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ABSTRACT

Recent advancements in computer vision (CV) and natural language
processing (NLP) have led to the emergence of Vision-Language
Models (VLMs), which excel in interpreting complex multimodal
information by seamlessly integrating visual and textual data. This
paper proposes a novel, interpretable framework that combines
VLMs with specific mathematical transforms—namely, the Fast
Fourier Transform (FFT) for efficient computation of frequency do-
mains, and the Bilateral Laplace Transform for enhanced stability
analysis in nonlinear systems—to enhance drug discovery and per-
sonalized medicine. The interpretable application of FFT identifies
periodic patterns in temporal gene expression data from genes such
as TP53 and EGFR, crucial for understanding circadian influences
on drug metabolism. The Bilateral Laplace Transform, also applied
in an interpretable manner, assesses system stability and response
under various therapeutic interventions, focusing on genes like
BRCAT1 and PTEN for short-term treatment outcomes. This inte-
grated model leverages the strengths of VLMs to synthesize and
contextualize the transformed data, providing a robust and inter-
pretable analytical tool for predicting individual drug responses
and optimizing treatment strategies. Validation of the proposed
framework on multimodal datasets comprising clinical imaging,
genomic data, and textual descriptions confirms its potential in sig-
nificantly improving the precision of personalized treatment plans.
The outcomes of this research advances our understanding of com-
plex drug interactions within the human body and also pave the
way for developing a user-friendly and interpretable tool that as-
sists clinicians in real-time decision-making, ultimately enhancing
patient outcomes in clinical settings.

We have made all resources available on GitHub to support
and encourage future studies and advancements based on our
findings. You can access them at https://github.com/Sarwar-UTS/
Interpretable- VLMs-for-Medicine.

CCS CONCEPTS

« Mathematical AI — Trustworthiness in AL

KEYWORDS

Fast Fourier Transform, Bilateral Laplace Transform, Vision-Language
Models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW, 28 April- 2 May 2025, Sydney, NSW, Australia

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-/25/

https://doi.org/10.1145/3701716.3717738

Sonia Farhana Nimmy
s.nimmy@unsw.edu.au
UNSW, Canberra
Canberra, ACT, Australia

Wafa alharbi
walharbi@su.edu.sa
Shaqra University
Riyadh, Riyadh, Saudi Arabia

ACM Reference Format:

Md Sarwar Kamal, Sonia Farhana Nimmy, and Wafa alharbi. 2025. Explain-
able Vision-Language Model for Personalized Medicine. In Proceedings of
ACM Web Conference 2025 (WWW). ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3701716.3717738

1 INTRODUCTION

The convergence of genomics, transcriptomics, and proteomics in
the realm of drug discovery and personalized medicine presents a
pivotal opportunity for advancing human health [12, 17, 18]. The
rich datasets available, comprising detailed gene, mRNA, and pro-
tein expression profiles from diverse patient samples, are instru-
mental in deciphering the molecular underpinnings of drug re-
sponse and disease progression [11, 21]. Our research capitalizes on
this wealth of data to develop predictive models that facilitate the
customization of therapeutic interventions to individual genetic
makeups, thereby enhancing efficacy and minimizing adverse ef-
fects. Such endeavors are not merely academic; they have profound
implications for clinical practices and the pharmaceutical indus-
try, promising to elevate the standard of care and streamline drug
development processes [9].

Given the high-dimensional nature of the data, traditional data
analysis techniques often fall short in providing actionable insights
due to their inability to handle the complexity and scale effec-
tively [8]. Furthermore, the critical need for interpretable outcomes
in medical settings—where decisions must be transparent and justi-
fiable—cannot be overstated. Our proposed framework integrates
sophisticated mathematical models with VLM, creating a hybrid
analytical tool that is uniquely capable of processing and inter-
preting this complex data. This approach ensures that the insights
generated are not only scientifically robust but also readily under-
standable and clinically applicable [22].

