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Figure 1. Higher-order navigation skills. Humans employ various skills involving higher-order reasoning in order to navigate to their
destinations efficiently. These skills take advantage of key knowledge resources in the environment through high-level language and visual
processing. We present a navigation method that imbues robots with these skills by integrating them in a VLM agent framework.

Abstract

When navigating in a man-made environment they haven’t001
visited before—like an office building—humans employ be-002
haviors such as reading signs and asking others for direc-003
tions. These behaviors help humans reach their destinations004
efficiently by reducing the need to search through large ar-005
eas. Existing robot navigation systems lack the ability to006
execute such behaviors and are thus highly inefficient at007
navigating within large environments. We present Reason-008
Nav, a modular navigation system which integrates these009
human-like navigation skills by leveraging the reasoning010
capabilites of a vision-language model (VLM). We design011
compact input and output abstractions based on navigation012
landmarks, allowing the VLM to focus on language under-013
standing and reasoning. We evaluate ReasonNav on real014
and simulated navigation tasks and show that the agent suc-015
cessfully employs higher-order reasoning to navigate effi-016
ciently in large, complex buildings. Our work is under sub-017
mission at CoRL 2025.018

1. Introduction 019

Imagine that you are an office worker and are asked to de- 020
liver a report to Jane Doe’s office. What steps would you 021
take to complete this task? First, you might search in a di- 022
rectory to find out the building and room number for Jane 023
Doe’s office. Then, you might look for signs that indicate 024
the direction of that room. You can integrate the informa- 025
tion you receive from each sign with the layout of the scene 026
you see around you to decide where to look next. Along the 027
way, you might ask people nearby for further clarifications. 028

Our civilization is built to be easy for humans to navi- 029
gate within. There is an abundance of knowledge-offering 030
resources around us that we leverage to navigate the world 031
efficiently. Directional signs are placed deliberately at junc- 032
tions to eliminate the risk of going the wrong way. Room 033
labels follow orderly patterns so that reading a few can al- 034
low one to infer the locations of other rooms. Such guidance 035
is necessary in order to deal with the inherent uncertainty of 036
navigation in unseen environments. 037

Existing robot navigation systems lack the skills needed 038
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to leverage these resources and thus lose out in naviga-039
tion efficiency by spending unnecessary time exploring. We040
call these skills, which include sign reading and asking for041
directions, higher-order navigation skills because they re-042
quire higher-order reasoning abilities and language process-043
ing. These skills become increasingly important in larger044
environments, where exploring in the wrong direction can045
cost a massive amount of time.046

Our key insight is that such higher-order navigation skills047
can be integrated in a unified manner by taking advantage of048
recent advances in large vision-language models (VLMs).049
In this paper, we present ReasonNav, a modular system for050
human-like navigation that leverages the zero-shot reason-051
ing capabilities of a VLM in an agentic manner. The system052
is comprised of two streams: a low-level stream that handles053
localization, mapping, and path planning, and a high-level054
stream where the VLM performs high-level planning on ab-055
stracted observation and action spaces. Specifically, we rep-056
resent the environment using a memory bank of landmarks057
(e.g. map frontiers, doors, people, signs) with attached tex-058
tual information. This simplifies both the input and output059
spaces for the VLM agent, allowing it to focus on higher-060
order reasoning.061

We evaluate ReasonNav in real and simulated environ-062
ments. In both cases, the robot is tasked with finding a given063
room in a large (unseen) building. This mimics a practical064
indoor delivery scenario. We show that our abstraction de-065
sign allows the VLM to interpret information from signs066
and people and use it to guide its decision-making. We067
compare our full system with ablated versions and demon-068
strate that such higher-order navigation skills greatly im-069
pact navigation performance. Overall, the results suggest070
that our VLM agent framework is a promising path for-071
ward for achieving human-like navigation efficiency using072
higher-order reasoning skills.073

