing to explore in a direction that does not lead to

the goal may result in wasting time by exploring very long

hallways. We observe that our VLM agent is able to suc-

cessfully read signs, interpret their directions with respect

to the provided map, and use the information to pick fron-

tiers that directly lead to the goal. Similarly, the agent can

ask people for directions, record the received information in

its memory bank, and use it effectively in subsequent high-

level planning steps.

Simulated Results Along with the real-world demos, we

demonstrate ReasonNav’s performance in our simulated en-

vironment in Fig. 8. As our simulation is enriched with

various NPC dialogues and directional signs to mimic the

real-world, ReasonNav is able to leverage them to navigate

succesfully.

Comparison with ablative baselines We compare our

method with the aforementioned baselines qualitatively in

Fig. 7. Removing the map image input significantly hinders

the VLM’s spatial reasoning capabilities, making it more

likely to misunderstand which doors are close to the agent

and are worth visiting. This confirms that modern VLMs

are able to interpret top-down map images and use them for

planning. On the other hand, removing the ability to read

signs and ask people for directions makes the agent more

likely to go in a completely wrong direction, causing failure

due to timeout.

Step-by-step VLM reasoning We further showcase Rea-

sonNav’s reasoning capabilities in a step-by-step example

in Fig. 9 of a real-world scenario. Given the landmark map

(on the left), the VLM is prompted to choose a waypoint

for the robot to follow. The text boxes (on the right) repre-



Figure 8. Qualitative Simulation Results: We present full step-

by-step episode visualizations of our framework in simulation with

exact path traveled highlighted in red.

sent the VLM’s reasoning and decisions. We observe that

ReasonNav can make reasonable decisions given the infor-

mation, which successfully leading it to the goal.

4.2. Quantitative Results

We report quantitative results in both real-world and sim-

ulation environments (Tables 1 and 2). The results re-

veal several key insights. First, higher-order navigation

skills—reading signs and asking people for directions—are

critical: without these skills, the agent succeeds in only

8.3% of real-world trials and 46% of simulation trials. Sec-

ond, omitting high-level reasoning via our unified spatial

memory map as image prompts significantly degrades per-

formance, underscoring its importance for decision mak-

ing. In real-world experiments, baselines without skills or

map prompting exhaust their time budgets, illustrating that

missing high-level cues leads to timeout failures. Finally,

by combining sign-reading, direction-asking, and spatial-

map integration, our approach outperforms both the “No

Signs/People” and “No Map Image” baselines by over 40

percentage points—achieving 58.33% in real-world trials

and 57.14% in simulation.

5. Conclusion

We presented ReasonNav, a novel method for robot naviga-

tion that incorporates human-like navigation skills, such as

sign reading and asking for directions, in an agentic VLM

Figure 9. Real-world VLM reasoning: We present a step-by-step

example of VLM’s reasoning and decisions to navigate to room

4104. ReasonNav exhibits spatial reasoning capabilities given the

direction guidance from direction signs, as showcased in the third

and fourth rows.

framework. ReasonNav abstracts low-level perceptual in-

puts into a memory bank of landmarks and uses a VLM

to perform higher-order reasoning on these landmarks and

plan high-level actions. We conduct experiments to validate

the capabilities of the agent and show that higher-order nav-

igation skills are important for efficient navigation in large

buildings.

6. Limitations

ReasonNav successfully exhibits human-like navigation be-
haviors based on higher-order reasoning. However, since
the system relies on an object detector to produce land-
marks, the overall performance is bottlenecked by the detec-
tion performance. In addition, since the objects are limited
to a predefined set of categories and the VLM only observes
landmarks, the high-level planning does not maximally use
the information contained in the camera observations. In
the future, as detection capabilities become better integrated
into VLMs themselves, the specialized detector could be re-
placed by a more powerful VLM-based detection stream.
Lastly, because the VLM is restricted to exploring frontiers,
it is not able to choose closer waypoints which may be suf-
ficient for exploring an area while taking less time to reach.
This could be mitigated by incorporating more sophisticated
re-planning logic.
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