Traditional methods for analyzing gene expression data often
have difficulty identifying repeating patterns that are important
for biological processes, especially in drug metabolism and treat-
ment response [10, 14]. Many biological functions, such as circadian
rhythms and metabolic cycles, follow repeating patterns that can
greatly affect how well treatments work. In this study, we use the
Fast Fourier Transform (FFT) to analyze gene expression data in a
way that helps us find these repeating patterns. For example, we
identify important fluctuations in genes like TP53 and EGFR, which
are linked to how drugs are processed over time. By converting
time-based gene expression data into frequency-based data, FFT
helps us detect key biological cycles that are hard to see with tra-
ditional methods [5, 7]. This is especially useful in personalized
medicine, where understanding the best time to give a drug based
on a patient’s genetic profile can improve treatment and reduce
side effects.
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While there is now a lot of genomic and proteomic data available,
many current methods do not make full use of it [13]. Often, these
methods do not combine different types of data well, which can
lead to incomplete or fragmented insights [1, 3]. Additionally, many
models used today are “black-box models, meaning they do not
explain how they make predictions. This makes it hard for doctors
to trust and use these models in real-world medical decisions [2, 20].

Our framework solves these problems by providing a clear and
integrated approach to analyzing genomic, transcriptomic, and
proteomic data. By using advanced techniques like VLMs, Laplace
analysis, and Fourier analysis, our method combines data from
different biological layers and makes the modeling process easier to
understand. This helps improve both the accuracy and usefulness
of the results for medical decision-making.

This paper contributes to the fields of bioinformatics and per-
sonalized medicine in the following ways:

e We present a new modeling approach that combines tradi-
tional mathematical methods with modern machine learning
techniques. This helps make complex biological data easier
to understand and more useful for practical applications.

e We show that combining different types of data (like ge-
netic, protein, and clinical data) can improve the accuracy of
predicting how patients will respond to drugs. It also helps
us better understand the biological processes behind these
responses.

e We improve the theoretical foundations of bioinformatics,
which can lead to better drug development and more per-
sonalized treatment plans for patients.

This paper is organized as follows: Section 2 explains the com-
putational methods and analysis tools used in this study, with a
focus on how Fourier and Laplace transforms, combined with VLMs,
are applied to improve drug discovery and personalized medicine.
Section 3 presents and discusses the results obtained from these
methods, demonstrating their effectiveness in predicting treatment
outcomes and identifying important genomic markers. Section 4
interprets these findings, highlighting their significance for advanc-
ing personalized medicine and exploring potential directions for
future research. Finally, Section 5 summarizes the key contributions
of this study and suggests areas for future work to expand on the
progress made in this research.

2 METHODOLOGY

Figure 1 presents a visual representation of the methodology flow
for integrating interpretative VLMs with Fourier and Laplace anal-
ysis techniques in the context of enhanced drug discovery and
personalized medicine. This network graph illustrates how dif-
ferent data modalities — including genomic, transcriptomic, and
proteomic data — are processed and integrated. The nodes repre-
sent the data and processing stages, while the directed edges show
the sequential flow of operations, from initial data inputs through
Fourier and Laplace transforms to the advanced integration using
VLM, culminating in predictive modeling.

We now present a detailed algorithm that encapsulates these
processes. This algorithm serves as a blueprint for implementing
our integrated approach, systematically detailing each step from
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Figure 1: Network graph representing the methodology flow.

data preprocessing to predictive outcome analysis. By formaliz-
ing these steps, we ensure reproducibility and clarity in how our
method translates complex genomic and multimodal data into ac-
tionable insights for personalized treatment strategies. The algo-
rithmic process begins with the collection and preprocessing of
diverse data types, including genomic, transcriptomic, and pro-
teomic data, as well as clinical images and textual descriptions.
Each data type undergoes specific transformations: genomic data
is processed through Fourier and Laplace transforms to capture
frequency-based patterns and stability characteristics, while clinical
images and textual data are analyzed to extract relevant features.
The core of the algorithm involves integrating these transformed
and extracted features into a unified feature vector using a sophisti-
cated model that leverages the capabilities of VLM. This integration
is designed to capture the complex interactions between different
data modalities, providing a holistic view of the patient’s condition.
Finally, the integrated data is used to predict outcomes, such as the
effectiveness of drug responses, utilizing the predictive power of the
VLMs. This predictive capability is crucial for tailoring treatments
to individual patients, showcasing the potential of this approach
to significantly advance personalized medicine by combining ad-
vanced mathematical transformations with cutting-edge machine
learning techniques.