2. Related Work074

Agentic Foundation Models in Robotics. Task and mo-075
tion planning (TAMP) approaches traditionally rely on pre-076
defined symbolic reasoning or optimization to plan for077
long-horizon tasks. Previous works [12, 26, 27, 29]078
have leveraged large language models (LLMs) to decom-079
pose high-level instructions into actionable subtasks, al-080
lowing for more user-friendly robotics systems. More re-081
cent approaches utilize Vision-Language Models (VLMs)082
to ground reasoning for more general and capable robot sys-083
tems. VLMs have been shown to generalize across diverse084
objects and tasks in table-top manipulation [13, 15, 37], and085
enable zero-shot navigation to semantic goals across differ-086
ent environments [2, 18, 30]. Integrating these capabilities087
for mobile manipulation has seen improved potential in re-088
cent works [5, 31, 37], which are divided into two main089
categories: 1. prompt-based querying and 2. fine-tuning for090

direct perception to action pipeline. Our approach falls into 091
the first category, querying a VLM for high-level task plan- 092
ning and using modular out-of-the-box controllers to exe- 093
cute actions. However, in contrast to the aforementioned 094
methods that mainly rely on sensory inputs to perceive the 095
world, our methods can leverage other resources, such as 096
asking humans for help or actively seeking visual cues for 097
navigation. 098

Open-world Navigation. In recent years, the rise in pop- 099
ularity of large-scale pre-trained foundation models has wit- 100
nessed the emergence of open-world navigation. Particu- 101
larly, early works of CLIP-on-Wheels (CoW) [9] and LM- 102
Nav utilize CLIP [25] to establish a top-down confidence 103
map for language-guided object-goal navigation or to pre- 104
compute a language-embedded topological graph. Further 105
works have expanded on this direction, using foundation 106
models to pre-build highly expressive language-embedded 107
semantic maps for long-horizon and fine-grained navigation 108
tasks [3, 10, 11, 14, 22, 24, 33]. However, these approaches 109
are computationally expensive, typically requiring multiple 110
traversals over the operational area and hours of computing, 111
and are unable to operate in unknown environments. Recent 112
works [1, 4, 18, 26, 35, 36, 39] address this shortcoming 113
by adopting LLMs and VLMs’ high-level planners, taking 114
advantage of their high-level reasoning capabilities to re- 115
lax the requirement of costly pre-built maps. Our method 116
falls into this category, enjoying the scalability and zero- 117
shot transferability to the unknown world. However, we fo- 118
cus on practical navigation in man-made environments and 119
the unique skills needed to succeed in such settings. 120

Interactive Navigation. Although these large foundation 121
models have been trained on the vast majority of internet 122
data and have shown promising results for robotic tasks, 123
solely relying on them has proven to be inefficient. In 124
recent years, the robotics community has been exploring 125
human-in-the-loop feedback for corrections during robot’s 126
execution, especially for manipulation tasks [6, 16, 17, 38] 127
and visual question answering tasks [7, 27, 28, 32]. De- 128
spite showing promising results, these methods typically 129
require immediate human feedback, which is often not pos- 130
sible in real-world navigation scenarios. In contrast, our 131
work mitigates this issue by leveraging more than just hu- 132
man feedback as an additional source of information, uti- 133
lizing wayfinding cues (room labels, navigation signs, web 134
searches) for more robust and efficient navigation. 135

3. Method 136

ReasonNav is a modular system for human-like navigation 137
that heavily leverages the zero-shot reasoning capabilities of 138
a Vision-Language Model (VLM) for efficient exploration 139
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Figure 2. Overview of ReasonNav. The system is comprised of a low-level stream and a high-level stream. The low-level stream performs
SLAM and object detection for key object categories (doors, signs, and people), feeding into a global memory bank. The high-level stream
consists of a VLM planner that receives abstracted observations in the form of a JSON landmark dictionary and a map visualization. The
VLM outputs the next landmark to explore, upon which predefined behavior primitives are executed based on the landmark category.

in unseen buildings. The system can be separated into a140
low-level stream and a high-level stream. The low-level141
stream includes standard localization and mapping mod-142
ules that run at high frequency and an analytical path plan-143
ner (Sec. 3.2). The high-level stream consists of a VLM144
agent that receives specially abstracted scene information145
to mimic the conscious decision-making processes used by146
humans during navigation (Sec. 3.3). The VLM chooses147
map frontiers to explore and decides when to perform skills148
such as sign reading, which are executed via predefined be-149
havior primitives (Sec. 3.4).150

3.1. Robot Hardware Setup151

Our robot, shown in Fig. 3, is custom-built and consists of a152
mobile base, an arm, a computer, and various sensors. Com-153
ponents are attached to the base using aluminum t-slots and154
3d-printed mounts.155

We use the AgileX Ranger Mini 2.0, a mobile plat-156
form with 4-wheel steering and an onboard power supply,157
and an xArm 7 robot arm (currently unused). For obsta-158
cle avoidance and mapping, there is a Slamtech 2D lidar159
mounted near the base and a Hesai FT120 solid-state 3D160
lidar mounted on top. Two Realsense D455’s are mounted161
on top for perception, one on a pan-tilt mechanism and the162
other angled downward toward the robot workspace. Only163
the pan-tilt camera is used in this work, and it is only used164
for object detection and text reading, not mapping. The165