Data pre-processing. The dataset comprises high-dimensional
genomic, transcriptomic, and proteomic data from patient samples.
Specific genes such as BRCA1, TP53, and EGFR, and their corre-
sponding mRNA and protein expressions are standardized to ensure
uniformity across all samples. Missing data are imputed using the
k-nearest neighbors algorithm, providing a complete dataset for
subsequent analysis.

Fourier transform application. The FFT is applied to the time
series data of each gene, mRNA, and protein to extract frequency
domain features that reveal underlying periodic patterns [16]. This
analysis is particularly crucial for genes like TP53 and EGFR, and
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Algorithm 1 Integration of Fourier and Laplace transforms with
VLM for drug discovery.

1: Input: Genomic data G, Transcriptomic data 7-, Proteomic
data P, Clinical images 7, Textual descriptions D
: Output: Integrated feature vector V, Predictive outcomes
: procedure DATAPREPROCESSING(G, T, P)
Standardize and impute missing values in G, T, P
: end procedure
: procedure APPLYFOURIERTRANSFORM(G)
for each gene g in G do
Fy4 < FFT(g) > Apply FFT to gene expression data
end for
. end procedure
: procedure APPLYLAPLACETRANSFORM(G)
for each gene g in G do
Ly < LaplaceTransform(g) » Apply Laplace Transform
end for
: end procedure
: procedure EXTRACTFEATURESFROMIMAGES(J)
Fr < ImageFeatureExtraction(Z) » Extract features from
clinical images
18: end procedure
19: procedure ANALYZETEXTUALDATA(D)
20: Fp « TextAnalysis(D) » Derive features from textual data
21: end procedure
22: procedure INTEGRATEDATA(Fg, Fr, Fp)
23: Ve o(Wg-Fy+W;-Fr+W; - Fp +b) > Integrate using
VLM
24: end procedure
25: procedure PREDICTOUTCOMES(V)
26: O « Predict(V) > Use VLM to predict drug responses
27: return O
28: end procedure
29: Fy < APPLYFOURIERTRANSFORM(G)
30: Ly «— APPLYLAPLACETRANSFORM(G)
31: Ff < EXTRACTFEATURESFROMIMAGES(J)
32: Fp « ANALYZETEXTUALDATA(D)
33: V « INTEGRATEDATA(Fy, FT, Fp)
34: O < PREDICTOUTCOMES(V)
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proteins such as Protein_TP53 and Protein_EGFR, which display cir-
cadian fluctuations that can significantly influence drug metabolism
and therapeutic outcomes. For gene TP53, the Fourier transform is
computed as follows:

N-1 ok
TP53 _ TP53 — lezxn
Xk = E Xp e N

n=0

X kT P53 represents the k-th element of the frequency domain for the

TP53 gene expression data, and x,{P >3 denotes the n-th time point
in the TP53 gene expression time series.
Similarly, for the mRNA expression of TP53, the transform is:

N-1
i2rkn
X]anNA_TP53 — z mRNAZP‘% . 6_%

n=0
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XMRNA_TPS3 represents the k-th element of the frequency domain

k
for the TP53 mRNA expression data. And for the protein expression
of EGFR:

N-1

: _ i2zkn

Xll:rotemiEGFR - Z proteinEGFR R
n=0

In these equations, Xze"e represents the k-th element of the fre-

. . . ene
quency domain for the corresponding gene expression data, A

denotes the n-th time point in the gene expression time series,
and N is the total number of observations in the time series. The
variable i represents the imaginary unit, which facilitates the trans-
formation from the time domain to the frequency domain, thereby
enabling the identification of significant frequencies that dictate
biological rhythms and responses to treatments.

Laplace transform for stability analysis. The Bilateral Laplace
Transform is employed to investigate the stability and dynamic
responses of biological systems to therapeutic interventions. This
analysis is crucial for understanding how specific genes and pro-
teins behave under different treatment conditions. It is particularly
valuable for stability-critical genes such as PTEN and BRCA1, as
well as their corresponding mRNA and protein expressions. For
gene PTEN, the Laplace Transform is given by:

Fpren(s) = / PTEN(t)e™S'dt

(e8]
FpreN(s) denotes the Laplace Transform of the time-dependent
expression of the PTEN gene. Similarly, for the mRNA expression
of BRCA1, the transform is:

FmrNA_BrRCA1(S) = /

00

mRNA_BRCA1(t)e™ % dt

FmrNA_BRcA1(s) denotes the Laplace Transform of the time-dependent

expression of the BRCA1 mRNA. And for the protein expression
related to PTEN:

[

Fprotein_PTEN(S)=/ Protein_PTEN (t)e™%dt

—00

In these equations, Fyene (s) denotes the Laplace Transform of the
time-dependent expression of the gene, mRNA, or protein, where
t is the time variable and s is a complex number representing the
frequency parameter. This transformation helps to analyze the
system’s behavior in the frequency domain, particularly how the
expression levels react to external stimuli or internal changes over
time.

Applying the Laplace Transform allows us to derive insights
into the temporal stability of gene expressions, which is pivotal
for predicting the outcomes of pharmaceutical interventions. By
understanding these dynamics, we can better anticipate how genetic
and proteomic profiles influence drug efficacy and patient response,
thereby facilitating more targeted and effective treatment strategies.

Integration with vision-language models. VLM are utilized to in-
tegrate and interpret the transformed data from genomic, tran-
scriptomic, and proteomic analyses along with clinical images and
textual descriptions. This integration is accomplished through a
deep learning architecture that effectively combines semantic fea-
tures from various modalities into a unified representation. The
integration can be mathematically represented as follows:
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Vza(WfF+W,-I+WtT+b)

Here, V represents the integrated vector that combines all modali-
ties, F is the vector of transformed features from Fourier and Laplace
analyses (e.g., frequencies and stability metrics of gene expressions),
I denotes the feature vector extracted from clinical images, and T is
the vector derived from textual data analysis. W, Wi, and W; are the
weight matrices corresponding to each data modality that transform
the respective features into a common dimensional space, and b is a
bias vector. The function o denotes a nonlinear activation function,
such as the ReLU or sigmoid, which introduces non-linearity into
the integration process, enhancing the model’s capacity to capture
complex patterns and interactions across the data.

This fusion process is facilitated by a multimodal deep learning
model, which may involve techniques such as attention mecha-
nisms or transformers that enable the model to focus on the most
relevant features across the modalities for a given prediction task.
By employing such sophisticated integration techniques, VLMs can
provide comprehensive and actionable insights that are crucial for
precision medicine, where understanding the interplay between
genetic information, visual diagnostics, and clinical narratives is
key to tailoring treatment strategies.

Interpretable Al techniques using collaborative game theory. To
enhance the interpretability of our predictive models, we adopt a
collaborative game theory approach, specifically using collabora-
tive game theory scores. This method is grounded in cooperative
game theory and assigns each feature (e.g., specific gene or protein
expressions like BRCA1 or Protein_TP53) an importance value for a
particular prediction. The SHAP value for a feature is the average
marginal contribution of a feature across all possible coalitions.
This is mathematically represented as:

g =

SCN\{i}

! —1SI = 1)
B (s 0 ) - 0(9)
where ¢;(v) is the SHAP value for feature i, N is the set of all fea-
tures, S is a subset of features excluding i, and v(S) is the prediction
model’s output when only the features in S are used. This formula
calculates the average impact of adding the i-th feature to all possi-
ble combinations of other features, which provides a fair and robust
measure of the feature’s predictive power.