Pan-Tilt w/ 
Realsense3D LiDAR

2D LiDAR

xArm 7Laptop w/ 
4070 GPU

Ranger Mini 2.0 
Mobile Base

Microphone

Workspace 
Realsense

Figure 3. Hardware System Overview.

height of the camera is roughly aligned with most indoor 166
signs, and the pan-tilt capability allows for viewing the sur- 167
roundings quickly without turning the entire robot. For in- 168
teracting with humans, we use a Respeaker omnidirectional 169
microphone, mounted near the top for conversation with hu- 170
mans. An Ardusimple simpleRTK3B GPS is also mounted 171
but is unused in this work. 172

Our onboard compute comes from a Lenovo Legion 5i 173
laptop with an NVIDIA 4070 GPU. The entire system is 174
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integrated using ROS2 Humble with all sensors/robot inter-175
faces connected to the laptop. The laptop is connected to176
the internet in order to query GPT 4.1 via its API.177

3.2. Localization and Mapping178

We first describe our system’s low-level processing stream,179
which is responsible for producing a top-down map of the180
environment, localizing the agent with respect to the map,181
detecting certain objects, and path planning. We perform182
2D simultaneous localization and mapping (SLAM) using183
SLAM Toolbox [20] which merges the 3D lidar scan into184
the 2D scan and performs optimization to produce a top-185
down occupancy map of areas the agent has explored. Con-186
currently, we perform object detection on images from the187
RealSense camera using an open-vocabulary detector with-188
out retraining. We use NanoOWL, an optimized imple-189
mentation of OWL-ViT [23], and query with three text la-190
bels: door, person, and directions sign. For path191
planning, we use NavFn, a wavefront Dijkstra planner from192
Nav2 [21], and execute the paths using an MPPI [34] con-193
troller.194

3.3. VLM Observation and Action Abstraction195

The key idea of our approach is to leverage VLMs in an196
agentic framework to integrate human-like behaviors that197
greatly improve navigation efficiency. VLMs excel at un-198
derstanding language and conducting many forms of com-199
monsense reasoning. However, they struggle at understand-200
ing complex spatial data and directly producing precise nu-201
merical outputs [8, 19]. Thus, we need to carefully design202
abstractions for both the input (observations) and output203
(actions) of the VLM in order to effectively leverage its rea-204
soning capabilities.205

Landmarks. Our abstraction design is centered heavily206
on the concept of landmarks, which refer to salient objects207
that are especially important in navigation tasks. Specifi-208
cally, the landmarks refer to objects of the three categories209
mentioned above: doors, people, and directional signs,210
along with frontiers of the top-down map. Our system pop-211
ulates a memory bank of the objects from the output of the212
detector and attaches additional navigation-relevant infor-213
mation to each one as various skills are performed. For214
doors, we attach the text of the associated room label. For215
people, we attach a summary of the information received216
from them. For directional signs, we attach a list of cardi-217
nal directions and the sign text reading(s) associated with218
each direction. All of the objects are attached to a label of219
“Visited” or “Unvisited”.220

VLM Input and Output. We prompt the VLM with text221
instructions and two forms of abstracted scene information.222

One is the memory bank of landmarks, including both ob- 223
jects and map frontiers, in JSON format. Each landmark is 224
assigned an index and may be attached to additional infor- 225
mation as described above. The second form of informa- 226
tion is an image visualization of the agent’s top-down map. 227
The map is colored based on occupancy and explored areas, 228
and for each landmark, we plot its location on the map with 229
a symbol of its category and its index number (see Fig.1). 230
This gives a compact, high-level summary of the scene lay- 231
out and the important objects the agent has seen thus far. 232
We prompt the VLM to use these two forms of information 233
to decide which landmark to visit next. This design ensures 234
that the VLM can flexibly choose any reasonable high-level 235
plan while not being tasked with predicting precise numer- 236
ical coordinates. 237

3.4. Behavior Primitives 238

Each landmark category has an associated behavior prim- 239
itive, which will be executed based on the VLM’s choice. 240
We describe each one below: 241

Frontier (Exploration). The agent moves to the desired 242
frontier and turns 360-degrees around to scan its surround- 243
ings with Nav2’s point goal planner and controller. Frontier 244
navigation enables us to explore the unvisited region and 245
identify more landmarks. 246