3 RESULTS

The entire pipeline is implemented in Python, utilizing libraries
such as NumPy for mathematical operations, Pandas for data ma-
nipulation, and TensorFlow for constructing and training the deep
learning models.

The predictive performance of the integrated model, utilizing
Fourier and Laplace transforms combined with VLMs, is depicted
in Figure 2. This figure illustrates the predicted probabilities of pos-
itive outcomes versus the actual outcomes for a subset of patients,
highlighting the model’s efficacy in personalized medicine appli-
cations. As shown in Figure 2, each patient is represented by two
bars: a blue bar indicating the predicted probability of a positive
treatment response and a red bar showing the actual outcome. For
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instance, the predictive model assessed patient 71 with a high like-
lihood of a positive outcome, as reflected by the height of the blue
bar. The corresponding red bar confirms the actual positive out-
come, validating the model’s prediction. The comparison between
predicted and actual outcomes allows us to evaluate the accuracy
and reliability of our predictive modeling approach.

Comparison of Predicted and Actual Outcomes for Selected Patients

mmm Predicted Probability of Positive Outcome
mmm Actual Outcome

0.8

°
S

Probability / Outcome

°
=

02

0.0

Patient ID

Figure 2: Comparison of predicted probabilities and actual
outcomes for selected patients, demonstrating the predic-
tive capability of the integrated Fourier-Laplace and VLM
approach.

While understanding the overall performance of our models is
critical, it is equally important to delve deeper into the mechanisms
underlying these predictions. We next explore the key genomic
features that are most indicative of treatment outcomes. The role of
specific genes such as TP53 and BRCA1, known for their significant
impacts on cancer progression and response to treatment which
is crucial in this analysis. Understanding these relationships helps
us not only validate the effectiveness of our predictive models but
also refine them to enhance their clinical utility. This leads us to an
examination of the feature importances derived from the model’s
learning process, as detailed next. Key genes that significantly in-
fluence the probability of positive treatment responses. As shown
in Figure 3, features derived from the Fourier transform of gene
expressions, particularly for TP53 and BRCA1, show substantial pos-
itive coefficients, indicating their crucial roles in predicting positive
outcomes. Conversely, the EGFR Fourier transform feature exhibits
a strong negative coefficient, suggesting its inverse relationship
with positive responses.

Having established the importance of key genetic features in
predicting treatment outcomes, our attention now turns to how
these genes manifest in actual patient scenarios. Understanding
the variability in gene expression among patients is crucial for
developing more effective personalized therapies. This approach not
only confirms the theoretical predictions made by our models but
also sheds light on the practical implications of these predictions in
clinical settings. Figure 4 illustrates a comparative analysis of gene
expression profiles for two cancer patients with positive outcomes.
The profiles were derived from patients identified to represent
distinct clusters within our dataset, suggesting different subtypes
of positive responses based on their genomic information.
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Feature Importance for Predicting Positive Outcomes
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Figure 3: Feature importances from the logistic regression
model indicating the influence of specific gene features on
the probability of positive treatment outcomes.

Through normalization of gene expression values, we observe
significant differences particularly in the expressions of BRCA1_FFT’
and ‘EGFR_FFT’, which may indicate varying underlying genetic
mechanisms influencing their disease outcomes. Such insights are
crucial for tailoring personalized treatment approaches, as they
highlight potential targets for therapeutic intervention.

Gene Expression Comparison between Two Cancer Patients

Patient 1

1.0 o
\ —e— Patient 2

=) o
o @

o
>

Normalized Expression

/

0.0

Gene

Figure 4: Normalized gene expression comparison between
two cancer patients, highlighting differences in key genomic
features that may influence treatment outcomes.

Following our exploration of comparative gene expression, we
further visualize these distinctions through an advanced graphical
approach. The use of a radar chart allows us to encapsulate com-
plex gene expression data into a format that is not only visually
engaging but also highly informative for discerning subtle nuances
between patient profiles. Such visualizations are instrumental in
identifying and understanding the unique patterns that might not
be immediately apparent through traditional analysis methods. Fig-
ure 5 presents a radar chart comparing the gene expression profiles
of two cancer patients who exhibit positive outcomes. This circular
representation allows for an intuitive comparison across multiple
genes, highlighting the relative expression levels in a compact and
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visually accessible format. The expression of each gene is repre-
sented as a point along its respective axis, starting from the center.
The farther from the center, the higher the expression. This visu-
alization underscores the unique expression patterns that might
underlie patient-specific responses to treatment, providing insights
into potential biomarkers for personalized therapy.