Door (Room Label Reading). The agent approaches the 247
door and pans its camera while querying the object detector 248
for room label. If a room label is detected, the agent 249
moves closer and reads it via another call to the VLM. The 250
text is attached to the door in the memory bank. If the goal 251
is found, the episode ends here. 252

Person (Asking for Directions). The agent approaches 253
the person and asks for directions using a text-to-speech 254
model. It then records the person’s response using speech- 255
to-text. Next, it calls the VLM to produce a short note about 256
the information it received, which is then attached to the 257
person’s landmark in the memory bank. Importantly, we re- 258
quest the VLM to use cardinal directions in the global map 259
frame instead of relative directions such as “left” or “right” 260
so that the note can be understood later without needing the 261
agent’s pose at the time of recording (Fig. 9). 262

Directional Sign (Sign Reading). The agent approaches 263
the sign and reads it via a call to the VLM. The sign text is 264
grouped based on arrow direction (binned into cardinal di- 265
rections), and the directions are transformed into the global 266
map frame for recording. 267
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microphone

How can I reach 4124?

4124 is to your left 

Note to self: "Since I am facing 
North, my right is East. To reach 

4124, turn left and go down the 
hallway heading West."

Ask & Update Direction

Update memory

Next Goal Selection: #4

Figure 4. Overview of the “Direction Asking” Skill: The agent identifies nearby humans and logs them in its spatial memory (#3 in the
map). When needed, it approaches and asks for goal directions via text-to-speech. The human’s verbal response is transcribed and updated
in memory, enabling a more informed search towards the target (#4) that avoids unvisited areas (#1 and #2 frontiers in the figure) unrelated
to the goal and improves efficiency.

4. Experiments268

We evaluate ReasonNav across a suite of real and simulated269
navigation tasks. We seek to answer the following ques-270
tions: 1) Can our VLM leverage higher-order skills to avoid271
wrong searches? 2) How does ReasonNav perform in un-272
seen real-world navigation tasks? 3) How do sign-reading273
and human interactions impact navigation efficiency? 4)274
How does map visualization input influence the VLM’s spa-275
tial understanding? We answer these questions through a276
variety of qualitative and quantitative analyses of the sys-277
tem’s performance in comparison to relevant baselines.278

Task description. Our evaluation tasks are designed to279
mimic a realistic indoor delivery scenario. The agent is280
placed in a large unknown building and is tasked with find-281
ing a target room specified by a room number. The episode282
is considered successful if the target room label has been283
read by a VLM call, within a 15-minute time limit.284

Real-world environment. In the real-world, we consider285
two complex university campus multi-purpose buildings,286
each over 80m in length. For most of the rooms, includ-287
ing the target room, there is a room label next to each door288
to the room. Each building contains signs and people scat-289
tered throughout, which all provide helpful information. We290
evaluate navigation performance over 12 trials, each with291
different start and goal locations.292

Simulation environment. We construct an environment293
in simulation (IsaacSim) to enable reproducible evaluation.294
To the best of our knowledge, there is no existing simulation295
environment suitable for evaluating higher-order navigation296
skills in realistic man-made scenes. We use existing assets297

for an empty hospital and add room labels for each door, di- 298
rectional signs, and virtual humans who can provide direc- 299
tions via hard-coded conversational responses. We evaluate 300
navigation performance over 14 trials, each with different 301
start and goal locations. We plan to release all the code and 302
assets needed for evaluation in this environment to acceler- 303
ate future research on practical indoor navigation. Please 304
refer to Fig. 6 for visualization of our simulation environ- 305
ment. 306

Baselines. To the best of our knowledge, there is no exist- 307
ing method available for navigating to specific rooms within 308
buildings, as the task inherently requires integrating text 309
reading capabilities into the navigation pipeline. Thus, we 310
design baselines which can be thought of as ablations of our 311
method. To determine the impact of higher-order naviga- 312
tion skills on navigation efficiency, we create one baseline 313
in which signs and people are not processed into the land- 314
mark memory bank (No Signs/Humans Feedback, Fig. 7). 315
Thus, the VLM has no option to read signs or ask people for 316
more information – it only sees map frontiers and doors and 317
decides which to visit. We also experiment with removing 318
the map image input to the VLM (No Landmark Map Input, 319
Fig. 7). In this case, the VLM only receives scene informa- 320
tion via JSON text format. 321

Metrics. We measure success rate, average episode dura- 322
tion, and average distance traveled. A success is counted 323
when the robot reaches the goal and recognizes that it has 324
completed the task after reading the room number. For 325
failed episodes (due to collisions or timeout after 15 min- 326
utes), we assign a maximum duration of 900s and maximum 327
distance traveled of 100m as a penalty. 328

5



CVPR
#19

CVPR
#19

CVPR 2025 Submission #19. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Read sign, choose 10 Detect First Door Not target, check next doorHead to sign Reach target!