Circular Gene Expression Comparison between Two Cancer Patients
TP53_FFT

EGFR_I{FF

Patient 1
—— Patient 2

BRCA1_stability

Figure 5: Radar chart visualization of normalized gene ex-
pressions for two cancer patients, illustrating differences and
similarities in their genomic profiles.

Building on the static snapshot provided by the radar chart,
it is equally important to consider the dynamic nature of gene
expressions over time. By examining temporal patterns, we gain a
more detailed understanding of the biological processes that drive
disease progression and response to therapy. This dynamic analysis
is crucial for identifying time-dependent changes in gene expression
that may influence treatment outcomes and patient management
strategies. Figure 6 illustrates the temporal expression patterns
of key oncogenes: BRCA1, TP53, and EGFR. These patterns are
valuable for understanding their roles in cell cycle regulation and
response to treatment, particularly in the context of cancer therapy.

Following our investigation into the temporal dynamics of gene
expressions, it is essential to understand how these genes interact
with each other within the cellular network. Correlation analysis
of transformed gene expressions provides a quantitative measure
of the relationships between different genes, revealing potential
synergistic or antagonistic interactions that are pivotal in disease
mechanisms and therapeutic responses [4]. Figure 7 displays the
correlation heatmap of Fourier-transformed gene expressions. The
coefficients provide insights into the linear relationships between
the expression levels of key genes implicated in cancer, identifying
potential cooperative or antagonistic interactions.
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Temporal Patterns of Specific Gene Expressions

0.5
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Figure 6: Temporal patterns of specific gene expressions,
highlighting periods of significant activity that may corre-
late with patient response to treatment.

Correlation Heatmap of Fourier Transforms of Gene Expressiloons

0.9

BRCAL

-0.8

-0.7
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-0.6

-0.5

- 0.4

EGFR

Figure 7: Heatmap of correlation coefficients between the
Fourier transforms of gene expressions BRCA1, TP53, and
EGFR, highlighting potential biomarkers or therapeutic tar-
gets.

With the insights gained from the correlation analysis, which
highlighted intricate relationships between key genes, we next
utilize dimensionality reduction techniques to further synthesize
this complex data. Principal Component Analysis (PCA) offers a
powerful tool for reducing the high-dimensional gene expression
data into more manageable forms, enabling us to visualize and bet-
ter understand the clustering of patient genomic profiles based on
their treatment outcomes [19]. Figure 8 presents a principal compo-
nent analysis of gene expressions, showcasing how patients cluster
based on their genomic profiles when reduced to two principal
dimensions. The plot illustrates the separation between patients
based on their treatment outcomes, potentially indicating distinct
genomic signatures associated with different responses to therapy.

Building on the broad insights provided by PCA, which groups
patients based on genetic profiles, we delve deeper into the intricate
dynamics of how these genes interact over time and under different
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Figure 8: PCA scatter plot of patients’ gene expressions col-
ored by treatment outcomes, demonstrating the potential
clustering of genomic profiles related to treatment efficacy.

physiological conditions. Dynamic modeling of gene interactions
provides a more detailed and functional view of the regulatory
networks that govern cellular behavior, particularly in response
to therapeutic interventions. To understand the complex dynam-
ics within gene regulatory networks, we constructed a directed
interaction network based on simulated stability data derived from
Laplace transforms. As depicted in Figure 9, the network visualizes
interactions among several key oncogenes and tumor suppressor
genes.