Room 4104 (Building A)

Ask Human for Direction Turn Left Following Instruction Detect doors, check first Head to human Reach target!

Room 1250 (Building B) 

Figure 5. Qualitative Results: We present full step-by-step episode visualizations of our framework in two different real-world buildings.
Thanks to its ability to reason over many sources of information, ReasonNav can accurately and efficiently navigate to the specified room
number. Blue lines indicate the estimated traveled trajectories.

Figure 6. Hospital Environment Visualization. Existing open-world navigation benchmarks do not support large-scale building naviga-
tion tasks with human interaction. To fill this gap, we introduce an IsaacSim-based interactive navigation benchmark in a photorealistic
hospital with over 30 rooms (offices, operation, examination, and patient rooms). The environment features realistic objects and layouts,
informative signs, traversable rooms, and NPCs for human–robot interaction. We also provide a queryable website with an online staff
directory.
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Ours - Success No Landmark Map Input - Failed No Signs/Humans Feedback - Failed

Figure 7. Qualitative comparison with baselines. We compare our method with ablative baselines to validate our visual prompting design
and the importance of sign reading and communicating with humans. The visual map prompting enhances the spatial reasoning capabilities
of the VLM, while the sign reading and communication gathers important directional information.

Table 1. Quantitative Results for Navigation in Real-World Environments (Academic Complexes)

Success Rate (%) Avg Duration (s) Distance Traveled (m)
Environment Build A Build B Build A Build B Build A Build B Avg. (%)
No Signs/People 10 0 817.00 900 90.48 100 8.3
No Map Image 20 0 679.72 900 73.52 100 16.6
Ours 50 100 572.35 232.63 60.28 12.61 58.3

Table 2. Quantitative Results for Navigation in Simulation Envi-
ronments (Large Hospital)

Environment
Success
Rate (%)

Duration
Traveled (s)

Distance
Traveled (m)

No Signs/People 46.15 710.76 75.56
No Map Image 14.29 860.72 123.95
Ours 57.14 746.78 72.53

4.1. Qualitative Results329

Real-world Results We provide step-by-step episode vi-330
sualizations of ReasonNav’s behavior in the real world in331
Fig. 5. Note that in each example, there are landmarks in332
many different directions that the agent can choose from.333
Choosing to explore in a direction that does not lead to334
the goal may result in wasting time by exploring very long335
hallways. We observe that our VLM agent is able to suc-336
cessfully read signs, interpret their directions with respect337
to the provided map, and use the information to pick fron-338
tiers that directly lead to the goal. Similarly, the agent can339
ask people for directions, record the received information in340
its memory bank, and use it effectively in subsequent high-341
level planning steps.342

Simulated Results Along with the real-world demos, we 343
demonstrate ReasonNav’s performance in our simulated en- 344
vironment in Fig. 8. As our simulation is enriched with 345
various NPC dialogues and directional signs to mimic the 346
real-world, ReasonNav is able to leverage them to navigate 347
succesfully. 348

Comparison with ablative baselines We compare our 349
method with the aforementioned baselines qualitatively in 350
Fig. 7. Removing the map image input significantly hinders 351
the VLM’s spatial reasoning capabilities, making it more 352
likely to misunderstand which doors are close to the agent 353
and are worth visiting. This confirms that modern VLMs 354
are able to interpret top-down map images and use them for 355
planning. On the other hand, removing the ability to read 356
signs and ask people for directions makes the agent more 357
likely to go in a completely wrong direction, causing failure 358
due to timeout. 359

Step-by-step VLM reasoning We further showcase Rea- 360
sonNav’s reasoning capabilities in a step-by-step example 361
in Fig. 9 of a real-world scenario. Given the landmark map 362
(on the left), the VLM is prompted to choose a waypoint 363
for the robot to follow. The text boxes (on the right) repre- 364
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Initial state

Ask human for direction

Reason from observed room #

Read directional sign

Target reached!