It is imperative to demonstrate how these theoretical models
translate into practical outcomes. The Table 1 below consolidates
the complex interplay of gene expressions, interaction dynamics,
and PCA findings into quantifiable metrics that directly relate to
patient outcomes. This synthesis allows us to bridge the gap be-
tween high-level genetic analyses and individual patient responses,
illustrating the direct impact of our research on clinical decision-
making. As demonstrated in the personalized outcomes table (1),
the proposed method effectively predicts the likelihood of positive
treatment responses based on integrated genomic, proteomic, and
image-derived data. The predictive model harnesses Fourier and
Laplace transformations to analyze stability and frequency patterns
in genomic data, enhancing our understanding of patient-specific
drug interactions.

Patient ID | BRCA1 TP53 EGFR Prob. of Pos. Outcome (%)
84 -0.06040 1.12778 0.08611 100.0
54 -0.90776 1.51928 0.51079 97.2
71 1.18064 -0.62731 0.04522 5.6

45

-0.12755
1.80435

151115
-0.19090

-1.45118

0.71976

99.8
100.0

Table 1: Personalized outcomes based on integrated data anal-
ysis, highlighting the influence of specific gene expressions

and their dynamic interactions on treatment responses.
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Dynamic Gene Interaction Network

TP53

EGFR

BRCA1

MYC

HER2

Figure 9: Dynamic interaction network of key genes, illustrat-
ing potential regulatory pathways and interaction strengths.
Strong interactions are highlighted in red, indicating path-
ways that might be crucial in cancer progression and re-
sponse to therapy.

This table not only validates the predictive outcomes of our
models but also underscores the potential of using advanced data
analysis techniques to tailor treatments. The detailed breakdown
of gene expressions and their associated probabilities of positive
outcomes provides clinicians with a powerful tool for designing
personalized therapy plans that are significantly more precise than
those based on traditional methods. By correlating specific gene
profiles with patient responses, we facilitate a more targeted ap-
proach to cancer therapy, potentially enhancing treatment success
rates and improving patient quality of life.

3.1 Real-world Clinical Use Cases

To bridge the gap between theoretical modeling and practical ap-
plication, we demonstrate the effectiveness of the proposed frame-
work using real-world clinical examples. One such application is
in personalized cancer therapy, where treatment responses vary
significantly among patients due to differences in their genetic
makeup. In a retrospective analysis of breast cancer patients [15],
genomic data from publicly available databases was analyzed using
the proposed FFT + BLT + VLM pipeline. This approach identified
patient-specific gene expression patterns and stability metrics un-
der chemotherapy regimens. The research found that genes such as
BRCA1 and TP53, which are critical for DNA repair, showed distinct
periodic behaviors linked to treatment effectiveness. Using FFT, the
model detected circadian rhythms in TP53 expression, suggesting

WWW, 28 April- 2 May 2025, Sydney, NSW, Australia

an optimal time window for chemotherapy administration. Further-
more, BLT-based stability analysis revealed cases where BRCA1
activity remained unstable, indicating a higher likelihood of poor
drug response or resistance. This case study demonstrates how
the proposed framework offers actionable insights for oncologists,
enabling them to optimize treatment timing and tailor therapeutic
strategies based on a patient’s unique genomic profile.

Beyond oncology, this framework can also be applied to neu-
rological disorders, where periodic changes in gene expression
affect drug metabolism and disease progression. For example, in
Parkinson’s disease treatment [6], the model can analyze gene ex-
pression patterns related to dopamine regulation to optimize the
timing and dosage of Levodopa therapy. This could help reduce
side effects, such as motor fluctuations. A preliminary application
of this approach, using transcriptomic data from Parkinson’s pa-
tients, successfully identified time-dependent variations in genes
involved in dopamine synthesis. These findings provided insights
for adjusting drug dosages to improve symptom management. Such
real-world applications highlight the clinical relevance of the pro-
posed framework, showcasing its potential to advance precision
medicine and personalized treatment across various medical con-
ditions. Future work will involve collaborating with healthcare
institutions to implement and validate the model in prospective
clinical trials.

4 DISCUSSION

Our research represents an application of integrated computational
approaches to drug discovery and personalized medicine. The inte-
gration of Fourier and Laplace transforms with VLMs has demon-
strated the potential to enhance predictive modeling and provide
deeper insights into the complex interactions of genomic, proteomic,
and clinical data.

One of the primary contributions of our research is the enhance-
ment of predictive accuracy in determining patient-specific treat-
ment outcomes. The use of VLMs, in combination with Fourier
and Laplace transformed data, has allowed for a more nuanced
understanding of gene expression dynamics and their impact on
drug responses. Example: As shown in Figure 2, the model accu-
rately predicted positive treatment responses for a subset of pa-
tients, including Patient 71, where the predicted probabilities closely
matched the actual outcomes. This high level of accuracy under-
scores the efficacy of integrating advanced mathematical transfor-
mations with machine learning techniques in improving prediction
models. Moreover, our approach has facilitated the identification
of key biomarkers that are critical for disease progression and re-
sponse to therapy. By analyzing the feature importance derived
from the model, we have pinpointed specific genes that play piv-
otal roles in patient outcomes. Example: Figure 3 highlighted that
genes like TP53 and BRCA1 have strong positive impacts on the
likelihood of positive treatment responses, whereas EGFR showed
a negative impact. These findings are crucial for targeting thera-
pies and understanding resistance mechanisms in oncology. The
dynamic modeling of gene interactions based on stability insights
obtained from Laplace transforms has provided new insights into
the regulatory networks within cells. This aspect of our research
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offers a novel perspective on how genes interact over time and un-
der different treatment conditions. Example: As depicted in Figure
9, the dynamic network illustrates strong and weak interactions
among key oncogenes and tumor suppressor genes, providing a
roadmap for understanding potential pathways involved in cancer
progression. Our research has also contributed to the field by im-
proving the integration and visualization of complex biomedical
data. The PCA and radar chart visualizations have proven partic-
ularly effective in illustrating the relationships and differences in
gene expressions among patients. Example: The PCA plot (Fig-
ure 8) demonstrated how patients cluster based on their genomic
profiles, which is vital for stratifying patient groups and tailoring
personalized treatment plans.

5 CONCLUSION

The investigation has shown that combining Fourier and Laplace
transforms with VLM can improve the capabilities of drug discovery
and personalized medicine. By employing interpretable approaches
our research offered valuable insights into the dynamics of gene
expression and their interactions which are crucial for forecasting
and enhancing therapy outcomes in cancer patients.

o Identification of key biomarkers that influence drug responses,
facilitating targeted therapy approaches.

e Advanced visualization and data integration techniques that
aid in the interpretation of complex biomedical data, en-
hancing the understanding of patient-specific disease mech-
anisms.

e Novel insights into gene-gene interactions, offering a deeper
understanding of cellular regulatory networks and their im-
plications for disease progression and treatment.

While our research provides an interpretable framework for
integrating mathematical transformations with machine learning
for personalized medicine, several avenues remain open for further
exploration:

e Expansion to other diseases: Extending the application
of our integrated model to other complex diseases, such as
cardiovascular and neurodegenerative diseases, to test its
versatility and effectiveness in different clinical scenarios.

¢ Incorporation of additional data types: Integrating other
types of data, such as metabolomics and lipidomics, to en-
hance the model’s comprehensive understanding of disease
mechanisms and treatment effects.

e Real-time data integration: Developing real-time data
analysis capabilities to dynamically adjust treatment plans
based on patient responses and changes in their condition
over time.

o Deep learning models: Exploring more sophisticated deep
learning models within the VLM framework to improve the
prediction of treatment outcomes and the identification of
novel therapeutic targets.

e Clinical trials: Implementing clinical trials to validate the
predictions made by our model and to refine its parameters
for better clinical usability and accuracy.

The approaches established and confirmed in this research offer

valuable potential for enhancing customized treatment. Through
the ongoing improvement of these computational methods and the

MS Kamal et al.

broadening of their usage, we may greatly improve the accuracy
and efficiency of medical therapies, ultimately resulting in improved
patient results and a more profound comprehension of intricate
illnesses.
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