Third-person POV Camera Image Map + Traveled Path

Figure 8. Qualitative Simulation Results: We present full step-
by-step episode visualizations of our framework in simulation with
exact path traveled highlighted in red.

sent the VLM’s reasoning and decisions. We observe that365
ReasonNav can make reasonable decisions given the infor-366
mation, which successfully leading it to the goal.367

4.2. Quantitative Results368

We report quantitative results in both real-world and sim-369
ulation environments (Tables 1 and 2). The results re-370
veal several key insights. First, higher-order navigation371
skills—reading signs and asking people for directions—are372
critical: without these skills, the agent succeeds in only373
8.3% of real-world trials and 46% of simulation trials. Sec-374
ond, omitting high-level reasoning via our unified spatial375
memory map as image prompts significantly degrades per-376
formance, underscoring its importance for decision mak-377
ing. In real-world experiments, baselines without skills or378
map prompting exhaust their time budgets, illustrating that379
missing high-level cues leads to timeout failures. Finally,380
by combining sign-reading, direction-asking, and spatial-381
map integration, our approach outperforms both the “No382
Signs/People” and “No Map Image” baselines by over 40383
percentage points—achieving 58.33% in real-world trials384
and 57.14% in simulation.385

5. Conclusion386

We presented ReasonNav, a novel method for robot naviga-387
tion that incorporates human-like navigation skills, such as388
sign reading and asking for directions, in an agentic VLM389

I am looking for Room 4104. There are two unvisited doors on the map (13 and 14), 
but I have no information about their room numbers. There's also a directions sign at 
landmark 12, which may provide valuable information about where room 4104 or its 
range might be.

The most efficient move is to visit the directions sign first to get directional information 
on room numbers, which could help me quickly narrow down where Room 4104 is 
located.

Chosen landmark: [12]

Room 4104 is my target. The directions sign at landmark 7 indicates that "ROOMS 
4104-4130" are to the "North-West". There are no visited doors in that direction yet. 
Among the available options, frontier 1 (landmark 1) is in the northwest direction and is 
closest to the sign's indication.

Therefore, the next most efficient move is to continue exploring northwest by visiting 
the frontier in that direction.

Chosen landmark: [1]

I am looking for Room 4104. According to the directions from the sign (landmark 8), 
"ROOMS 4104-4130" are to the North-West. This is the most promising lead since 
Room 4104 falls within this range. The nearest frontier in the North-West direction is 
landmark 7, which will help me explore the correct region efficiently.

Chosen landmark: [7]

I am looking for Room 4104. The directions from the sign at landmark 12 indicate that 
"ROOMS 4104-4130" are to the North-West. Since this is a tight range that includes 
the target room, I should head to the North-West to look for door 4104, skipping 
landmarks that are not in that direction.

There are unvisited doors to the north-west at landmark 16, and frontiers at 11. 
Landmark 16 is the closest unvisited door in the correct direction.

Reasoning: Based on the directions from the sign and efficient search for Room 4104, I 
should check the nearest unvisited door to the North-West, which may be the target or 
nearby.

Chosen landmark: [16]

Figure 9. Real-world VLM reasoning: We present a step-by-step
example of VLM’s reasoning and decisions to navigate to room
4104. ReasonNav exhibits spatial reasoning capabilities given the
direction guidance from direction signs, as showcased in the third
and fourth rows.

framework. ReasonNav abstracts low-level perceptual in- 390
puts into a memory bank of landmarks and uses a VLM 391
to perform higher-order reasoning on these landmarks and 392
plan high-level actions. We conduct experiments to validate 393
the capabilities of the agent and show that higher-order nav- 394
igation skills are important for efficient navigation in large 395
buildings. 396

6. Limitations 397

ReasonNav successfully exhibits human-like navigation be- 398
haviors based on higher-order reasoning. However, since 399
the system relies on an object detector to produce land- 400
marks, the overall performance is bottlenecked by the detec- 401
tion performance. In addition, since the objects are limited 402
to a predefined set of categories and the VLM only observes 403
landmarks, the high-level planning does not maximally use 404
the information contained in the camera observations. In 405
the future, as detection capabilities become better integrated 406
into VLMs themselves, the specialized detector could be re- 407
placed by a more powerful VLM-based detection stream. 408
Lastly, because the VLM is restricted to exploring frontiers, 409
it is not able to choose closer waypoints which may be suf- 410
ficient for exploring an area while taking less time to reach. 411
This could be mitigated by incorporating more sophisticated 412
re-planning logic. 413
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